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ON THE ASYMPTOTICS OF CONSTRAINED M-ESTIMATION!

By CHARLES J. GEYER

University of Minnesota and University of Chicago

Limit theorems for an M-estimate constrained to lie in a closed subset of
RY are given under two different sets of regularity conditions. A consistent
sequence of global optimizers converges under Chernoff regularity of the
parameter set. A \/n-consistent sequence of local optimizers converges un-
der Clarke regularity of the parameter set. In either case the asymptotic
distribution is a projection of a normal random vector on the tangent cone
of the parameter set at the true parameter value. Limit theorems for the
optimal value are also obtained, agreeing with Chernoff’s result in the case
of maximum likelihood with global optimizers.

1. Introduction. This paper deals with the problem of maximum like-
lihood estimation and, more generally, of M-estimation of a parameter con-
strained to lie in some closed set in R%. This problem was considered by Chernoff
(1954), Le Cam (1970) and Self and Liang (1987). Special cases have been con-
sidered by many authors. See Robertson, Wright and Dykstra (1988) and the
references therein for the case of isotonic regression; see Andersen and Gill
(1982), Knight (1989) and Pollard (1991) for the case where both the objective
function and the constraint set are convex; and see the references in Self and
Liang (1987) for other cases. A much different approach involving a theory of
weak convergence of set-valued random elements (sets of maximizers of the
objective function, rather than just single maximizing points) was developed
by King (1986) but only applied to a limited class of problems [see also King
and Rockafellar (1993)].

The asymptotic distribution of the M-estimator is a projection of a normal
random vector on the tangent cone of the (constrained) parameter set at the true
parameter value, the tangent cone being the set that is obtained by centering
the parameter set at the true parameter value, blowing it up by a scale factor
and taking the limit in the sense of Painlevé—~Kuratowski set convergence as
the scale factor goes to co. Aside from the “usual regularity conditions” on the
stochastic aspects of the problem, there are analytic regularity conditions on
the constraint set required for the asymptotics to hold. The first such condition,
which is called Chernoff regularity here, because it is equivalent to the condi-
tion in Chernoff (1954), is that the set convergence limit defining the tangent
cone exist. This is a sufficient condition for the asymptotics of an M-estimating
sequence of global maximizers. For local maximizers a stronger condition is
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required, which is called Clarke regularity in the optimization literature.

Chernoff (1954) gave the asymptotic distribution of the likelihood ratio statis-
tic under Chernoff regularity. Le Cam (1970) gave the asymptotics for the MLE
under Chernoff regularity plus the unnecessary assumption that the tangent
cone be convex. Self and Liang (1987) attempted to extend the asymptotics
for the MLE to the Chernoff regular case, but their proof is in error, and
the theorem they state is, in fact, false because it refers to local rather than
global maximizers.

What is true is that any consistent sequence of approximate global maxi-
mizers of the likelihood does have an asymptotic distribution under Chernoff
regularity (Theorem 4.4). This provides the complement to Chernoff’s result for
the likelihood ratio. Only under Clarke regularity [Clarke (1983)] is it true that
a y/n-consistent sequence of local maximizers has the same asymptotic distri-
bution as the global maximizers (Theorem 5.2). Clarke regularity is commonly
used in optimization theory, but this seems to be its first appearance in the
statistics literature.

The stochastic regularity conditions used here are standard. For global maxi-
mizers we follow Pollard (1984). Stronger conditions are required for the conver-
gence of local maximizers. Pollard’s main condition, “stochastic equicontinuity,”
is similar to a condition introduced by Huber (1967). All of the results apply
to general M-estimation. Since no special properties of likelihood are used, the
M-estimation results come for free.

The simplest nontrivial example is maximum likelihood estimation of the
mean y of a univariate normal random variable with known variance subject
to the constraint . > 0.If0 is the true parameter value, elementary calculations
show that the distribution of the MLE is an equal mixture of an atom at the
origin and a half-normal distribution. The asymptotic distribution of the MLE
would be the same if the constraint were changed to 0 < u < 1, because these
two constraint sets have the same tangent cone, the half-line [0, 00). The same
asymptotics can occur for rather weird constraint sets with the same tangent
cone, such as the discrete parameter set {1,1,1,1 ..., 0} (Example 1).

The multiparameter case is similar. Consider maximum likelihood estima-
tion of the mean p of a bivariate normal distribution with variance I subject
to the constraint that p lie in the first quadrant. If 0 is the true parameter
value, elementary calculations show that the MLE is the projection of the sam-
ple mean %, on the first quadrant. Again only the tangent cone matters in the
asymptotics. The same asymptotics would occur if the constraint set were the
pie-shaped region that is the intersection of the first quadrant and the unit disk
or for many other sets having the same tangent cone.

If the constraint set is changed so that the tangent cone is nonconvex, the
distinction between global and local maximizers becomes important. Change
the constraint set in the last example to be the boundary of the first quadrant
(1 lies on either the x or y nonnegative half-axis). The global maximizer of the
likelihood is the projection of the sample mean on the constraint set (which is its
own tangent cone), but a local maximizer (the constrained analog of “solutions
of the likelihood equation”) is not uniquely defined, and the wrong choice of
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local maximizer will give the wrong asymptotics or perhaps no asymptotics at
all (Example 2).

The simple examples described above may serve to anchor intuition, but it
should be kept in mind that the theory covers much odder examples. Any closed
cone is Chernoff regular at its vertex, for example, so the support of the MLE
could be a fractal. Also, a two-dimensional MLE can have a one-dimensional
limit (Example 3).

2. Tangent cones. The following definition is given by Chernoff (1954).
Recall that a cone is a set K in R? having the property that x € K implies
Ax € K, for all A > 0. A set C is approximated at the origin by a cone K (in the
sense of Chernoff) if both of the following conditions hold:

(2.1) - inflx-yl=o(lyl), »eC,
2.2 inf |x —y| = :
(2.2) infle—yl=o(kl), =xcK

It has apparently not been noticed that this definition is closely related to
various tangent cones that have been used in the optimization literature. Three
different tangent cones will play a role in the sequel. The definitions have
been taken from Rockafellar and Wets (1995) and from Aubin and Frankowska
(1990). The ordinary tangent cone, also called the Bouligand tangent cone, the
contingent cone or just the tangent cone, of the set C at the point x € C is the set

Tc(x) = lim sup C_—:)_c
T10 T

The limit superior here is in the sense of Painlevé—Kuratowski set convergence.
Avectorv liesin the ordinary tangent cone if and only if there exist a sequence 7,
decreasing to 0 and a sequence x,, in C converging to x such that (x, —x)/7, — v.
The ordinary tangent cone is always a closed cone, but need not have any other
regularity properties.

This is the tangent cone that appears in the first-order necessary conditions
for optimality. A necessary condition that a smooth function f have a local
minimum over C at x is

(2.3) v'Vf(x) > 0, v € Te(x),

which is called the variational inequality.
The derivable tangent cone, also called the intermediate tangent cone, or the
adjacent tangent cone, is the set

Te(x) = liminf C—x
710 T

The limit inferior is again in the sense of Painlevé—Kuratowski convergence. A
vector v lies in the derivable tangent cone if and only if for every sequence 7,
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decreasing to 0 there is a sequence x, in C converging to x such that (x, —x)/
T» — v. By definition of set limits superior and inferior T¢(x) C Tc(x). The
derived tangent cone is also a closed cone, but need not have any other regularity
properties.

The connection between approximation in the sense of Chernoff and tangent
cones can now be stated.

THEOREM 2.1. A set C is approximated by a cone K in the sense of Chernoff
if and only if

(2.4) K = Tx(0) = T¢(0) = Tc(0).

PrOOF. Assume that (2.1) and (2.2) hold. The assertion clK = Tk(0) is
obvious, since K is a cone. We next show that T%(0) = T¢(0). For v € T¢(0), there
are 7, | 0 and y, — 0in C such that y,/7, — v. By (2.1) there are x, € K such
that Jx, —ya| = o(|yn|) = 0(13). So x» /7, — v and v € Tk(0). The same argument
with C and K interchanged shows that Tx(0) C T'¢(0). Hence Tk(0) = Tc(0).
Now suppose that v € Tx(0). Then, for any sequence 7, | 0,x, = 7,0 is in
T(0). Hence by (2.2) there are y, € C such that |x, — y»| = o(|xn|) = o(m). So
¥n/Tn — v and hence Tx(0) C T¢(0). The reverse inclusion being obvious, this
establishes (2.4).

Conversely, suppose that there is no set K for which (2.1) and (2.2) hold.
Then, in particular, either (2.1) or (2.2) fails when K = T¢(0). If (2.1) fails, then
there is a sequence y, — 0in C and an ¢ > 0 such that inf, ¢ x |x — yn| > €| yn|-
But by compactness of the unit sphere there is a subsequence y,, such that
Y/ ¥n,] = v € Tc(0) = K, which is a contradiction. Thus it must be the case
that (2.2) fails. Then there is a sequence x, — 0 in K and an € > 0 such that
infy ¢ ¢ |xn — ¥| > €lxy|. Again, by compactness, there is a subsequence x,, such
that %y, /|xs,| — v € K. Now, for any sequence y;, in C, |xn, — Y&| > €|%n,| s0

—_ xnk
|xnk | |xnk |

Yk

—v+o0(1)
|xnk|

e<

and hence v is not an element of T¢(0), and so (2.4) fails. O

The assertion of the theorem is that the condition T'¢(x) = T¢(x) is equivalent
to the regularity condition of Chernoff (1954). Hence we say a set C is Chernoff
regular at a point x € C if T¢(x) = T¢(x) holds. The definition of tangent cone
used by Le Cam (1970), page 819, is equivalent to Chernoff regularity, because
Hausdorff set convergence is the same as Painlevé—Kuratowski set convergence
when the sets are contained in a bounded region.

The Clarke tangent cone, also called the strict tangent cone, is the set
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The limit inferior is again in the sense of Painlevé—Kuratowski convergence,
and the notation y—¢x denotes y converging to x in C. A vector v lies in the
Clarke tangent cone if and only if for every sequence 7, decreasing to 0 and for
every sequence y, in C converging to x there is a sequence x, in C converging
to x such that (x, — y,)/7, — v. By definition of set limits superior and infe-
rior Teo(x) C Te(x) C Te(x). All of these inclusions may be strict. When f‘c(x)
= T¢(x), C is said to be Clarke regular at x. Like the other tangent cones, the
Clarke tangent cone is a closed cone. Unlike them, the Clarke tangent cone
is necessarily convex. Another important relation between the Clarke tangent
cone and the ordinary tangent cone is the following:

(2.5) To(x) = liminf To(y).
Y —cXx

See Aubin and Frankowska (1990), pages 128-130, or Rockafellar and Wets
(1995) for proofs of these facts about the Clarke tangent cone.

3. Epiconvergence. The epigraph of a function f from R? to R (the com-
pactified real line [—o0, o] with the usual topology) is the set

epif = {(x,t) € R? x R: f(x) < ¢}.

A sequence {f;,} of functions from R? to R epiconverges to a function f (written
e-lim, f, = forf, = f)if lim,epi f, = epi f, the limit being in the sense
of Painlevé—Kuratowski set convergence. This occurs if and only if for every
point x,

(8.1a) Vx, —x, lirr}Linffn(xn) > f(x),
(3.1b) Jx, — x, lim sup f(x,) < f(x)

[see Attouch (1984) page 30]. Epiconvergence is the mode of convergence of
functions that is useful for optimization problems, as is clear from the following
proposition [which is Theorem 1.10 in Attouch (1984)].

PROPOSITION 3.1. Suppose f, - f, x, — x and

fa(xn) —inf f;, — 0.
Then
fla)=inff = lim_fo(en)

Epiconvergence does not distinguish between a function f and its closure
or lower semicontinuous regularization cl f which is the greatest lower semi-
continuous function majorized by f (the pointwise supremum of lower semi-
continuous functions majorized by f) in the sense that £, £ if and only if f
is lower semicontinuous and cl £, 5 f [Attouch (1984), Theorem 2.1 and Corol-
lary 2.7]. Thus epiconvergence cannot be induced by a metric topology (or even
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a Hausdorff topology) unless it is restricted to lower semicontinuous functions.
This entails no loss of generality, however, since the epiconvergence of general
functions is characterized by the epiconvergence of their closures.

Attouch (1984), page 257, gives a metric that induces epiconvergence, but
it is not useful for calculation. Attouch and Wets (1991) give a family of pseu-
dometrics that induce epiconvergence, which are easily combined to make a
metric amenable to calculations [Rockafellar and Wets (1995)]. The metric for
epiconvergence is defined in terms of a metric for Painlevé—Kuratowski set con-
vergence, using the fact that epiconvergence is equivalent to set convergence
of epigraphs. ,

Let 8 denote the space of all nonempty closed sets in R?*! and F the space
of all lower semicontinuous functions from R? to R with nonempty epigraphs
(excluding the function that is identically +00). The same notation is used for
distance functions on both spaces defining the distance on ¥ in terms of the
distance on 8 by

d(f, g) = d(epif,epig).
The distance on 8 is defined using a family of pseudometrics d, defined by
dp(SleZ) = max Idsl(x) - dsz(x)l,
x| < p

where
ds(x) = min |x — y|
y€S

is the distance from the point x to the set S. These pseudometrics are introduced
in Attouch and Wets (1991) where they are denoted 6, and shown to characterize
set convergence [Attouch and Wets (1991), Theorem 4.2]:

(3.2) S, — 8 ifand onlyifd,(S;,S) -0 Vp>0.

In Rockafellar and Wets (1995) these pseudometrics are used to define a metric
on 8 that characterizes set convergence. For simplicity, we will use a slightly
different metric here:

d(S1,82) = ) 27%(1 A d(S1,S2)).
k=1

That this is a metric follows directly from the fact that if S; and S, are closed,
then d,(S;,S2) = 0 for all p if and only if S; = Sy [Attouch and Wets (1991),
Proposition 1.2]. That it characterizes set convergence is immediate from (3.2).

This metric is itself a bit awkward to work with, but it can be easily bounded
using another family of distance estimates (which are not pseudometrics be-
cause they do not satisfy the triangle inequality) defined by

ap(ShSz) =min{n > 0: 81N pBg+1 C Sz +nBd+1

3.3)
and Sy N pBg.+1 C S1+1Ba+1},
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where B, = {x: |x| < 1} is the closed unit ball in R? so S + 1B, 1 is the set of
points within 7 of S. The proof of Proposition 1.2 in Attouch and Wets (1991)
shows that

(3.4) d,(S1,S2) < d,(S1,S2) < d3,(S1,82),  p > max{ds,(0),ds,(0)}.

[The notation &p is from Rockafellar and Wets (1995). Attouch and Wets (1991)
use haus, for this distance estimate.]

4. The asymptotics of global optimizers. Stochastic assumptions need-
ed for a central limit theorem are given in many places. Here, we follow Pollard
(1984). Let X7,Xo, . . . be a stochastic process taking values in some metric space
X and let X be another random element in X. In the simplest case the X; are
i.i.d. with the same distribution as X, but, in general, this is not required. The
X; might form a Markov chain with X having the stationary distribution of
the chain, for example. We need not specify the relation between the X; and X
exactly. What is required for our results is embedded in Assumptions B and C.

Let C be a closed set in R and let

(4.1) {£(,0):0 € C)

be a family of real-valued functions on X such that Ef (X, 6) exists foreach 6 € C.
We use the empirical process notation

Pg = Eg(X)
and
1 n
Png =~ ;g(Xi)-

Then Z, = v/n(P, — P) is the empirical process. Define
F(0) = Pf(.,0) = Ef(X, )

and

Fy(8) = Pof(-,0) = % > (X, 6).
i=1

An estimating sequence 51, 52, ...1s said to be an M-estimator if gn minimizes
F, in some sense, exactly or approximately, locally or globally. The problem
addressed in this paper is to find, under suitable regularity conditions, the
asymptotic distribution of v/n(6, — 6y) where 6, is the “true” parameter value.
As a by-product we will also obtain the asymptotic distribution of the optimal
value function, n[F,(6,) — F,(6,)].

AssuMPTION A. F achieves its minimum over C at some point 6, where it
has a local quadratic approximation

F(0) = F(6p) + 2(6 — 6pY V(6 — 6p) +0(|0 — 6o|?)
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in which the Hessian V = V2F(6,) is positive definite.

Note that this assumes that the gradient VF(6,) is 0, which does not follow
from F achieving its minimum over C at 6, unless T¢(6,) spans R?.

AssumMmpTION B. f(-, 0) has a local linear approximation at 6y:
(42) f(vo) _f('a 00) = (0 - OO)ID() + |0 - 00|7‘(~, 0)

such that the remainder r(-,6) is stochastically equicontinuous in the follow-
ing sense. For every ¢ > 0 and n > 0 there exists a neighborhood W of 6, in the
constraint set C such that

(4.3) lim sup Pr* ( sup |Z,r(-,0)| > n) <e,
oW

n— oo

where Pr* denotes outer probability, which is required because the supremum
in (4.3) need not be measurable.

AssumpTION C. The random vector D(-) in (4.2) has a central limit theorem:
z,D 5 N(0, A)
for some covariance matrix A.

The convergence in law here may be taken to be in the ordinary sense or in
the sense of Hoffmann-Jgrgensen (1984) in which Z, Lzif E*g(Z;) — Eg(Z)
for all bounded continuous functions g. Here, the Z; and Z take values in
any metric space and the Z; need not be measurable, hence the E* denoting
outer expectation [see Dudley (1985), van der Vaart and Wellner (1989) or Ap-
pendix 8 of Bickel, Klaassen, Ritov and Wellner (1993) for exact definitions].
The Hoffmann-Jgrgensen theory will be needed in the following because of the
lack of measurability in Assumption B.

LEMMA 4.1. Define a random function H, from R? to R by

n[Fa (60 +n~2) - Fu(60)], 8 € VAC - o),
+00, otherwise

(4.4) H,(6) = {

and another random function Qz from R? to R by

§'Z+36'Vs, &€ Tclby),

+00, otherwise,

(4.5) Qz(6) = {

wh;re Z is an N(0, A) random vector. If Assumptions A-C hold and the constraint

set C'is Chernoffregular at 6y, then H, epiconverges in law to Qz, thatis,H, 5 Qz
considered as random elements in the space of functions R* — R with metric d.
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Observe that 6§ = v/n(6 — 6y) minimizes H, when § minimizes F, over C.

Proor. Define

§'Z,D + %6’V6, 5 € /n(C - 0y),
+00, otherwise.

(4.6) Gn((s) = {

The proof is in two parts. First, we show that d(G,,H,) converges in outer

probability to 0, and then we show that G, 5 Qz. Together these imply H, 5 Qz
[Lemma 1.8 in van der Vaart and Wellner (1989) and Lemma 8, Appendix 8 in
Bickel, Klaassen, Ritov and Wellner (1993)].

In order that d(G,, H,) — 0 in outer probability, it is enough that d,(G,,H,)
— 0 in outer probability for all large enough p. Since H,(0) = G,(0) = 0, the
point (0, 0) lies in the epigraph of both H, and G,. Hence (3.4) specializes to

d,(Gn,Hy) < d3,(G,, H,)

lactually 2 will do; see Rockafellar and Wets (1995)). Thus it is enough to show
that d,(G,, H,) converges in outer probability to 0 for all p > 0. Define

1Gn — Hallp = sup |G(8) — Hp(6)],
5 € pBy N /1(C — 6p)

where By is still the closed unit ball in R%. Then if |G, — H,||, = n we have
H,(6) > G,(6) —nfor § € pBy so

epiH, N pBgy,1 C epi(G, — 1) C epi G, +nBg.1
and vice versa with H, and G, interchanged. So by (3.3) we have
d, (G, Hy) < 1|Gr = Hal
Using P, = P +n~Y2Z,, we have

F,(8) — F(80) = F(8) — F(8o) + n~*2Z, [ £ (-, 0) — (-, 60)]
= %—(9 — 00)/V(0 - 00) +O(|9 - 00|2)
+n"Y2(0 — 60)Z,D + n~Y20 — 64| Z,7(-, 0).

Hence, for 6§ € \/n(C — 6y),

Ho(6) = Gu(®) = 1 -0 H161) + 1812ur(., 80 +n™%)

and

|Gr — Hpllp, < o(1)+p sup |Zyr (-, 6)|
9 €(@y+n—1/2pB;)NC

and the right-hand side converges in outer probability to 0 by Assumption B.
This completes the first part of the proof.
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Let w, be the “optimization theory” indicator function of the set \/n(C — 6,),
the function that is 0 on /n(C — §;) and +co elsewhere, and let w be the same
kind of indicator function for T'¢c(8). Since Chernoff regularity implies

Vn(C — 6p) — T.(6p),

the definition of epiconvergence in terms of epigraphs implies w, < w. For any
z € RY, let

%)) q.(6) =62+ 16'V6, S eRY,

and let
8n(6) = 6'2,D + 36'V§, 5 € R4,

Then G, = g, + w, and @, = q, + w. Theorem 2.15 in Attouch (1984) says that
the sum of an epiconverging sequence and a uniformly converging sequence
epiconverges, but it is clear from the proof that the uniform convergence is only
required locally (for each point there is a neighborhood in which the conver-
gence is uniform). If z, — z, then ¢,, — ¢, locally uniformly. Hence, if z, — z,
then q,, + w, epiconverges to g, + w = @,. By assumption Z, = Z,D 5z Apply
the Skorohod-Wichura—Dudley theorem [Dudley (1985)] to get an almost sure
representation z, — z a.s., where z,, has the same law as Z,, and z the same law
as Z. This says that G, = qz, + w, epiconverges in law to @z. O

Having achieved epiconvergence of the objective function H, to its limit @z,
we will also have convergence of the minimizer of H, to the minimizer of @z pro-
vided the minimizer is unique (almost surely). This follows from the following
proposition (which is part of the optimization theory folklore, but may not have
appeared in print). Let C be a closed set in R?. Define a set-valued mapping
P, C by

Po(x) = argmin |x — y| = {y €C: |x—y| = inf |x —y|},
y€eC y€EC
which is called the projection mapping onto C.

PROPOSITION 4.2. For any closed set C, the projection mapping P is single
valued almost everywhere (with respect to Lebesgue measure).

Proor. Fory € C define an affine function [, by
L(x) = y'x — 3|y

and let L = sup{l,: y € C}. Then it can be shown that, L is a proper convex func-
tion whose subgradient mapping 8L includes Pg, that is,

Pco(x) C OL(x), x € R?

[see Bressan, Cellina and Colombo (1990) for details]. This proves the proposi-
tion, since the subgradient mapping of a proper convex function is single valued
almost everywhere [Rockafellar (1970), Theorem 25.5]. O
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We have now completed the preparation for our limit theorem for estimating
sequences that are approximate global minimizers in the following sense.

AssuMPTION D. The estimating sequence {@;} under consideration is a
consistent estimator of 6, that is, 6, = 6, + 0,(1), and is an order n~! mini-
mizer of F,,, that is,

~ i
Fn(Bn)-euelf(;F,,(O)+op(n )

It is also assumed that 5,, is measurable (which it would have to be in order to
be calculated) and lies in the constraint set C.

LEMMA 4.3. Under Assumptions A-D, the sequence 8, is \/n-consistent, that
is, O = 6o + Op(n~1/2).

PrROOF. See Pollard (1984), page 141. Pollard’s proof that consistency im-
plies 1/n-consistency goes through almost without change. Constraining the b,
to lie in C does not affect this part of his proof. Even if Z,D is not measurable, it
is still Oy(n~'/2), since Hoffman-Jgrgensen convergence still implies tightness
[van der Vaart and Wellner (1989), Lemma 1.4]. This implies that |6, — 6] is
O,(n~/2), no outer probability required, because 8, is measurable. O

THEOREM 4.4. Let Z have an N(0, A) distribution and define
qz(8)=6Z +16'Vs,  §eRY,

repeating (4.7). Then qz has a unique minimizer over Tc(6y) for almost
all Z. Let 8(Z) denote this unique minimizer. Under Assumptions A-D and
Chernoff regularlty of the constraint set, the asymptotic distribution of bn
V/n (6, — o) is the distribution of 6(Z) and the asymptotic distribution of the
optimal value function

(4.8) Pn(6) = n[Fa(Br) — Fa(60)]
is the distribution of qz(5(Z)).

ProoF. The first assertion of the theorem is that gz has a unique minimizer
over Tc(6y) for almost all Z. This follows directly from Proposition 4.2, as is
easily seen by making an affine coordinate transformation so that V is the
identity. Then 6(Z) is the projection Px(Z), where K = T(6o).

From Lemma 4.3 we have that 6, is O,(1) and from Assumption D we have
that 3,, is an 0,(1) minimizer of H, defined by (4.4). That is, &, = H,,(gn) —infH,
converges in probability to 0. For any arbitrary subsequence there is a further
subsequence such that (suppressing the multiple subscnpts for subsequences)
&, converges weakly to some random vector § and ¢, 5. By Corollary 1.1 to the
Hoffman-Jgrgensen version of Prohorov’s theorem in van der Vaart and Wellner
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(1989) separate convergence in law implies a jointly convergent subsequence.
Hence there is a further subsequence such that (H,,3,, ) converges jointly
to (Qz,6,0) where Qz is defined by (4.5). Now apply the Skorohod-Wichura—
Dudley theorem to get an almost sure representatlon for this convergence in
law. This gives b, — 6, , &n — 0 and H, £ Qz. By Proposition 3.1 we must then
have § = 6(Z) and H, (6 ) — Qz(é) Hence (for this subsequence) bn 5 8(Z) and
H,(,) = ha(5,) 5 Q4(5(2)) = qz(6(2)). Since every subsequence has a further
subsequence that converges to the required limit, the whole sequence converges
to the same limit. This completes the proof. O

REMARK . The limit law for the optimal value is in the case of maximum
likelihood the limit law for the log likelihood ratio of the maximized likelihood
versus the likelihood at the truth. The difference of such log likelihood ratios for
two different hypotheses (parameter sets) is the log likelihood ratio for testing
the two hypotheses. Obtaining a simultaneous Skorohod representation for both
limit laws shows that the difference of the limits is the limit of the differences.
This agrees with the theorem of Chernoff (1954).

5. The asymptotics of local optimizers. There is a long tradition of
avoiding the consistency assumption in Assumption D by taking the estimating
sequence 6, to be a \/n-consistent sequence of local (not global) minimizers,
which always exists.

LEMMA 5.1. Under Assumptions A-C, there exists a \/n-consistent sequence
of local minimizers of F, over any Chernoff regular constraint set C; that is, for
any € > 0, there exist an r > 0 and a sequence 6, of local minimizers of F, over
C satisfying

limsup Pr(v/n|6, — 6, >r) <e.
n

Proor. Choose 7' > 0 such that
Pr(Z| <r)>1-¢/4
[Z, as usual, being N(0, A)] and choose r > 0 so that
Qz(8) > qz(6) >1 whenever§ >rand |Z| <r,

where @z and gz are given by (4.5) and (4.7). These choices can always be
made because the Hessian V of gz is positive definite. Since we have made
the same assumptions as those for Lemma 4.1, its conclusion H, £ @, holds.
Again, using an almost sure representatlon from the Skorohod-Wichura-Dudley
theorem, we can argue as if H, = @, almost surely. But this implies that the
eplgraph of H, eventually misses any compact set that misses the epigraph
of @z and hits any open set that hits the epigraph of @z [Attouch (1984),
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Theorem 2.75). In particular, it misses the set {(5, 3): |6| = r}, and it hits the set
{(6,A): A < 1, 16| < r}. Hence there is an no such that, for all n > n,,

H,(6) > % whenever|§|=r

and

H,(6) < 1 for some 6 such that 6] <r,

which says that H, has a local minimum inside the ball of radius . O

To get a central limit theorem for this local minimizing sequence, it is nec-
essary to impose further regularity conditions. These will be stronger than the
conditions assumed for global minimizers in two ways.

In (4.1) the functions f( - , §) were only defined for 6 in the constraint set C. In
order to use derivatives it seems necessary that they now be defined and dif-
ferentiable for 6 in a full neighborhood of 6y. This is presumably not necessary,
but it is not clear how to proceed without differentiability. Assuming differen-
tiability, we can take D = Vf(-, 6,) in (4.2) so that Assumption C becomes

(5.1) VZf(-,00) = VRVFa(60) 5 Z,

where Z is N(0, A). However, this is not enough. What is really required is
VRVF, (6 +n"Y26,) 5Z + Vs

along sequences §, — 6. This would follow from the “usual” (Cramér style) reg-
ularity conditions, but here it will be simply assumed. This might be called the
differentiated form of the uniformly locally asymptotically normal condition.

AssumpTION E. For each x € X, f(x,-) is differentiable in a full neighbor-
hood of 6, in R? and there exist an N(0, A) random vector Z and a nonrandom,
positive-definite matrix V such that, for every p > 0,

sup |vrVF, (6o + n_1/25) —(Z+V8)| =0p(1).
161<p

As is the case with Assumption B, the supremum need not be measurable, in
which case the Hoffmann-Jgrgensen theory could be used, but we shall ignore
those details in this section.

THEOREM 5.2. Let Z have an N(0, A) distribution and define qz as in (4.7).
Then under Clarke regularity of the constraint set qz has a unique local mini-
mizer over Tc(6y) which is also the unique global minimizer. Let §(Z) denote this
unlque minimizer. Under Assumptions A, B and E there exists a \/n-consistent
sequence 8, of local minimizers of F,, and for any such sequence the asymptotic
distribution of § = N (8, — o) is the distribution of 6,(Z), and the asymptotic
distribution of the optimal value function (4.8) is the distribution of qz(é(Z))
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Proor. The asymptotic problem of minimizing qz over T¢(6y)is now convex,

since the Clarke tangent cone is convex. Furthermore, it is strictly convex, since
qz is quadratic. Hence it has a single local minimum §(Z), which is also the
global minimum.

The existence of a 1/n-consistent sequence 8, of local minimizers is guaran-
teed by Lemma 5.1, and /n-consistency of 8, means that 8, is O,(1), hence tight.
Hence for any subsequence there is a subsequence which converges in law to a
limit 6. By reasoning similar to that in Lemma 4.1 and Theorem 4.4, it follows
from Assumption E that VA, 5 Vqz in the topology of uniform convergence on
compact sets, where A, is defined as in (4.8) and Vqz(6) = Z + Vé. Using the
Prohorov theorem to get a joint law for (VA,, ) along a further subsequence
and using the Skorohod theorem to get an almost sure representation as in
Theorem 4.4 gives a subsubsequence such that (suppressing the subsubscripts)
Vh, converges to Vqz uniformly on compact sets and 6, — 6. This implies

Vha(6,) — Vqz(6) = Z + V6.

Now for any vector v € T¢(6p) there is a sequence v, € TC(§n) suchthatv, — v
by (2.5). But then

0 < V. Vh,(8,) — v'Vqz(6),

the first inequality holding since 5, is a local minimizer, by the variational
inequality (2.3). Hence

vlqu((S) > O, NS Tc(ao),

which implies that the convex function @z defined by (4.5) has a local min-
imum at §, hence § = 5(Z). That h,(,) — qz(6) follows from H, % Qz as in
Theorem 4.4. O

6. Examples and counterexamples. Neither Chernoff (1954) nor Self
and Liang (1987) give any examples of constraint sets that are not Chernoff
regular. An inspection of the proof of Theorem 2.1 yields some understanding
of what needs to happen for a set to fail to be Chernoff regular. The follow-
ing counterexample, taken from Rockafellar and Wets (1995), also illustrates
failure of Chernoff regularity.

ExaMPLE 1. Let {6,} be a sequence in R decreasing to 0 and C = {0} U {6, }.
It can easily be shown that C is Chernoff regular if and only if 6,/6, .1 — 1.
Consider the problem of maximum likelihood in the family N(u, 1), 1 € C with
u = 0 the true parameter value. Then if the problem is Chernoff regular and
the MLE is taken to be the global maximizer of the likelihood, the asymptotic
distribution of the MLE is the projection of Z ~ N(0,1) on the tangent cone
Tc(0) = [0, 00), that is, an equal mixture of a half-normal distribution and an
atom at the origin.

If, on the other hand, the MLE is taken to be a /n-consistent sequence of
local maximizers, it may be the case that a sequence that completely ignores
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the data can qualify. Suppose 6, = 1/n. Then every point of C except the true
parameter value 0 is isolated and hence is a local maximum of the likelihood.
So, for example, fi, = 6, is a y/n-consistent sequence of local maximizers of
the likelihood, regardless of the data. Needless to say, it does not have the
asymptotic distribution of the MLE asserted in Theorems 4.4 and 5.2. This is
the simplest counterexample to Theorem 2 in Self and Liang (1987).

If we take a parameter set C that is not Chernoff regular, say 6, =47", n =
0,+1,..., with the normal family of the preceding example, we get a case where
the conclusion of Theorem 4.4 fails. Consider the subsequence n; = 1§k. Then
VmC = 4*C = C. Along this subsequence, the distribution of /nz(6n, — 6o)
is the same for all k, the projection of an N(0,1) random variable Z on the
set C. Now consider the subsequence n;, = 4 - 16* which makes \/n;C = 2 x
4kC = 2C. Again the distribution of \/ﬁZ@nk — o) is the same for all k, now
the projection of Z on 2C. Since C N 2C = {0} the MLE has no central limit
theorem unless projections on C and on 2C are both concentrated at 0, which
they are obviously not.

This counterexample shows that some condition like Chernoff regularity is
necessary to obtain a central limit theorem. It also shows that Chernoffregular-
ity is a very weak condition, one that could be expected to hold in any practical
application. The condition 6/6, .1 — 11is a kind of “asymptotic continuity” con-
dition, but a very weak one. The example shows that the constraint set need
not be connected for a central limit theorem to hold.

The failure of the central limit theorem for a sequence of local optimizers
indicates that the parameter set C of the example must not be Clarke regular,
and it is not, the Clarke tangent cone being the zero cone. But much less patho-
logical examples can fail to be Clarke regular, as the following example shows.

ExaMPLE 2. Let C be the set in R? consisting of the nonnegative x and
y half-axes

C={(x,y:x=0andy>0orx>0andy=0}.

Since C is a closed cone, it is its own ordinary and derived tangent cones at
Q. Since C is not convex, it cannot be its own Clarke tangent cone. In fact,
T(0) = {0}. So C is Chernoff regular but not Clarke regular.

Consider the problem of maximum likelihood in the family N(u,I), p € C
with true parameter value g = 0. Then the asymptotic distribution of the MLE
(which is also the exact sampling distribution for all n) is the projection Pe(Z) of
an N(u, I) random vector Z on C, if the MLE is defined as the global maximizer
of the likelihood. For Z = (X,Y), the projection Pc(Z) is defined as follows:

0, X<0andY <0,
Pe(Z)=<¢ X, X>0andY <X,
Y, Y>0and X <Y.

If we now consider local maximizers of the likelihood, it is clear that for Z in
the first quadrant (X > 0 and Y > 0) the projection on either the x or the y axis
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is a local maximizer. If we project the first quadrant on the x axis for even n
and on the y axis for odd n, convergence in the gentral limit theorem fails. If we
project the first quadrant on the x axis for all , there is a limiting distribution,
but not the distribution asserted by Theorem 5.2 and Theorem 2 of Self and
Liang (1987).

This example shows that even a fairly “nice” constraint set can cause prob-
lems for convergence of locally optimizing sequences. Establishing Clarke reg-
ularity of a parameter set, even one defined by smooth equality and inequality
constraints, can be nontrivial except in one special case: a convex set is Clarke
regular at each of its points. Conditions for Clarke regularity are beyond the
scope of this paper; see Clarke (1983), pages 234—-237, or, for a somewhat sharper
condition, Rockafellar and Wets (1995). The example shows that Clarke regu-
larity is a kind of “asymptotic convexity” and demonstrates that something like
Clarke regularity is needed to get convergence of locally optimizing sequences.

EXAMPLE 3. Let C be the set in R2:

C={(x,y):0<y<x?}.
Then
Tc(0) = {(x,):y = 0}

and C is Clarke regular at 0. Again consider the problem of maximum likelihood
in the family N(u,I), u € C with true parameter value ug = 0. For fixed sample
size n, the MLE is the projection 7, of %, on C, and is two dimensional: v/nji,
has support /nC, a two-dimensional set. Since C is Clarke regular, the central
limit theorem holds for either a local or a global optimizing sequence, the limit
distribution is, however, one dimensional: the projection of an N(0,I) random
variable on the x axis.

This example is in no way pathological. It just presents a behavior that is not
seen in previously published examples and serves to help refine one’s intuition
about the asymptotics of constrained M-estimation. For examples more typical
of applications, the reader is referred to Self and Liang (1987), all of whose
examples are convex, hence Clarke regular.

7. Discussion. This paper has presented two new central limit theorems
for M-estimation when the parameter is constrained to lie in a closed subset
C of R%. The first theorem is concerned with the convergence of a sequence of
approximate global optimizers. It requires Chernoff regularity of the constraint
set C and requires an assumption that the estimating sequence be consistent (it
also requires the usual stochastic regularity conditions). The second theorem
is:concerned with the convergence of a sequence of exact local optimizers. It re-
quires Clarke regularity of the constraint set C (it also requires slightly stronger
stochastic regularity conditions, enough to get a locally uniform central limit
theorem for the gradient of the objective function). The second theorem does
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not require a consistency assumption, since there always exists a y/n-consistent
sequence of exact local optimizers.

This notion of the MLE as a /n-consistent sequence of local maximizers of
the likelihood (or worse, of “roots of the likelihood equation”) has been criticized
by others because of its nonconstructive nature—there being no guarantee that
actual solutions of an optimization algorithm form a /n-consistent sequence.
Consideration of constrained problems adds a new distinction between local
and global optimizing sequences. Clarke regularity is a strong condition that
must be imposed to get convergence of local optimizers.
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