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TWO-ARMED DIRICHLET BANDITS WITH DISCOUNTING!

By MAaNASs K. CHATTOPADHYAY

Gallup Organization

Sequential selections are to be made from two independent stochastic
processes, or “arms.” At each stage we choose which arm to observe based
on past selections and observations. The observations on arm i are condition-
ally i.i.d. given their marginal distribution P; which has a Dirichlet process
prior with parameter o;, i = 1,2. Future observations are discounted: at
stage m, the payoff is a,, times the observation Z,, at that stage. The dis-
count sequence A, = (aj,as,...,an,0,0,...) is a nonincreasing sequence
of nonnegative numbers, where the “horizon” n is finite. The objective is
to maximize the total expected payoff E(X}q;Z;). It is shown that optimal
strategies continue with an arm when it yields a sufficiently large observa-
tion, one larger than a “break-even observation.” This generalizes results
of Clayton and Berry, who considered two arms with one arm known and
assumedan, =1V m <n.

1. Introduction. A bandit problem involves sequential selections from
k (> 2) stochastic processes (or “arms,” machines, treatments etc.). We restrict
consideration to discrete time and two independent arms. Each of the arms
generates an infinite sequence of random variables. An observation on a partic-
ular sequence is made by selecting the corresponding arm. The mth member of
a sequence is observed if the corresponding arm is selected at stage m. Future
observations are discounted with payoff at stage m equal to a,, times the obser-
vation Z,, at that stage. Assume 0 < a, < --- <aj; 4, =(a;1,09,...,a,,0,0,...)
is called a discount sequence. The horizon n of the discount sequence A, equals
inf{r: @, =0, Vm >r}. Let AL = (ap, 1,08 49,...,0,,0,0,...) for k < n.

The selection of a process for observation at any time depends on the previous
selections and results. A decision procedure (or strategy) specifies which process
to select at any time for every history of previous selections and observations.
The objective is to maximize the expected value of ¥}, _ amZ,. Any strategy
yielding the maximum expected payoff is called optimal. An arm is optimal if
it is the first selection of some optimal strategy. An arm is uniquely optimal if
only that arm is optimal (i.e., no other arm is optimal).

Let X; and Y; denote the results from arms 1 and 2, respectively, at stage ¢
fori=1,2,...,n. At any stage, one of the pair (X;,Y;) is actually observed. The
two arms are independent and hence the random vector (X;,Xs, ...,X,) is inde-
pendent of (Y1,Y5,...,Y,). Moreover, given the unknown probability measure
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P;, i = 1,2, the random variables Xj, X,,..., X, are ii.d. with probability
measure P;, while the random variables Y1, Y5, . .., Y, arei.i.d. with probability
measure Ps.

Following a Bayesian approach, we take each P;,i = 1,2, to be random having
a Dirichlet process prior [Ferguson (1973)]. Below we give the definition of
Dirichlet process prior and some of its properties as introduced by Ferguson
(1973).

DEFINITION 1. Let R be a set and B a o-field of subsets of R. Let o be a
nonnull finite measure (nonnegative and finitely additive) on (R, B). A random
probability P on (R, B) is a Dirichlet process on (R, B) with parameter o, denoted
P e D(a), if, for every k = 1,2, ... and measurable partition B, Bg, ..., B of R,
the joint distribution of the random probabilities (P(B1),P(By),...,P(By)) is
Dirichlet with parameters (a(B1), a(Bs), . .., a(Bg)).

We now assume that R denotes the real line, B denotes the o-field of Borel
sets and M = a(R) < oo. Then F(x) = a(—o0,x]/M is the distribution func-
tion corresponding to a. If P € D(c) and Ay € B, then E(P(Ayp)) = a(Ag)/M.
If P € D(o) and X1, Xy, ..., X, is a sample of size n from P, then the condi-
tional distribution of P given X, Xy, ..., X, is a Dirichlet process with param-
eter a + ¥}6x,, where &, assigns mass 1 at x [Ferguson (1973), Theorem 1].
Using these properties, F is the prior mean for P in the sense that it is the
expectation of P((—oo,x]), and the total measure M may be interpreted as the
degree of faith in the prior guess F(¢) of the unknown Fy(¢) = P((—oo0,]) [Fer-
guson (1973), page 223]. Another advantage of using a Dirichlet process prior
(with parameter o) for an unknown distribution P is that, with respect to the
topology of convergence in distributions, the support of P is the set of all dis-
tributions whose supports are contained in the support of o [Ferguson (1973),
Proposition 3].

In our problem involving two unknown arms, we assume P; to be random
having a Dirichlet process prior with parameter «;, a bounded nonnull mea-
sure on the reals R with finite first moment (i = 1,2). Let F;(x) = a;(—00,x]/M;,
so that F; is the distribution function corresponding to «;, i = 1,2. The condi-
tional expectation of any function A(X) of X, an observation from arm 1, given
X1, X5, ..., X; can be computed for each o + Zf&xi using Theorem 3 of Ferguson
(1973). This expectation will be denoted by E[A(X) | a; + X*6x,]. Note in partic-
ular that '

E(X|a) =E / xdP1(x) = [on(®)] ! / xdag(x) = / xdFy(x) = 1
and

E(Y|as) =E/ysz(y)= [az(ﬂl)]—l/ydaz(y)= /dez(y) = Uig.

So E(X | o) is the unconditional expectation of X with distribution P, having
a Dirichlet process prior with parameter «;.
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Let (o1, ag; A,) denote the two-armed bandit problem where arm i has a
Dirichlet process prior with parameter «;, i = 1,2, and A, is a nonincreas-
ing discount sequence of finite horizon n. Computational problems make it
difficult to give an explicit specification of an optimal strategy. We therefore
give partial characterizations of optimal strategies by proving the existence
of “break-even” observations. There exists a break-even observation c(ay, ag;
A,) such that if arm 1 is selected initially, optimally or not, and X; = x is
observed, then arm 1 is optimal (though not necessarily uniquely optimal) at
the next stage if x > c(ay,@9; A,), and arm 2 otherwise. This is like a “stay-
with-a-winner/switch-on-a-loser” rule. The value of ¢, however, changes from
clay, ag; Ap) to clay + 6, ap; Al) at the next stage. There exists another kind
of break-even observation b(aq, ag; A,) such that if arm 1 is selected initially,
optimally or not, and X; = x is observed, then the expected advantage (dis-
advantage) of choosing arm 1 over arm 2 in the remaining (n — 1)-horizon
problem is not smaller (greater) than its initial value if x > b(ay, ag; Ay); it
is not greater (smaller) than its initial value if x < b(aj,a9; A,); and it re-
mains unchanged if x = b(ay, ag; A,). So if arm 1 is optimal initially and
X, = x is observed, then arm 1 is optimal again provided x > b(a1, asg; An).
This is like a “stay-with-a-winner” rule, where “win” means obtaining a large
observation. In the non-Dirichlet case, such break-even observations may not
exist. Example 2.1 shows that a large observation can be quite distasteful
in terms of desirability of the arm producing that observation. In Section 2,
we prove the existence of break-even observations and present some numer-
ical results. Our results generalize those of Clayton and Berry (1985), who
consider the case where one of the two arms is known, the distribution of
the unknown arm has a Dirichlet process prior and the discount sequence
is finite horizon uniform (@i.e., a,, = 1 V m < n). Such a “one-armed bandit”
is an optimal stopping problem where it is not necessary to consider strate-
gies in which selection of the known arm is followed by selection of the un-
known arm. Consequently, to determine an optimal strategy, it is only neces-
sary to find the stage at which the known arm is first selected, if ever. How-
ever, our problem involving two unknown arms is no longer a stopping prob-
lem, and the discount sequence A, is any nonincreasing discount sequence of
horizon n.

2. Break-even observations. In this section we prove that optimal
strategies continue with an arm that yields a sufficiently large observation.
The existence of an optimal strategy is proved in the general setting by Berry
and Fristedt [(1985), Lemma 2.3.1]. For (a1, ag; A,) bandit, we use notation
similar to that of Berry (1972): W.(a1, as; A,) is the expected payoff under
strategy 7; W(oq, ag; A,) is the expected payoff under an optimal strategy;
Wi(aq, ag; A,) is the expected payoff of a strategy starting with arm i and then
proceeding optimally (i = 1,2); Aoy, ag; A,) is the expected advantage of choos-
ing arm 1 over arm 2; A*(ay, ag; Ap) = max(0, Alas, ag; Ay)); A~ (e, g3 Ap) =
min(0, Aay, ag; An)).
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Using the above notation,

(2.1) Wiay, ag; An) = aqp + E[W(al +8x, a; A,ll) | al] ,
(2.2) W2(a1, Qag, An) = Qg +E[W(a1, ag + 5y; A,ll) | az] ,
(23) W(ala Qg, An) = maX(Wl(ala Qg; An)a Wz(aly G, An)) )
Aloy, ag; Ap) = Wy, ag; An) — Wio, ag; Ay)
= —A(aZa al;An))
(2.4) Wl(ala Qg; An) = W(al, Qg3 A+ A—(CVI, 0, An),
(2.5) W2(ay, ag; An) = Wla, ag; Ay) — A¥(an, ag; Ay).

Using (2.4) and (2.5) in (2.1) and (2.2), we get
Wy, a; Ap) = arpg +E [{W2 (a1 + 8x, 095 A}) + A* (01 + 8x, ag; Arlz)} ’ 011] ,
Wy, 095 An) = aypip + E [{Wl(al,az +6y;A,) — A7 (ag, 00+ 5Y;A,1;)} ’ az] :

Therefore,

Alar, ag; Ay) = Wi, ag; Ay) — W2aq, ag; Ay)

= [al,ul +E{W2(a1 + §X, Olz;A,ll) | al}]
(2.6)

- [aluz +E{W1 (a1, 0 + 6y; AL) | 02 }]
+E{A+(a1 + 5x,a2;A,ll) | al} +E{A_ (al, ag + 6Y; A,ll) | az}.

Using arguments similar to those in Berry and Fristedt (1985), aju; +
E{W?2(a; +8x, ag; A}) | 1} is the expected worth of selecting arm 1 first and arm
2 second and then continuing optimally. Similarly, a;us + E{W(ay, ag +8y; A}) |
oy} is the expected worth of selecting arm 2 first and arm 1 second and then
continuing optimally. Hence the first minus the second is (a1 — a2)(u1 — o).
Using this in (2.6) gives

Alag, ag; Ay) = (a1 — ag)(uy — pe) +E[A+(al +6x,00;A}) | al]

2.7
+E[A_ (011, o + 5Y;A,ll) | 012] .

The next result implies that, given a preliminary observation (from arm 1)
X, = x, the advantage of choosing arm 1 over arm 2 increases with increase
in x.
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ProposITION 2.1.  Forall o, ag, k > 0and nonincreasing discount sequence
A, Alag + kb, 03 Ay) is nondecreasing in x.

PRrooOF (By induction). Forn =1,

Alay + kb, a9; A1) = ay (M1,u1 the Mz)

M 1+ k
is nondecreasing in x since a; > 0. Assume the monotonic property to be true
forn =m — 1. By (2.7),

. _ M1u1+kx
Al +k6s, a5 An) = (ar 02)( i uz)
M
+

(28) M1+k
k
M1 +k

+E[A" (oz1 + kb, ag + by; A,ln) | 012] .

E[A+ (al + kéx + 52, a9, A,ln) l al]

+

A* (o + (B + 16y, ag; AL)

The first term on the right-hand side of (2.8) is clearly nondecreasing in x.
For the second term, observe that, for any fixed z and x; < x,

A(al +6, +k5x1a O[Q;A,ln) < A(al + 6, +k(5x2, Olz;A,ln)

by induction hypothesis since Al is a nonincreasing discount sequence of hori-
zon m — 1. The nondecreasing property of the third and fourth terms follows
again from the induction hypothesis. O

We now prove the continuity of A(a; + k6, ag; A,) as a function of x.

PROPOSITION 2.2. Fb’ all 1,09 k >0 and noninct easin diSCOunt sequence
1, ) q
A, Aloy + kb, a9, Ay) is a continuous function of x.

See the Appendix for the proof of Proposition 2.2.
The following proposition will be used to prove Theorems 2.1 and 2.2.

ProPoSITION 2.3. Given oy, a9,k > 0 and any nonincreasing discount se-
quence A, of horizon n(< 00),

lim Ao + kb, a9, A,) = 00, . lirP Aloq + kb, a9; Ay) = —00.

X — 00

Proor. Itisenough to show that, for any increasing sequence {x,, } tending
to 0o, Alay + kb, 09; Ap) — 00 as m — oo. This result follows by induction. For
n=1,

Mypy +kxp

Aoy + k6, 95 Ay) = al( Mok

—uz)—>oo as m — oo.
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At the induction step, the result follows using (2.8) by proceeding as in Propo-
sition 2.2. The proof of lim, _, _ o, Ay + kS, as; A,) = —oco follows similarly by
considering a sequence {x,, } decreasing to —co. O

The next theorem proves the existence of “break-even observation” (o,
QZ;An)-

THEOREM 2.1. Given oy, a9,n > 2 and any nonincreasing discount sequence
A, of finite horizon n, there exists a break-even observation b(ay, ag; A,) such that

Aoy + 6y, 005 A%) > Ao, ag; An)  if x> blag, ag; Ap),

and
Aoy + 6,00, AL) < Alay,09;A,)  ifx < blay, ag; Ay).

Proor. By Propositions 2.2. and 2.3 (with & = 1), there exists, by the
intermediate value property of continuous functions, a quantity b such that
Aoy + 6y, a5 AL) = Alaq, ag; Ay). It is easy to see that this b(ay, ag; A,) satisfies
the conditions of the theorem. O

If arm 1 is optimal initially, then b(a, ag; A,) gives the stay-with-a-winner
property with the value of b changing from b(ay, ag; A,) to b(ay + &, ag; Al) at
the next stage. If the observation on arm 1 is greater than b(a;, as; A,), then
the advantage of choosing arm 1 over arm 2 is at least as much as it was at the
previous stage. The next theorem proves the existence of another break-even
observation c(a, ag; A,) giving stronger properties of optimal strategies.

THEOREM 2.2. Given a1, ag,n > 2 and any nonincreasing discount sequence
A, of finite horizon n, there exists a break-even observation c(ay, ag; A, ) such that
Aoy + 68,09, A%) >0 ifx > clou, ag; An),
and
A(al + by, a2;A,ll) <0 ifx <clay,as; Ay).

ProoF. The proof is similar to the proof of Theorem 2.1: there exists a ¢
such that A(a; + 6., a9; AL)=0. O

The observation c(a;,as; A,) gives a stay-with-a-winner/switch-on-a-loser
rule. If the observation x on arm 1 is greater than ¢, then arm 1 is optimal
at the next stage, and arm 2 otherwise. Example 2.1 shows that such break-
even observations do not exist in general.

ExaMpPLE 2.1. Let

P1 _ 53, W.p. -é—, P2 _ (55, W.p. %—,
(8o +610), W.p. 3, 1(66 +65), w.p. 3.
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TaBLE 1
The quantity Az = Alay, ag; Az), where Fy = U|0, 1], Fy = U[0.01,1.01]

M,
M, 0 1 5 10 100
0 —0.010 0.074 0.119 0.120 0.120
1 —0.093 —0.010 0.049 0.060 0.062
5 —0.129 —0.065 —0.010 0.005 0.019
10 —0.130 —0.071 —0.023 —0.010 0.005
100 —0.130 -0.071 —0.029 —0.019 —0.010

Let A(x,Pq,P,; Al) be the advantage of choosing arm 1 over arm 2 after the
initial observation x on arm 1. Let n = 2 and a, = 1. Then

A(S,Pl,Pg;A%) = a2(8 -6)=2

and
A(10,Py,Py; A}) =as(5 — 6) = —1.

We conclude this section with tables of A(ay, as; Ay), b(ay, ag; Ay,) and e(aq,
ag; Ay), for n = 3 and for some choice of F; and Fs. In Table 1, F; = Uniform|[0, 1],
F5 = Uniform[0.01, 1.01] and it gives values of A(ay, ag; Asz). Table 2 gives values
of b(ay, ag; Az) and ¢y, ag; Az). In both tables, each of M, and M, takes values
0,1,5,10 and 100 and the discount sequence is A3 =(1,1,1,0,0,...).

Computer programs to generate Tables 1 and 2 are written in FORTRAN. In
Table 1, numerical integration is carried out using subroutine package under
CMLIB. For Table 2, equations like A(a; + 6, ag; Aé) = Alay, ag; Az) and Ao +
be, g A};) = 0 are solved using bisection routines.

In Table 1, A(MF,,MyF,; A3) is an increasing function of M, for fixed F'y, F
and M. Again A(M,F;,MF,; A3) is a decreasing function of M for fixed F, Fo
and M. So the less known about an arm, the more appealing it is, for there
is more information to be gained by selecting it; A(M1F,,MyFy; As) = g — pg,
whenever M; = M,, that is, when the “information value” of both the arms

TABLE 2
The quantities (b(ay, ag; Ag), clay, ag; Ag)), where Fy = U|0, 1], Fy = U[0.01,1.01]
M,

M, 0 1 5 10 100
0 (0.589, 0.596) (0.607, 0.553) (0.629, 0.524) (0.630, 0.518) (0.630, 0.511)
1 (0.536, 0.677) (0.567, 0.582) (0.599, 0.519) (0.610, 0.496) (0.615, 0.485)
5 (0.420, 1.075) (0.434, 0.799) (0.536, 0.588) (0.564, 0.538) (0.593, 0.495)
10 (0.426, 1.554) (0.382, 1.081) (0.464, 0.721) (0.517, 0.625) (0.580, 0.537)
100 (0.514, 10.174) (—0.202, 5.842) (-0.002, 2.954) (0.194, 2.297) (0.500, 1.507)
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is the same. In Table 2, if A(ay, ag; A,) > 0, then b(ay, ag; Ay) > clag, as; Ay);
otherwise, b(a1, ag; A,) < clag, az; A,). We notice that if the support of oy is
bounded above by U and below by L (in Table 2, U = 1.0 and L = 0.0), then
L < c(ag, a9;An) < U need not be true. For example, in Table 2, c(ay, ag; As)
=10.174 when M; = 100,M, = 0. The reason is that one arm may be so much
better initially than the other that even the best possible observation would not
make the other arm worth selecting at the next stage. After an initial optimal
selection, optimal selections can be made at any subsequent stage by computing
the ¢ value at that stage for given outcomes prior to that stage. Hence optimal
strategies can be completely determined. For example, consider the (ay, as; A3z)
bandit where F; = U[0,1],F, = U[0.01,1.01] and A3 = (1,1,1,0,0,...). Let
M; =1 and M, = 10. From Table 1, Aoy, ag; As) = 0.06 > 0. Hence arm 1 is
optimal initially. So we select arm 1 and suppose the observation is X; = 0.58.
This is bigger than c(a1, as; As) = 0.496 (from Table 2). Hence arm 1 is optimal
again at the next stage. Suppose the observation on arm 1 at this stage is
Xy = 0.42, which is smaller than c(ag + 50.58,a2;A§) = 0.45. Hence arm 2 is
optimal at the last stage. However, when n is large or the support of a; or ay is
large, then finding ¢ becomes extremely difficult computationally.

APPENDIX

ProOOF OF PROPOSITION 2.2 (By induction on n). Forn =1,

. _ Mlﬂl + kx
Alay + kby, 095 Ay) = aq (m Mz)

is continuous in x. Assume the result holds for n = r — 1. It is enough to show
that A(oy + &6y, ag; A;) — Alag + kby, ag; A,) for any increasing or decreasing
sequence {x,,} converging to x. By (2.8),

Aoy +kéy,, a9 A;) = (ag — az)(
M,
+
(Al) Ml +k
k
Ml +k

+E[A‘ (al +kby,, ag + 6y; AL | az] )

Mypy +kxp, _
M,+k 2

E [A+ (al + kéxm + 6z, Qag, A}) | Ozl]

+ A*(ay + (& + 1)y, a; A7)

Let {x,,} be an increasing sequence converging to x. For the sequence of
nonnegative functions f,,(2) = A*(ay + k6, + 6,, ag; Al), we have the following:

(1) 0 < fi(2) < fo(z) < --- (by Proposition 2.1);

(i1) A*(ay+kéy, +6,,a0; AY) — At(ay +k6,+6,, ag; Al) for every z by the induc-
tion hypothesis [using the continuity of A*(a; + 6, + kb, as;Al) as a
function of x].
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Using the monotone convergence theorem (MCT),

(A2)  lim E|A*(ar+kés, +07, 02 A)) | 1] = E[A* (a1 +hé+87, a3 A) |on]-

m — 00

By the induction hypothesis,

(A.3) lim A*(al +(k+ 1)6xm,a2;A}) — A* (a1 + (B + 1)éy, a2;A}).

Again note that A(ag +6,, 0 +kéy; AD) = —A(ay +kéy, ag+6y; Al)is continuous
in x (by the induction hypothesis), establishing the continuity of A*(az + 6y, a1 +
ké,; AD) in x. For the sequence of functions g, (y) = A*(ag + &y, ay + kéy,; A}), we
have the following:

() gm(y) = A*(ag+6y, a1 +kby; AL, for every y as m — oo (using continuity);
(1) |gm(y)| < |A*(ag + 6y, 00 + kb ; AD)| ¥V m (by Proposition 2.1).

[The measurability and integrability of A(ag + 6y, a1 +kSy,,; A}) for any m as a
function of y follows from Theorem 18.3 of Billingsley (1979) and Theorem 2.5.1
of Berry and Fristedt (1985).]

Using the Lebesgue dominated convergence theorem (LDCT), we get

lim E[A (ay+ kb, 00 + 8v; AY) | )

= - lim E[A*(ag+ by, a1 + kb3 AY) | o)
(A.4) moe
=_-FK [A+(Oé2 + by, a1 +k6x;Arl') | a2]

= B[A™ (a1 + ks, 0z + 6v; AY) | as).
Using (A.2), (A.3) and (A.4) in (A.1), we get
(A.5) A(al +k6xm,a2;Ar) — Aoy + kb, a0, A;) asm — 00,

for any increasing sequence {x,,} converging to x. For any decreasing sequence
{xm} converging to x, the proof is similar by using LDCT on {f.(z)} and MCT

on {gn(»)}. O
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