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ANALYSIS OF ADDITIVE DEPENDENCIES AND CONCURVITIES
USING SMALLEST ADDITIVE PRINCIPAL COMPONENTS

By DEBORAH J. DONNELL, ANDREAS BUJA AND WERNER STUETZLE

StatSci, AT&T Bell Laboratories and University of Washington

Additive principal components are a nonlinear generalization of lin-
ear principal components. Their distinguishing feature is that linear forms
3,a; X, are replaced with additive functions ¥, ¢,(X,). A considerable amount
of flexibility for fitting data is gained when linear methods are replaced with
additive ones.

Our interest is in the smallest principal components, which is somewhat
uncommon. Smallest additive principal components amount to data descrip-
tions in terms of approximate implicit equations: ¥, ¢,(X,) = 0. Estimation
of such equations is a data-analytic method in its own right, competing in
some cases with the more customary regression approaches. It is also a diag-
nostic tool in additive regression for detection of so-called “concurvity.” This
term describes degeneracies among predictor variables in additive regres-
sion models, similar to collinearity in linear regression models. Concurvity
may lead to statistically unstable contributions of variables to additive mod-
els. As an example, we show in a reanalysis of the ozone data from Breiman
and Friedman that concurvity does indeed exist in this particular data, a
fact which may impact the interpretation of the additive fits.

In the second half of this paper, we give some second-order theory, in-
cluding the description of null situations and eigenexpansions derived from
associated eigenproblems. We show how ACE and additive principal com-
ponents are related, and we outline some analytical methods for theoretical
calculations of additive principal components. Lastly we consider methods
of estimation and computation.

Additive principal components have had a long tradition in psychometric
research and correspondence analysis. They have started receiving attention
by statisticians only in recent years.

1. Introduction. The smallestlinear principal component is alinear func-
tion of the data, ¥;a, X;, with smallest variance, which implies the data lie near
the hyperplane defined by the linear constraint, Ya;x; = 0. The smallest additive
principal component is an additive function of the data, ¥;¢;(X;), with smallest
variance, which implies the data satisfy as nearly as possible the corresponding
additive constraint:

p
> (X)) =0.
i=1

Analogous to the linear case, an additive constraint defines an additive mani-
fold of codimension 1, and data nearly satisfying this constraint lie near this
additive manifold.
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We considered smallest additive principal components (APCs henceforth)
first in the context of detecting instability in additive regression models. Non-
linear additive dependencies among predictor variables in additive regression
are analogous to collinearity in linear regression. Suppose we were to fit an
additive model Y ~ X_,1;(X;) in the presence of what we shall call an exact
concurvity between the predictors, that is, ¥¢; = 0 for some ¢; = ¢;(X;). In this
situation, the alternative fit

p
Y)Y (hi+eg)X))

i=1

is indistinguishable from the initial one. While exact concurvity is unlikely, ap-
proximate concurvity may cause harm, too, in that some or all of the estimated
1; are likely to be unstable. [The need for diagnostic tools was mentioned in
Buja and Kass (1985). The term “concurvity” was introduced in Buja, Donnell
and Stuetzle (1986) and used in Buja, Hastie and Tibshirani (1989). See Hastie
and Tibshirani (1990) for a broad discussion of additive regression models.]

Besides their role as regression diagnostics, smallest APCs form a data anal-
ysis tool in their own right. Smallest APCs estimate constraints, and constraints
are a valuable exploratory tool for investigating dependencies of low codimen-
sion as opposed to factor analysis and largest principal components, both of
which search for structure of low dimension. Estimation of constraints is more
natural than regression when the search for structure is undirected; that is, no
variables are designated a priori as predictors of a response of interest. Even
if the problem asks for a regression treatment, it may still be worthwhile to
analyze the data in a symmetric fashion via APCs to find the variables with
strong dependencies. These variables may include the response, in which case
regression may be successful, or they may not, in which case the data may be
inappropriate for the intended purpose.

The idea of using other than linear functions in the analysis of dependencies
has generated a large literature. The most comprehensive treatment of exten-
sions of principal component analysis is the optimal scaling techniques devel-
oped by psychometricians [Kruskal and Shepard (1974) and Young, Takane
and de Leeuw (1978)], nonlinear multivariate analysis of the Dutch school
[Gifi (1990)] and correspondence analysis of the French school [Benzecri (1980),
Lebart, Morineau and Warwick (1984) and Greenacre (1984)]. All of these tech-
niques were originally intended for scoring/scaling categorical and ordinal data,
to make them optimally suited for linear multivariate methods such as principal
components. But extensions for “scoring” (nonlinearly transforming) continu-
ous variables were also developed, for example by van Rijckevorsel (1982). Some
population theory of “continuous correspondence analysis” was developed by
Naouri (1970). Within statistics, related work is canonical analysis of contin-
gency tables [Gilula and Haberman (1988)], while nonlinear transformation of
continuous variables in the main thrust of the ACE method of Breiman and
Friedman (1985). See Buja (1990) for more references and an examination of
scoring/scaling methods in some analytically tractable cases.
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The present paper gives a treatment of scoring and nonlinear transforma-
tions for principal components in the style of multiple correspondence analysis.
The paper is unusual in its emphasis on the low end of the principal com-
ponents spectrum. The first reference that points out the possibility of using
small eigenvalues in a related context is Kettenring (1971). The scaling liter-
ature is almost exclusively concerned with dimension reduction and hence the
upper end of the spectrum. Smallest and largest eigenvalues differ drastically
in use and interpretation. Indeed, largest APCs pose a methodological problem
which is nonexistent in linear principal components. A plot of the largest two
linear principal components can be interpreted as a data projection covering a
maximal amount of variance, but a similar interpretation is not available for a
corresponding plot of the two largest APCs ;¢\’ (X;) and ;¢\?(X;): these are
two one-dimensional projections of two sets of different data transformations.
[This problem does not exist for other scaling approaches, e.g., Gifi (1990).]

Additive principal components should not be confused with principal curves
and surfaces [Hastie and Stuetzle (1989)]. These, too, are intended for nonlinear
dimension reduction. Principal curves and surfaces attempt to parametrize one-
or two-dimensional manifolds, while smallest APCs describe manifolds of low
codimension in terms of implicit additive equations.

In what follows, we give first a minimal set of motivations and definitions
(Section 2) to enable the reader to follow the data-analytic methodology, ex-
emplified by a reanalysis of the ozone data of Breiman and Friedman (1985)
(Section 3). We show the variable selection made by Breiman and Friedman
for their ACE regression fit is far from serendipitous. There are two additive
constraints among the variables of the full data set which could have caused
instability in the ACE fit. Two other examples demonstrate the analysis for arti-
ficial data with known structure, one of which exhibits the so-called “horseshoe
effect,” an artifact well-known among psychometricians.

Section 4 may be of less interest to the casual reader, but is nevertheless
necessary for an understanding of APCs: we describe properties of APCs, in-
cluding sufficient conditions under which population APCs exist; give a charac-
terization of APC null situations; present some eigenexpansions; describe tools
for theoretical APC calculations; and dispose of some technicalities related to
centering of variables. No asymptotic theory of APC estimation is attempted in
this paper [see, however, Dauxois and Pousse (1977)]. Section 5 deals with finite
sample estimation of APCs and computational methods. We consider two meth-
ods for the computation of APC estimates: (1) reduction to a finite-dimensional
eigenvalue problem if conditional expectations are estimated by least squares
regressions and smoothers and (2) power iterations based on general (possibly
nonlinear) smoothers, a method which is more flexible but less well understood.

2. Motivation and definitions for smallest additive principal compo-
nents.

2.1. Motivation. A natural approach to defining APCs is to extend any one
of the well-known characterizations of linear principal components. A linear
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combination Ya;X; is a smallest linear principal component iff the following
equivalent characterizations hold:

e Y¢;X; has minimal variance among all linear combinations with Sa? = 1.

e Ya;x; = 0 defines the manifold of codimension 1 minimizing expected
squared distance to the data.

e (aj, ag,...,qp) is an eigenvector for the smallest eigenvalue of ¥ = varX.

A minimum variance definition of smallest APCs would use the additive func-
tion T¢;(X;) minimizing var¥¢;(X;), subject to some normalizing constraint.
A geometric definition would find the additive manifold, described by ¥¢;(x;) =
0, minimizing the expected squared distance to the observations. Unlike lin-
ear principal components, the APCs defined by these two definitions will not
be the same. We decided to use the minimum variance characterization, which
has two useful properties not shared by the geometric approach: (1) minimum
variance leads to a characterization of APCs as solutions to an eigenproblem
that generalizes the third characterization of linear principal components; and
(2) finite sample estimates are easy to compute, since the criterion involves es-
timation of variance rather than estimation of the Euclidean distance between
a nonlinear manifold and the data.

To proceed with a formal definition, we need (1) spaces of functions for the
variable transformations and (2) a suitable normalizing constraint that gener-
alizes $a? = 1 used in linear principal component analysis.

We assume the variable transformations ¢; = ¢;(X;) are in some closed sub-
space H; of centered Ly variables:

¢; e H; C {¢p: E$p=0, var ¢ < oo}.

Closedness is necessary for the existence of orthogonal projections, and cen-
tering is a sensible condition to get rid of unidentifiable constants in additive
functions. Denote

q)d=ef(¢1,...,¢p)€ Hd=efH1 XH2 X oo XHp.

We capture APC definitions for populations and for finite-sample estimation in
a single framework by (1) allowing the joint distribution of the variables Xj,
..., X, to be either a (generally continuous) probability measure or an empirical
distribution based on a sample, and (2) selecting the spaces H; accordingly. In
particular, H; may be the set of all centered L, functions of X; for a population
definition of nonparametric APCs, while a choice of H; as a finite-dimensional
space of splines or polynomials may lead to useful nonparametric finite sam-
ple estimators of APCs. If H; is just the set of linear functions ¢; = a;X;, one
gets back to population or finite sample linear principal components. This spe-
cialization can be used as a check that our definitions are proper extensions of
linear principal components. In this instance, we assume of course that the raw
variables X; are centered and L,. Furthermore, we will make the assumption
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that they are standardized, varX; = 1, since we will only attempt to generalize
linear principal components based on correlations as opposed to covariances.
These remarks are relevant for our choice of a normalizing constraint for
APCs: X;var¢;, = 1, which is seen to specialize to E,ai2 = 1 when ¢; = a; X,
using the assumption that the raw variables are standardized: var ¢; = a?.

DEeFINITION 2.1. The smallest additive principal component vector of the
spaces Hq,H,, ..., H,, if it exists, is a random vector ® = (¢;); which solves

p p
var Z¢i =!min subject to Zvarqﬁi =1, ¢, € H;.
i=1 i=1

We can define a sequence of APCs, analogous to the sequence of (uncorre-
lated) linear principal components. This requires an additional orthogonality
constraint. We define orthogonality between & = (¢(1) ) and @ = (¢(2> ); by

5 cov(of’ o) -

This specializes to the proper orthogonality condition for linear pr1nc1pa1 com-
ponents: if ¢§l) = aﬁl)Xi and ¢§2) (2)Xl, we get 3; cov(qﬁ(l) ¢(2)) (1) a? =o0.

l

DEeFINITION 2.2. The kth smallest additive principal component vector of
the spaces H;, if it exists, is random vector o = (qS(k))l, which solves

var Z¢i =!min subject to Z cov (¢, qﬁﬁl)) =0 forl=1,...,k—1,
i i
¢ and Zvarqsi =1, ¢, € H;.
i
If the spaces H; are finite-dimensional, linear algebra grants existence of

APCs. For infinite-dimensions, Section 4.3 discusses some of the usual suffi-
cient conditions.

2.2. Eigenproperties. Linear principal components are characterized by the
eigenequation X a = \a. This generalizes to APCs as follows:

1 Py ;=X
J

where P; denotes the orthogonal projection from the space of all L, functions
onto the space H;, and orthogonality is understood w.r.t. the covariance as the
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inner product. If the underlying distribution is a (generally continuous) proba-
bility measure and each space H; is chosen as the set of all centered L, functions
of X;, then P; = EX:, the conditional expectation given X;. If X, ..., X, carry the
empirical distribution of a sample and Hy, ..., H, are finite-dimensional spaces
of splines or polynomials, then P4, ..., P, are spline or polynomial regressions.
If H; consists of the linear functions ¢; = a; X;, we get back to the eigenequation
for linear principal components, since P; then is a simple linear regression onto
X;: PY = cov(Y, X;)X; and hence P;¥;¢; = ¥ja;P;X; = ¥a;%; ; X; = Ma; X,
assuming the variables X; are centered and standardized.

The eigenequation (1) for APCs will be derived in Section 4. The hierarchy of
APCs, if it exists, is identical with the hierarchy of normalized eigensolutions,
and the variance of an APC equals its eigenvalue: var ;¢ = A\. Here are some
consequences (for proofs see Section 4):

1. APCs can only capture structure in pairwise marginals: the 1h.s. of (1)
depends only on P;¢;, that is, the pair H;, H;. Structure that depends on
higher-order marginals is elusive for this class of techniques, as is common
knowledge among psychometricians.

2. Pairwise orthogonality of the spaces H; defines the “null” analysis for APCs:
all eigenvalues are identical +1. For populations and H; being all centered
L, functions, this amounts to pairwise (but not joint) independence.

3. The eigenvalues are bounded below by 0 (since eigenvalues are variances),
and above by p (the number of variables). The existence of a zero eigenvalue
indicates perfect degeneracy/concurvity.

It is natural to define small and large eigenvalues according to whether they
are below or above +1. APCs with small eigenvalues (< +1) describe degenera-
cies (small codimension), while those with large eigenvalues (> +1) describe
factor structure (small dimension).

3. Interpretation and use of smallest APCs. In this section we first
give a brief guide to APC analysis, then demonstrate the use of APC analysis in
a reanalysis of the ozone data. Finally, we give two examples of artificial data
to address the problem of parabolic transforms, known as “horseshoes.” In the
first example, the parabolas are artifactual, but in the second example they
are meaningful.

3.1. Data analysis with smallest APCs. The APCs of a data set are charac-
terized by the eigenvalues and the APC functions ¢; (synonymous: APC trans-
forms). We begin with the interpretation of relevant APC quantities:

1. Eigenvalues: A\ = varX;¢;. Eigenvalues of small APCs measure the
strength of additive degeneracy. They are nonnegative and, by definition,
below 1. An APC with zero eigenvalue corresponds to exact additive degener-
acy. If the smallest eigenvalue is 1, the spaces H; are pairwise orthogonal. In
addition, size and spacing of different eigenvalues provide information about
stability and uniqueness of APC estimates. If an eigenvalue has multiplicity
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greater than 1, the APCs are indeterminate. While in practice this can be
ruled out with probability 1 (except for certain purely discrete data), approx-
imate APC multiplicity is of practical relevance.

2. APC: ¢ = X¥;¢;. The smallest few APCs, by definition, have minimal vari-
ance (under successive orthogonality constraints), hence their interpretation
is akin to analysis of residuals. Ideally, they will be distributed symmetri-
cally about 0: departures from symmetry, such as outliers or grouping in
the APCs, indicate cases which are unusual with respect to the estimated
implicit equation. Plotting APCs against each other will reveal patterns in
the residual structure.

3. APC weights: sd ¢;. The standard deviations, or relative weights, of the
transforms indicate the relative importance of the variables in an APC. In
the presence of approximate APC multiplicity, where adjacent eigenvalues
are very close, even large weights may not be stable. Interpretation there-
fore requires caution. Recall that the normalization constraint of APCs is
3 sd 2(]5,' =1.

4. APC functions: ¢;. The shape of the transform indicates sensitivity to the
values of x; in the approximate degeneracy: a section with steep gradient
defines a region of high sensitivity to changing values, while an (approxi-
mate) step function indicates sensitivity only to the corresponding levels of
the variable. In trying to make sense of the additive equation ¥;¢;(x;) ~ 0, it
may help to eliminate the transforms with the smallest standard deviations.
For strong transforms, the shape of the resulting surface may be described
by conditioning on all but two variables: - - - + ¢;(x;) +- - - + ¢j(xj)+--- = 0; the
important point is that, conditional on x, & # i, j, high values of ¢; go with
low values of ¢; and vice versa. However, caution should be used in inferring
conditional bivariate relations among variable pairs since additional covari-
ations (e.g., those described by other APCs) may prevent the possibility of
holding all but two coordinates fixed.

The problem of APC indeterminacy requires one more comment. If, for ex-
ample, the smallest and second smallest eigenvalues are very close, AV =~ @,
all linear combinations of the two smallest APCs should be considered as APCs
as well, with the same approximate eigenvalue. It may therefore be useful to
search for the most interpretable choices among trigonometric linear combina-
tions of the form

q&fa) =cos a - ¢§1,) +sin o - ¢§2),

which constitutes a new version of the factor rotation problem. The use of
trigonometric coefficients assures that the linear combination is normalized:
Y, var q&f.a) = 1. The combined weight of X; in two APCs can be calculated as
(sdzqﬁfl) +sd2¢f.2))1/2.

Since an APC determines a linear dependence in the transformed variables,
translating this dependence to the original variables can be nontrivial. In our
experience, interactive graphics tools are the most direct means of exploring
the corresponding variable dependencies [Donnell (1987)].
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3.2. APC analysis of the ozone data. Breiman and Friedman (1985) use the
ACE algorithm on a data set which was collected for studying the relationship
between atmospheric ozone concentration and meteorology in the Los Angeles
basin. Breiman and Friedman chose ozone concentration as the response vari-
able in their ACE analysis. In our reanalysis, we choose a self-contained APC
approach, treating all variables equally and letting the data decide on the
strongest dependencies, as opposed to using APCs for a concurvity analysis
of the predictor variables.

The data set consists of daily measurements of ozone concentration (maxi-
mum one hour average), eight meteorological quantities for 330 days of 1976,
and day of year. The variables are:

ozone: Upland ozone concentration (ppm);
temp: Sandburg Air Force Base temperature;
ibh: inversion base height,;

dpg: Dagget pressure gradient (mmhg);

vis: visibility in miles;

vh: Vandenburg 500 millibar height;
humidity: humidity (percent);

ibt: inversion base temperature;

wind: wind speed (mph)

doy: day of year.

Day of year was included in the original analysis to detect seasonal effects
in the ozone variable not captured by the other meteorological variables.

The estimates shown in this section are computed using regression splines
with two internal knots located at the  and 2 quantiles of each variable, by the
direct methods of Section 5.1. The three smallest eigenvalues are 0.03, 0.084
and 0.088. Here is a discussion of their APCs:

1. The smallest APC (Figure 1), with an eigenvalue of 0.030, indicates a very
strong dependence between inversion base temperature, inversion base height and
Sandburg temperature. Holding inversion base height fixed, there is a positive re-
lationship between inversion base temperature and Sandburg temperature, which
is not surprising. Since the transforms for inversion base height and inversion
base temperature have the same direction of slope, there may exist a negative
relation between these two variables, holding Sandburg temperature fixed.

2. The second-smallest APC (Figure 2), with an eigenvalue of 0.084, shows that
Sandburg temperature and Vandenburg height tend to increase together. The
transforms for these two variables indicate that their (positive) dependence
is strongest for higher temperatures due to steep gradients in that area.

3. The third-smallest APC (Figure 3) has an eigenvalue of 0.088. It is a de-
pendence involving ozone, Sandburg temperature, Dagget pressure and day of
year most prominently, with lesser contributions from other variables. Note
that ozone, the variable of greatest interest, appears for the first time with
substantial weight in this third-smallest APC.
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F1G. 1. The smallest APC functions for the ozone data. The eigenvalue for the APC is 0.030.



1644 A.BUJA, D. J. DONNELL AND W. STUETZLE

e S vh o~ 4 wind
- J ~
o 4 ods ssssesssss .
=4 sd= 0.694 - ome -
.
5300 5400 5500 5600 5700 5800 5900 T - - - -
o 4 humidity 9 temp
* —
°] o= o 4
i -de -
oo ' sd= 0.555
20 e P - - - .
° ibh o p_—"
— i L
- ‘ -"\./'
(-] . - .
- sd= 0.072 - 4 0137
o 0 a0 s w0 sw 50 0 50 100
N ibt o —
=) /-—\~ ©{ summosansss ¢ . N . ]
Nl
- sd= 0.152 g sd= 0.055
- s o 0 o 100 200 300
) o "1 ozone
Il.l.'...llllll.lll' .
] ' 1 unu"""
-
i sd= 0.299 "1 sd=0.247
0 100 200 20 ; - — .

FI1G. 2. The second-smallest APC functions for the ozone data. The eigenvalue for the APC is 0.084.



CONCURVITIES 1645

o | vh ° wind
3 1 31
=3 d f\ o L] e, .
° . . " . ° e e "“e :
2 sd=0.096 24 sd=0077 -
5300 5400 5500 5600 5700 5800 5900 o s 10 15 2
o | humidity o | temp
31 31
—— .
s _-'/ - 31 .~\
{ j
21 sd= 0.246 24 sd= 0.395
2 P P ® © ® &
] ibh o | dpg
@ ] 0] e
o J ____.—-———"' - ' ° 4
=) / =)
.
2 sd=0.183 2 sd= 0.401 .
0 100 200 000 4000 5000 50 ) Py 100
] ibt o | vis
w w |
(=] (=]
-,
~
g 4 g J ‘-.un . e N . . .
1. ~ ]
(=] (=]
2 sd=0.29 21 sd= 0.099
0 100 20 %0 0 100 200 %0
o | doy ol ozone
° R
v | w4 ‘.
(=} (=] .
.
o | , © )
o © '-.
.,
] .,
° ° ll.l.. TS
ER sd= 0.389 24 sd=0.573 AL
0 100 20 %0 0 10 Y )

FiG. 3. The third-smallest APC functions for the ozone data. The eigenvalue for the APC is 0.088.



1646 A.BUJA, D. J. DONNELL AND W. STUETZLE

e
ol
w L)
S ™ . - .
‘e,
L L.
8 S . .r‘.‘. '; '
= ° '-" M - .
. .;,-.:.o' o« ""\
w K : .-.' '-
e . N i .= .
- L]
e
e . .
¢ .8 . «
o’ . . . -
g -1 l‘:' f.?"i e -t s . : LI
. l;-.l V5 LI * . .' -t'f 15;‘ . .-
* iy ..h. ."':- . . :'l ) :;.‘.V.- .
g g — :E-‘%‘ -- '-.-.=.'"r"¢' :l, .
L & . .‘,ﬂ«'%.:;'-
. ‘-~ '.Q‘ . -3-1‘_’-‘.. « .
TR AE
e _| . .
ol T T T T T T T T T
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 10
APC1 APC2

F1G. 4. Pairwise scatterplots of the three smallest APCs for the ozone data. The eigenvalues for the
smallest, second and third smallest are 0.030, 0.084 and 0.088, respectively.

For diagnostics purposes, we show the pairwise scatterplots of the smallest
three APCs in Figure 4. They do not exhibit any anomalies such as extreme
outliers or skewed distributions. The plotting scales chosen are identical for all
three APCs so their standard deviations (the square roots of their eigenvalues)
are reflected in the elliptic shapes of the point scatters.

3.3. The ozone dependence: comparing APC and ACE. The findings of the
previous subsection indicate that an additive regression model for ozone based
on the complete data set may exhibit instability due to concurvity among the
predictors. According to the smallest APC, inversion base temperature (possibly
combined with inversion base height) can be traded in for Sandburg temperature
to some extent, while the second-smallest APC hints at a similar relation
between Vandenburg height and Sandburg temperature. Breiman and Friedman
used a forward stepwise approach to variable inclusion in ACE, thus avoiding
the concurvity problem ensuing from the strong dependencies between Sand-
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burg temperature, inversion base temperature and Vandenburg height: their model
includes only the first of these variables. As their forward stepwise approach
did not include wind and humidity, we also omit these variables, although humid-
ity is possibly important in the dependence involving ozone. We estimate the two
smallest APCs of the variables ozone, Sandburg temperature, day of year, Vanden-
burg height, visibility and Dagget pressure, using the iterative method (Section 5.2)
based on Supersmooth, to facilitate comparison with the ACE fits of Breiman
and Friedman.

The smallest APC of the reduced data set (Figure 5) has an eigenvalue of
0.102 and detects the dependence between Sandburg temperature and day of year,
with temperatures peaking sharply in summer. The second-smallest APC of
the reduced data set (Figure 6) has an eigenvalue of 0.115 and depicts a strong
dependence between ozone, day of year, Sandburg temperature and Dagget pressure.
The transforms for these variables are for the most part very similar to the
transforms found by Breiman and Friedman with ACE, adjusting for the fact
that APC yields implicit equations while ACE solves for a dependent variable.
(To achieve direct comparability, simply change the sign of the ozone variable.)
In comparing APC and ACE transforms, note that we used identical plotting
scales for all transforms, in contrast to Breiman and Friedman. Modulo these
precautions, our transforms are in very good agreement with Breiman and
Friedman’s ACE fits, except for the additional tilt in the APC transform of
Dagget pressure. Even the mild curvature of the ozone transform is the same if
adjusted for the necessary sign change.

For completeness, we also obtained a third-smallest APC. Since its eigen-
value 0.29 is considerably larger than the smallest two eigenvalues, we feel
reasonably certain that the smallest two APCs summarize the most important
additive dependencies.

The signals given by our reanalysis of the reduced ozone data are ambiguous,
as is often the case with real-world data: on the one hand, we obtained an
APC which basically recreates the ACE fit and seems to lend credence to its
transforms; on the other hand, the presence of a smaller APC, as well as the
closeness of the two smallest APC eigenvalues, indicates that some of the ACE
transforms should not be taken at face value without considering alternative
transforms derived, for instance, as mixtures of the smallest two APCs.

3.4. Horseshoes: an example with artifactual parabolic transforms. The fol-
lowing example shows that on occasion APC solutions may not be meaningful.
In Figure 7 we plot the three smallest APC transforms of 500 points generated
from a Gaussian distribution with correlation matrix

1.0 06 04 -07
0.6 1.0 05 -03
04 0.5 1.0 -08
-0.7 -03 -0.8 1.0

R=
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F1G. 8. Plot of the smallest APC functions for the cylinder data. The eigenvalue for the APC is 0.189.

The respective eigenvalues are 0.018, 0.18 and 0.437. The smallest is linear,
which is comforting, but the second-smallest appears quadratic and the third
vaguely cubic. It is intuitive that the second- and third-smallest APCs in this
instance are artifacts caused by orthogonality constraints and the Gaussian dis-
tribution. Thus, before inferring the presence of peculiar structure, one should
scrutinize the data graphically. In the present example, a jump by a factor of
10 from the smallest to the second-smallest eigenvalue should have been a
warning. Since artifactual transforms of parabolic shape (as in the middle row
of Figure 7) are the most frequent in practice, psychometricians use the term
“horseshoe effect.” It can be illustrated by the exact APC theory of the Gaussian
and many other analytic distributions (Section 4.7).

3.5. Anexample with meaningful parabolic transforms. Whileitistrue that
many parabolic transforms in real data are artifactual, there is a rare possibility
that these transforms are meaningful. Here is an example. We generated 200
points near the surface of a cylinder in 3-space. The first two variables, X7, X,
describe a circular pointscatter, uniform in angle and Gaussian (x = 1,0 = .125)
in radial interval. The third variable is pure uniform noise, independent of X;
and X2 .

From the way the data are generated, we know that the approximate im-
plicit equation X? + X2 ~ constant describes the data well. The smallest APC
recovers this structure. Figure 8 shows the estimated transforms based on di-
rect estimates from spline regression with two internal knots for each vari-
able. The variance of the APC is 0.189, with variable weights 0.70, 0.71 and
0.10, respectively.

4. Eigencharacterization of additive principal components. In this
section we give some second-order theory for APCs, some of which has been men-
tioned in Section 2. First, we present some not very deep material on quadratic
forms and eigenproblems, which nevertheless is necessary for estimation and
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computation (Section 5). Next, we show some relevant propositions regarding
null situations, the relation between APCs and ACE, analytical APC calcula-
tions, as well as some remarks on the role of centering of APCs.

4.1. Quadratic forms on products of Hilbert spaces. We switch to inner prod-
uct notation: (¢, ¢') = E(¢¢’) and | ¢||2 = E(¢?), where ¢ and ¢’ are centered Lo
random variables. For &, ¥ € H = H; x - - - x Hp,, the natural inner product and
squared norm are

(@, W) S (g, ) and [2IFE D el

i

The product space H thus becomes a Hilbert space for which the natural em-
beddings of Hy,...,H, are closed linear subspaces in mutually orthogonal po-
sitions. The norm topology of H trivially coincides with the product topology
inherited from the factors H;. In terms of this norm, the constraint of the APC
optimization problem can be cast as a restriction to the unit sphere in H:

> varg; =@} = 1.
The APC criterion is the following quadratic form on H:

> o

This form is bounded with regard to the above norm (see Lemma 4.1 below).
The associated bilinear form,

QP +¥) - Q@ -¥)) = <Z¢i,2¢j>,
i J

2

Q(P) = varZ ;=

B(®,¥)=

PN

is bounded and symmetric. It follows from elementary theorems in Ly theory
that there exists a bounded, symmetric, linear operator P on H such that

B(®,7)=($,PU)y.
However, we do not need to appeal to existence theorems since P can be con-
structed explicitly (see again Lemma 4.1 below).
In the new notation, the optimization problem for the smallest additive prin-
cipal component can be written as

& P®)y = mi bjectto ||®||% = 1.
(2, P®)y min  subject to @l =1

It remains to identify P.
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LEMMA 4.1. Define the operator P: H — H by the component mappings

[P®]; = P; (Z@),
J

where P; is the orthogonal projection onto H;. Then P satisfies
Q(®) = (D, PP)y.

It is symmetric, nonnegative definite and bounded above by p. We have ||P®| g
=piff ;= ¢ as Vi,

Proor. The operator P represents B:

(@, P2)y =3 <¢i,Pi JZ¢j> =3 <¢iaJZ¢j> = <Xi:¢iazj:¢j> =

i i

2

e

P is bounded by p:
2

def
IPeE < =p

i

2 < p(JZ ||¢,~||)2.

The maximum of ¥;|¢;| under the constraint Xj||¢,||> = 1 is attained for ||¢;||
= p~1/2. Hence,

2
<.
i

P> ¢
J

Y
J

>
J

P2l < (Y lgl ) < p®

The inequality is sharp, with equality occurring iff ¢; = ¢; a.s. Vi, j.
Symmetry (®,P¥)y = (P®, )y follows trivially from the symmetry of (®,
PY¥)y = (3¢, 2;1;), and so does nonnegativity: (®, &)y = || Z;¢;]|> > 0. O

4.2. The sequence of smallest additive principal components. The eigen-
characterization of the smallest APC now follows from standard results about
symmetric operators [e.g., Jorgens (1970), Theorem 6.7, page 125).

PROPOSITION 4.2. The smallest eigenfunction of the operator P, if it exists,
is a vector of APC functions for the smallest additive principal component of
Hy,...,Hp

We use the phrase “smallest eigenfunction” as an abbreviation of the more
correct description “eigenvector of functions for the smallest eigenvalue.” Un-
like finite-dimensional matrices, existence of the smallest eigenvalue of P is
not granted a priori. For simplicity, we use the phrase “if it exists” whenever
necessary, leaving the discussion of existence conditions to Section 4.3.
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The kth additive principal component corresponds tc an eigenfunction of
P belonging to the kth smallest eigenvalue (where eigenvalues are repeated
according to their multiplicity).

PROPOSITION 4.3. A vector of APC functions, ®® | defining the kth smallest
additive principal component, if it exists, is a kth smallest eigenfunction of the
operator P:

P(I)(k) = )\(k)q,(k)‘

The proof is standard. It relies on invariance of the orthogonal subspaces
H® = {&|(®,&7) =0,i=1,...,k — 1} under P. Recursively applying Propo-
sition 4.2 under restriction to H*® gives the result. An immediate corollary is
as follows.

COROLLARY 4.4. The variance of the kth smallest APC is \®.
PrRoOF. varZ¢® = (8® Pa®), = (8P \We®), = \® O

It follows from the eigenproperties that APCs simultaneously diagonalize
the quadratic forms (&, P®)y and ||®|%, implying (®, P&*"); = 0 and (%,
'I>(kl)) g =0 for & # E’. The former equality translates to the following corollary.

COROLLARY 4.5. Additive principal components belonging to two orthogonal
eigenfunctions are uncorrelated: (¥; q&(k) Z@Ek N=0k#E.

4.3. Existence of population APCs. We now address the issue of existence
of eigenvalues when H is infinite-dimensional. Although the spectrum of P is
bounded, the existence of eigenvalues is complicated by the possibility of P
having a nontrivial continuous spectrum or spectral values that are not eigen-
values. We can rule out these undesirable possibilities by adopting the usual
compactness assumptions.

AssuMPTION. The restricted projections P;|,: H, — H;, P;, = P;|p,, are
compact operators.

The definition of a compact operator is that the image of the unit ball, or
any norm-bounded set, is a relatively compact set in the norm topology. In the
population case, if H; is the space of all centered Ly functions of X;, and hence
P, is the conditional expectation given X}, a sufficient condition for compactness
is the Hilbert-Schmidt property, also used by Breiman and Friedman (1985):
suppose X, X, have joint density fx, x,, and marginal densities fx,, fx,, then
Py, is Hilbert-Schmidt if

fx1 Xz(xlyx2)
//le(xl)sz(x2) dxy dxp < 0o.
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Under the assumption of compact P; ;, P itself is not compact, but we have the
following result.

LEMMA 4.6. The operator P — I: H — H is compact.

Proor. We can decompose P — I as follows:
P- I= Z Qia
i
where Q;: H — H is defined by

Qi(®) = (P1):i%ir- - Pi—1]i#i,0,Piv1)ibi - - - Pp|iti)-

It is sufficient to show that every summand Q; is compact [see, e.g., Jorgens
(1970), Theorem 5.10, page 98]. Denoting by B the unit ball in H, we have to
establish that Q;(B) is a relatively compact set in H. Let B; be the unit ball in
H;. Since B C B x --- x B,, compactness of Q; follows if QB x --- x By) is
shown to be relatively compact. By assumption, P;| j(B;) is relatively compact
in H; Vi #J, hence,

Qi(By X -+ x Bp) =Py i(B;) X - -- X P _1]i(B;) x {0} X P4 1i(B;) X - -+ X Pp(By)

is relatively compact in H, since the norm topology and product topology
coincide. O

The assumption of compactness implies that the spectrum of P — I has char-
acteristics similar to that of a finite-dimensional symmetric matrix, except for
the limiting behavior which is vacuous in finite-dimensions:

1. There exists a sequence {[;}{° of eigenvalues for which |I;| > [lo| > ---
lel > -

2. limk__,oo lk =0.

3. The eigenspaces for distinct eigenvalues are orthogonal and the sum of all
eigenspaces is dense in the whole space.

4. The nonzero eigenvalues have finite multiplicity.

IV

The spectrum of P — I is thus a countable, bounded set with {0} as the only
possible accumulation point. The eigenvalues {/;} of P — I are related to the
eigenvalues {)\;} of P through )\, = /; + 1, hence the eigenvalues and eigen-
spaces of P inherit all the above properties, with [, replaced by A, — 1. In
particular, we have the following result.

COROLLARY 4.7. The only accumulation point of the eigenvalues of P is +1.
4.4. A null analysis for APCs—comparison of small and large APCs. A nat-

ural question to ask is whether it is possible for either the upper or lower se-
quence of eigenvalues to be empty. The following proposition establishes that



1656 A.BUJA, D. J. DONNELL AND W. STUETZLE

this occurs only when the spaces H; are pairwise orthogonal, in which case all
eigenvalues are +1. In the population case, when the spaces H; are all centered
Ly variables of X, this is equivalent to pairwise independence. In this situation,
there is no structure that could be detected by APCs.

PROPOSITION 4.8. The following statements about P are equivalent:

1 All eigenvalues are greater than or equal to +1; that is, P — I is nonnega-
" tive definite.
2 All eigenvalues are less than or equal to +1; that is, —(P — I) is nonnegative
definite.
3 The spectrum of P is the singleton {+1}; thatis, P =1
4 The spaces Hy,H,, . .. ,H, are mutually orthogonal.
5 ”E(;bi”2 = E”¢i“2v¢l €Hy,..., ¢ € Hp-

This explains again why +1 is the natural dividing line between small and

large APCs.

ProOOF. (3 & 4)followsfromP;|; =0« H; L Hjfori #j.(4 & 5)is standard
(use [|¢; + ;1% — 11412 — |¢;112 = 2(¢s,8;)). (8 = 1,2) is trivial. The proofs of
(1 = 4) and (2 = 4) are similar. We therefore show only the first: if P — I is
nonnegative, then for ®/ = (0,¢;,0,...,0,¢;,0,...,0) € Hwe get

0<(2,(P-D)y = |6 + 41> — (I6:ll* + I 611%) = 2(s, 8,)-

Replacing ¢; by —¢; in the above, we arrive at the conclusion that (¢;, ¢;) =0V
# j. It follows that H; and H; are orthogonal Vi #j. O

COROLLARY 4.9. In any nonnull situation, there exist small and large APCs.
Small APCs are variance deficient:

[ al <X na

while large APCs are variance abundant:

e

4.5. Eigenexpansions associated with APCs. The eigenanalysis of the oper-
ator P and its quadratic form, @ = ||S¢;||%, gives rise to some eigenexpansions
which illuminate the sense in which APC analysis measures deviation from
pairwise orthogonality. As above, we assume for simplicity that P — I is com-
pact and hence there exists a complete sequence of eigenvectors ®® = (¢Ek)),
k=1,2, ..., and a corresponding sequence of eigenvalues, I;. With (P — I)&®
=1, - ®® we have the following expansion.
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PROPOSITION 4.10. (P —D)® =%, 1), - (&, %)z 3®.

Convergence of the expansion is in norm for every ® = (¢;) € H. Using the
definitions and Lemma 4.1:

-3 lgil? = Zl 2, 2%)7

(®,(P - D)y = (&,P2)x — |2l = || o]

we get the following result.

COROLLARY 4.11.  [[Zi¢; 1% = Sili|® + Sr by - Ti(di, 41)2

The term I, - £;(¢;, ¢Ek))2 can be interpreted as a correction for deviation from
pairwise orthogonality. Under orthogonality, all eigenvalues [, vanish and the
expansion reduces to the Pythagorean identity. For eigenvectors, ® = ®*, the
expansion reduces to a single correction term:

=1+lk,

2
k
.

assuming that eigenvectors are standardized, 2i||¢§k)||2 =1

The expansion of Proposition 4.10 for the operator P — I is also interest-
ing. With @ = (0,...,0,¢;,0,...,0), where ¢, € H; is the jth component, the
expansion specializes to:

COROLLARY 4.12.
D b (8,,0P)e® =0,
k

Zlk (5, ¢§k)>¢§k) =P;¢p; fori#j.
k

Thus, the eigensystem can be used to reconstruct the projections between any
pair of subspaces H; and H;. As such, the eigenvectors are optimally tailored
to the collection of spaces Hy, ..., H,, but not to any specific pair of spaces. For
an expansion which is optimal for a particular pair, a two-variable APC should
be used.

4.6. APC analysis and ACE. In general, APC and ACE analyses are not
identical, although it may be helpful to perform and compare both types of
analyses, as we showed in Section 3.2. However, there is a direct link in one
simple situation: single-predictor ACE is equivalent to two-variable APC. This
special case is known as (continuous) correspondence analysis in the psycho-
metric, Dutch and French literature.
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Single-predictor ACE optimizes the correlation or (modulo scale factors) per-
centage of explained variance:

cov(¢y, ¢2) or E [(¢2 — $1)?]
sd(¢y) - sd(¢g) var ¢;

whereas an unconstrained criterion for two-variable APC is the Rayleigh
quotient

var(¢y + ¢g)

var ¢; + var ¢y

Comparing the stationary or eigenequations of the two problems,

P1¢g=Xace " 91, Pypy=Aacg - 92 for ACE,
#1+P1da=Aapc - ¢1,  Pagr+¢da=Xapc - ¢2 for APC,

one easily recognizes that the solutions are the same (up to a possible scaling
factor), and the eigenvalues are related via

AAPC = AAcE + 1,

which is consistent with 0 < Mpc < 2 and —1 < Macg < +1. Small and large
APCs are in a trivial correspondence since any large APC given by (¢1, ¢2) for
the eigenvalue A\apc > +1 generates a small APC given by (¢, —¢2) for the
eigenvalue 2 — A\apc, as the transforms (¢1, ¢2) and (41, —¢2) are ACE eigen-
transforms for the eigenvalues Aacg and —AacEg, respectively.

As a consequence, several examples given in Buja (1990) for single-predictor
ACE carry over to APCs. For instance, the illustrations of the step function
behavior in the presence of bivariate clustering and the bivariate horseshoe
examples carry over to APC analysis. Multivariate extensions of the latter can
be obtained with the theory of the following subsection.

4.7. Some horseshoe theory. This subsection is a theoretical follow-up to
Section 3.4, where we illustrated the horseshoe effect, that is, the appearance of
artifactual parabolic and other (possibly nonmonotonic) transforms. The reason
why “unnatural transforms” must exist lies simply in the nonparametric na-
ture of the APC eigenproblem, where infinitely many eigensolutions are bound
to appear if simple variables are represented by infinite-dimensional spaces
of transforms. Orthogonality properties of eigensystems lead to qualitative be-
haviors similar or identical to orthogonal polynomial systems. Thus, coupled
with “natural” monotonic or linear transforms, we should expect “artifactual”
nonmonotonic transforms that may appear parabolic, cubic, and so forth.

The following theory works for many classes of continuous distributions in
unrestricted function spaces (H; = all centered L, functions of X;, P; = EX),
the simplest being the multivariate Gaussian. Useful references are de Leeuw
(1982) and Gifi (1990), Section 11.3. Here is the basic structure that often leads
to invariant subspaces for the APC operator P.
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LEMMA 4.13. Ifthe subspaces V; C H; prOJect into each other, P;V; C V; for
alli,j=1,...,p, then the subspace Vi x - -- x V, C H is invariant under P

PrOOF. Trivial; if ¢; €V, then [Pq?]J = Pj2i¢i = Ein(f)i S Vj. O

Invariant product subspaces have some strong orthogonality properties: if
V=Vix- - xV,and V' =V] x ... x V, are two invariant subspaces with zero
intersection, then V; L V’. For i = j this follows from (,)y-orthogonality of V
and V', and for i # j, from P;V,cV;L V See Dauxois and Pousse (1976) and
de Leeuw (1982).

LEMMA 4.14. Ifthe normalized functions ¢; € H; (||#;]|2 = 1) project onto each
other, Pj¢; = p;pjforalli,j=1,...,p, then the subspace {(a1¢1,a2¢2, o Qpdp)
lai,...,ap € R}isinvariant under P. Each eigenvector (ay, . . ., a,)T of the matrix
R = (pij)ij results in an APC vector ® = (a;¢;);. In other words, a linear principal
component analysis of the variables ¢1, ..., ¢, yields p APCs.

Proor. The first part of the lemma is just the previous lemma specialized
to dim V; = 1. The rest is a simple consequence of the fact that the coefficients
pi; are the correlations between the variables ¢; and ¢,;. O

LEMMA 4.15. Ifthe direct sum EVVf”) of subspaces V}") C H; is dense in H,,

i =1,...,p, the direct sum %,V of products V¥ = V) x ... x V¥ is dense
in H.

The proof is obvious. This is a convenient condition to establish when a se-
quence of invariant eigenspaces is complete.

COROLLARY 4 16. If the normalized functions ¢(") e H; (||<;5(")||2 =1) forma
basis of H,, 1=1,...,p,and if for each v these functzons project onto each other,
P q&“” = P;; )¢(”) then all APCs can be found through linear principal compo-

nent analyses of the variables ¢(") .,q&;,"). The systems (¢§”)),, are necessarily
orthonormal in H;.

This corollary applies to a surprisingly large number of multivariate distri-
butions with ¢, ) being the normalized orthogonal polynomial of degree v of X;.
The underlylng structure that gives rise to this property is called “polynomial
biorthogonality” of the bivariate marginals, a term introduced by Lancaster
(1969). See Buja (1990) for a presentation close to our context and many
references.

Among the distributions covered by the corollary is the multivariate Gaus-
sian. If X ~ N,(0,R), where R = (p;;) is a correlation matrix, then normalized

Hermite polynomials 4" = AD(X)), ¢@ = K@(X)),... (|A(X))|2 = 1) form
12 12



1660 A.BUJA, D. J. DONNELL AND W. STUETZLE

bases that satisfy the assumptions of the corollary as follows (P; = EX):

) P;h(X)) = pl; - RVU(X).

Hence, all Gaussian APCs can be gotten through eigenanalyses of the element-
wise (Hadamard or Schur) powers (pgf))i j = (p};)ij of the raw correlation matrix
(pij)ij- It is known [Styan (1973)] that

)\(1”) < )\(1",) (v<v') and )\;,") > )\;,VI)(V > '),

that is, the extreme linear principal components of the raw variables are
the extreme APCs of the multivariate Gaussian, a finding first attributed to
Kolmogorov [Lancaster (1969)]. However, the second-smallest APC is not nec-
essarily the second-smallest linear principal component of the raw variables;
that is, )\(12) < )\(21) is possible. If this is the case, the second-smallest APC func-
tions are a set of parabolic transforms of the form aihﬁm(Xi), which illustrates
the horseshoe effect.

In the example of Section 3.4, the theoretical linear principal component
eigenvalues for the first five Hermite transforms are:

)\(ll/) )\(211) )\(311) AE}V)
0.02 0.55 0.77 2.66
0.20 0.76 1.01 2.03
038 0.86 1.07 1.70
052 091 1.06 1.50
063 094 1.05 1.38

U WO N T

The smallest eigenvalues 0.20, 0.38 and 0.52 of the second, third and fourth Her-
mite transforms are less than the second-smallest eigenvalue 0.55 of the first
(linear) Hermite transform. Thus, not only do we get parabolic transforms in the
second-smallest APCs, but cubic and quartic ones as third- and fourth-smallest
APCs, confirming the empirical findings of Section 3.4. This goes beyond what
the term “horseshoe effect” indicates. See Gifi (1990) and de Leeuw (1982) for
further discussions of this topic.

Although the Gaussian yields linear transforms at least for the extreme
APCs, in real data nothing prevents horseshoes from appearing as the extreme
APCs, at least in cases of weak structure. This can be illustrated with certain
families of elliptical distributions that differ from the Gaussian [Buja (1990),
Section 11].

4.8. Theroleofcentering. We conclude this section with a technicality which
has some bearing on APC computation. So far we assumed that the spaces
H; have centered variables only, that is, E ¢; = 0, or, equivalently, (¢;, 1) = 0.
This assumption can be weakened, but care is needed if the constants are part
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of some or all spaces H;. For uncentered APC analysis, the constrained opti-
mization problem is in terms of cross-moments rather than covariances:

E((Z@)Z) =min subjectto Y E(47) =1,

which is formally the same problem in terms of inner products on H.

In practice, the “real” APCs are barely affected by the presence of con-
stants. Some artifactual eigenspaces are generated, but they can be identified
and eliminated.

LEMMA 4.17. Assume that k of the p spaces, Hy, Hy, ..., H}, (say), contain the
constant functions, while the remaining p — k are spaces of centered functions.
The associated operator P has a trivial eigenvector (11,1g,...,1;, 0,...,0) with
eigenvalue )\ = k and one trivial eigenspace of dimension k — 1 for the eigenvalue
\ = 0, spanned by k—1vectors of the form (14,0, ...,0,-1;,0,...,0) for2 <j < k.
Any other set of transformations orthogonal to these trivial ones consists of real
APCs of the equivalent centered problem.

We use the obvious notation 1; for the constant 1 function in H;;.

PROOF. It is obvious that ¢, = 1 fori < k and ¢; = 0 fori > & defines an
eigenfunction for P : P;X;¢’; = k - ¢; since Y,¢; = k and P;1 = 1 or 0 depending
on whether i < k ori > &, due to the assumptions on the spaces H;. It is trivial
that (1;,...,—1;,...) are eigenfunctions for A = 0.

Let now {¢;}; be some other eigenfunction orthogonal to the above ones.
Orthogonality to the A = & eigenfunction means E{?= 1{¢i, 1) = 0, that is, Ef= 1Ed;
= 0. Orthogonality to the A = 0 eigenfunctions implies (¢1,1) — (¢;,1) = 0 for
J < k, that is, for these j’s, E ¢, are all equal. Together it follows that k- E¢; = 0
for j < k. Since E¢; = 0 for j > k by assumption, the last statement of the
proposition follows. O

The lemma implies that meaningful eigenvalues exactly or very near 0 might
be indistinguishable from the trivial eigenvalues of the %2 — 1-dimensional space.
Thus, if the eigenvalue 0 has multiplicity greater than & — 1, the trivial eigen-
functions should be removed by centering before attempting interpretation. A
similar warning applies of course to the éigenvalue &, but the danger is consid-
erably smaller by comparison.

5. Estimation and computation. We present two approaches to the
estimation of APCs. In the first we restrict APC function estimates to finite-
dimensional spaces, in which case we can use orthogonal projections, and com-
putations amount to straightforward numerical linear algebra. The second
approach is based on more general smoothers which we use as building blocks
in an iterative algorithm reminiscent of ACE.
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5.1. Finite-dimensional function spaces. This method simply solves the
APC optimization for empirical variances in finite-dimensional function spaces.
Since our notation applies to either populations or empirical distributions, spe-
cialization to estimation is trivial: E and var stand for sample average and sam-
ple variance, respectively, and orthogonal projections amount to least squares
regressions. Thus, computations of estimates involve standard matrix algebra;
see, for example, de Leeuw (1982). Additive scaling methods are usually for-
mulated in terms of matrix algebra, a fact which may have kept statistical
audiences away from this literature.

Let the functions f;, for £ = 1,...,d; form an orthonormal basis of the d;-
dimensional space H;:

(firs firr) = B(fip firr) = Sppr kE=1,...,d,.

We express any ¢; € H; as ¢; = E,‘Z; 1@k fir- In rewriting the APC problem, we
distinguish between coefficient vectors that are represented as column vectors
and function vectors represented as row vectors:

d,
> 6i=> > anfa
i ik
=Zfiai where fi = (ﬁl,...,fidl), af = (ail,...,aidl),
=Fla where F = (f1,...,f,), a’ = (af,...,a}),

2
=a’E(F'F)a  where E(F'F) is the cross-moment matrix of the
Y d;-dimensional random vector F.

The normalizing constraint becomes

d, q,
Z loil> =" llawfl® =) > af =aa=1.

i k=1 i k=1

ProrosITION 5.1.  Ifall spaces H; are finite-dimensional, their additive prin-
cipal components are obtained by an eigenanalysis of the cross-moment matrix
E(FF), that is, a linear principal component analysis of a collection F of or-
thonormal bases for the spaces H;.

For estimation of APCs from the finite sample cross-moment or variance-
covariance matrix of a collection F of basis functions, it is of course crucial
to choose for H; suitable spaces of low dimensions, commensurate with the
sample size. The problem of proper choice of dimensionality is a hard one and
has not been tackled to our knowledge. At this point, we do not have more
sophisticated rules other than the recommendation that the fitted degrees per
APC (= ¥; dim H; in the fully centered case, adjusted for irrelevant constants
otherwise) be controlled such that they do not exceed a fraction such as 1/5
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of the sample size. Depending on the strength of the structure present, this
may be either conservative or liberal. Some of the nonlinear smoothers used in
the iterative methods of the next section perform bandwidth choice on a per-
smoother basis. How these individually cross-validating choices interact with
each other in additive methods is not understood.

There are several typical choices for the finite-dimensional spaces H;:

1. If X; is continuous, it is natural to use a space of splines with a low number
of knots, or a space of polynomials of low degree (sometimes as low as 1, i.e.,
linear). Polynomials have fallen out of favor due to global stiffness and an
inability to adapt to local features. Splines fare better with local adaptation
if the knots are placed in a data-driven way, for example, at a ladder of
quantiles such as the three interior quartiles. To make the above proposition
directly applicable, the bases have to be orthonormal with regard to the
empirical distribution of the respective variables.

2. IfX; is discrete and takes on d; responses c;1, ¢z, . . . , ¢iq;, a variable transfor-
mation amounts to “scaling” or “scoring” these responses by assigning them
real values. The natural basis for the space H; is given by indicator variables
I., (X;) for response categories. The space contains constants, so Lemma 4.17
needs to be applied to weed out the trivial eigenelements. The indicator basis
is orthonormal if standardized versions are used: f;,, = I, (X;)/ \/Tim, Where
Tim = El;,(X})) = prob(X; = ¢;,,). Variables can of course be of mixed type:
some continuous, others discrete, but if all variables are discrete and largest
rather than smallest APCs are extracted, the technique is called “multiple
correspondence analysis.” In this case, the matrix E(F'F) contains the joint
probabilities (for populations) or relative frequencies (for empirical mea-
sures) of occurrence for every pair of categories, weighted by the marginal
probabilities:

¢ _ prob(X; = cin, X; =cjn)
[E(F'F)] im,jn.~ prob(X; = ¢;n)/2prob(X; = c;,)1/2’

In psychometric work, the unweighted matrix of joint probabilities (relative
frequencies) Gy, j, = prob(X; = ¢;,, X; = c},) is called the Burt table, the
contingency table of all pairwise combinations of variables. Note that

E(F'F)=D~"?GD~'? where D = diag(m1, m12,. . ., Tpa,)-

Multiple correspondence analysis is thus the eigenanalysis of the weighted
Burt table.

It is one of the strengths of scaling methods such as APC that mixed types
of data, that is, both discrete and continuous, can be incorporated in the same
analysis by a suitable choice of indicator, linear, spline or polynomial transfor-
mations for each variable individually. This has been extensively discussed in
the psychometric literature, which also considers ordinal data and monotone
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transformations thereof. We omit the latter case since monotone transforma-
tions form convex cones rather than linear subspaces.

5.2. An iterative method. The methods just introduced are characterized
by the use of least squares regressions to estimate conditional expectations
P; = EX: This is a severe limitation since some of the most flexible and promis-
ing fitting methods are not of the least squares type: smoothing or Reinsch
splines, running means/lines/parabolas, as well as any nonlinear modification
based on global or local cross-validation and/or robustification, such as Super-
smooth [Friedman and Stuetzle (1982)], Lowess [Cleveland (1979)] and Turbo
[Friedman and Silverman (1989)].

In this subsection, we introduce an iterative method of computation which
allows us to use other than least squares and possibly nonlinear fitting tech-
niques to estimate conditional expectations. The algorithm has only a heuris-
tic justification if other than least squares methods are used, similar to ACE
[Breiman and Friedman (1985)]. It is a power algorithm for the computation of
eigenelements of the operator P, adapted so as to extract the smallest rather
than largest APCs.

For most initial ®, € H, the sequence

Pt
k) _ 0 -
Pl = P, k=1,2,...,

converges in norm to an eigenfunction of P belonging to the maximal eigen-
value, that is, a largest APC. For finding smallest APCs with eigenvalues
smaller than 1, the spectrum needs to be flipped and shifted by replacing P
with an operator of the form oI — P. Its eigenfunctions are the same as those
of P, and its eigenvalues are of the form o — X for eigenvalues X of P. To ensure
that the sequence

(oI - PYd,
el —P¥a, [,

converges to a smallest eigenfunction to P, the constant o has to be chosen
sufficiently large—yet not so large as to slow down convergence unnecessar-
ily. A reasonably efficient choice is & = (p + 1)/2. For this value, the large
eigenvalues of P are mapped to an interval centered at 0:

rellpl = a_Ae[_(p—l) (p—l)]’

2 72

while the small eigenvalues are tacked on at the right end:

Ael0,1] = a-Xe [(p;l),(pgl)_'_l]'
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Thus, the sequence of small eigenvalues of P (in ascending order) have become
dominant in oI — P (in descending order), yet only enough to achieve reasonable
convergence speed. With this choice of «, the essentials of the algorithm are
as follows:

ALGORITHM. Choose initial transformations ¢[1°],¢£°], e 1[,01, and set a =
(p+1)/2.
Repeatfor N=1,2,..., )

Dofori = 1,...,p,
p
¢ — ap™N -1 _ P, Z¢5N_ 1 ¢ Update
=1 Z1/2 Outer
Standardize with ¢ = ( Z |6 ||2> iteration
i

(¢[11V]7 [QIV]) IR }[)M) — (C¢1,C¢2, s )c¢p)
Until var Z ¢£N] converges.

Up to the spectrum shift, the iteration scheme employed here is reminiscent of
the ACE algorithm. Note, however, that the innermost update step is parallel,
not sequential; that is, for ¢; we do not use ¢1,...,¢;_1, although they have
already been computed.

For computation of the second-smallest and other higher-order small APCs,
we simply add orthogonality constraints. This is implemented by adding a series
of Gram-Schmidt steps following the update step:

P
i — i — (Z <¢,~,¢§.”>> v

Jj=1

If, for purposes of estimation, smoothers other than projections are used as
building blocks for P;, no guarantee can be given for convergence. We have
rarely experienced nonconvergence of the algorithm although convergence is
apt to be slow, particularly in estimation of higher-order APCs.

If the algorithm converges, the resulting functions are defined to be APC
function estimates. The outputs may depend on the initializations, which there-
fore become part of the definition of the estimate. The particular choice of
smoothers implicitly dictates the smoothness constraints placed on the func-
tion estimates. We have used Supersmooth [Friedman and Stuetzle (1982)],
Lowess [Cleveland (1979)] and Turbo [Friedman and Silverman (1989)]. Su-
persmooth tends to produce smaller eigenvalues than other methods and fairly
wiggly transforms, possibly indicating a tendency to overfit. We used Lowess
with locally quadratic fits, the approximate algorithm and a 50 percent data
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window: the fits were consequently very smooth. Turbo typically gave fits very
similar to Lowess, although we observed strange convergence patterns, proba-
bly due to the nonlinear behavior caused by the choice of the number of knots.
For these estimates, there is no associated extremal problem that the algorithm
solves. Some comfort may be derived from asymptotics, as it seems likely that
the consistency results of Breiman and Friedman (1985) can be carried over
to APCs.

6. Discussion: extensions and open problems. The material given in
this paper is far from exhaustive. There are obvious extensions of APC analysis,
and there are many open problems.

A simple extension follows from noting that the APC formalism depends
only on subspaces Hy,Hy, ..., Hp, but not on the assumption that these spaces
are sets of transforms of variables X;, X5, ...,X,. Therefore, we can use other
specifications of subspaces, an example being subspaces that arise in functional
interaction models [see Stone (1994) for recent developments]. In these mod-
els, multivariate response surfaces f(x1, xg,...) are approximated by additive
decompositions into main effects and interactions: ¥1(x1) + ¥a(xg) + 112(x1,%2)
+ .- € Hi+Hqy+Hiy +---. For identifiability, one assumes that the interactions
(e.g., Y12 € Hyy) are orthogonal to their subordinate main effect and interac-
tion spaces (H; and H; in this instance). The notion of concurvity associated
with interaction models is defined in terms of (approximate) degeneracies of the
form ¢1(x1) + Polxa) + P1alxy, x2) + - - - =~ 0. Because of their increased flexibility,
interaction models are even more at risk from concurvity than additive models.
This gives urgency to the task of developing diagnostics: APC analysis of the
spaces Hy,Hy,Hys, ... [Buja (1994)] may prove a valuable candidate.

The most basic open problems in APC analysis concern inference. For exam-
ple, which eigenvalues should be considered “real,” that is, how small is small
given the sample size and number of variables? An obvious idea for testing
significance of the smallest eigenvalue is to use a permutation test for the null
hypothesis of unrelated variables. The more difficult problem is deciding when
to stop accepting eigenvalues of higher order: the classical debate on the num-
ber of factors problem could be directly transferred to APCs. Related to this
problem is the question of when data are appropriate for APC analysis. For
example, if the intrinsic dimension of 10-dimensional data is very nearly only
2, it would not make sense to estimate eight implicit equations with APCs.
Instead one should use a dimension reduction approach based on largest eigen-
values or principal surfaces. Another problem concerns multiplicity of small
eigenvalues: how do we infer it from data; and how do we cope with the result-
ing indeterminacies in the estimated transforms, if, for example, the smallest
two eigenvalues are established as equal? Our comments in Section 3.1 barely
touch the issue. It would also be nice to have a formal method for weeding out
horseshoe transforms, although they are rarely a problem in practice for the
informed user.

Finally, we need a better understanding of the use of modern smoothers as
APC building blocks. The algorithm of Section 5.2 provides a gateway for im-
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porting any fitting procedure to APCs, but how can we understand what APC
analysis does when the fitting procedures are not least squares but penalized
least squares regressions, such as smoothing splines? In this instance, we do
have an answer, which will appear in a future paper. More difficult is the ques-
tion of how to incorporate adaptivity, that is, bandwidth selection, in APC. This
problem area is wide open.
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DISCUSSION
BERNARD D. FLURY

Indiana University

The past 15 years have shown considerable progress in generalizations
and modifications of classical principal component analysis. This includes
distribution theory for sample principal components in elliptical families
[Muirhead (1982) and references therein], robust estimation and testing
[Campbell (1980), Devlin, Gnanadesikan and Kettenring (1981) and Tyler
(1981, 1983)], common principal components in several groups [Flury (1988)],
principal components of patterned covariance matrices [Neuenschwander
(1991) and Flury and Neuenschwander (1993)] and last but not least, general-
izations to nonlinear situations, which constitute perhaps the thorniest area.
Donnell, Buja and Stuetzle (DBS) give a fundamental building block in this
field, the previous most significant building block being the principal curves of
Hastie and Stuetzle (1989).

DBS stress that their method is rooted in the psychometric literature, but
there is at least one (to my knowledge) direct predecessor in the statistical liter-
ature as well: Gnanadesikan and Wilk’s (1969) Generalized Principal Compo-
nent Analysis, described in detail also in Gnanadesikan (1977), Seber (1984) and
Jackson (1991), which imitates the successful use of polynomials in regression.
Gnanadesikan and Wilk’s approach was to introduce powers and products of the



