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WEAK CONVERGENCE OF THE SEQUENTIAL EMPIRICAL
PROCESSES OF RESIDUALS IN ARMA MODELS

By JUSHAN BaI
Massachusetts Institute of Technology

This paper studies the weak convergence of the sequential empirical

process K, of the estimated residuals in ARMA(p, q) models when the er-
rors are independent and identically distributed. It is shown that, under

some mild conditions, I?,, converges weakly to a Kiefer process. The weak
convergence is discussed for both finite and infinite variance time series
models. An application to a change-point problem is considered.

1. Introduction, notation and mainresults. Empirical processes based
on estimated residuals have been studied by many authors for a variety of
models. Koul (1969, 1984), Mukantseva (1977), Loynes (1980) and Miller (1989),
for example, examined the residual empirical processes for various linear re-
gression models. Boldin (1982, 1989), Koul and Levental (1989), Koul (1991) and
Kreiss (1991) investigated their weak convergence for some ARMA(p, g) models.
The literature to date has focused largely on goodness-of-fit testing. Recently,
Koul (1991) demonstrated that the weak convergence result can have many
important applications in robust estimation. This paper extends the above lit-
erature by considering the sequential empirical process of residuals and its
weak convergence for ARMA models with an aim to test for and to identify an
unknown change point.

Consider the following ARMA(p, q) time series model:

(1) Xi=p1iXs 14 +ppXs_prte+016_ 1+ +04 g,

where {¢;} are independent and identically distributed (i.i.d.) according to a dis-
tribution function F on the real line R. Assume that X; is strictly stationary and
invertible [Brockwell and Davis (1987)]. In the ARMA(1, 1) case, stationarity
and invertibility restrict |p;| < 1 and |6;] < 1.

Given n + p observations, X_p,1,X_p42,...,X0,X1,...,Xy, one can calculate
n residuals via the recursion

Q) §=Xi—pXi_1— —PpXi—p—OrEi—1——0Fi_q, t=1,2,...,n,

where (py, ..., pq) and (51, ... ,9:1) are the estimators for (py,...,pp) and (0y,.. .,
64), respectively. Let I(A) be the indicator function of the event A. Define the
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empirical distribution function (e.d.f.) constructed from the first [ns] residuals:

[ns]

(3) Fingy(x) = ol ;1@ <x), 0<s<lx€eR,

with ﬁ'[ns]( -) =0 for s = 0. When s = 1, the usual empirical process of residuals
Fy(x) is obtained. The purpose of this paper is to study the weak convergence
of the process K, (s, x) defined as follows:

[ns]

@ K5, = [nsln V2 (Flag(x) — F(x)) = n~Y2 3" {1 < %) - F(x)}
t=1

for 0 < s < 1andx € R. The process K,, given by

[ns]
Ky(s,x) =n"1/? Z {I(e; < x) — F(x)}

t=1

is called the sequential empirical process (s.e.p.); see Shorack and Wellner

(1986), page 131. Thus K,, may be called the sequential empirical process of
residuals. Our main results are presented in the following two theorems.

THEOREM 1. Assume that the following conditions hold:

(a.1) The ¢; are i.i.d. with zero mean, finite variance and d.f. F.
(a.2) F admits a uniformly continuous density function f,f > 0 a.e.
(a.3) vn(p; — p;) =0p(1) and \/n(6; — 6;) =0,(1), i=1,...,p, j=1,...,q.

Then

sup  |Kn(s,x) — Ku(s,)| = 0p(1).
s€l0,1], x€eR

The proof of Theorem 1 is given in Section 3. From the results of Bickel
and Wichura (1971), K,,(-,-) converges weakly to a Kiefer process K(-, F(-)),
a two-parameter Gaussian process with zero mean and covariance fllnction
cov(K(s1,t1),K(sq,t2)) = (51 A 82)(¢1 A ta — t1ts). Theorem 1 implies that K, also
converges weakly to a Kiefer process. An application to a change point problem
is discussed in the next section.

REMARKS. Assumption (a.l) is conventional for time series models. As-
sumption (a.2) is also made in Koul (1991) and is weaker than that of Boldin
(1982) and Kreiss (1991). Assumption (a.3) holds with the usual estimation
procedures such as the conditional least squares under (a.1).

The result of Theorem 1 holds for infinite variance ARMA models as well.
We have the following result.
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THEOREM 2. Assume that the following conditions hold:

(b.1) The &, are i.i.d., with d.f F belonging to the domain of attraction of a
stable law with an index o (0 < a < 2).

(b.2) The d.f. F admits a bounded derivative f, f > 0 a.e.

(b.3) n7(p; — p;) = 0p(1) and n”(() — 6;) = 0,(1), where v = (1/2)I(ac > 1) +
Q/a—1/DI(a < 1).

Then

sup  |Ku(s,x) — Ku(s,%)| = op(1).
s€f0,1], xR

Under assumption (b.1), the estimated parameters have a faster than root
n rate of convergence. Kanter and Hannan (1977) showed that, for autoregres-
sive models, n7(p; — p;) — 0, a.s. for any v < 1/, where the p; are the least
squares estimates. Bhansali (1988) obtained analogous results for moving av-
erage models. Using this fact as assumed in (b.3), one can prove Theorem 2 in a
much similar way to the proof of Theorem 1. Details can be found in Bai (1991).
Note that the uniform continuity in (a.2) is weakened to boundedness in this
case.

2. An application to a change-point problem. Let Z,,2Z,,...,Z,
Zinrl+1, - - -, Zn be n random variables. Suppose that the first [n7] r.v’s are i.i.d.
with d.f. Fy and the last n — [n7] are i.i.d. with d.f. Fy, where 7 € (0, 1) unknown.
The objective is to test the null hypothesis (H,) that F;, = F,. Nonparametric
tests used by Picard (1985) and Carlstein (1988) are based on sequential e.d.f’s.
Let Fius) and Fy _  be the e.d.f’s constructed from the first [ns] and the last
n — [ns] observatlons respectively. Consider the process

[nS] (1 - [—ns—]) (F[ns](x) n— [ns](x))

T.(s,x) =
and the test statistic M, = sup;c o 1) zcr |Tn(s,%)|. One rejects Hy when M,
is too large. This test has many desirable properties as discussed in Carlstein
(1988).
The result of Theorem 1 allows one to test whether there is a distributional
change in the innovations ¢;. Since the ¢; are unobservable, it is natural to use
the estimated residuals instead. Define

5) i’n(S,x) = [nS] (1 - [ili]') (F[ns](x) n - [ns](x))

where F[,,s] and F* _ ms) are e.d.f’s based on the residuals. Define M, correspond-
mgly Note that T, and T, can be written as T, (s, x) = K, (s, x) — n~1[ns]K,(1, %)
and T (s, x) = K(s,%) — n~nslK, (1, x), respectively. Thus Theorem 1 implies
that T, and T, have the same limiting null distribution. Furthermore, from
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Bickel and Wichura (1971), T,,(-, -) and hence f‘,,( -, +) converge weakly under
the null hypothesis to a Gaussian process B(-,F(-)) with zero mean and co-
variance function EB(.g\, wB(t,u) = (s At —st)u A v — uv), where F denotes
Fy = Fp. Accordingly, M, —4 supg<s<1 SuPo< <1 |B(s,?)| whose d.f. is tabu-
lated in Picard (1985). Needless to say, many other tests based on f‘n(s,x), such
as the Cramér—von Mises type, have the same limiting distributions as those
based on T, (s, x).

3. Proofs. We prove Theorem 1 for the case of p = 1 and q = 1. The proof
for general p and g and the proof of Theorem 2 are similar and can be found in
Bai (1991). The proof extends some ideas of Koul and Levental (1989). Omit the
subscripts on the parameters and rewrite the ARMA(1,1) ase; =X; — pX; 1 —
fe; _1 and the residuals as & = X; — pX; 1 — 5?,: _1. Subtract the first equation
from the second on both sides to obtain

6) G—cr=—0G_1-e_1)—(p—pXi_1—O—0e_1.

By repeated substitution and making use of &y = 0, we have

t—1

G—e=(D""0'-(B-pD (DX,

M i1 7=0
~@-0> (-1l _;.
j=0

Denote ¢ = (=8, /ii(p — p), Vi@ — 6)) and ¢ = (u,v,w) € R3. Define

t—1 t—1
(8) Ayt =uleo+n~1?2 (v Zqut_l_j +w Zujet_ l_j) =uleg +n" V2.
Jj=0 Jj=0

It follows from (7) and (8) and its definition that Fi,,(x) can be written as

[ns]

©) () = o ;1(@ <x+Ag),

where Ay, is Ay with ¢ replaced by ¢. Thus

[ns]
(10) Ku(s,0) ~ Kals,0) = n7V2 Y {Ier S x4 Ag) —Ie <)},

t=1

To study the process IA{n(s, x) — K, (s, x), it suffices to study the auxiliary process

' [ns)
(11) Guls,x,¢) =n"2Y {I(e; <x+Ag) —I(e; <)}

t=1
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Since 6] < 1, there is § > 0 such that || < 6 < 1. Define D, = [-6,6] x
[-b,b]% for b > 0. In view of assumption (a.3), Theorem 1 is implied by the
following:

12) sup sup  |Gy(s,x,¢)| =0,(1) forevery b > 0.
¢eDy s€[0,1], xER

Next, define

[ns]

Zo(s,%,¢) =n72) " {I(e, <x+ Agy) — Flx + Age) — Ier < 2) + F2)},
t=1
[ns]

Ha(s,x,¢) =n"Y2> {F(x+ Ay — Fx)}.
t=1

Then it is easy to see that |G, (s, x, §)| < |Za(s,x, ¢)| + |Hu(s, x, $)|. Therefore, to
prove Theorem 1, it suffices to prove the following two propositions.

PROPOSITION 1.  Under the assumptions of Theorem 1, we have

(13) sup sup  |Z,(s,x, )| =0,(1) forevery b > 0.
¢€Db sE [0, 1], xER

PROPOSITION 2. If the assumptions in Theorem 1 hold, then

(14) sup sup  |Hu(s,x,¢)| =0p(1) forevery b > 0.
¢EDy s€[0,1], x€R

PROOF OF PROPOSITION 1. Let n; = CE{( /(|1 X; _ 1 _ j| + les 1 - |) for some
C > 0 and 7 € (0, 1). Define for every A € R,

Zu(s,%, 6, )
[ns]
= n Y {I(e <24 Tuo, ) — Flx+ o, V) ~ Lo <20+ F),

t=1

where T4(¢, \) = uleq + M8 ' |eo| + n=1/2€4 + An~1/2p,. Since ['i(¢,0) = Agy, it
follows that Z,(s,x, $,0) = Z,(s,x, #). As in Koul (1991), we shall argue that
Proposition 1 is a consequence of the following:

(15) Sup  Zn(s,x,4,\) =0,(1) for every given ¢ and \.
; s€l0,1],x€R

For any 6 > 0, due to its compactness, the set Dy can be partitioned into a
finite number of subsets such that the diameter of each subset is not greater
than 6. Denote these subsets by Ay, Ay, ..., Ape). Fix r and consider A,. Pick
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ér = (ur,vr,w;) € Ar. For all ¢ = (u,v,w) € A,, we will find an upper and a lower
bound for Ay in terms of A4,; and random variables not varying with ¢ and r.
To this end, use the inequality

(16) o/ —uf) < |ju—u'|j& " forallj> 0ifu,u’ €[-0,0],

to obtain |u'sy — utey| < 669~ 1|eo| and for Z; = X; and ¢; to obtain

t—1 .
< 5{ > (@ + b8 ) |zt_1_,~|}.

j=0

t—1 t—1

wZuJZt_l_j—w,Zuth_l_j
Jj=0 Jj=0

Choose 7 € (0, 1) and C large enough to assure & + bj?j_ ' < CrJ. Thus

17 At — Mgt < 68" el +6n "2y forall ¢ € A,.

By the monotonicity of the indicator function and inequality (17), we have

[ns]

Zn(s,%,8) < Zuls, %, 61, 0) + 072 Y {Fx+ Ty, ) - Fla+ )}

t=1

and a reverse inequality with 6 replaced by —é, for all ¢ € A,. But

n-1/2

[ns]
> {F(x +Ty(pr, £6)) — F(x + A¢t)}

t=1

<n7V2S P (24 Ty, £6)) — Flx+ Ago)|
t=1

< 26| flln="2 3" (68"~ 'leol + n~/2n) = 60,(1) by Lemma 1 below,
t=1

where the O,(1) is uniform for all s € [0, 1], allx € R and all ¢ € Dj. Therefore,

sup sup |Zn(s,x,¢)| < max sup |Zn(s, x, dr, 6)|
¢€eD, s€l0,1], xR r<m@ seo,1], xR

+ max sup |Zn(s, X, ¢r, —6)| + 60,(1).

r<m@®scio,1], xcR
The term 60,(1) can be made arbitrarily small in probability by choosing a
small enough 6. Once § is fixed, the first two terms on the right are 0,(1) due to
(15), thus leading to Proposition 1.

To prove (15), we need the following two lemmas.

LEMMA 1. Under assumption (a.l), for every given ¢ = (u,v,w) € Dy and
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every A € R, we have

(a) n=Y2Y" (Juteol +£8° Heol) = 0p(D),
t=1
®) n-l/2 ,max, (1€l + IMmel) = 0p(1),
() nY " (1epl + [ Mml) = 0p(D).
t=1

ProoF. The proofs of (a) and (c) are trivial since |z|, § and 7 all are in (0, 1).
Thus consider (b). From its definition, |£4| < b(1 — |u|)~! maxy < j<,—1(X]|
+ |gj|) for all ¢ < n and similarly || < C1 — 7)"'maxo<j<n—1(Xj| + |&;])
for all ¢ < n. Now (b) follows from the fact that n=Y/2max; <<, |Z;| = 0p(1)
for arbitrary identically distributed r.v’s {Z;} with finite variance [see Chung
(1968), page 93]. O

LEMMA 2. Foreveryd € (0,1/2), every ¢ = (u,v,w) € Dy and every A € R,

sup  n2N C|F(y+Tulg, V) — F(x+Tilg, V)| = 0p(D),

(%,9)EBy, 4 o1
where By, a = {(x,y) € R x R; |[F(x) - F(y)| <n~/2=%).

The proof of this lemma is analogous to that of Lemma 2.1 of Koul (1991) and
is thus omitted. However, the use of the n~1/2~2.grid instead of Koul's n~1/2 is
similar to Boldin (1982).

We are now in the position to prove (15). Let N(n) be an integer such that N(n)
= [n'/2+9] + 1 where d is as in Lemma 2. Following the idea of Boldin (1982),
we divide the real line into N(n) parts by points —co = x5 < %1 < -+ < Ay = ©
with F(x;) = iN(n)~1. Write I'; for I';(¢, \). With x, < x < x,,1, since I(e; < x)
and F(x) are nondecreasing, we have

[ns]
Zo(5,%,6,0) < Z(5, %11, $, ) + 0" Y2 Y {Fltr1 +T1) — Flx +Ty)}
t=1
[ns]
+n7 V2 " {I(er < %p11) = Flatp 1) — I(e; < 2) + F(x)}

t=1
and a reverse inequality with x, . ; replaced by x,. Therefore,

sup |Zu(s, x, ¢, M| < maxsup|Z,(s, -, 6, )|
s, x s

[ns]

D {FGr .1 +T) — Fla, +Ty)}

t=1

(18)  + maxsup n~1/2
s

[ns]

> {I(et <FYg) -g-I(e <F'(h) +h}|.

t=1

(19) + sup n~1/2
s, lg—h] <N@®)-1
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That expression (19) is 0,(1) follows from the tightness of sequential empiri-
cal processes based on i.i.d. random variables and N(n)~! = o(1) [Bickel and
Wichura (1971)]. Convergence to 0 in probability for (18) follows from Lemma 2,

[ns]
m;axsupn“l/2 Z {F(xps1+T¢) — Fa, +T)}
§ t=1

n
< maxn™V2 Y | F(xy,1 +T0) = Flar +T1)| = 0p(1),
t=1

because (x,%,,1) € By, 4. It remains to show

(20) \Jhgx,  max |Zo (J/n,%r, 6, N) | = 0p(1).
Notice that

P(max max |Zn(j/n,x,, 6, N)| > e)
(21) T

< N(n)max P(mjaxlzn(j/n,xr, B3] > ¢).

We shall bound the probability in the right-hand side above. Let

dnt =1l <x+Ty) —F(x+Ty) — I(e; <x)+ F(x), 1<t<m

k
Suk=dw, Fr=ofielde, i<k}, 1<k<n.
t=1

By construction, {(S,j, ¥;); 1 < j < n}is a martingale array and
2n (j/n,x> ¢’ )‘) = n_l/zsnj~
Therefore, by the Doob inequality,

P(lrsnjaécn |Z (ji/n, 2,6, 0)| > e) <e*n"2E(S3,).

Next, by the Rosenthal inequality [Hall and Heyde (1980), page 23],

E(st,) < CE{ z";mdztm_l)} FCYE(d)

t=1

for some C < oo. Because I'; is measurable with respect to F;_;, we have
Ed2,|%:_1) < |F(x+T:) — F(x)| < |f|IT¢|, where ||f|| = sup, |f(x)|. Therefore,

' n 2 n 2 n
(22) E{ ZE(dﬁtlm_l)} < ufn2E{Z|rt|} < IIfIPn Y E(r?)
t=1

t=1 t=1
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by the Cauchy—Schwarz inequality. From the definition of I;,
ITe) < ME8"~ Yeo| + n=Y2{|€u| + |\Imi}, £ > 1, for some M < co.
Moreover, it is not difficult to show that, for some C < oo and for all ¢ > 1,
E(¢,) <C and E(yf)<C.

Thus =_,E(T?) = O(1) and by (22), E{=_,E(d2,| % _1)}? = O(n). Next, because
|dn| <2, EF_,E(d5,) < 16n. Combining these results, we obtain

n~2E(S;,) =0(n71).
The above rate does not depend on x. Thus
N(n)mgxP(lxsrl?%tn |Zn (j/n,%r, 6, 2)| > e) < e 12490 (n"1) = o(1)
for d € (0, 1/2). The proof of (20) and thus Proposition 1 is now complete. O

PROOF OF PROPOSITION 2. Let us first show

23) sup |Hy(s, %, ¢)| = 0,(1) for every given ¢.
selo,1], xeR

Apply the mean value theorem twice to obtain

|Hy(s,%,4)| = n~1/2

[ns]
> {F(x +uleg +n712¢,) — F(x)}
t=1
[ns]

Zf(%)f@ RIS Juteo],

t=1

where +; is between x and x + n1/2¢4. The second term on the right is 0,(1)
uniformly in s and x by Lemma 1(a). Now max;|y; — x| < n~/2 max; |£4| = 0,(1)
uniformly in x by Lemma 1(b). Therefore, by the uniform continuity, f(y;) =
f(x) + e; with max; |e;| = 0,(1) uniformly in x. Thus

[ns] [ns]
1
s€[0 1] xeR Zf(%)s"” 6[0?1111&6 ("f”_ 254% +max le:] Z|€¢t|)
[ns]
= - 1)0,(1
o (IIfII qust ) +0,(1)0,(1).

It remains to show sup,n ‘IIEI”S €st| = 0p(1). However, using an invariance
principle for linear processes [Blllm%sley (1968), page 191], one can even ob-
tain the stronger result sup,n~!|Z* €| = Op(n‘l/ 2). Details can be found in
Bai (1993).
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We next argue that (23) holds uniformly in ¢ € D,. Partition Dy as before
and consider ¢ € A,. By the monotonicity of F and the inequality of (17),

[ns]

H,(s,x,¢) <n~ /2 Z {F(x + Mg+ 59 1|€o| +6n~2p,) — F(x)}
t=1

no 1<
< Hy(s,%,6,) + 8|If (n‘WZtG‘ eol + 5 > ),
t=1

t=1 .

where the second inequality follows from the mean value theorem. A reverse
inequality holds when 6 is replaced by —§. Moreover, the last term in the above
inequality is §0,(1) by Lemma 1. Therefore,

sup sup |H,(s,x,4)| < max sup  |H,(s,x, ¢,)| + 60,(1),
s€l0,1,x€R ¢ €D, r<m® se[o,1], xR

which implies Proposition 2 in view of (23). O
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