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DELETED ESTIMATES OF THE BAYES RISK!
By T. J. WAGNER

University of Texas, Austin

Consider the usual decision theoretic situation where one observes a
random vector X from which an estimate of its classification 6 € {0, 1} is to
be made. If one knows the a priori probabilities for ¢ and the conditional
densities of X given ¢ then the smallest probability of error which can be
achieved is called the Bayes risk and denoted by R*. Assuming that the a
priori probabilities and conditional densities are unknown we consider the
problem of estimating R* from the independent observations (X3, 61), - - -,
(Xn, 0n). Suppose X has an unknown classification ¢ where (X, 6) is inde-
pendent of the observations (X1, 61), -« -, (Xu, 0x). If {3a} is a sequence of
decision procedures, where §, determines the estimate of ¢ from X and
(X1, 61), « + +, (Xn, 0x), then the notion of a deleted estimate of R* with 4, is
introduced and, under mild assumptions, is shown to be a consistent esti-
mate of R*.

Consider the usual decision theoretic situation where one observes an m-di-
mensional random vector X from which an estimate of its true classification 6 e
{0, 1} is to be made. It is assumed that P[§ = i] = =, and that P[X < x|6 = i]
has a continuous density f;, i = 0, 1. If a decision function 6: R™ — {0, 1} is
used then the probability of misclassification is given by

) Po(X) # 0] = §m [0(x)70fo(x) + (1 — d(x))m, fi(x)] dx .

(1) is minimized by 6* where 0*(x) = 1 if x,f,(x) — 7,fy(x) = 0 and d*(x) = 0
otherwise. The resulting probability of misclassification is called the Bayes Risk
and is denoted by R* so that from (1)

(2) R* = {,n min {z,f(x), 7, fi(x)} dx .

Suppose that =, 7, f;, f; are unknown. A nonparametric classification problem
frequently considered can be stated: how does one use a sequence of independent,
classified observations (X,, 6,), - - -, (X,, 6,) to estimate the classification 4 of an
independent, unclassified observation X. Here, 6, is the classification (label) of
X; and it is assumed that (X, #,) has the same distribution as (X, 0). Specifically,
if 9,: R™ x (R™ x {0, 1})» — {0, 1} represents a decision function for ¢ based on
Xand (X, 0), ---, (X,, 0,) then

L, = P[O(n) # 0[(X,, 0,), - -, (X,, 0,)],

where 6(n) = 0,(X, (X,, 0,), - - -, (X,, 0,)), is the probability of misclassification
for g, given the observations (X, 4,), - - -, (X,, 8,). L, is a random variable whose
value is just the frequency of errors that one would obtain if §, and (X, 6,), - - -,
(X, 0,) were used to classify a large number of independent observations. The
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nonparametric classification problem above is concerned with finding a sequence
{3,} which insures that L, is close to R* with high probability for large n.

We here go one step beyond the above nonparametric classification problem
and ask: how do we estimate R* from the data (X3, 6,), - - -, (X, 6,)? One reason
for desiring an estimate of R* is that an estimate of R* should be close to L,
with reasonable procedures and a direct estimate of L, is impossible without
additional independent observations. A second reason is best explained by an
example. Suppose one wants to automate the checking of chest X-rays for tu-
berculosis. For this problem one would naturally have available a large number
of X-rays of people already diagnosed as tuberculin or nontuberculin. The data,
at this point, is not a sequence of vectors with their labels but a sequence of X-
rays with their labels. One then has the initial problem of reducing an X-ray to
a vector if processing along the above lines is to be done. Which reduction to
use depends on several factors but, with all other factors being equal, the reduc-
tion with the smallest R* is preferable. It is desirable then to have good estimates
of R* just for comparisons of this type.

As before let {9,} be a sequence of decision functions for the data (X, §,),
(Xy, 0,), - -+ and let

0(n) = 0n-1(Xj5 (X3, 01)s + s (Xjon 05-0)5 (X O541)> » -5 (X0 0)) 5

that is, 6,(n) is the estimate of §; with d,_, based on X; and (X,, 0,), - - -, (X,, 0,)
with (X;, 0,) deleted. If S, = 337 Ity n »0,1 is the number of times that 6,(n) + 0;,
1 < j < n, then E(S,/n) = EL,_,. This type of estimate was suggested by Cover
[1] who termed it a deleted estimate of EL,_, and who also proposed it as an
estimate of the nearest neighbor risk where now 4, represents the nearest neighbor
decision function. (These ideas as well as the framework of the nonparametric
classification problem are discussed in the highly recommended paper of Cover
[1].) Toachieve a somewhat greater generality we will assume that the asymptotic
risk of the decision rules 4, is R, where R is not necessarily equal to R* (see (3a)
below). If another sequence of rules d,’ has an asymptotic risk R’ then, subject
to the conditions of the theorem below, the deleted estimates of R and R’ allow
a comparison of {4,} and {d,'}.

THEOREM. If 0, is symmetric in (X,, 0,), - - -, (X,, 0,) and if
(3a) L,—, R in probability
(3b) P[O(n) = 6(n + 1)] >0
then S,/n —, R in probability.

ExaMpPLE 1. Take d, = 1 if the vector from X, - - -, X, which is closest to X

has a label equal to 1 and take 6, = 0 otherwise (ties are broken arbitrarily).
Then [2], [4] it is known that

L,—, R in probability
where R = § [27,/y(x)7,fi(x)/f(x)} dx, f(x) = 7 fo(x) + 7 fi(x) and R* < R <
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2R*(1 — R*). In addition P[f(n) # 6(n + 1)] < 1/(n + 1) so that (3a) and (3b)
are both satisfied.

ExAMPLE 2. Consider choosing a different rule 6,. Let r, = n~?, where 0 <
p < 4m is fixed and let N*(N;") be the number of labels 6, equal to 1(0) which
have each coordinate of X; within a distance r, of the corresponding coordinate
of X. Next choose 9, = 1 if N* > N;* and choose §, = 0 if N,* < N,*. Then
d, corresponds to the decision function
(4) 0. (X) =1 if #/(X) — 2f(X) =0

=0 if Af(X) — 2f(X) <0

where
&= 2t 0in, g = 21 (1 —8y)n,
S0 = Tt 0, K(r, 7 (x — X))/ 516,
Sl = Tt (1 = 0)r,7"K(r, (x — X))/ Tt (1 — 6, and
K(x)=1 if x| = max {x;, ---,x,} <1, x=(x, cee, Xy,)
=0 if otherwise.

Thus 4, is just the decision function obtained if the estimates of =, x,, fo f1
from (X, 6,), ---, (X,,0,) are used in the discriminant function T fi — Tofo-
Van Ryzin [3] has shown that L, —_R* in probability for this sequence {4,} if
the set of points where f; and f; are discontinuous has Lebesgue measure 0. To
show that P[6(n + 1) + 6(n)] —, O note that

[B(n + 1) # 6(n)] © A U AO(n + 1) # 6(n)]

where A is the event that each coordinate of X,,, is within r, of the correspond-
ing coordinate of X. Now

AfO(n + 1) £ 0(n)] Cc U;[rea: < ||X — X £ r.]

and it follows easily that P(4) —, 0 and PlU; [ Z | X — Xl £ ]} —.0,
and thus that P[0(n + 1) = 6(n)] —, 0.

Proor oF THE THEOREM. The technique is essentially that contained in the
proof of Theorem 2 of [3]. We show that E(S,/n — R)* 0. A simple com-
putation shows that E(S,/n — R)* — 0 if, and only if, P[6,(n) + 0,5 0(n) #= 0,] —
(R)*foreach 1 <j < k < n. Fix j < kand let 6,/(n) and 6,/(n) be the estimates
of 6, and 6,, respectively, with d,_, from'(X,, 6,), - - -, (X, 0,) with both (X, 6;)
and (X,, 6,) deleted. Then

[65(n) # 053 0,(n) # 0] A [0,/ (n) # 0,50,/ (n) # 6,]
C [65(n) # 05(m)] U [0,'(r) = O,(n)] .
Because P[0/(n) + 0,(n)] = P[6,'(n) # 0,(n)] = P[6(n) = 6(n — 1)] — 0, it suffices
to show that P[6'(n) = 0,; 6,/(n) # 6,] — (R)*. Now
PLO;(n) # 0550/ (n) # 0,] = E{P[0;/(n) # 050,/ (n) + 0,] 25,"]}
= E{P[0)(n) + 0;|2,"1P[0)/(n) # 0,|5,"])
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where &5, is the g-algebra generated by (X,, 6,), - - -, (X, 4,) with (X;, 0,) and
(X, 0,) deleted. Using (3a) with 6 replaced by 6, and 6, respectively, it follows
that

P[0/ (n) + 0;| <&, 1P[0,/(n) + 0,| <5,"'] —, (R)* in probability
so that
E{P[0;(n) + 0;|22,"]P[0)/(n) # 0,| "]} -, (R)’
by the Lebesgue Dominated Convergence Theorem and the theorem is proved.

Acknowledgment. I appreciate the reviewer’s helpful suggestions. Both he and
Tom Cover pointed out an improvement in an earlier version of the theorem
given here.
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