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ASYMPTOTIC DISTRIBUTION OF THE LIKELIHOOD FUNCTION
IN THE INDEPENDENT NOT IDENTICALLY
DISTRIBUTED CASE!

By A. N. PuiLipPou® AND G. G. Roussas®
University of Wisconsin, Madison

Let © be an open subset of R* and for each 6 € O, let Xi, -+, Xy be
independent rv’s defined on the probability space (27, % Pg), and let p; ¢
be the distribution of the rv X;. Let f;(«; §) be a specified version of the
Radon-Nikodym derivative of p;,» with respect to a o-finite measure ¢ and
set £(0) = fi(Xj; ). Furthermore, for 6, 6* € ©, set $;(9, 6*) = [ fi(6%)/f0)1
and suppose that ¢;(6, 6*) is differentiable in quadratic mean (qm) with
respect to §* at (¢, §), when the probability measure Py is employed, with
qm derivative $i(0). Set An(6) = 2n—t X", $i(6), Tj0) = 4g9[¢1(0)¢,’(0)],

Tw(0) = n=1 1%, T'(6), and suppose that Tn(6) — I'(6) and T'(9) is positive
definite on ©. Fmally, for hy — h € Rk, set 6n = 0 + hon—% and A,(0) =
log[dPy,5,/dPx, ], Where Py ¢ stands for the restriction of Py to &, =
o(X1, +++, Xn). Then, under suitable—and not too hard to verify—con-
ditions, we obtain, the following results. The limits are taken as n — co.

THEOREM 1. An(0) — W An(8) — — W T(0)h in Po-probability, § € ©.

THEOREM 2. .[An(6) | Ps] = N0, T'(8)), 6 € ©.

THEOREM 3. Z[An(0) | Pg] = N(— 30 L(O)h, WT(0)h), 6 € O.

THEOREM 4. An(0) — B An(0) — — 3 T(0)h in Py -probability, § € ©.

THEOREM 5. Z[An(6) | Py, ] = NGHT(9)h, WT(0)h), 6 € ©.

THEOREM 6. Z[An(0) | Pg,] = N(L(0)h, T(0)), 6 € ©.

0. Summary. In the present paper, we consider a sequence of independent,
but not necessarily identically distributed random variables, and give a set of
non-standard (that is, not Cramér-type) conditions under which the asymptotic
distributions of certain random functions of statistical importance are obtained.
The approach is also non-standard in that the derivations rely heavily on results
based on the concept of contiguity. The applicability of the assumptions made
is illustrated by an example in which the conclusions of this manuscript are also
specialized.

1. Introduction. In this paper, we consider the problem of deriving the asymp-
totic distributions of certain random functions of statistical importance in the
case that the underlying process consists of independent not necessarily identi-
cally distributed (i.n.n.i.d.) random variables (rv’s). Regularity conditions are
given under which we obtain the asymptotic expansion, in the probability sense,
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of the log-likelihood function A, () (see (3.2) for its definition). Loosely speak-
ing, we show that, for each fixed 6 € ©, the likelihood function e*»® may be
approximated by an exponential family. On the exponent of this family, there
appears a random vector A, () (see (2.3) for its definition), which plays an im-
portant role in testing hypotheses problems. The asymptotic normality of A, (0)
is established along with that of A, (¢). The above mentioned results are obtained
under both the P, and P, -probability measures, where ¢, approaches ¢ at a
specified rate (see (3.1) for the definition of 6,).

Results analogous to the ones obtained herein, and under assumptions similar
to the ones used in the present paper have been established by Roussas (1965)
and Johnson and Roussas (1969), (1970) for stationary Markov processes. They
are included in Roussas (1972), Chapter 2. The two sets of regularity conditions,
the one employed here and the one utilized by the above mentioned authors,
coincide in the special case that the rv’s involved are i.i.d. Both sets include
the basic assumption of differentiability in quadratic mean of a certain random
function ¢ (6, 6*) (see (2.1) for its definition), which replaces the usual assump-
tions about the existence of the second order derivatives of the densities involved.

The problem of deriving some of the asymptotic distributions mentioned above
in the i.n.n.i.d. case has also been considered by LeCam (1960) as an application
of his more general results in the framework of DAN families of distributions.
He obtained an asympotic expansion for A,(#), but under Cramér-type as-
sumptions. In a subsequent paper, LeCam (1966) proved that the asymptotic
normality of A,(f) implies and is implied by the asymptotic normality of
2 {le;@, 60,)]° — 1}, provided that the i.n.n.i.d. rv’s satisfy a certain
uniformity condition. This result was first stated in LeCam (1960) for the case
that 0 = 1. One direction of it and for the special case of § = } was also
independently established by Hajek and Siddk (1967), and was employed by
them for some testing hypotheses problems in a non-parametric context.

Finally, asymptotic results of the same nature as the ones presented here, and
in connection with linear rank statistics and also by utilizing contiguity argu-
ments, have been obtained by Beran in a recent paper, Beran (1970).

The assumptions used in the present paper are non-standard (that is, not
Cramér-type) and are designed to cover cases, where pointwise derivatives fail
to exist. Also, they are of more probabilistic, rather than analytic, nature and
not exceedingly difficult to verify. Finally, they enable us to directly derive the
desired asymptotic distributions.

In Section 2, we introduce the necessary notation and summarize the assump-
tions under which the results in this paper are obtained. In Section 3, the main
results are stated; their proof is deferred to Section 5, after some auxiliary
results are established in Section 4. Finally, in Section 6, the applicability of
the assumptions is illustrated by means of an example.

It is worth noting that the model considered here includes as a special case
the regression model which need not be linear and where the residuals, although
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independent, need not be normally distributed. We shall return to this important
case in a subsequent paper.

In order to avoid unnecessary repetitions in the sequel, all limits will be taken
as n — oo through positive integer values unless otherwise explicitly stated.

2. Notation and assumptions. Let ® be an open subset of R* and for each
0e®,letp;,,j=1,---,n(n=1,2,...)be probability measures on (R;, %)),
where (R;, ;) = (R, &7), the Borel real line. It is assumed that there is a o-finite
measure ¢ on <Z'such that p; , « ¢, 0 €0, j =1, and set f,(+; 0) = dp; ,/dp for
a specified version of the Radon-Nikodym derivative involved. Set (77, %) =
115, (R;, <) and let P, be the product measure of p; ,, j = 1, induced on .7
Then, if X, j = 1, are the coordinate rv’s, it follows that, for each 6 ¢ ©, these
rv’s are independent and the pdf of the jth rvis f;(+; 6). It is further assumed
that, for each j > 1, the set {x € R; f;(x; ) > 0} is independent of # € ©. In the
following, we set f,(6) for the rv f;(X;; ). Also the notation %, = a(X,,- - -, X,)
and P, , for the o-field induced by the rv’s Xi, - - -, X, and the restriction of the
probability measure P, to .97, respectively, will occasionally prove useful.

For 6, 6* ¢ O, set

2.1 0,0, 0%) = (0, 0%; X;) = (f;(( ‘9*)> <f;((00*))>

so that &, ¢ %0, 0*) = 1, and

aP, o _ [:07)
%0t — o L7 7 = o %4, %) .
Pn,ﬂ g H] 172y f](ﬂ) gH: 195 ( )
It will be assumed in the following that, for each j > 1 and any arbitrary but
fixed ¢ € ©, the random function ¢ (¢, 6*) is differentiable in quadratic mean
(qm) with respect to 6* at (6, 6) when P, is used; ¢;(f) will denote its qm deriv-
ative at (¢, 6). Next, set

(22) A9, 6%) = log Lmtr

@.3) A(0) = 2 B3 04(0)
and
@4) T =4=p 00/ 0], L0 = - DT0).

Now we gather together the various assumptions under which we will be able
to derive several asymptotic results.

ASSUMPTIONS.

(Al) For each j = 1 and every 6 € ©, the rv X; has a pdf f;(+; #) with respect
to a g-finite measure ¢ on <% and the set {x € R; f J(x, 6) > 0} is independent of
fe0.

(A2) (i) For every 6 € ©, the random functions ¢,(6, 0*), j = 1, are differ-
entiable in qm with respect to 6* at (¢, ), when the probability measure P, is
employed, uniformly in j > 1. That is, there is a k-dimensional random vector
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¢;(0)—the qm derivative of ¢,(, 6*) with respect to §* at (¢, §)—such that
|47 - lo (0, 0 + Ak) — 1 — 2K'¢(6)] — O inqm [P,], as 10,

uniformly in j, uniformly on bounded sets of % ¢ R*.

(i) ¢4(0) is X;7(<Z;) x Z-measurable, where & is the o-field of Borel subsets
of ©.

(A3) For every 0 ¢ © and every ke R, [K'¢ (0)]%, j = 1, are uniformly inte-
grable with respect to Py; i.e., uniformly in j

S([h'¢j(9)]2>a) [h @1(0)]2 dPﬁ —0 N as a— oo .

(Ad) For every 6 € © and every ke R, (n®+92)1 312_ &, |K'¢ (6)|*+* — O for
some d > 0,0 < < 2. )
REMARK 2.1. A sufficient condition for (A3) and (A4) to be true, and which
in many circumstances is easy to verify, is the following
&, (0) < M( = M(h, 0) < o), j=1.

(AS) LetI'y(),j=1,...,nand I',(6) be defined by (2.4). Then for every
6¢0, ') — 1), where the convergence is convergence in norm (any one of
the usual norms for matrices) and I'(6) is positive definite.

3. Main results. Under Assumptions (A1)—(AS5), we derive the results stated
below. For their formulation, let

(3.1) 0,=0+ h,/nt, h,—>hecR*,
and with A(6, 6,) given by (2.2), set
(3.2) A(0) = A9, 0,).

We may now proceed with the formulation of the main results in this paper.
THEOREM 3.1. Under Assumptions (A1)—(AS5) and for each 0 ¢ ©, one has
A (0)—HA,(0) —» —4WT(@)h  in  P,-probability,
where A,(0) and A, (0) are given by (2.3) and (3.2), respectively (and 0, is defined
by (3.1)).

A loose interpretation of the result just stated is as follows. For large n,
exp A,(0) is approximately equal to exp[#'A,(0) — 4#'T'(0)h]. Thus, keeping &
fixed and letting % play the role of a parameter, one has that, for large n, the
likelihood function exp A,(6) behaves as if it were of an exponential form. This
statement will be made precise in a subsequent paper, in which certain testing
hypotheses problems will also be treated. The random vector A,(6) plays the
important role of the exponent in the approximating exponential family.

From the preceding comment, it also follows that the random vector A, (6) is
bound to be of fundamental importance for any statistical inferences in connec-
tion with the underlying process. The result stated below provides the asymp-
totic distribution of A,(f). More precisely, one has
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THEOREM 3.2. Under Assumptions (A1)—(AS) and for each 6 ¢ O,
ZL[A,(60)| Pl = N[O,L(6)],
where A, (0) is given by (2.3).

Again from statistical inference point of view, one would like to know the
asymptotic distribution of the log-likelihood function A,(#). This is provided
by the following result.

THEOREM 3.3. Under Assumptions (A1)—(AS) and for each 0 € ©, one has
ZLIAO) | o] = N[— W T (O)h, KT (O)R].,
where A, (0) is given by (3.2) (and 0, is defined by (3.1)).

The theorems stated so far provide asymptotic results when the parameter
point /—and hence the corresponding probability measure P,—is kept fixed.
However, for statistical applications, one would have to allow the parameter
point to vary with n in a certain way. When 6 is replaced by 6,, where 6, is
given by (3.1), then one can establish results similar to Theorems 3.1—3.3 with
P, being replaced by P, . These are stated below as Theorems 3.4—3.6. Their
statistical usefulness may be explained along the same lines as that of Theorems
3.1-3.3.

THEOREM 3.4. Under Assumptions (A1)—(AS) and for each 6 € ©, one has
A(6) — KA0)— —3T@h  in P, -probability,
where A,(0), A,(0) and 0, are given by (2.3), (3.2) and (3.1), respectively.
The appropriate version of Theorem 3.3 is as follows.
THEOREM 3.5. Under Assumptions (A1)—(AS) and for each 0 € ©, one has
LIA6)| P, — NIFHTEO)h, KT (O],
where A, (0) and 6, are given by (3.2) and (3.1), respectively.
Finally, the analogue of Theorem 3.2 is stated below.
THEOREM 3.6. Under Assumptions (A1)—(AS) and for each 6 ¢ ©, one has
Z[A(0) | P,,] — NIT©O), T(0)],
where A,(0) and 6, are given by (2.3) and (3.1), respectively.

The proof of Theorems 3.1-—3.6 is deferred to Section 5. In the next section,
we establish some lemmas which will facilitate the proof of the theorems.

In closing this section, it should be mentioned that the results obtained herein
under Assumptions (A1)—(AS), clearly, resemble results obtained by Roussas
(1965) and Johnson and Roussas (1969), (1970) (see also Chapter 2 of Roussas
(1972)) under related assumptions for stationary Markov processes. However,
their results do not imply ours, since they consider rv’s which are identically
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distributed but not (necessarily) independent, whereas we consider rv’s which
are independent but not (necessarily) identically distributed. For thei.i.d. case,
our assumptions coincide with theirs and so do the results.

4. Some auxiliary results. The proof of the theorems in the previous section
will follow after we have established a series of lemmas. In the sequel, it will
be convenient to write ¢, (f) rather than ¢,(0, 0.,). Also 6 will be often omitted
from various expressions. Thus, for example, we shall write @,;, ¢j» Tj» Tas T,
etc. rather than ¢, ;(6), ¢,(6), I 40), T',(8), T'(8), etc., respectively.

LEMMA 4.1. Under Assumptions (A1)—(AS) and for each 6 e O, one has
1 ,e . "
5 [on0) — 1P — = 5 [WQ,@O)F >0 in Pyprobabilty.

ProoF. We start with the following remark which will be used below. For
j=1,.--,n, let Z; and Z,; be rv’s defined on a probability space (Q, %7, P)
and let max (¥|Z,; — Z;5 1 < j<n)—0. Let also £Z; < M (< oo) for all
j. Then

ENZ P = B2 — Z;) + Ziff S ENZuy — Zf + EHZL

and
FHZ, = ENZos — Z,) — Zugl S ENZos — Zi + EZ0l
so that
|LHZ,, — EHZP| = EHZuys — Zi -
Hence

max (€122, — E1Z;1<jsn)—0.

This result, together with the assumption that EZ < M(< o) for all j, implies
that 72, < M (< oo) for all j, where M is generic constant. Finally, this con-

clusion, along with the inequality
#\22 — ZP| S (B2 + SZHENZ,; = Z)f
and the assumption that max (£'|Z,; — Z;[% 1 <j < n)— 0, implies that
(4.1) max (¥22; — Z#; 1 £j<n)—0.
Next, by (A2) (i), we have

47 - o6, 0 + 2k) — 1 — Ap(0)| =0 inqm [Py],
as 42— 0 uniformly in j,

uniformly on bounded sets of &€ R*. Let A = 1/n* and replace & by &,, &, —
he R*. Then

(4.2) max [,|nk(g,; — 1) — Kg;/51 =] < n]—>0.

The non-uniform version of (4.2) was obtained by Roussas (1965) (see 3.1.2).



460 A. N. PHILIPPOU AND G. G. ROUSSAS

From (A3), one, clearly, has that &,('¢;)* < M(h, 0) (< oo) for all j. By this
fact and (4.2), relation (4.1) gives

(4.3) max [£|n(,; — 1)) — (W)} 1 =j = n]—0.

-]

Next, for every ¢ > 0

1 '
P, U 21 (@n; — 1P — o 1 (H9;)

(4-4) = P{| L5 [n(pa; — 1) — (H¢,)"]| > ne}
S Pl Zioa(n(pn; — 1P — (K@) > ne]
1

é E ?:1 go'”(goru‘ - 1)2 - (h,¢j)2| .

.

But (4.3) implies that, for n = Ny(c, &, ), &,ln(e,; — 1) — (K¢}l <& 1 <
j < n. Thus the last expression on the right-hand side of (4.4) is < (ne)™'ne’ = ¢
for all n = Ny(e, k, 0). The proof is completed.

LemMA 4.2. Under Assumptions (A1)—(AS) and for each 0 € ©, one has
% S [WpO)F — thT(@)h  in  P,-probability.
Proor. By (2.4) and (AS5), we have
% 251 Ey(H o) — T
Therefore it suffices to show that
(4.5) % 2 [(Wo,) — E,H,] >0 in P,-probability.

Now (4.5) is the statement of the weak law of large numbers of independent but
not necessarily identically distributed rv’s, and a sufficient condition for it to
hold true (see Loéve (1955), page 275) is that for some ¢’, 0 < ¢’ < 1,

: 1 ,, , . ,
(4.6) e D31 Eol(Wp;) — Ey(h )" — 0.
But

1 ,, ', ,
4.7) 2 Egl(H ;) — Ey(W@,)*°

pité’

”
< 2 L [ - (]

= et

by the c,-inequality (see Loéve (1955), page 155), and the expression on the
right-hand side above is less than or equal to

4.8 Xk n_ [ WGP 1 R p a0
J J J

’
n1+6
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This is so because, if Z is a rv defined on the probability space (Q, .27, P), then
Z\Z| < &Y|Z|", so that £7|Z] < &|Z|", provided r = 1. Finally, the expres-
sion in (4.8) is equal to

1

n1+5'

21437,

Tjea EH g0

Taking now ¢’ = d/2, where d is as in (A4), this last expression becomes

1

2+6)/2
net+ore

2= Eolh P

which converges to zero, by Assumption (A4). This result implies (4.6), by
means of (4.7) and (4.8), and hence (4.5). The desired result then follows.
To Lemmas 4.1 and 4.2 there is the following immediate corollary.

COROLLARY 4.1. Under Assumptions (A1)—(AS) and for each 6 € ©, one has
St [@ai(0) — 1P — 10T in  P,-probability.
Next, we establish the following
LeMMA 4.3. Under Assumptions (A1)—(AS) and for each 6 € ©, one has
max [|¢,;(0) — 1; 1 £j<n]—>0 in  Pg-probability.
Proor. Following Roussas (1972) (see Lemma 5.2), we set
R,; = n¥(p,; — 1) — H'g;.
Then
Py[max (le,; — 1[; 1 < j<n) >¢]

(4.9) < P[max (Kg,; 1 < j < n) > en]2]
+ P[max ([R,[; 1 < j < n) > ent[2]

But
Pmax (R, i 1 < j < n) > endf2] < Tiey Po(|Ryy| > entf2)
4
= F Z?=1 E;”'9|RM.|2 )
and by the definition of R,; and Assumption (A2) (i), &,|R,;|* < ¢*/8 for all suf-
ficiently large n, n = Ny, k, 0), say, and all j, 1 < j < n. Therefore

(4.10) Py max (|R,;|; 1 £j < n) > ent2] < ¢/2

for all n = Ny, A, 6) .
Next, let F, = F;, , be the distribution, under P,, of the rv |#¢,|. Then by
Assumption (A3), one has that for all sufficiently large n, n = Ny(e, &, 0), say,
andallj, 1 <j < n,

§ ent/aen X' dF; = Suh'&:]-pm&/m |h,¢j|2 dP, < €8
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Therefore, for all n = Ny(e, &, 6),
P[max (|'¢;; 1 < j < n) > ent[2]
< Zia Po((Hp,| > ent)2)
= Z%=1 Seentsa,) dF

4
—— 2301 Sends e (en?[2)* dF;
ne’

Il

4
é F Z;’L=l S(en§/2,w) x2 dF:
3
£-4—ne_=i; i.e.,
~ net 8 2

4.11)  P[max(W¢,;1 <j<n)>ent2] <e2  forall n= Nye, b, 6).
; J

The desired conclusion then follows from (4.9) by means of (4.10) and (4.11).
The following result shows that the log-likelihood function A, () may be ex-
pressed asymptotically and in P,-probability in terms of the ¢, ;(f) rv’s. Namely,

LeEMMA 4.4. Under Assumptions (A1)—(AS) and for each 0 € ©, one has

A(0) — 2{X -1 [pni(0) — 1] = & Ziaa[pai(6) — 1P} =0
in  P,-probability.

PROOF. As has been mentioned in the course of the proof of Lemma 4.1, one
has that &,(k'¢;)? < M(h, 0) (< o) for all j. Therefore for any M > 0,
M(h, 6)

1
M| — 2 o) <
> ]_nM 21—1 g&( 901) = M

1 ,
P |- g gy

so that (1/n) Y_, ('¢;)? is bounded in P,-probability. This result and Lemma
4.1 imply, in an obvious manner, that 37, (¢,; — 1)’ is also bounded in P,
probability. Therefore Lemma 4.3 gives

(4.12)  [max(lp,; — I 1 /= m)] Zia(pa; — 1 =0
in P,-probability.

For a given 0 < ¢ (< 4), let

(4.13) A, = A,(0) = [max (lg,; — 1; 1 £j < n) > ¢].
Then Lemma 4.3 implies that Py(A4,°) > 1 —¢, n = N(¢). Consider the expansion
(4.14) logx =log [l + (x — 1)]

=(x—=1) = Lx — 1) 4+ ¢(x — 1)%, where |c| < 3.
( ) — &( >+« ) I

From (4.13) and (4.14), we have then that on the set 4,° with Py(4,) > 1 — ¢,
n = N(e),

log Pui = lOg[l + (son:i - 1)] = (goni - 1) - %(901»1 - 1)2 + cnj(so‘nj - 1)3 ’
el £ 3,j=1,---,n.
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Therefore on A4,° with n = N(e),
711080, = Dioi(0n; — 1) — 3 251 (0a; — 1) + DiarCaj@n; — 1)°-
But
| 231 €ui(@n; — 1] = 3[max (jo,; — 1 1 < j = )] Zjea(pa; — 1)) — 0
in P,-probability by (4.12). Therefore
(4.15)  Xialogen; — 2[ X5 (pn; — 1) — & Zina(pn; — 1] 20
in P,-probability.

But (2.2) and (3.2) give A,(6) = 2 7., log ¢2,(f). Thus relation (4.15) implies
the desired result. :
From Lemma 4.4 and Corollary 4.1, one immediately has the following

CoROLLARY 4.2. Under Assumptions (A1)—(AS) and for each 6 ¢ ©,
A 0) —2 32, [9.;00) — 1]> —3wT(@)h  in  P,-probability.
The following lemma will also be needed in the sequel.
LemMA 4.5. Under Assumptions (A1)—(AS) and for each 6 € ©, one has
() max {&|n}[},(0) — 1] — 2K'¢,0); 1 <j < n} >0
(ii) Sl ¢(0)] =0, jz1.
Proof. (i) Following Roussas (1965), we consider the identity
nn; — 1) — 20 ¢; = {pu;[n}(en; — 1) — H'¢;] + Hoi(ea; — 1)}
+ [n¥pn; — 1) — 5]
from which we get
(4.16) Eolni(pn; — 1) — 209, < 284 n¥(p,; — 1) — K¢, T
+ EHH ) E M pn; — 1),
by means of Holder inequality, the inequality
Eoln¥@n; — 1) — Koyl < Epni(e,; — 1) — Ko,
and the fact that &, ¢2, = 1. By (A2) (i),
max {&[n¥(¢,; — 1) — Hp,]51 <j<n}—0.
We have also seen, in the course of the proof of Lemma 4.1, that the quantities
Zy(We,), j = 1, stay bounded, and
max {|&,[n}(p,; — DI — &y ¢;)'; 1 <j = n}—0.

This latter conclusion implies that max [&y(¢,; — 1) 1 < j < n] — 0. Therefore
(i) follows from (4.16).
(i) We have

|Zo[n¥(pn; — 1) — 420 ¢;)| < &yln¥(ph; — 1) — 2K | >0,
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by (i), so that Elnt(p; — 1)] > &1 ¢;). But &y(¢i;, — 1) = 0. Thus
Zy(W¢;) = 0, as was to be seen.

This section is closed with Lemma 4.6 below, which along with the previous
lemmas, provides all we need for the proof of Theorems 3.1—3.3.

LEMMA 4.6. Under Assumptions (A1)—(AS) and for each 6 € ©, one has
. 1 ,, . e
() 2 T3 Eleu(0) — 1]+ - D3 [HeOF — 0 in  Pyprobability,

and
(if) t{leni(0) — 1] — E4le.,(0) — 1]}
- % Yr e 0)—0  in Py-probability.
n

Proor. (i) Wehave ¢};—1 = (¢,;—1)*+2(¢,;—1), so that 0 = &F(p7,—1) =
Eo(pn; — 1) + 2&(¢,; — 1). Hence

(4.17) 2 Eo(¢n; — 1y = -2 3%, g&(%ﬁ —-1).
Next,

251 Ep(Pny — 1) — % 251 E(W ;)
< LR Fin(p — 1 = (9 < o=,
for all sufficiently large n, n = N(e, &, 0), say, by (4.3). Thus
(4.18) T Eolgas — 1P = o T Eu9) = 0.

But (1/n) 337, Ey(W ;)" — 1h'Th, by (2.4) and (AS). Therefore (4.18) becomes
(4.19) N Ey(pn; — 1) — tHTh.

Relation (4.19), together with Lemma 4.2, implies that
4.20) S Fy(pa; — 1) — % » (K¢, —0 in P,probability.
Therefore (4.17) and (4.20) give

25 Fylpns — 1) + % sn_ (W) —0  in P, probability,

as was to be shown.
(ii) Forj=1, ..., n, define the rv’s Y; by

1,
(4.21) Y; = (pa; — 1) — ﬁh @; — Eo(Pui — 1).
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Then &,Y,; = 0, by Lemma 4.5 (ii). Therefore Kolmogorov’s inequality and
¢,-inequality, applied successively, give

PAZIA Y > 9 = % T od(Y))

L s Ik — 1) — Hg,] — nE (g, — DF

ne?
2

(4.22)

= 5 L EolnMpn; — 1) — H'o5T

2 D |Enens — DI

But &,[n¥(p,; — 1) — K¢} < /2 for all sufficiently large n, n = Ny(e, 4, 0),
say, and 1 < j < n, by (A2) (i), so that

(4.23) 2 Spa Sl = D= HEF<es n> N hO).

Next, since &,(F'¢;) = 0, by Lemma 4.5 (ii), we have

max {|&,[n¥(¢,; — DI} 1 =j = n}
= max {|%,[nk(g,; — D)] — (W) 1 < j < n)
< max [&|n¥(p,; — 1) — Ko;[; 1 < j < n]
< max [£}n¥(p,; — 1) — W[5 1 < j < n]
-0, by (A2) (i)-

Thus, for all sufficiently large n, n = Ny, h, 0), say, one has
2
(4.24) —5 D (&l — DIF <<
Relations (4.22), (4.23) and (4.24) imply that }7_, Y, — 0 in P,-probability.
This result and the definition of Y; by (4.21) imply (ii).

5. Proof of the main results. We may now proceed with the proof of the
theorems stated in Section 3. The proof is based primarily on the lemmas
established in Section 4.

PRrOOF oF THEOREM 3.1. In Lemma 4.6, we multiply the expression on the
left-hand side of (ii) by 2 and then add up (i) and (ii). We get then

1 ’g 2 s e
(5.1) 2250 (Pws — 1)+72?=1(” Soj)z—EZjﬂh%—’O
in P,-probability.
In terms of the A,(6) notation (see (2.3)), (5.1) becomes

25 (pay — 1) + % Sn (W, — WA, —0  in P,-probability.
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This result, along with Lemma 4.2, gives
(5.2) 23, (p.; — 1) — WA, — —3k'Th  in P, -probability.
Finally, combining (5.2) with Corollary 4.2, we obtain
A, — WA, — —3'Th  in P, -probability,
as was to be shown.

PRrOOF OF THEOREM 3.2. Set Y, = (2/n})W'¢;,j=1,--.,n,0 %+ he R: Then
&,Y,; = 0,by Lemma 4.5 (ii), and 5, = 317, 0,%(Y,;) = (4/n) X7-1 E,(H'¢;)* =
KT, h — WTh, by (AS). Therefore

2240 1 ' (240
T S, -0,

W PRIy

1 s
5,240 i SolYa ' =
by (A4). Hence Liapounov’s condition for the Central Limit Theorem to hold
(see Loéve (1955), page 275) is satisfied and therefore

(%

, P,,):»N(O, 1), since WA, = ¥1.Y,,.

n

Now #T'h is positive, by (AS5), and hence the last convergence implies
AW, | Py) = NO, #'Th) .
Since this is true for every 4 € R, it follows that
Z(B,|P) = NO, T),
as was to be established.

Proor oF THEOREM 3.3. It follows immediately from Theorems 3.1 and 3.2,
and the standard Slutsky theorems.

We now proceed with the proof of Theorem 3.4.

PRroOF oF THEOREM 3.4. From Theorem 3.3 herein and a corollary to LeCam’s
first lemma (see Hajek and Sidak (1967), page 204), it follows that {P.,0,} is con-
tiguous with respect to {P, ;}. The proof of the theorem is then completed on
account of Theorem 3.1.

ProoF oF THEOREM 3.5. It follows from Theorem 3.3, the contiguity of
{P.,,} and {P, ;} mentioned in the proof of the previous theorem and Corollary
7.2, Chapter 1, in Roussas (1972). Alternatively,

Pﬁn(An < X) = S50 4Py, = §ir,s0 erndPy = § el _, 1(2) AL (A, | Py),
and Z(A, | P;) = N(—4k'Th, WT'h) = Q,, by Theorem 3.3, whereas the set of
discontinuities of e* _., ,(2), {x}, has Q,-measure zero. Therefore

§ €1 _wo,01(2) dLN, | Py) = § €] (oo 1(2) dO,
= §(_w,s € AN(—4H'Th, 'Th) .
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But Viceoa1 € AN(—3H'Th, WThY = § _,, ,; AN(GH'Th, W'Th)
as is easily seen, and this establishes the theorem.

For the proof of Theorem 3.6, we need an auxiliary result which is formulated
and proved below.

ProposITION 5.1. Foreachn = 1,2, -- ., let P, be a probability measure defined
on the measurable space (Q, %), and for each he R¥, let Z, = Z (k) and T, be a
v and a k-dimensional random vector, respectively, defined on (Q, &) and such that
(5.3) AT, |P,) = NO,T),
where I' is a k X k nonsingular covariance matrix, and
(5.4 Z,—WT, > —%d* in P,-probability,
where o* = o*(h) = W'Th.

Then {<£[(Z,, T,') | P,]} converges (weakly) to a ((k + 1)-dimensional) normal
law with mean and covariance given by
g KT
'm T
ProoF. For t,¢ R and ¢ e R, set u’ = (¢, '). Then it suffices to show that,

for every such u € R**', the rv #'(7») converges (weakly) to the normal law with
mean and variance

(—%4%,0, ...,0) and l: } , respectively.

—1o
0 '
u . and u l: ot h F] u, respectively.
: I'e T
0
Now (5.3) implies that
(5.5) Ll(teh + YT, | P,] = NQO, (tyh + t)T'(t,h + 1)),
whereas (5.4) implies that
(5.6) tWZ, — WT,) — —Lt,6* in P,-probability.

Next,
L (F) | P] = LK Z, + ¢'T,)| P,]

= A2, — K'T,) + (bh + tYT,]| P}
which, by means of (5.5) and (5.6) and the standard Slutsky theorems, converges

to the normal law with mean and variance —%t,0® and (¢, + )T'(t,h + ?),
respectively. But

—yot=uw| . and  (th + (yT(tch + 1) = & [f“; ";,F] u,
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as is easily checked by taking into consideration the fact that ¢ = A'T'h. The
proof is completed.

We are now in a position to present the proof of Theorem 3.6.
Proor oF THEOREM 3.6. In Proposition 5.1, take Z, = A, (f)and T, = A,(0).
Then, by Theorems 3.2 and 3.1, conditions (5.3) and (5.4) of Proposition 5.1

are satisfied. Therefore {<°[(A,, A,) | P,;]} converges (weakly) to a normal law
with mean and covariance given by

2 2 _
[f‘oh hI_‘F:i s respectively, where ¢ = A'T'h.
Next, {P, ,} and {P, , } are contiguous, as was pointed out in the proof of Theo-
rem 3.4. Therefore Theorem 2.1 (6) in LeCam (1960) applies and gives that

A, |P,) = NTh,T),
as was to be seen. The same conclusion may be arrived at by an obvious modi-

fication of LeCam’s third lemma, as is formulated and proved in Hajek and Sidak
(1967), page 208.

6. An example. In this section, the applicability of Assumptions (A1)—(AS5)
and the results obtained in this paper are illustrated by means of an example.

(—4%0%0,...,0) and

ExAMPLE. Let X;, j =1, - .-, n be independent rv’s, such that the probability
density of the rv X; is given by
(6.1) fix53 0) = exp[—|x; — 2,0]], X;eR, 0eR,
where the 4;’s are assumed to satisfy the relations: 0 < 2; < M for some M < oo,
and (1/n) 337, 2, — 2> 0.

Assumption (Al) is, clearly, satisfied.

In order to establish (A2), we proceed as follows. We have
(6.2) (0, 0%) = exp{—3[|X; — ;0% — |X; — 2,;0]]} .
We note that the pointwise derivative of ¢ (4, 0*) with respect to #* does not
exist at (0, ¢) when 2,6 = X;. The derivative in quadratic mean, however,
exists and is given by Z,(#), where

Z(6) = _%, if X, < 2,0
(6.3) =0, if X, =2,0
:%, if X,>2,0.
Then
&9 Zy(0) = —% Py(X; < 4;0) + % Py(X; > 2;0)
(6.4) =_%.%+%.%
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and

: 1 A2 01 A
6.5 ENZ(Nfp= 2 0 — 1 %5 0 - =T,
(6:5) 2Oy =45 S+ =
Next,

Eppi(0,0 4 h) = Ly exp{—3[|X; — 2,0 + h)| — |X; — 2,0|]}
32— L), if B <0
L2+ Rkt if B> 0,

as is easily seen. Thus

(6.6) %[1 — %040, 0 + h)]

) ) .- h
F(1 et 4 A;telit) if = 5 <0
1 . . h
F(l—e‘” 2, tetit) if t:3_>0
A2 . .
— ‘i , as h— 0, uniformly in j.

Finally,
EAZ(0)p,(0, 0 + )]
= — 25§l exp{—4lx; — 4,6 + h) + x; — 4,00]) d,

)
T §7.0 eXp{—3[1x; — 4,0 + B)| + |x; — 4;0]]} dx;
A2 L s :

TJ hetih/? | if h<O0

ij h_g..h/z s
e e~ h/2 if >0

which implies

'22 it if R <0
(6.7) go[z (0)p;(0, 0 + h)] = 12
Li e=Ajh2 if A>0
4
42 as h— 0, uniformly in j.

Relations (6.3)—(6.7) show that (A2)(i) is satisfied with ¢,(6) = Z,(0) given by
(6.3). Since ¢,(0) is, clearly, X;7(<%;) x & -measurable, (A2)(ii) also holds.
We now observe that
2 M3
(6.8) £z 0P = |- ;

LE 1 a2
2 2_8<

b

so that (A3) and (A4) are satisfied, by means of Remark 2.1.
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Lastly, (AS) is true, since

69  LO=25n#le0r =1 5.2 51=T0) > 0.

T n
It is then easily seen, by means of (6.1)—(6.3) and (6.9), that one has here
A0) = T3 (1X; — ;0] — |X; — 2;0,]),

1
An(o) = nt 2= Za‘[lujo,w)(Xj) - I(—oo,zjo)(Xj)]

and T'(9) = 1.
Therefore the main results of this paper, in connection with the present ex-
ample, become as follows: .

n 1
B3 {5 = 2,00 = 1 = 2,00) = LBl (X) — T o1}

— —3#*2 bothin P, and P, -probability,

1
L5 Do Allagn oK) = Taaso (X1 P} = MO, ),

L5 (1X; — 2,0] — |X; = 2,0,])| P, = N(— 3k, °2) ,
L2050 (X — ;0] — |X; — 2;0,))| P, ] = N(3k2, h*2)
and

1
L5 Do Allisgg X)) = LX) Py } = N(R, 2.

In a forthcoming paper, an example involving a multidimensional parameter
will be presented.
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