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THE LARGE-SAMPLE POWER OF PERMUTATION
TESTS FOR RANDOMIZATION MODELS

By J. RoBINSON
University of Sydney

The permutation test using the usual F-statistic from a randomized
block experiment is considered under a randomization model. Alternative
hypotheses assuming additive treatment effects are considered. It is shown
that the critical value of the test statistic tends to a constant in probability
as the number of blocks becomes large. The large-sample power of the test
is calculated for a sequence of alternatives arising naturally from the
randomization model.

1. Introduction. The physical randomization process in a randomized block
design consists of assigning p treatments at random to the p plots in each of n
blocks. This produces random variables whose distributions, under the null
hypothesis of no treatment effects, are invariant under a group of permutations.
This enables a permutation test, based on this group of permutations, to be used
as an exact test of the null hypothesis. It is important to distinguish the two
types of permutations which are used. A random permutation is used to obtain
the design of the experiment and then, in order to obtain a permutation test,
permutations of the actual yields are considered. When the null hypothesis is
true, it is necessary only to observe that the physical randomization produces
random variables whose distributions are invariant under a group of permuta-
tions. However, when it is assumed that treatments do have an effect, it is
necessary to consider both the random permutations produced by the randomi-
zation process and the permutations used to obtain the permutation test.

It is the purpose of this note to obtain the power of the permutation test for
large n, under alternatives arising naturally from the randomization model.
Hoeffding (1952) considered a similar problem, but he assumed that the plot
errors were independently distributed with equal variance.

The methods and notation used have been selected to conform as closely as
possible to those of Hoeffding (1952). We will consider the randomization
model under the assumption that treatment effects are completely additive. If
Vu = (Puirs ** > Vuips ** "> Vunts * * *» Vunp) are the plot errors, or the plot yields
when no treatments are applied, then an appropriate model for the design is

Xoij =1,; + Ynij’

nig

where 1,; is the effect of treatment j and Y,;; = y,s,,, where (S, -+, S;,),
i=1, ..., n, are n independent random vectors whose values are the p! equally
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probable permutations of (1, - .., p). In the sequel the first subscript n will
usually be omitted for convenience of notation.
We will consider tests based on the function

(x) = — - o #5() ;
i p — 1) 2t D (X — X))’
where u;(x) = n~% 317, (x;; — x;.) and the arithmetic mean over a subscript is
denoted by replacing the subscript with a dot.
Let G be the group of (p!)" = M permutations of

X: (X11’ "'ale’ "'aan’ ""an)
such that if ge G, then gX = (X0 e Xy s X e X ) where

(o o> Jip)yi=1,---,n, are any permutations of (I, ..., p). Let
tW(x) £+ < t"™(x) be the ordered values of #(gx) forallgin G. Letk = M —
[Ma], where «a is the required size of the test and [Ma] is the integer part of Ma.
We are interested in a test which rejects the null hypothesis when #(X) > t*(X)
and accepts it otherwise. This test is of size [Ma]/M. We wish to consider the
power of the test, which is P{#(X) > #*)(X)}, under sequences of alternatives
given by the sequences ¢,; and Y,;;. We do this by showing that under certain
conditions t*(X) — 2 in probability, where P[y:_, > 4] = a, if x3_, is a chi-
squared variate with p — 1 degrees of freedom, and that P{r#(X) < y} tends to
zero or to the distribution function of a noncentral chi-squared variate with
p — 1 degrees of freedom and with noncentrality parameter given as a limit of
a sequence of functions of ¢,;; and y,;;. In the usual analysis of variance model,
the y,;; are assumed to be independent samples from a normal distribution with
means b,; and variances ¢*. In this case, it is noted that the permutation test is

asymptotically as powerful as the usual F-test.
2. Convergence of the critical value of the test.

DEeFINITION. Let

0,0 =np — )7 i B0 (i — yi)
and

0, =0, (p— 1) r_ (t; — 1),
LEMMa 1.
o, (1 + 06, 'n(p — 1) X, 2., (X;; — X;.)* > 1 in probability.

REeMARK. The probability measures considered here are those which apply to
the randomization procedure. That is, they are implicit in the definitions of the
random variables S;; defined in Section 1.

ProoOF oF LEMMA 1.

1) For (Xoy — X)) = 20 (v — i)’
+ 225 (Y —ya)t; — 1) + Zioa(f; — L)
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Also
E{Xr (Y —yi)t; — 1)} =0
and

o, (1 4 0,7 n~*(p — 1) Tt var { X2, (Yy; — ya)(t; — 1)}
=0, (140,077 (p — )7 X X0 (s — Yo ) Do (4 — )
=nYp— 1 +45%,2—0,

so since the Y;
inequality that

a,7 (1 + 8,77 (p — )7 i Xi (Vg — pa)(t; — 1) — 0
in probability. So the lemma follows immediately by summing (1) over i and
dividing by n(p — 1)¢,*(1 + 94,?).
Let G and G’ be independent identically distributed random variables whose
values are the M elements g of G, each element having probability M-1. Then
the following lemma is an immediate consequence of Lemma 1.

LemMa 2. If (X)) = o,7%(1 + 6,°)7" 227, u;(x)* and if the joint distribution of
(7(GX), 1'(G'X)) approaches a limit, then the joint distribution of (1(GX), 1(G'X))
approaches the same limit.

are independent for different i, it follows from Chebychev’s

It is convenient to state a lemma which is contained in Theorem 3.2 of
Hoeffding (1952).

LemMma 3. If 1(GX) and 1(G'X) have the limiting joint distribution F(y)F(y"),
where F(y) is a distribution function, and if the equation F(y) = 1 — a has a unique
solution y = 2, then t'¥(X) — A in probability.

THEOREM 1. If, for any n > 0,

(2) Zigsy B — 0 asn— oo,
where
(3) por = 2i=ds — o) + (6 = 1))

o DAy =y + (4 — 1))
then the limiting distribution of (t(GX), {(G'X)) is that of a pair of independent chi-
squared variates with p — 1 degrees of freedom.

ProofF. Let U; = u;(GX) and U; = u;(G’X). The random vector
nU = n¥U, ---, U, U/, .-, U))

is the sum of n independent random vectors Z; = (ZiR“, . ZiRw, ngl’ .
Zm%p), where (Z,, ---, Z;,) has the distribution of (Y;; — y,. + 6, — ¢, .-+,
Y, —yi.+t,—t) and (R, ---,R,), (Ry, --+,R}), i=1,...,n, are 2n
independent random vectors whose values are the p! equally probable permuta-
tions of (1, - - -, p). Let(c;,) be an orthogonal p X p matrix withc, =---=¢,,
let

_ r_
Wi = D=1 and Wi, = 2., ¢ Ziny,

Big
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and let
W, =nt3r, W,

J J

1 — -
and W)/ =ntyr Wi .
Now
W;=2t.¢; U, and W =3, iUy
so, since (c;,) is orthogonal,

2ha Ul =2y wy? and 3 U2 = Sl w e,

g=1""7
Also for j, /" < p — 1,
EW.=EW/'=0, EW, W, =0,

J J
and

EW,W;, =n' 3% EW, W,

=nlpt 3r {00, CirCing 2t E(Yy — yi. + 1, — )%}
+ n7pH(p — )7 2 Der i Cine
X e E(Yy —ys. + 1, — LYYy — ye. + 1 — 1)

=0, pt L A D (Y — yi )+ D — )Y}
+ 07T p — D)7 R P DI E(Yy — yio + 1 — L)

= 0;;0,(1 + 9,7,

where §,;, = 0if j + j’ and 1 if j = j’. Similarly, EW/W/ = 6,,,0,%(1 + 4,7).
If the vectors

Wi = 0,7 (1 4+ 8, Wy, -+, W,

i,p—12

Wﬂlil’ ) W’I’:,p—l)
satisfy a generalized Lindeberg condition, namely, for any ¢ > 0
Ln =n! Zzl:l Sw>en’£ w? dP[|W1*I < W] - O
as n— oo, where |[W*P=o0,%(14 0,7 [Wh+- -+ W, _,], then using
Theorem 2la of Cramér (1962), we have that the limiting distribution of
W* =o0,7Y(1 + 9,)"4W,, - -, W,_)) is that of a vector of 2p — 2 independent
standard normal variates. Now
o (1 + 02 (Wi =250, Z5 S 4 B0 (i — ) + 4 50 (1 — 1)

So if

E={i: 27 [(Yi; — Yi.)) 4+ (t; — 1.)*] > Le*no, (1 + 6,%))
then

L, = n740,7(1 + 0,7 Ticp Zia{(yis — yi) + (1; — 1)}

=4p— 1) X5, B

where f3; are defined in (3) and 7* =1 (p — 1)~%%. Thus Condition (2) is
sufficient for the generalised Lindeberg condition. So the limiting distribution
of (#(GX), '(G'X)), and hence from Lemma 2 of (1(GX), #(G'X)), is that of a
pair of independent chi-squared variates with p — 1 degrees of freedom.

REMARK. Simpler conditions which imply (2) are 0 < ¢’ < 32_, (ys; — i)' <
¢” for all i.
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The next theorem is an immediate consequence of Theorem 1 and Lemma 3.
THEOREM 2. [If condition (2) holds for any n > 0, then t'*)(X) — 2 in probability.

3. The asymptotic power of the test. Consider sequences of alternative
hypotheses given by the sequences ¢,;, ¥,,; j =1, ..., p,n =1,2,.... Let

0, = 1o, 32 (L, — 1),
Then we can show that the asymptotic power of the test depends on the limit
of the sequence {p,}.
THEOREM 3. If, for anynp > 0

4) Zlml>v 7:—0 asn— oo,

—9

where y* = n7le, 7 310 (yi; — yi)?» then

(i) if p, — 0, H(X) tends in distribution to a chi-squared variate with p — 1
degrees of freedom,

(ii) if p, — p, a constant, t(X) tends in distribution to a noncentral chi-squared
variate with p — 1 degrees of freedom and noncentrality parameter p;

(iii) if p, — oo, P{t(X) < y} — 0 for all y > 0.
Proor. Let V;; = 317 c; X, and V; = n~t 337 V.. Thenforj,j/ < p— 1,

E( Vij) = lec):l Cinli s

Var (Vi;) = (p — )7 250 (yi; — i) and Cov (V;;, Viy) = 0, J#ET-
In the same way as in Theorem 1, it may be shown that (4) is sufficient for the
vectors o, YV — E(Vy), -+, Voo — E(V;,.,)) to satisfy a generalized
Lindeberg condition. So the limiting distribution of ¢,"(V, — E(V)), - - -,
V,.. — E(V,_,)) is that of a vector of p — 1 independent standard normal
variates. Now /(X)) = 0,7*(1 + 0,>)' 2?21 V;* and from Lemma 1, 7(X) and
'(X) have the same asymptotic distribution.

In cases (i) and (ii), 9, — 0. If p, — O then E(V;,) >0forj=1,...,p— 1,
so (i) follows immediately. In case (ii), ¢,72 3221 [E(V;)]* = p, — p, so (ii)
follows. If p, — oo, for at leastone j =1, -- -, p — 1,0,7(1 + 6,2~ * |E(V,)| — oo,

but ¢,7*(1 4 9,%)~* Var (V) < 1, so (iii) is true.

It follows from Theorem 2 and case (i) of Theorem 3, that if the null
hypothesis of no treatment effects holds, then P{7(X) < t*'(X)} - 1 — a. This
also follows from the definition of k, when it is observed that the distribution
of X is invariant under the permutations of G. Also, under a sequence of
alternate hypotheses corresponding to the sequence p,, the power of the test
tends to 1 if p, — co and to H(%) if p, — p, where 2 is defined in the statement
of Theorem 2 and 1 — H(y) is the distribution function of a noncentral chi-
squared variate with p — 1 degrees of freedom and noncentrality parameter p.

It is possible to consider the case when the y,; are a particular realization of
some random errors. Then if Condition (2) is satisfied with probability 1, it will
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follow again that r*'(X) — 2 in probability and if condition (4) is satisfied with
probability 1, the results of Theorem 3 will hold as stated.

In the usual analysis of variance model it is assumed that y;; = b; +-€;;, where
the b, are constants and the e,; are independent normal variates with zero means
and variances ¢%>. Here, ¢, — ¢* and Conditions (2) and (4) are satisfied, with
probability 1. So a permutation test applied to this model has the asymptotic
properties given above. The usual F-statistic for testing the null hypothesis is
an increasing function of #(X). For p, defined by these y,;;, #,; we have that
p, — p with probability 1 and that #(X) tends in distribution to a noncentral
chi-squared variate with p — 1 degrees of freedom and noncentrality parameter
p. So in this case, the permutation test is asymptotically as powerful as the
conventional test of the same size.

REMARK. The same procedure as this could be applied to the randomization
model for the completely randomized design. Here it would be necessary to use
a multivariate form of the Wald-Wolfowitz theorem to prove normality of a
vector of the form of W*, but the results would be very similar to those given

above.
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