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ON PAIRING OBSERVATIONS FROM A DISTRIBUTION WITH
MONOTONE LIKELIHOOD RATIO

By MiLtoN C. CHEW, JR.
Rensselaer Polytechnic Institute

It is assumed that a random sample of size # is taken from a bivariate
distribution whose density f(x, y) possesses a Monotone Likelihood Ratio,
i.e. for all x; < xz and y1 < ya, f(x1, y1)f(xa, y2) = f(x1, y2)f(X2, y1). When
the sample is ‘‘broken,” i.e. when the x- and y-values are received in ran-
dom relative order, it is desirable to optimally ‘‘reconstruct’ the original
bivariate sample. Optimal properties of the Maximum Likelihood Pairing
(MLP) of x- and y-values, obtained by DeGroot, et al. in [1], are generalized
to the class of distributions defined above, with particular attention given
to the trinomial distribution. In addition, one of the main results shown
is that in general the MLP is better than random pairing, in that the ex-
pected number of correct pairings using the MLP is greater than unity.

1. Introduction and summary. The random matching problem furnishes an in-
teresting exercise in combinatorial probability, and is discussed in many elemen-
tary texts such as Feller [2]. In any practical matching situation, however, the
matchmaker typically has available information which most likely will increase
his chances of a successful match if pairing is done judiciously. As an example
of such a situation, consider the problem of “decoding” a set of messages trans-
mitted randomly over a noisy, memoryless channel, or communications link.
If the statistics of the channel are known to the receiver, he may be able to
decode the received messages with greater accuracy.

Suppose then that X and Y are real, measurable quantities associated with the
two types of objects to be matched or paired, and that there are a total of n pairs
of these objects under consideration. Suppose also that the (x;, y;) pairs of meas-
urements fori = 1, ..., n resulting from a perfect match, form a random sample
of such pairs in an infinite population, and denote by f(x, y) the joint probability
density function (possibly discrete) of the random variables X and Y.

To formalize the matching situation discussed above, we assume that a random
sample of size n from the distribution with density f(-, +) is available only in the
form (x;y) = (X3, -+, X} V1» =+ *» Ya), Where the x-values and y-values are in
random order relative to each other. Such a sample is termed a broken random
sample (see [1]). If we denote by ¢ the permutation of y-values relative to x-
values which results in pairing x; with y,,,, i = 1, - - ., n, then it is desirable to
find that permutation ¢* which results in some manner of optimal pairing of x-
and y-values. Two particular optimality criteria are of interest: (i) to maximize
the probability of a perfect match among all n pairs of x- and y-values, and (ii)
' to maximize the expected number of correctly matched pairs among all n pairs
of values.
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DeGroot, Feder and Goel [1] solve this problem under the assumption that
the joint density of X and Y has the form:

(1.1) f(x, y) = a(x)b(y)e , for (x,y)eR*.

Actually, in [1] it is assumed that sets of measurements 7 and U of dimension
r and s respectively can be taken from the two types of objects to be paired, and
that the joint r 4- s-dimensional distribution is specified by the joint density:

g(t, u) = a(f)f(u)er i@ | forall teR" and ueR,

where a, 8, y and 6 are arbitrary real-valued functions. However, this is es-
sentially equivalent to the assumption that there exist real functions y and d such
that the random variables X = #(T) and Y = §(U) have a joint density given by
(1.1). Hence, in practice, one is required to reduce the two vector measurements
T and U to real measurements prior to matching the sampled vectors #,, - - -, ¢,
with u, - ., u,.

In [1], the authors demonstrate that the maximum likelihood solution is to
pair the x- and y-values in similar order, i.e.,ifx, < ..« < x,andy, < --- < y,,
then x; should be paired with y;,i = 1, ..., n. If we call this solution the Maxi-
mum Likelihood Pairing (MLP), the authors then show that the MLP maximizes
the posterior probability of a perfect match, given the values of the broken
random sample (x; y), and obtain sufficient conditions for an MLP to maximize
the expected number of correct pairings, given the data. )

The purpose of this paper is (i) to extend the results of DeGroot, et al. to a
slightly more general class of bivariate distributions—those whose densities pos-
sess a Monotone Likelihood Ratio (MLR); and (ii) to establish an additional
property of the MLP.

Section 2 deals with the extension of the results in [1], and in Section 3 we
consider an example of matching a broken random sample from a trinomial
distribution, whose density possesses an MLR, but does not satisfy (1.1). In
Section 4, it is shown that if f{(., .) possesses an MLR, then the expected num-
ber of correct pairings using an MLP is at least unity for all values (x;y) of a
broken random sample. Since the expected number of correct pairings under
random matching is one, the MLP can never do worse than random pairing,
hence complementing the optimality results of [1] and Section 2. It is also argued
that in order to always do better than random pairing, the matchmaker should
pair x, with y,, and x, with y,.

2. Generalizations of previous results. Suppose that (x;y) = (x;, «««, X3 ¥y, - -,
y.) is a broken random sample from a bivariate distribution with density f(., ).
Without loss of generality, we assume that x;, < ... < x,andy, < ... < y,.
We shall say that f(+, «) possesses a Monotone Likelihood Ratio (MLR) if for

all x, < x,and y, < y,,
(2.1 S(X1 y)f(X5, ¥3) Z f(X0 Ya)f(Xas 1) -
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Note that all densities satisfying (1.1) will possess an MLR as defined above.
Strictly speaking, f will possess a non-decreasing MLR if it satisfies (2.1), and
we could similarly define f to have a non-increasing MLR if (2.1) holds whenever
x, < x,and y;, = y,. An example of the latter is the trinomial distribution which
we examine more closely in Section 3. Let @ be the set of all permutations of
(1, -+, n). A pairing of x- and y-values according to ¢ € ® is identified by pair-

ing x; with y,;, i=1, ..., n. The likelihood function associated with a permu-
tation ¢ is then the joint density function of (x;, y,.), i =1, - -+, n, i.e.,
(2.2) L(¢; %, y) = T[Tt /(%o Ysaa) -

Since f possesses an MLR, the maximum likelihood pairing (MLP), which
maximizes (2.2) among all ¢ € @ is the natural order, i.e., that permutation which
pairs x; with y;, i = 1, ..., n. To see this, consider a permutation ¢ for which
Yoo < Vg for some x; < x;. Then by (2.1), f(xis Y55 )f(X55 Vo) Z f(*is Ypr) X
f(x;5 y5050)- Thus, L(¢; x,y) = L(#; X, y), where ¢ € @ is such that ¢(i) = ¢()),
9(J) = ¢(i), and ¢(k) = ¢(k) for all other integers k. Since this process of the
pairwise interchange of ¢-coordinates not in natural order could be continued, we
conclude that L(¢*; x,y) = max; L(¢; X, y), where ¢* = (1, ..., n). Further,
since the x- and y-values of the broken random sample are in relative random
order, each pairing ¢ € @ is equally likely a priori to yield the original bivariate
sample. Therefore, the posterior probability of a perfect match using ¢, given
the values of the broken random sample (x; y), is

(2.3) P(9) = L(¢: x5 ¥)/L(x, ¥) ,

where L(X,¥) = X, c0 L(¢; X, ¥), and is maximized by the MLP ¢*. This and
other results demonstrating the optimality of ¢*, are established by similar argu-
ments in [1] for distribution whose densities satisfy (1.1). The class of distribu-
tions for which these results hold can be enlarged, as above, to include those
which possess an MLR. In fact, the extension is trivial in that it essentially only
requires the replacement of the factor exp (x;y,) by f(x;, y,) wherever it appears
in the proofs given in [1].

The extent to which this “replacement” can occur is limited, however, when
one attempts to maximize the expected number of correct pairings. Specifically,
if we let N(¢, {) denote the number of common (x, y) pairs for any permutations
¢ and { in @, the expected number of correct pairings when x; is paired with
Vpiirs 1 = 1, ..., n, may be written as:

(2-4) M(8) = Xiteo N($, O)p(C) -

If ¢ is any permutation for which y,;, < y,,; when x; < x; for some i and j, then
one desires to show M(¢) = M(¢), where ¢ is the permutation such that ¢(i) =
#(J), ¢(J) = #(i), and ¢(k) = ¢(k) for all other integers k. This would then
establish that the MLP ¢* maximizes the expression in (2.4). Unfortunately this
does not hold in general, and DeGroot, et al. ([1]), focus their attention on find-
ing conditions for which M(¢) = M(¢) holds for all ¢ = ¢*. In their arguments,
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the set of permutations @ is partitioned into mutually exclusive subsets according
as { € @ is such that y, = (y¢u ***» Yem) disagrees with y, in neither, both, or
one of the ith or jth coordinates. In fact, the latter set is further partitioned
according as the remaining, or unmatched, ith or jth coordinate of y, is inside
or outside the interval determined by y;;, and y,,. A one-to-one correspondence
exists between appropriate pairs of subsets of ®, and it can be shown (see [1])
by using the MLR property of f( +, +) that M(¢; @*) = M(¢; ®*), where M(¢; P*)=
Deeor N(9, £)p(£) and @* includes all permutations except those last cited above;
i.e., { € ® — ©* if only one of the ith or jth coordinates of y, differs with y,;,
or y,.;, and is either less than y,;, or greater than y,;. Asin [1], when f has
MLR, it can be shown that a condition sufficient for M(¢; ® — @*) >
M(¢; ® — ®*) to hold is that

(2.5) A = fx5 )9(Xns X35 Yaiins Vo) + f(X55 YI(Xis X35 Voiins Vo) = 05

for all pairs (x,, y,) such that x, differs from x; and x;, and y, < y;;, O > Y,
Here, we have set g(a, b; ¢, d) = f(a, ¢)f(b, d) — f(a, d)f(b, c) for all a, b, ¢ and
d. It is difficult to simplify this condition, as done in [1] for distributions satis-
fying (1.1), unless the form of the density is known. We can note, however,
that since f has MLR, the g-function in both terms of A is always nonnegative
whenever x; < x, < x;. Summarizing then, we have the following analogue of
Theorem 1 of [1]:

THEOREM 1. Let f(+, «) have MLR, and suppose that ¢ € ® is a permutation such
that Y, > Vg when x; < x; for some 1 < i < j<n. If ¢ is the permutation
defined by ¢(i) = ¢(J), ¢(J) = ¢(i) and ¢(k) = ¢(k) for all other values of k, then
M(¢) = M(¢), whenever in (2.5), A = 0 for all (h, q) pairs such that x, + [x;, x;]
and y, % [Yyiis Vo]

The solution of the problem of maximizing the expected number of correct
pairings, for the enlarged class of distributions with MLR, appears to have mar-
ginal value at best, in light of the complicated condition in the above theorem.
However, when the form of the joint density f(., «) is known, it may be possible
to reduce the complexity of condition (2.5), and even replace it by a remarkably
simple sufficient condition that is applicable to all permutations ¢. In [1] for
instance, the authors show that if f(., «) satisfies (1.1), a sufficient condition for
the MLP ¢* to maximize M(¢) is that

(2.6) (xp = X))y —y) = 1.

In particular, when the y-values are linearly transformed so that (1.1) accom-
modates the bivariate normal density, then ¢* maximizes M(¢) whenever

(2.7) (X0 = X)(Ya — 1) = (1 = P)ara/0,

where ¢, and o, are the standard deviations of X and Y respectively, and p, as-
sumed positive, is the correlation between X and Y.
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In the next section, we examine more closely the situation when the joint
distribution of X and Y is a trinomial distribution. This is an example of a
distribution possessing a (non-increasing) MLR, and such that the joint density
of X and Y is not of the type given in (1.1).

3. Sampling from a trinomial distribution. Suppose now that (x;y) = (x,, - - -, x,,;
Yis **+» ¥,) is a broken random sample from a trinomial distribution with discrete
probability density given by:

(3.1 [ 0) = O —p— ',

for x and y nonnegative integers such that x + y < N. The density (3.1) pos-
sesses a non-increasing MLR, since to say that f(x,, y))f(x.. y.) = f(*1, Y)f(Xs ¥1)
whenever x; < x, and y, > y,, is equivalent to saying that

(e = (.

=% T2

The latter holds, however, since the binomial coefficient (§) is increasing in a.

For convenience, let us re-index the values in the broken sample (x; y) so that
x,<---<x,and y, = --. = y,. In this instance, the MLP ¢* is again the
natural order, since the trinomial density (3.1) has non-increasing MLR. Thus,
the maximum likelihood solution is to pair the x- and y-values in dissimilar order.
As a result of the reordering, the theorem of the previous section is now ap-
plicable to the distribution in (3.1), and we wish to examine the condition 4 > 0
in (2.5) in more detail. It should be pointed out, however, that in dealing with
the trinomial distribution, the possibility exists that some pairings of x- and y-
values may yield ‘inadmissible’ samples, i.e. it is possible that a permutation ¢
may be such that for some i, x; + y;; > N in which case the likelihood
L(¢; x,y) = 0. Such permutations should not be excluded from consideration
since it is conceivable that the expected number of correct pairings is maximized
by such a ¢. Note though that by admitting all possible pairings of x- and y-
values, i.e. by allowing a pair (x, y) for which f(x, y) = 0, the MLR property
of f(.,+) is not disturbed, and the results of the previous section remain
applicable.

On examining the condition 4 = 0 in (2.5), it can easily be seen that if any
(x, y) pair involved in (2.5)is not admissible, i.e. x + y > Nand hence f(x, y) = 0,
then 4 = 0 whenever x, < x; and y, > y;;, Of X, > x; and y, < y;;). If all
pairs are admissible, then letting » = ¢(j) and s = ¢(i), (2.5) reduces to
(3:2) (MR = (LR = (IR — (L5120,
which holds whenever x, < x;and y, > y,, or x, > x; and y, < y,. Thus, we
have the following corollary to Theorem 1:

CoROLLARY 1. Let (X;y) be a broken random sample from the trinomial distribu-
tion with density given in (3.1). If ¢ is any pairing such that y,,, < y,; for some
i and j such that x; < x;, and ¢ is the permutation defined by (i) = ¢(j) = r,
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&d(j) = ¢(i) = s, and P(k) = P(k) for all other values of k, then M(¢) = M(p),
whenever (2.5) holds for all pairs (x,, y,) such that either x, < x; and y, < y,, or
X, > x; and y, > y,.

This result now enables us to state the following analogue of Theorem 2 of [1]:

THEOREM 2. Let (X;Y) be a broken random sample from the trinomial distribution.
Then there exists a pairing ¢ which maximizes the expected number of correct pairs
such that ¢(1) = 1 and ¢(n) = n.

The proof is precisely as in [1]. If ¢ is any permutation such that y,,, < y,
and ¢(j) = 1 for some j such that x; > x,, let ¢ be that permutation as defined
in the above corollary with i = 1. Then the conditions of the corollary are
vacuously satisfied with M(¢) = M(¢). Similarly, if ¢ is such that y,,, > y, and
é(i) = n for some i such that x; < x,, then with j = n, the ¢ in the corollary
again satisfies M(¢) = M(¢).

Let us now examine (3.2) in more detail in an attempt to find simpler suffi-
cient conditions for M(¢) = M(¢). For (3.2) to be applicable, we must require
the permutation ¢ to assign only admissible pairs, i.e. x; + y,; < N for all
i=1,...,n.

Casel. x, < x;and y, < y,.

If i = 1 or s = n, (3.2) is vacuously satisfied so it is assumed that x; > x, and
¥y > y.. Now, as a function of x, and y,, the left side of (3.2) is seen to be in-
creasing in each variable. Hence if we replace them by their smallest possible
values, x, and y, respectively, and denote the resulting quantity on the left of
(3.2) by Cy(x;; x;), it follows that (3.2) will be satisfied for all pairs (x,, y,) such
that x, < x; and y, <y, if C(x + 1;x) = 0 for all x = x;, ---, x; — 1. But
Cy(x 4+ 1; x) = 0 reduces to

(3.3) (Fr = 2a) = (s = Ya)R(x) 2 0,
where

Ry(x) = (25190550 -
The quantity on the left in (3.3) however, is decreasing in x, and thus holds for
all required x-values if it holds for the largest such value, x; — 1. Denote the
resulting quantity by D,(y,; y,), and note that Dy(y,; y,) = 0if Dy(y + 1;y) = 0
forally =y, ---,y, — 1. Since Dy(y + 1;y) = 0 reduces to

(3-4) N—x;—=y+1=0p—p)x;—xn—-120,

we again observe that since the left side of (3.4) is decreasing in y, it suffices to
have it hold for the largest required y-value, y, — 1, yielding

3.3) N—xi—y.+ 12—y — X).
CaseIl. x, > x;and y, > y,.

If j = nor r = 1, (3.2) is again vacuously satisfied, so we assume x; < x, and
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Y. < »1- As a function of x, and y,, the left side of (3.2) is now decreasing in
each variable, so it suffices to require (3.2) to hold when x, and y, are replaced
by their largest possible values. If we denote the left side of (3.2) by Cy(x;; x;)
when x, and y, are replaced by x, and y, respectively, then (3.2) will be satisfied
for all pairs (x,,y,) such that x, > x; and y, > y, if Cy(x + 1;x) = 0 for all
X =Xx; --+,X; — 1. Asin the previous case, Cy(x + 1; x) = 0 reduces to

3.3 1= V)R(¥) — (1 —y) 20,
where
Ry(x) = (20050 -
But the left side of (3.3') is increasing in x, so it suffices for (3.3’) to hold for
x = x;. When x = x;, write (3.3') as Dy(y,; y,) = 0. It then suffices to require
Dy + l;y)=0forally =y, ---,y, — 1, which reduces to
(3.4) N—xi—y— (=) —x)20.
The left side is increasing in y, and is satisfied for all y = y,, --.,y, — 1, if it
holds for y = y,, yielding
3.5 N—= X =y, 2 ()= J)(*, — X)) -
Summarizing, then, we have the following theorem.

THEOREM 3. Let the permutations ¢ and ¢ be as in Corollary 1 above, and suppose
all pairs of ¢ are admissible. If i = 1 or s = n or (3.5) is satisfied, and if j = n or
r =1 or (3.5') is satisfied, then M(¢) = M($).

As a consequence of this theorem it is easy now to obtain a sufficient condition
for optimality of the MLP ¢* similar to (2.6).

THEOREM 4. If (X;y) is a broken random sample from the trinomial distribution
given by (3.1), and if
(3‘6) (xn_xl)(yl_yn)éN_xl—yn’
then the expected number of correct pairs is maximized by the MLP ¢*, i.e. the
permutation that pairs x- and y-values in dissimilar order: x,withy, fori =1, -.., n.

‘

To prove the theorem, let ¢ be any permutation, all of whose (x, y) pairs are
admissible, and such that y,, < y;;, when x; < x; for some i and j. If (3.6) is
satisfied, then it is easily seen that both (3.5) and (3.5’) are satisfied. Hence
M(¢*) = M(¢) for any such ¢. It only remains to show that (3.6) admits no
permutations ¢ which assign at least one inadmissible pair that may be better
than ¢*. Suppose then that ¢’ is a permutation that assigns an inadmissible pair
(x, ), i.e. x + y > N. Itis easily shown by applying (3.6) that (y — y, — 1)
(x — x;, — 1) < 0. Since necessarily x > x, and y > y,, the only possible (x, y)
pairs are (x, + 1, y,) or (x,, y, + 1). However, from Theorem 2 we know there
exists a ¢ which pairs x, with y, and x, with y, such that M(¢) = M(¢'). If ¢
satisfies (3.6) it is necessarily admissible and hence M(¢*) = M(¢) = M(¢"),
establishing the theorem.
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Clearly, condition (3.6) is not vacuous, but there is some question as to the
necessity of (3.6). That is, it may be possible that the MLP ¢* always maximizes
M(¢). This is not the case, at least for sufficiently large N, however, as a few
isolated examples have shown. Suppose n =4, ¢ = (1,2,3,4)and ¢ = (1, 3,2, 4).
Then M(¢) > M(¢) in the following cases: (i) N = 1800, x = (600, 601, 602, 700),
y = (600, 452, 451, 450); (ii) N = 200, x = (65, 66, 67, 70), y = (65, 42, 41, 40);
(iii) N = 100, x = (35, 36, 37, 50), y = (35, 12, 11, 10). Presumably, more seri-
ous computational effort would yield ranges of data-values for which M(¢) >
M(¢) for additional values of N. As might be expected, it becomes more dif-
ficult (at least when n = 4) to find such examples as N takes on smaller values.
In fact, if N = 1, then in a trivial sense ¢ cannot be exceeded, and it might be
of some interest to know how large N must be before it is possible to have
M(g) > M(g).

It is interesting to compare (3.6) with the sufficient condition (2.7) for the
bivariate normal distribution, when N is large. For (2.7) to be applicable we
require its extension to the case when p < 0, which is (2.7) with the order of
the y-values reversed and p replaced by |p|. The MLP ¢* is then the dissimilarly
ordered pairing of x- and y-values. Expressing p, ¢, and g, in terms of N, p and
g, the appropriate version of (2.7) then becomes

(3.7 (X, — X))y —ya) = N1 —p—9q),

which is similar to (3.6) except Np and Ng occur on the right instead of x, and
Y- Since x, and y, underestimate Np and Ng, (3.7) is a more ‘restrictive’ condi-
tion, no doubt a consequence of approximating the trinomial by the bivariate
normal.

4. MLP is always better than random pairing. In this section we again assume
(X3¥) = (X3, +++5 X,3 Y15 +++, ¥,) is a broken random sample from a bivariate dis-
tribution whose density f(+, +) possesses a (non-decreasing) MLR as defined by
(2.1). However, we will restrict attention to those samples whose x- and y-values
are distinct, i.e. x, < x, < --- < x,and y, < y, < --- < y,. Thisis essentially
no restriction if the distribution f(., «) is continuous. Our interest here is to
compare the expected number of correct pairings under the MLP ¢*—the natural
order—with that under random pairing. If the two sets of n quantities to be
paired are all distinct, the expected number of correct pairs when they are ran-
domly matched is unity, but is otherwise larger depending of course on the num-
ber of non-distinct values among both x = (x,, -+, x,) and y = (yy, « -+, Vy)-
Even though samples from the trinomial distribution, for instance, may be ex-
cluded from consideration, the complexity involved by accommodating repeated
values in a sample appears at present to overshadow the benefit to be derived.
An important advantage in assuming distinct sample values is that now the permu-
tations ¢ completely distinguish between the possible pairings of x- and y-values.
We shall exploit this feature toward establishing the following theorem.
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THEOREM 5. If (X;y) is a broken random sample from f(., +), possessing MLR,
and is such that x; < --- < x, and y, < --- < y,, then the expected number of
correct pairings using the MLP ¢* is at least unity, i.e.

(4.1) M($*) = 1.

The proof of the theorem will be accomplished by establishing a certain cor-
respondence between sets of permutations. Recalling that ® is the set of all
permutations of ¢* = (1, - .-, n), and defining ®, to be that subset of ® whose
members have exactly k undisplaced coordinates for k = 0, 1, - - -, n, then M(¢*)
may be expressed in the following two ways:

(4.2)  M($7) = L Dp {p(9): ¢(k) = k} = Tioa b 2y {p(9): g e @i},
since now the number of common (x, y) pairs under any two permutations ¢ and
¢ is equal to the number of common coordinates between ¢ and ¢». Both expres-
sions contain an equal number of terms—counting those with coefficient k as k
terms in the second expression—and it is easily seen from the first that the number
of terms is n!, the size of ®. Since the posterior probabilities p(¢) sum to one
over @, both M(¢*) and 1 can be expressed as sums of equal numbers of terms
p(¢), i.e. (4.1) is equivalent to

Ziark Dy {p(@): e @} = Tyeo P(P) -

By cancelling like terms on both sides of the above inequality, we obtain

(4.3) Zica(k = 1) Ty {p(@): ¢ € @i} = Fiyeo, P($)

since the sets @, are mutually exclusive and ® = ., ®,. If we denote by r. @’
a set of permutations that contains exactly r copies of each member of @, then
the sum on the left of (4.3) could be represented as a sum of p(¢) over the set
O* = Ui, (k — 1).®,. Since ®* and ®, have the same number of members,
(4.3)—and consequently (4.1)—will be established if we can define a positive
correspondence between ®* and @, i.e. if for each ¢ € ®* there is a distinct
¢ € @, such that p(¢) = p(¢)-

We now define a partial ordering on the set @ as follows: if ¢ € @ is such that
forsome 1 < i < j < n, ¢(i) > ¢(j), and ¢ € @ is such that ¢(i) = ¢(j), ¢(Jj) =
é(i), and ¢(k) = ¢(k) for all other integers k, we shall say ¢ > ¢. In general,
we shall say ¢ > ¢ if there exist permutations ¢,, - - -, ¢, such that ¢,,, > ¢, as
above, and ¢,, = ¢, ¢, = ¢. In other words, ¢ > ¢ if ¢ is obtained from ¢ by
a sequence of pairwise interchanges of ¢-coordinates which are in decreasing
order. It is now clear from the definition of MLR, that if ¢ > ¢, p(¢) = p(¢).
Thus, to establish a positive correspondence between ®* and ®@,, it suffices to
show that for every ¢ € ®* there exists a distinct ¢ € ®,such that ¢ > ¢. When
this is the case, we shall say ®* > ®,.

In the sequel we will occasionally be required to know the size of the sets @,
and their combinations. If D, , denotes the number of permutations belonging
to ®,, then {D,,} are the well-known recontres numbers, and according to
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Riordan ([4], Chapter 3), the following relationships hold where D, = D, , and
Do = 1:

(@) Dnp=(¥)Duy> k=0,1,.--,n;
(4.4) (6) D, =nD, ,+ (=1)" = — 1Dy + D,_),
() Xi=o D, =n!.
From (4.4a) and (4.4c) it is easily shown that
2k (k= 1D, =D,,

clarifying that ®* and @, are in one-one correspondence.

Since we shall establish Theorem 5 by an induction argument on n, in what
follows a set @’ of permutations of (1, - - -, n) will occasionally be expressed as
®’(n) to avoid possible confusion. Before proceeding it should also be remarked
at this point that a positive correspondence between two sets of permutations of
(1, - - -, n) as defined above, is unaffected by replacing (1, - - -, n) by any increas-
ing sequence of n integers (i, - -, i,). That is, if in the first correspondence
¢ > ¢, then (iyuys + -y iym) > (gap +**5 igmy) and conversely, establishing a
positive correspondence in the second situation.

Consider now the situation when n =2 or n = 3. Then ®*(2) = {(1, 2)},
D,2) = {(2, 1)}, ®*(3) = {1, 2, 3), (1, 2, 3)} and ®,(3) = {(2, 3, 1), (3, 1, 2)}, s0
it is clear that ®* > @, in both cases. Suppose then that ®*(m) > ®y(m), for
m =2, ...,n; i.e., there exists a positive correspondence between ®* and @,
for all m < n. Our problem then is to show that ®*(n 4 1) > ®(n + 1).

Let®*(n + 1) = ®*(n + 1) U O,*(n + 1), where ®,* contains all ¢ € ®* such
that ¢(n + 1) = n + 1, and ®,* contains all those permutations which remain,
i.e. those ¢ such that ¢(i) = n + 1 for some i < n. We first consider the set O *,
partitioning it into mutually exclusive and exhaustive subsets as follows: if ¢,
and ¢, belong to ®.*, they will be assigned to the same subset if the cycles which
contain n + 1 in ¢, and ¢, respectively are identical. A cycle of a permutation ¢
is simply a subset of the integers (in this case 1, - . ., n + 1) which is closed under
the operation which transforms the natural order ¢* to ¢, i.e. in the notation of
Riordan [4], if (i, - - - i,,) is a cycle of ¢, then in the process of going from ¢*
to ¢, i, — ++- — i, — i, where — means “is replaced by”. For example, if ¢
has k coordinates in common with ¢*, each of these coordinates forms a cycle
of length m = 1. Also note that distinct cycles associated with the same permu-
tation contain no common elements, and that each permutation is uniquely de-
termined by the specification of its cycles.

Observe now that if ¢ e ®,*, then the length m of the ¢-cycle containing n + 1
satisfies 2 < m < n — 1, since ¢(n + 1) < n 4+ 1 and since ¢ has at least two
undisplaced coordinates, i.e. at least two cycles of length 1 each. If the members
of a given subset of ®,* as defined above, have their common cycle containing
n + 1 of length m, then that subset contains D, ,_, members, and in fact can
be identified with ®*(n 4 1 — m). This is true since all members of the subset
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possess at least two but no more than n + 1 — m undisplaced coordinates, all
of which are exclusive of the common cycle. From the induction hypothesis,
however, we have ®*(n + 1 —m) > ®yn +1 —m), since2 <n+1-m<
n — 1. We have thus established a positive correspondence between each subset
of @* defined above with the subset of all permutations in ®, whose members
possess the same cycle containing n + 1 as do all members of the given subset
of @ *. Since the cycle containing n 4 1 in each member of ®, must have length
at least two the only permutations remaining in ®, are those having a single
cycle of length n 4 1, since a cycle of length n implies a cycle of length 1 is
present—an impossibility for members of @,.

Let us now consider the subset ®,*(n 4 1) of ®*(n + 1). Since ®,*(n + 1)
contains all ¢ € ®*(n + 1) for which ¢(n 4 1) = n 4 1, we may write ®,*(n 4 1) =
Ur_ k- @y (n) X {n + 1}, or as follows:

(4.5) Q% (n + 1) = Ui Qu(n) X {n + 1} U @*(n) x {n + 1},
since ®*(n) = Yp_,(k — 1)-@,(n). But from the induction hypothesis ®*(n) >
®@,(n), 50 that ®,%(n + 1) > Uloo Duln) X {n + 1} = O(n) X {n + 1}.

We now establish a positive correspondence between ®(n) X {n + 1} and that
subset of @y(n + 1) whose members contain a single cycle of length n + 1. The
correspondence will be defined as follows: assign to each ¢ € ®(n) X {n + 1} that
¢ € Oy(n + 1) obtained from ¢ by displacing successively the right-most members of
all cycles in ¢ by ¢(n + 1) = n + 1. That is, if ¢ has N cycles—in addition to
the 1-cycle (n + 1)—and ¢, > --- > g, are their largest members, then ¢ is
that permutation for which ¢(n + 1) = ¢(9.), ¢(¢:) = ¢(¢i41)si=1, -+, N — 1,
¢d(qy) = n + 1, and ¢(j) = ¢(j) for all other integers j. This procedure effec-
tively links the cycles of ¢ together, so that ¢ € ®y(n 4 1) and possesses a single
cycle of length n + 1. It is also clear that ¢ < ¢ since at each stage of the pro-
cedure n 4 1 is displacing a lesser integer in a lesser position. It is not imme-
diately clear, however, that each ¢ € ®(n) X {n 4 1} is assigned a distinct, single-
cycle permutation in ®y(n + 1). The following lemma resolves this question.

LEMMA 1. Let ¢, and ¢, be any two permutations in ®(n + 1) for which ¢,(n 4 1) =
dy(n + 1) = n 4 1. If the procedure described above yields the same ¢ when applied
to both ¢, and ¢,, then ¢, = ¢,.

To prove this, let ¢, > --- > ¢qy and r, > ... > r, be the largest members
of the N cycles in ¢, and the M cycles in ¢, respectively, in addition to the 1-
cycle (n 4 1). Since it is assumed that the above procedure applied to both ¢,
and ¢, yields ¢, we have ¢(n + 1) = ¢i(q1) = ¢u(r), 9(9:) = $(qirr)s i =1, -+,
N—1,9(r;) = ¢rj)s j=1, -+, M — 1, and ¢(qy) = $(ry) = n + 1.

Further, among all integers 1 < k < n, other than those among (¢, - - -, gy,
Fis oo o5 Fy)s P(k) = @y(k) = ¢,(k). In particular, ¢,(k) = @,(k) for all k <
min (qy, ry). Butnow g, = ry, since ¢(qy) = ¢(r,) above. Since g is the largest
member of two cycles all of whose other members are identical, the cycles are
identical and ¢,(qy) = ¢.(¢qy). Similarly, since we now have ¢(q,_,) = ¢:(9y) =
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Gs(ry) = P(Fy—1)s Q-1 = Tu—1- But ¢;(k) = ¢y(k) forall k < g,_,, and again q,_,
is the largest member of two cycles all of whose other members are identical.
Hence, the cycles are identical and ¢,(¢_,) = ¢s(qy-,)- Continuing in this manner
then yields the desired result.

Thus, since all members of ®(n) X {n 4 1} are distinct, the above procedure
defines a positive correspondence between ®(n) X {n 4 1} and the subset of
®,(n + 1) whose members possess a single n + 1-cycle. Combining all results
above, we conclude that ®*(n 4 1) > @ (n + 1), which by induction now es-
tablishes Theorem 5.

Since establishing a positive correspondence between the sets of permutations
®* and @, is sufficient to conclude M(¢*) = 1, it is interesting to consider when
such a correspondence does not occur and if the above inequality is violated.
Suppose then ¢ € ®(n) is arbitrary and let ®*(¢) and Dy(¢) be the sets of permu-
tations corresponding to ®* and @, associated with ¢* = (1, ..., n). We are
interested in the number of permutations in each set whose ith coordinate equals
#(j), where i and j are fixed and i # j. The number of such permutations in
@,(¢) is easily seen by symmetry to be,

(4.6) Ny=D,/(n—1),

where D,, of course, is the size of @y(¢). The number of permutations in ®*(¢)
whose ith coordinate is ¢(i), however, is given by Y221 kD, _, ,, since there are
k copies of all permutations which match with ¢ in exactly k places among all
j#i forl <k =<n—1. Hence, by symmetry again, the number of permu-
tations in ®*(¢) whose ith coordinate is ¢(j), is

N = (D, — XizikD, ,)/(n — 1).

From (4.4) it is easily shown that N = (D, — (n — 1)!)/(n — 1), which combines
with (4.6) to yield N, — N = (n — 2)!. Essentially then, we have (n — 2)! excess
permutations in @ (¢), whose ith coordinate has been displaced by the jth co-
ordinate of ¢. In particular, if i = n, and ¢(j) = n for some j < n, we can
conclude that a positive correspondence between ®*(¢) and @y(¢) is impossible.
That is, since there are more permutations in @, than in ®@* whose nth coordinate
is n, some ¢, € ®, must be made to correspond with some ¢, € ®*, where ¢,(n) = n
and ¢,(n) < n. In this case, either ¢; > ¢, or the two are incomparable, and
hence ®*(¢) > @y(¢). Similarly, ifi = 1 and ¢(j) = 1 for j > 1, it is again im-
possible to have a positive correspondence between ®*(¢) and @, (¢), since there
are more permutations in @, than in ®* whose first coordinate is 1. Thus, unless
¢ is such that ¢(1) = 1 and ¢(n) = n a positive correspondence between @*(¢)
and ®($) cannot hold and the following example illustrates that the condition
M(¢) = 1 will be violated.

Suppose that (x; y) is a broken sample from a bivariate normal distribution with
zero means, unit variances, and correlation p > 0, and such that x, < ... < x,
and y; < .-+ <y, Letaandb be nonzero with a < b, and let o > 0 be given,
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Suppose further that x, =y, = b and that for all i=1,...,n— 1 and j =
Looon — L|f(xi ;) — A < 43, | f(x;,p,) — C| < Coand |f(x,.y,) — C| = C3
where 4 = f(a, a) and C = f(a, b) = f(b, a). Denoting f(b, b) by B, we have by
definition of N and N, that for any ¢ such that ¢(n) < n,

L {p(@): 9 e @)} — Zy{p(d): ¢ € Di(4)}
(4.7) < NBA*Y(1 + 8" + (D, — N)C* A1 + o)
— NyBA (1 — §)*' — (D, — N)C2A*(1 — )"
= A"%C? — AB)(N, — N) + ¢,

where the quantity ¢ approaches zero with 9. But C? — AB oc exp[—(a® —
2pab + b)/(1 — p*)] — exp[—(a® + b%)/(1 + p)], which.is negative since p > 0,
and a and b are nonzero. Hence, for sufficiently small 4, the right side of (4.7)
is negative, and M(¢) < 1.

The point of the above discussion is not necessarily surprising in view of
Theorem 2 of [1] and Theorem 2 in this paper; namely, that if ¢ maximizes the
expected number of correct pairings, then ¢(1) = 1 and ¢(n) = n. However, if
a broader interpretation is permitted, it is suggested that when sampling from
an arbitrary MLR distribution, the matchmaker may do rather poorly (worse
than random pairing) unless he pairs the extreme x- and y-values, i.e. x, with y,
and x, with y,.
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