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Statistics is concerned not only with the derivation of optimal procedures
but also with the computation of these procedures. It is thus quite timely that
The Annals of Statistics address this issue and the editors are to be congratu-
lated for opening a tribune for a discussion about the pros and cons of Markov
chain Monte Carlo methods. Moreover, most papers in the recent literature
on Gibbs sampling have mainly focused on implementation aspects and on
the width of the application range, with only marginal attention to probabilis-
tic justifications and convergence problems. Tierney’s paper is thus most wel-
comed since it highlights the probabilistic foundations of Markov chain Monte
Carlo methods, exposes the various types of convergence and more generally
introduces us to tools we were maybe hardly aware of but which are of ma-
jor interest for the sound use, improvement and control of Gibbs simulation
techniques.

Nonetheless, further progress is still necessary in this direction, as statistics
is once more in an inverse position in regards to probability. Indeed, in most
Markov chain Monte Carlo settings, we are faced with Markov chains which
are ergodic with a known invariant probability distribution and we want to
assess the rate of convergence and the behavior of the simulated sequence,
while classical Markov chain results are usually dealing with the derivation
of recurrence, ergodicity and convergence properties in terms of the transition
kernel. Therefore, there is a need for adapting Markov chain theory to the
specific setting of Markov chain Monte Carlo simulation.

Another imperative in the development of convergence diagnoses is simplic-
ity. In fact, Markov chain Monte Carlo methods have been introduced in Tanner
and Wong (1987) and Gelfand and Smith (1990) as powerful alternatives to
numerical integration or optimization techniques and to analytical approxi-
mations such as Laplace’s. Therefore, there is a danger in the current trend,
namely an increased complexity of the proposed implementations of Markov
chain Monte Carlo methods, since the additional efficiency is counterbalanced
by a difficulty of implementation and involved preliminary studies. And, while
Tierney’s review quite usefully recalls the convergence results available in the
literature, it also exposes the lack of more automatic characterizations of the
properties of simulated Markov chains, which would be necessary for a safer
and wider application of Gibbs methods. For instance, the verification of the mi-
norization condition in Section 3.2 may involve a complex study of the Markov
chain, which is prohibitive for most users. The following comments will thus fo-
cus on convergence issues in this spirit, that is, aiming at a limited involvement
of the user.

1. Mixing and the central limit theorem. Tierney mentions uniform
ergodicity and ergodicity of degree 2 as sufficient conditions for the CLT to
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apply. Unfortunately, these two properties are quite difficult to check without a
detailed study of the particular chain at hand. However, there exist alternative
conditions for the CLT to apply, based on the mixing properties of the chain,
that is, on the degree of dependency between the X,,’s.

1.1 A first mixing property, a-mixing, that is, the fact that
a(n) = sup |P(X,, € A, Xy € B) — P(X,, € A)P(X, € B)|
AB

goes to 0 as n goes to oo, is one of the weakest measures of asymptotic indepen-
dence. However, it may be enough for normal convergence: if f is a measurable
function such that E™[| f(X)|"] < +00, v > 2, a sufficient condition for the sum
of the f(X,)’s, S,, to be asymptotically normal is that

(1.1) > am) =P < 400
n

[see Davydov (1973)]. A somewhat more manageable condition is recalled in
Peligrad (1986), namely that when £ is L2(r), it is sufficient that

(1.2) limsup 0, /E[|Sx|] < v/7/2,

where o? is the variance of S,; in fact, the law of large numbers provides con-
vergent approximations of o, and of E[|S,, || and therefore allows for an “on-line”
verification of (1.2) as the Markov chain (X,) gets simulated.

Obviously, a-mixing itself has to be established for the Markov chain at
hand, but it actually holds for most Markov chains induced by Gibbs sampling
and other Markov chain Monte Carlo methods, since every positive recurrent
aperiodic Markov chain is o-mixing [Rosenblatt (1971), page 200]. In addition,
a-mixing is induced by other kinds of mixing, like -,0-,¢- and -mixing (see
below). Moreover, the last three types of mixing are necessarily exponential
when they hold for Markov chains [Bradley (1986), page 175]; this implies that
(1.1) is necessarily satisfied whatever + is. Another sufficient condition for a-
mixing is the Doeblin condition [Revuz (1975)], equivalent to p-mixing under
Harris recurrence and satisfied when the transition operator has a strictly
positive density with respect to the invariant probability = [Davydov (1973)].

1.2 The S-mixing condition is rather awkward to express (and even more
to check directly) since it involves

B(n) = sup sup Z |P(X,, € A;, Xy € Bj) - P(X,, € A)P(X, € Bj)|,

) (B) i
where the supremum is taken over all couples of partitions; under 3-mixing,
B(n) converges to 0 as n goes to co. However, a Markov chain is 4-mixing when
it is Harris recurrent and the density of the Markov transition probability
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with respect to the invariant probability = is positive [Davydov (1973)]. Berbee
(1979), page 102, also shows that p-mixing implies 8-mixing. The interest of this
type of mixing appears in Section 2 below in connection with coupling theory.

1.3 A mixing condition which is enough by itself to ensure the CLT to hold
is p-mixing, that is, the case when

o(n) = sup |P(X, € A|X, € B) — P(X, € A)|
A,B

goes to 0 as n goes to co. In fact, for every f in L%(r) such that E[f(Xp)] = 0,
the series

=E[f(X0)?] +2 ) E[f(X0)f(X})]

k=1

is absolutely convergent and, if o > 0, the CLT applies to the average of the
f(X,)s, the limiting distribution being N(O0, 2) [Blllmgsley (1968), Theorem

20.1]. Therefore, a simple monitoring of the estlmators of o2 can show whether
the CLT applies or not [see Geyer (1991)]. And the assessment of p-mixing
is often straightforward: all finite and most compact state irreducible Markov
chains are @-mixing [Billingsley (1968)] as well as Doeblin irreducible Markov
chains [Davydov (1973)].

1.4 Another type of mixing which is of interest is g-mixing, defined as the
convergence of

oln)= sup Corr(f(X,),8(Xy))
f,g € L3(x)

to 0 when n goes to co. Indeed, in this case, the CLT holds under p-mixing
either if f € L2(r) and 02 = E[|f(X}) + - - - + f(X)|2] = no? or if E[| f(X7)'] < 00
for I > 2 and o, goes to co [Rosenblatt (197 1)].

2. Renewal processes and i.i.d. replacements. Another attack on the
dependency problem is to try to replace the Markov chain produced by the
sampling method with an “equivalent independent sequence,” instead of check-
ing the above mixing conditions. This technique is sometimes called Berstein’s
method in the literature [Peligrad (1986)].

2.1. A first approach is to introduce a sequence of hitting times (7;), defined
by the successive return of the Markov chain to a partlcular set A. The Markov
sequence X,,,...,X, +m is then divided into blocks associated with these hitting
times, Y; = (X7, 41, X:,.,)- Under some conditions on A, it can be shown that
the renewal sequences Y; are independent or rather 2-independent (namely that
the sequences Yy; are mdependent) and identically distributed. For instance,
this is the case when A is an atom, that is, when the transition probability
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satisfies P(x, -) = v for every x in A, where v is a probability measure [see
Charlot (1991) and Meyn and Tweedie (1992)]. And atoms do exist for all Harris
recurrent Markov chains [Revuz (1975)]. More generally, such settings can be
created by perturbating the initial chain when X, € A in the following way:

Y ~ u(y), with probability «,
Xne1= Z~ P——-————-(X"’z) — @) otherwise
l-a '’ ’

In fact, as shown in Asmussen (1979), every v-irreducible Markov chain allows
for the existence of r € N, 0 < ¢ < 1, a set A and a probability measure v
such that

P'(x,E) > ev(E)

for every x € A and every set E, that is, a minorization condition as in Tierney’s
paper. The introduction of independent sequences derived from the original
chain is obviously of capital interest since the averages

are also independent and identically distributed, thus leading to a CLT when
the associated variance is finite. Malinovskii (1986, 1989) presents some de-
tailed central limit approximations and large deviations results for the sums
S,. Once again, the main problem with this technique is to determine the values
of A,vandr.

2.2 Another technique is to replace the stationary chain (X,) by another
sequence (Y,,) such that the Y;’s, i > n, are independent of the X;’s, i < n, with
the same distribution and there exists a.s. an ng such that X; = Y; for i > n,.
This replacement is known as “coupling theory” and is particularly interesting
under B-mixing since, as shown in Berbee (1979), page 106, it is equivalent to
B-mixing. Moreover, there exists a version of (Y},) such that

P(3k > n such that X, #Y3) = 8(n).

Now, defining 8 = 3(1), this result implies that, for a S-mixing chain with
rate 3, a sample of size N can be somehow replaced by an i.i.d. sample of
size (1 — B)N. This solves at once the CLT and the “batch size” question, the
latter being repeatedly considered in the Gibbs sampling literature [see, e.g.,
Geyer (1991), Raftery and Lewis (1992) or Tierney’s paper]. Indeed, it is then
sufficient to eliminate 5% of the chain to get a subsequence which behaves on
the average like ani.i.d. chain. However, a quite difficult and still open question
is to estimate S.
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3. The duality principle. When dealing with some Markov chain Monte-
Carlo approaches in finite mixture estimation, Diebolt and Robert (1994) obtain
convergence results and CLTs by using a duality principle [see also Diebolt and
Robert (1992)]. This principle is actually applicable in most missing data set-
tings and works for cases when the chain of interest (X,,) is associated with a sec-
ondary (or dual) chain (z,,) such that X, is generated according to a conditional
distribution f(x|z,). We assume in addition that the dual chain (z,) has an in-
variant probability distribution g(z) such that the distribution of interest, , is
the marginal distribution of the invariant probability distribution of (X, z,),
namely 7(X,,,2,) = f(X,, | z2,)g(2,). The duality principle borrows strength from
the simplest chain (z,,) in the following sense.

THEOREM 1. Ifthe Markov chain (z,) is ergodic (resp. geometrically ergodic
with rate p), the chain (X,,) is also ergodic (resp. geometrically ergodic with
rate o). Moreover, if the support of z, is compact and if (z,) is p-mixing (resp.
o-mixing), X, is also p-mixing (resp. g-mixing).

In many settings, the chain (z, ) can be easily studied and it is straightforward
to derive its convergence and mixing properties. For instance, in many missing
data problems, z,, has a finite state space and is automatically p-mixing under
ergodicity and irreducibility. Tanner and Wong (1987) provide several examples
of such cases, including mixture estimation, censoring and missing value prob-
lems. See also Heitjan and Rubin (1991) and Gelfand, Smith and Lee (1992)
for additional examples. Robert, Celeux and Diebolt (1993) take advantage of
the duality principle to establish convergence results for Gibbs estimation of
hidden Markov chain models. In addition, the rate of p-mixing, that is, ¢ such
that p(n) < Cg", can be estimated for finite state space Markov chains by

¢ <1-minp;;
ij

if this quantity is not 1 (otherwise, p;; should be replaced by p! ! with ¢ large
enough). This can be of major interest in the control of the convergence of the
Gibbs sampler. As a last remark, note that the duality principle can be related
to the interleaving property introduced in Liu, Wong and Kong (1991) which
justifies in particular Rao-Blackwellization.

Acknowledgment. The author is grateful to Frangois Charlot and Jean
Diebolt for helpful comments.
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We congratulate Luke Tierney for this paper, which even before its appearance
has done a valuable service in clarifying both theory and practice in this impor-
tant area. For example, the discussion of combining strategies in Section 2.4
helped researchers break away from pure Gibbs sampling in 1991; it was, for
example, part of the reasoning that lead to the “Metropolis-coupled” scheme of
Geyer (1991) mentioned at the end of Section 2.3.3.

HarrisRecurrence. The discussion of Harris recurrence in Section 3.1 has
been very helpful. Harris recurrence essentially says that there is no measure-
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