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THE ASYMPTOTIC DISTRIBUTION OF THE TRIMMED MEAN!

By STEPHEN M. STIGLER
The University of Wisconsin, Madison

In this paper it is shown that in order for the trimmed mean to be
asymptotically normal, it is necessary and sufficient that the sample be
trimmed at sample percentiles such that the corresponding population per-
centiles are uniquely defined. (The sufficiency of this condition is well
known.) In addition, the (non-normal) limiting distribution of the trimmed
mean when this condition is not satisfied is derived, and it is shown that in
some situations the use of the trimmed mean may lead to severely biased
inferences. Some possible remedies are briefly discussed, including the use
of “smoothly”’ trimmed means. *

1. Introduction. For many years, the trimmed mean has been an extremely
popular estimator of location parameters (see Tukey and McLaughlin (1963),
Bickel (1965), and Huber (1972) for accounts of its history and properties.) The
usual reason given for using the trimmed mean (or the median, the ultimate in
trimmed means) is robustness; in particular, the trimmed mean is less sensitive
to extreme deviations and heavy-tailed distributions than is the ordinary sample
mean. One purpose of this present paper is to point out that the trimmed mean
lacks some of the robustness of the sample mean when departures from assump-
tions other than in the tails are considered.

It follows from the Theorem of Section 2 that a necessary and sufficient con-
dition for the asymptotic normality of the trimmed mean is that the trimming
be done at proportions corresponding to uniquely defined percentiles of the popu-
lation distribution. (The sufficiency of this condition is well known—see Huber
(1969), Shorack (1972), Stigler (1972).) If this condition does not hold, it will
be shown that the limiting distribution is not normal, and use of the trimmed
mean may lead to invalid tests or confidence intervals, even with large samples.
This danger may exist when sampling from discrete populations or continuous
populations with gaps, or when using grouped data.

In Section 2 we derive the asymptotic distribution of the trimmed mean for
an arbitrary population distribution. Section 3 discusses the nature of the possi-
ble non-normal limiting distribution, the extent to which it may lead to biased
inferences, and some alternatives to the ordinary trimmed mean which do not
suffer from this disadvantage.

2. The asymptotic distribution of the trimmed mean. Let X, X,, ..., X, be in-
dependent and identically distributed, each with cumulative distribution function
F(x). We make no assumptions about F other than that it is proper (lim,_, F(x) —

Received April 1972; revised August 1972.
! This research was supported in part by the Wisconsin Alumni Research Foundation, and in
part by the United States Army under Grant No. DA-ARO-D-31-124-G917.

472

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

®
www.jstor.org



ASYMPTOTIC DISTRIBUTION OF THE TRIMMED MEAN 473

F(—x)=1.) Let X, <X, < --- £ X, denote the order statistics of the
sample. We consider the trimmed mean given by

1
1 S, =—— - il 11X
W ] — L) =

where 0 < @ < 8 < 1 are any fixed numbers and [.] represents the greatest
integer function.
Let a and b denote the largest ath and smallest Sth percentiles of F; that is,
a=sup{x: F(x) < a},
b=inf{x: F(x) = 8}.
Let A and B be the lengths (possibly zero) of the intervals of the ath and Sth
percentiles:
A=a—inf{x: F(x) = a},
B=sup{x: F(x)< g8} —b.
Further, define

G(x)=0 for x<a,
2) = (F(x) — a)/(B — a) for a<x<b,
=1 for x =05,
and set
(3) ¢ = {2 xdG(x) ,
4 o = {2, x*dG(x) — p*.

THEOREM. As n— oo, A(n}(S, — p)) —» A(Z), with Z=(f — a)™(Y, +
b—p)Y,+ (a—p)Y,+ Bmax (0, Y,) — Amax (0, Y,)) and E(Z) = [B(B(1 — B))t —
A(a(l — a)}]/[(B — a)(2n)?], where Y, is N(0, (8 — a)¢?®) and independent of (Y,, Y;),
and (Y,, Y;) is N(0, C),

—( B =8 —al—p)
¢= (—a(l -8  a(l — a)>’

Proor. Given X, - -., X,, define random variables ¥, and W, as follows: If
F(a—) = a, let V, = (X, < a); otherwise let ¥, count the number of X; = a
with probability p, = (@« — F(a—))/(F(a) — F(a—)) each (independently of the
others) plus the number of X; < a. If F(b) = 8, let W, = (§X; < b); otherwise
let W, count the number of X; = & with probability p, = (8 — F(b—))/(F(b) —
F(b—)) each (independently of the others) plus the number of X; < b. (In the
special case that a=b and F(a—) < a < S < F(a), then conditional on (§ X;=a)=m,
perform m independent trinomial trials with probabilities (p,, p, — pi, I — py),
observing (R,, R,, R;). LetV, = (#X; < a) + R,and W, =V, + R;.) Then V,
has a binomial (n, a) distribution, W, has a binomial (n, 8) distribution, and
Cov (V,, W,) = na(l — ).
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In terms of ¥, and W, define
Y, = max {[an], V,}, Z, = min{[pn], W,}.
Then we can write

([Bn] — [an])S, = Xt X
= Xifenn Xy + Zz@ynn X + Zgiﬂz]nﬂ X o
=T, — AlY, — [an]} + B{[fn] — Z,},
where
T, = Z'[iiﬂ[]an]+1 X(*i> ’
X =Xo + 4 if X, <a,

=X, if a<X,;, <0,
=X; —B if b< X, .

Note that if F(a—) < « or F(b) > §, then A = 0 or B = 0, respectively.

a b
FiG. 1. The density of F(x).

In the above, we understand } ¢_, e, to be zero if d < ¢. In what follows it

i=c i

will be convenient to use the notation
g:c é; = Z"ii=c+1 ; lf d > c,
=0 if d=c,
= — D¢ 416; if d<ec.
In particular, Y4 e = (d — c)e.
Since X%, = X;, for V, + 1 < i £ W,, we can then write
nH (T, — n(f — ayp) = n"H (Tl 0 Xy — n(f — a)p)
+ n_% Eginlg’n (X()"(b) - b) + n_i I;’g[an] (X;’;) - a)
+ no([pn] — W) + na(V, — [an]) .
Now,
In=# i, (X5 — B)| < |n~4([Bn] — W,)| - max {|X{s,, — b, | Xy, — 6]}
— 0 in probability,
since Xz, —, b, X , —, 0, and n~¥([pn] — W,) is bounded in probability.
Similarly,

nt Z:"ﬁ[an] (X(;f») - a) '_’ro .
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Thus we have

n=H([n] — [an])S, — n(8 — a)p}
= 1 Ei 1 (X — ) + n74b — p)(frn — W,) + n7¥a — p)(V, — an)
+ Bmax (0, n=}(fn — W,)) — Amax (0, n"¥V, — an)) + ¢, ,

where ¢, —,0 as n — oo.

We now note that given W, and V,, Z?;’?/n +1X;, has the same probability
distribution as the sum of W, — V, independent random variables, each with
distribution function G(x) (given by (2)). It then follows easily from the central
limit theorem (or appeal to the results of Wittenberg (1964)) that the joint as-
ymptotic distribution of n=4( 3}, ., (X, — p)), n¥(Bn — W,), and n=4(V, — an)
is ZAY,, Y,, Y;), which proves the theorem. d

We remark that this proof can be easily adapted to the case where the X;’s
are not identically distributed, and it can be used to derive the limiting distribu-
tion of other statistics of the form n~* 3 J(i/(n + 1))X;,, where J may have a
jump discontinuity corresponding to a non-unique percentile of F (see also Stigler
(1972)). The restriction to proper F is of course unnecessary—all that is needed
is lim,,_, F(x) < a < 8 < lim,_, F(x). Also, a =0 could be allowed if
2. x*dF(x) < oo, and similarly 8 = 1 if {{° x* dF(x) < oo.

3. The possible non-normality of the trimmed mean. It is apparent from the
theorem of Section 2 that, while the trimmed mean is more “robust” than the
sample mean in the sense that its behavior is not affected by the tails of the popu-
lation distribution, it may actually be less robust in other senses. In particular,
the trimmed mean is sensitive to gaps in the distribution near the trimming
proportions. (These gaps may be thought of as weight in the tails of the “trimmed”
distribution G(x).) The question naturally arises as to the practical importance
of this possible non-normality, and what may be done about it.

It could be argued that this behavior is of no importance since in order for
non-normality to occur, the trimming must be done at an & (or ) corresponding
exactly to a non-unique percentile—an unlikely state of affairs! However, this
viewpoint overlooks the fact that we only employ asymptotic distributions to
approximate finite sample size distributions, and that we may reasonably expect
the actual distribution of the trimmed mean to be close to the possible non-
normal limit for moderate sample sizes, providing only that the trimming is done
somewhat near a gap. That this may be the case when sampling from a discrete
population or using grouped data is obvious. Another situation in which this may
occur is when outliers are present in a proportion close to the trimming proportion,
exactly the type of situation for which the trimmed mean is often advocated.

How seriously can a gap or non-unique percentile affect the distribution of
S,? If we think of S, as being used to estimate or test hypotheses about # (given
by (3)), then the fact that the mean of the limiting distribution of n¥(S, — p) is

E(Z) = [B((1 — B))* — A(a(l — a))|/[(B — «)(27)*]
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(rather than zero) suggests that inferences may be thrown off considerably in
some situations. To see the extent to which this can happen, consider the case
where 4 = 0. It can be easily seen that we then have
P(f — )2 = 7) = (2. D(z; w)g(w) dw ,
where ¢(w) is the N(0, o,%) density and ®(z; w) is the N(wpo,/o,, 0,}(1 — p?))
cumulative distribution function, and
of = ¢ + (b — pff(l — B) — 2(a — p)(b — p)a(1 — B)
+ (@ — pa(l — o),
0y = 0y’ + [B* + 2B(b — p)]B(l — B) — 2(a — p)Ba(l — B),
010,0 = 0" + B((b — p)B — (a — p)a)(1 — B),
with ¢* given by (4). )
To see how the distribution of Z can vary with B, consider the special case
where « = 0.1, 8 = 0.9, and
F(x) = O(x) x<b,
= O(b) b<x<b+ B,
—®(x—B) x=b+B,
where @(.) is the standard normal distribution function, 6 = ®-*(8), and B = 0.

Table 1 gives the cumulative distribution function of Z for certain values cor-
responding to fractional points of the distribution for B = 0 and a range of B.

TABLE 1
P(Z < 2) as a function of B

z

—2.40 —1.69 —1.32 0.00 1.32 1.69 2.40

0.0 .010 .050 .100 .500 .900 .950 .990

0.5 .007 .036 .073 .390 .790 .863 .947

B 1.0 .007 .033 .067 .342 .689 159 .855
2.0 .006 .031 .062 .308 .592 .656 722

5.0 .006 .030 .059 .284 514 .551 .595

10.0 .006 .030 .058 .275 .486 515 .547

It is interesting to note that as B — oo, the density of Z approaches that of a
defective distribution with total probability slightly over .5, the limit being close
to .5 times the standard normal density.

We see from Table 1 that, depending upon the size of B, confidence intervals
for p centered at S, and tests of hypotheses about x based on S, may be severely
biased if no allowance is made for the existence of gaps. What can be done about
this? In the case of grouped data, one remedy is to “de-group” near the ath
and fSth sample percentiles. However, it should be recalled that “de-grouping”
amounts to assuming the true population distribution is uniform over the interval
in question, an assumption which may introduce a bias of its own!
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Yet another solution—this one valid for any case—is to use a more smoothly
trimmed mean, say n~* 3 J(i/(n 4 1))X;,, where

Ju)=(u — a)(.5 — a)! afugls,
=1—-—a—u)(5—a)! Stul —a,
=0 otherwise;

or
J(u):(u_f’_)zi Y cu<a,
2 «a 2
=h a§u§1-—a’,
=<1—ﬁ_u>2.”- l—a<u=<1-%,
2 o N 2
=0 otherwise

where h = 2(2 — 3a)~*. Such statistics are asymptotically normally distributed
for any population distribution (or, if the X;’s are not identically distributed,
any set of distributions which are uniformly bounded in probability) (see Stigler
(1972)), but they retain the most attractive features of the trimmed mean; ro-
bustness to heavy-tailed distributions and outliers. The efficiencies of the first
of these smoothly trimmed means relative to trimmed means and Winsorized
means for various continuous populations have been studied by Crow and
Siddiqui (1967), where they call it a “linearly weighted mean.”

Regardless of which approach is taken, some alternative to the trimmed mean
is desirable in circumstances where the population may contain gaps. Clearly
the same could be said about any linear function of order statistics with a dis-
continuous weight function. In particular, it is obvious that the situation is even
worse for the Winsorized mean. The slight increase in calculations necessary
to use a smooth weight function would seem to be worthwhile in many situations.
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