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POSTERIOR PREDICTIVE p-VALUES!

By X1a0-L1 MENG
University of Chicago

This article is dedicated to my mentor, Donald B. Rubin, for his 50th birthday.

Extending work of Rubin, this paper explores a Bayesian counterpart of
the classical p-value, namely, a tail-area probability of a “test statistic” un-
der a null hypothesis. The Bayesian formulation, using posterior predictive
replications of the data, allows a “test statistic” to depend on both data and
unknown (nuisance) parameters and thus permits a direct measure of the
discrepancy between sample and population quantities. The tail-area proba-
bility for a “test statistic” is then found under the joint posterior distribution
of replicate data and the (nuisance) parameters, both conditional on the null
hypothesis. This posterior predictive p-value can also be viewed as the pos-
terior mean of a classical p-value, averaging over the posterior distribution
of (nuisance) parameters under the null hypothesis, and thus it provides
one general method for dealing with nuisance parameters. Two classical
examples, including the Behrens-Fisher problem, are used to illustrate the
posterior predictive p-value and some of its interesting properties, which
also reveal a new (Bayesian) interpretation for some classical p-values. An
application to multiple-imputation inference is also presented. A frequency
evaluation shows that, in general, if the replication is defined by new (nui-
sance) parameters and new data, then the Type I frequentist error of an
a-level posterior predictive test is often close to but less than o and will
never exceed 2a.

1. Introduction. Thereisperhapsno single notion in statistics, other than
the p-value, that has been so widely used and yet so seriously criticized for
so long. The core of the controversy is whether a p-value provides adequate
“evidence” against a null hypothesis. Recommendations range from cautious
interpretation to complete dismissal. Even accepting the utility of the p-value
as an inferential tool, the issue of how to handle nuisance parameters, as in the
Behrens—Fisher problem, has generated much debate. The relevant literature
is simply too extensive to list. Several discussion papers, including Cox (1977),
Shafer (1982), Berger and Delampady (1987), Berger and Sellke (1987) and
Casella and Berger (1987), could, however, be singled out for their wide scope,
their prominence in the general debate and their comprehensive references and
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review of other important works. An interesting recent study of the p-value by
Hwang, Casella, Robert, Wells and Farrell (1992) also contains a brief summary
of the controversy about the p-value. By focusing primarily on the Behrens—
Fisher problem, Wallace (1980) provides an enlightening review on ways of
handling nuisance parameters from different perspectives.

As noted in Hwang, Casella, Robert, Wells and Farrell (1992), most crit-
icism leveled at the p-value has come from the Bayesian school, especially
because the calculation of a p-value almost always involves averaging over
sample values that have not occurred, a clear violation of the likelihood prin-
ciple [e.g., Jeffreys (1967), Berger and Wolpert (1984) and Berger and De-
lampady (1987)]. As a consequence, the notion of “Bayesian p-value” is often
viewed as a “paradox.” Despite this common attitude, however, several lead-
ing Bayesians [e.g., Dempster (1971, 1973), Box (1980) and Rubin (1984)] have
argued that the p-value approach, namely, calculating a tail-area probabil-
ity of a statistic, can be a useful tool even for Bayesian analysts in moni-
toring a model’s adequacy. This has led to several formulations of “Bayesian
p-value.”

In particular, Rubin (1984) uses the posterior predictive distribution of a
statistic to calculate the tail-area probability corresponding to the observed
value of the statistic. We will call such a tail-area probability a posterior predic-
tive p-value for obvious reasons. [The tail-area probability used by Box (1980)
can be called a prior predictive p-value.] As Rubin (1984) pointed out, such a
frequency calculation is Bayesianly justifiable, although not in the usual sense,
and is Bayesianly relevant because it helps the process of model diagnosis, a
fundamental part of any Bayesian analysis. One purpose of this paper is to
illustrate the utility of the posterior predictive p-value from a different angle,
that is, how the Bayesian formulation leads to a possible solution to the problem
of nuisance parameters that the classical p-value approach often faces. We also
extend Rubin’s formulation by allowing a test statistic to depend on (nuisance)
parameters. Such a parameter-dependent test statistic has been called a “(gen-
eralized) test variable” by Tsui and Weerahandi (1989), who introduced such
a quantity for dealing with nuisance parameters in the context of significance
testing with p-values. Their frequentist setting, however, forces them to impose
the pivotality requirement on test variables in the sense that the resulting tail-
area probabilities (with suitable supremum over primary parameters) are free
of nuisance parameters. The Bayesian analogue discussed in this paperis free of
such restrictions. Of course, as with any Bayesian approach, the price one pays
for such a “freedom” is the specification of prior distributions. As shall be seen,
however, the evaluation of a posterior predictive p-value for a given test vari-
able only requires a prior distribution of the free (nuisance) parameters under
the null hypothesis. Similar partial Bayesian formulations (e.g., only assign-
ing priors for nuisance parameters) have been proposed in the literature [e.g.,
Cox (1975) and McCullagh (1990)] and seem to be more acceptable outside the
Bayesian school, especially when noninformative prior distributions are used.

We emphasize that the formulation of posterior predictive p-values funda-
mentally inherits the classical construction of tail-area probabilities, and thus
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it essentially is subject to the same debate, especially when compared to stan-
dard Bayesian approaches (e.g., Bayes factor). In particular, one should always
bear in mind that a posterior predictive p-value, like any other p-value, is not
a probability that the null hypothesis is true. A practical interpretation of it,
when communicating with general users, is that it is a measure of discrepancy
between the observed data and the posited assumptions, among which the hy-
pothesis being tested is only a part. (Not being able to address directly the
question of interest is an inherent part of the tail-area formulation that has
been repeatedly criticized.) Even this practical interpretation has been seri-
ously challenged as it is argued that a tail-area event typically includes sample
points that provide much stronger evidence against a null hypothesis than the
actual observation does; see, for example, Jeffreys (1967), Berger and Sellke
(1987) and Berger and Delampady (1987).

There is no attempt in this paper to further discuss these issues, for it is not
the author’s intent to add anything new. Rather, following Dempster (1973),
“It is accepted in this paper that significance testing has a legitimate place in
the collection of inference tools. . .,” our intention here is to illustrate how the
Bayesian formulation can help to tackle the problem of nuisance parameters
faced by the classical p-value approach without abandoning its main structures,
which are simply too common to be ignored in the current statistical practice.
For those who have called for complete dismissal of p-values (at least in the
context of hypothesis testing), such a partial Bayesian approach is certainly on
the “wrong track” as it helps a “devil.” This paper, however, takes the opinion
that as long as “subject matter journals are flooded with p-values” [Hwang,
Casella, Robert, Wells and Farrell (1992)] and various ad hoc methods (e.g., in-
serting an estimate for the nuisance parameter) are being used, there is some
benefit to have a unified approach for constructing traditionally motivated p-
values that are always computable. An indoor animal, not necessarily a pet, is
relatively easier to control than many wild creatures. Such a partial Bayesian
approach also seems to fall into what Good (1992) called the Bayes/non-Bayes
compromise, and it perhaps can help to promote the Bayesian ways of con-
ducting statistical inference in general practice, where full Bayesian analyses
are yet to be accepted as a standard approach. Minimally, by adjusting pri-
ors for nuisance parameters, it provides an operational device for constructing
p-values with acceptable frequency properties.

The paper is organized as follows. Section 2 provides a formal definition of
a posterior predictive p-value, and two different interpretations of it. Section
3 illustrates the approach of the posterior predictive p-value in two classical
hypothesis problems concerning normal distributions, where a new interpreta-
tion of some classical p-values is also revealed. Section 4 applies the approach
to multiple-imputation inference [Rubin (1987)], where such a partial Bayesian
method is important and useful in deriving general procedures for obtaining
significance levels. Section 5 presents some theoretical frequency evaluations
for posterior predictive p-values.
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2. Posterior predictive p-values.

2.1. Definition. In a classical setting, given a null hypothesis Hy: ¢ € ¥,
(the parameter space for ¢ is ¥) and a test statistic 7(X), a p-value is typically
defined as

2.1) p =Pr{T(X) > T(x) | Hp}.

In (2.1) the probability is taken over the sampling distribution of X under the
null hypothesis, f(X | ¢ € ¥y), with T'(x), the observed value of the test statistic,
regarded as a constant. It is well-known that p of (2.1) is observable only if the
null set ¥, completely specifies the value of ¢ (i.e., 1 = 1)) or, more generally,
T(X) is a pivotal quantity in the sense that its sampling distribution is free
of any unknown parameter under the null hypothesis. Unfortunately, in many
practical situations, this is not the case; in other words, one often faces the well-
known problem of nuisance parameters. Various solutions, such as inserting
estimates for the nuisance parameters or taking the supremum of p over the
null set, have been provided. It should be emphasized, however, that the “p-
values” resulting from these methods are not the tail-area probabilities that
the classical approach had intended.

It perhaps is a bit ironical that the Bayesian formulation seems to be the most
general way of defining and evaluating the tail-area probability underlying the
classical setting: supposing the null hypothesis is true, if x™P denotes a replica-
tion of x (i.e., a “future observation”), what is the probability that T'(x"P) > T'(x)?
In the Bayesian setting, this probability is

2.2) ps = Pr{T@™) > T(x)|x,H, },

suppressing, but not neglecting, the dependence of pg on the choice of T'. In eval-
uating (2.2), the probability is taken over the posterior predictive distribution
of x™P conditional on Hj, that is,

2.3) £ (&P |z, Hy) = / £ (&P | ) o (dp | ),

¥y

where I1(1) | x) is the posterior distribution of 1) under Hy. The posterior predic-
tion in (2.3) simulates the replication under H, with the same (unknown) value
of ¢ that produced the current observed data, a replication that was intended
in the classical approach. The fact that all the information about this unknown
value of 1) comes from x and from the posited assumptions leads to the average
in (2.3) according to ITy() | x), the form of which depends on the nature of Hy.

For example, if ¥ is a point hypothesis for a primary parameter § € O,
that is, Ug = {(fy,v): v € A}, where A is a subset of R?, d > 1, then expression
(2.3) becomes

(2.4) f(x™P |x,Hp) = /Af(x'ep | 6o, v)mo (v |x) dv.
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In (2.4), mo(v | x) is the posterior density of the nuisance parameter v conditional
on Hy:

_ f(x]60,v)7(v]60)
@5 molv |) = Juf(x|60,v)m(v|6)dv’ ved,

with 7(v | 6p) being a conditional prior density for v given 6 = 6y, which can be
improper. Similarly, if ¥ is a composite hypothesis for , namely, ¥ = {(6,v): §
€ Oy, v € A}, then (2.4) and (2.5) should be replaced, respectively, by

(2.6) f(x™P | x, Hp) =/ /f(x'ep|0,y)7ro(0,u|x)dud0
0, JA

and
flx|6,v)m(v|6)mo(0)
Jo, L f(x16,0)7(v]8)mo(0) dv d6’

where 7(v|6) is a conditional prior density of v given 6 and my(#) is a prior
density on ©g; both densities can be improper. Obviously, (2.4) and (2.5) can
be viewed as a special case of (2.6) and (2.7), with ©; only containing a single
point.

Another advantage of the Bayesian formulation is that it naturally allows
the use of a parameter-dependent “test statistic,” which we call a discrepancy
variable to emphasize the practical interpretation that a p-value is a measure
of discrepancy. In other words, in defining a posterior predictive p-value, a
classical test statistic T'(x) can be replaced by a discrepancy variable D(x, 1)
that is a function of both data and parameters:

(2.8) ps = Pr{D(&™®, ) > D(x, ) | x,Ho }.

The probability in (2.8) is taken over the joint posterior distribution of (x™P, 1))
given Hj, namely,

f@™P p |2, Ho) = f (P |h)mo (v |x), ¥ € T,

where (1) | x) is the posterior density (probability) of ¢ conditional on Hy. This
generalization of (2.2) is important as it allows us to measure directly the dis-
crepancy between sample quantities and population quantities when checking
the discrepancy between the data and the assumptions. In fact, a classical test
statistic T(x) can often be viewed as a discrepancy variable between sample
quantities and the “best fit” of the corresponding population quantities under
the null hypothesis, that is, T'(x) = D(x, 1/;0) with wo being an efficient estimate
(e.g., MLE) of ¢ under H,. This “best fitting” approach is useful since it elim-
inates the first-level dependence on unknown (nuisance) parameters, namely,
the dependence of a discrepancy variable on the unknown parameters. How-
ever, it does not solve the entire problem because typically there is a second-level
dependence—the sampling distribution of T'(x) will still depend on the unknown
(nuisance) parameters. The posterior predictive p-value given in (2.8) takes
care of this two-level dependence at once.

0 ey veA,

2.7 m(0,v|x) =
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2.2. An alternative interpretation. An alternative interpretation of pg is
perhaps more appealing to those who are used to the classical setting. For sim-
plicity, take a point hypothesis case [corresponding to (2.4)] as an example.
Suppose for the moment that the value of the nuisance parameter v is given.
Then D(x, 1), regardless of whether it is a function of v or not, is a test statistic
in the classical sense, and its associated p-value is

(2.9) pw) = Pr{D(X,v) > D(x,%) |60, v},

where the probability is taken over the sampling distribution, /(X | 6y, v). No-
tice that p(v) depends on v not only through (possibly) the discrepancy vari-
able, but also through (possibly) its sampling distribution. Since the nuisance
parameter v is unknown, taking p(v) as a quantity of interest, one naturally
desires to estimate it. One obvious approach to a Bayesian is to take the poste-
rior mean of p(v) over the posterior distribution of v conditional on Hy. This
leads to E[p(v)|x,H,l, which is easily seen to be identical with pp defined
in (2.8).

Reflected in this interpretation is a “two-stage” perspective. At the first stage,
one deals with a testing problem (in the classical sense) for a conditional hypoth-
esis where v is treated as given. At the second stage, one then deals with an esti-
mation problem to handle the fact that v is unknown. This seems quite logical (if
we accept the logic underlying the classical approach for the first stage), at least
when 6 and v are distinct, since we are never interested in testing v. The pos-
sible a priori dependence of § and v can be taken care of by proper specification
of the conditional prior density mo(v | 6) (in fact, this only needs to be specified
for 6 = 0y). Such a two-stage construction is also implied in the ideal (Bayesian)
evidence againts (or for) Hy: Pr(Hj |x) = E(, | [PetH, | x,v) | x], although there,
such a conceptual separation is usually unnecessary as both stages follow the
same kind of posterior calculations [i.e., testing in the Bayesian setting can be
treated merely as an estimation of an indicator function; see Hwang, Casella,
Robert, Wells and Farrell (1992) for more discussion on this perspective]. As
shall be illustrated, this two-stage derivation is also very useful in computa-
tion as well as in theoretical studies.

There are several interesting by-products from this perspective. First, it
leads to a measure of uncertainty in the classical p-value due to the unknown
nuisance parameter. This measure is generated by the posterior distribution of
p(v) conditional on Hy. If p(v) does not depend on v, then this distribution is
degenerate at a single value, the (observable) classical p-value. In general, it
describes how the conditional p-value p(v) is distributed as a function of v. This
posterior distribution has a mean pp, as defined in (2.8), and has a variance
V, = Var[p(v)|x,H,] that provides a measure of spread around pg. A useful
upper bound for V), is pg(1 — pg). As expected, the posterior distribution of
p) provides a more complete picture of the measure of discrepancy under the
null hypothesis than the posterior mean pp alone, as shall be illustrated in
Section 3.1.

Second, it is clear that, for any conditional prior density #(v | 6y) that leads
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to a proper posterior density mo(v | x),

pg < sup p(v),
v

so that pg is always less conservative than the “worst scenario” approach [e.g.,
Bahadur (1965)]. Furthermore, since V, — 0 asymptotically under standard
regularity conditions, a posterior predictive p-value for a classical test statis-
tic is asymptotically equivalent to its classical p-value with inserted (efficient)
estimate of v. These observations may be useful in establishing theoretical
results for posterior predictive p-values that are analogous to those for clas-
sical p-values [e.g., Bahadur (1967a, b), Bahadur and Raghavachari (1972),
Bahadur, Chandra and Lambert (1984) and Hwang, Casella, Robert, Wells and
Farrell (1992)].

Third, the two-stage perspective also suggests some choices of “test statis-
tics,” or discrepancy variables in the terminology of this paper, that have not
been generally studied. For example, since: at the first stage v is treated as
given, a conditional likelihood ratio (CLR) seems appropriate, at least when 6
and v are distinct:

supgg¢e,f(*6,v)
Supgee, f(%16,v)’

(2.10) DC(x, 1) =

where 6, can be either a point or a composite null hypothesis for 6. (The term
“conditional likelihood” is used here in the Bayesian sense, corresponding to the
term “conditional hypothesis.”) If § € ©; is the specified alternative, then the
numerator in (2.10) is replaced by the supremum over 6 € ©;. The dependence
of D€ on v is its key difference from the usual generalized likelihood ratio (GLR):

SUpg ¢, SUP, f(x16,v)

(2.11) DS(x) = .
Supgce, SUP, f(x]6,v)

The choice of discrepancy variables is generally a difficult problem, which
has been discussed extensively in the literature; for discussions that are most
relevant to the current setting, see Box (1980), Rubin (1984) and Gelman, Meng
and Stern (1993). Since the choices of discrepancy variables are influenced by
the specifications of alternative hypotheses and since this paper is primarily
concerned with defining and evaluating a p-value under a null hypothesis with
a given discrepancy variable, we will restrict ourselves to CLR (and GLR) in
the following illustrations and applications. More study is needed, for example,
on general comparisons among posterior predictive p-values from CLR and
GLR and from other forms of discrepancy variables (e.g., an appropriately de-
fined Bayes factor). Another problem worthy of further study, as with other
Bayesian approaches, is the sensitivity of posterior predictive p-values to the
specifications of priors in finite (small) samples. Again, for the purpose of il-
lustration, we will use standard noninformative priors in this paper, especially
because, as in other settings, they lead to results that are (nearly) identical
with classical solutions.
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3. Two theoretical examples.

3.1. One-sample normal mean. As a classical example appearing in almost
any introductory textbook in statistics, suppose we have a simple random sam-
ple of size n from N(u, 0?), and we are interested in testing Hy: p = po with o2
unspecified. Since a posterior predictive p-value is invariant under any strictly
monotone data-free transformation of a discrepancy variable, using CLR of
(2.10) and GLR of (2.11) for the current problem is equivalent to using

¥ — 2 ¥ — 2
DCGe, ) = MEZ Y g pOgy - MEZHF
g S

respectively, where ¥ and s? are the sample mean and sample variance of x =
{x1,...,%,}, and ¥ = (u, 0?). The corresponding conditional p-values are

p°(0%) = Pr{DO(X, %) > D°(x, )| o, 0%}

3.1 =32
= pr{xg > ”(x_a;‘o)_}
and
p% =Pr{D%X) > D) | o, 0%}
(3.2) = 2
~PefFinoiz ST = Pr(Fy 2 T0),
S

using the conventional notation for chi-squared and F variables. Because T(X)
is a pivotal quantity, the conditional p-value (8.2) and thus the posterior predic-
tive p-value based on GLR is identical with the corresponding classical p-value
based on the ¢-test. '

The posterior predictive p-value of CLR depends on the choice of the condi-
tional prior m(c? | o). In cases where a proper prior is not available, an improper
prior is often used on the ground of “noninformativeness.” A common improper
prior for the current setting is n(o2 | 1) o =2, which is the Jeffreys prior from
the null model N(ug, 02). Under this prior,

2
nsy

—?
X2

(3.3) [0® |, Ho] ~

where s = (1/n)%7_ ,(x; — po)? is the MLE of 02 under the null model. It follows
from (3.1) and (3.3) that '

pS = E[pc(az) |x,H0]

¥ 2
= Pr{Fl,,, > ’-’%)_} =Pr{F; , > To)}.
0

(3.4)

The (slight) difference between p§ and p§ [= p© of (3.2)] is expected because
of the use of the different discrepancy variables; this contrasts with the clas-
sical calculations where T(x) and T'(x) are equivalent test statistics. There is,
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however, an interesting connection between CLR and the classical p-value from
the t-test (i.e., p$). Suppose that besides m(o? | 1) < =2 we also specify m(u) o 1,
corresponding to the standard joint noninformative prior, m(u, 02)  o~2, often
used for estimation [e.g., Box and Tiao (1973), Chapter 2]. Then the marginal
posterior density of 02, which can also be viewed as the posterior density of o2
under the alternative (i.e., u# py), is

(n — 1)s?

2
n—1

[0 1] ~

If we use this posterior density to find the average of p®(¢2) in (8.1), we recover
the classical p-value of (3.2). In other words, if the information p = 41 is ignored
in estimating the variance, then p§ coincides with the classical p-value from
the ¢-test. This interesting “coincidence” is somewhat unexpected, as it seems
more appealing, at least from a classical testing point of view, to condition on
all known quantities under the null hypothesis in quantifying the replication
under which a tail-area probability is evaluated. This phenomenon is perhaps
also worth further study, since the calculation under the normal assumption
that leads to it is also a part of many (large-sample) evaluations of p-values
based on the Wald type of statistics.

Another interesting point arises when n = 1. With only one observation and
a noninformative prior on ¢2, there is no information to suggest which values
of p€(o2) are most likely. In other words, the posterior distribution of p€(c?)
should be uniform on [0, 1], implying p§ = 3. This is indeed the case, as can be
verified by noticing that the posterior distribution of p€(c?) [under (3.3)] is the
same as the distribution of a random variable (given x),

2
u=1-F (To(aoﬁ),
n

where Fy(¢) is the cumulative distribution function (c.d.f.) of x2. When n = 1,
To(x) = 1, and thus u = 1 — Fy(x3) = U[0, 1]. The fact that p§ = } can also
be verified directly from (3.4), but it is less informative than the fact that the
whole posterior distribution of p€(¢2) is uniform. With a proper prior on o2,
however, even a single observation will provide some evidence against (or in
support of) the null hypothesis, although such evidence may be very diffuse.
The posterior distribution of p©(c?) provides a way of describing the diffuseness
in the “evidence” summarized by pC(c2). This is certainly not feasible with the
classical ¢-test, which is not defined when n = 1 whether or not one has prior
information on o2.

3.2. Two-sample normal means. A classical example of the difficulty with
nuisance parameters is the Behrens—Fisher problem, where it is known that no
useful pivotal quantities exist. Suppose we have independent simple random
samples from two normal populations, N(u1,02) and N(ug,02), with sample
sizes n1 and ny, respectively. We are interested in testing p; = up with both o2
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and o2 completely unspecified; in the notation of Section 2, Oy = {(p, )y, —o0 <
p < oo} CO={(ug,ps), —00 < i, s < oo}. It is easy to check that the CLR of
(2.10) in this case is a monotone function of

(%1 —%p)?
(03/n1) + (03/n2)’
where ¥; and X, are sample means of the first and second sample, respectively,
and ’lp = (/J'l’ K2, U%? 0.%)

Given the free parameters under the null hypothesis, namely (u, 02, 02), it is
easy to see that the conditional p-value for DC is

(% —%2)? }
(03/n1) + (o3 /n2) J”

which happens not to depend on y, the common mean. Choosing the standard
noninformative priors n(0%,02 | u) < 072052 and n(u) « 1, the joint posterior

distribution of 02 and 02 given u is the same as the distribution (given the
data) of

(3.5) DCx, ) =

(3.6) pC(U%,ag) = Pr{x% >

(n1 — 1)s? + ny(x, — p)?
Xh,

g _ (na— D)s2 + ng(%p — p)?

(3-7) 0’% = and 02 )
an

)

where s? and s2 are the sample variances of the first and second sample, re-
spectively; x2 ,x2, and p are mutually independent and 4 has a “combined #”
distribution [Box and Tiao (1973), Chapter 9]

1 % \2 " 1 [ u—-% )\
(3.8) mo(u|x) o |1+ (“_ 1) 1+ <—‘—2>
O(NI ) l: n1—1 81/\/71—1 n2—1 82/\/7_12
This distribution is called the combined ¢ because its limit, as n; and ny become
large, is the “combined” normal from N(xy,s?/n1) and N(%3,s2/n,):

09 wen( MR (i) )] ’)

(s3/m2) ™" + (3/m) ™

The intuition behind (3.8) and (3.9) is clear. Since y; = up under the null hypoth-
esis, an intuitive estimate of the common mean 1 is the combined sample means
weighted by their precisions n;/s?, j = 1,2. The density (3.8) is also a special
case of the so-called poly-¢ densities [e.g., Broemeling and Abdullah (1984)].

Combining (3.6) with (3.7) and (3.8) and letting '51.2 =(1- nj‘l)sJ?, j=12,
we have

—n2/2

pg = Pr{Fl,nl +ng
(3.10)

s (%1 — %2)2(n1 +ng) }
T 324 (®1 — w2 Biltn, + 2+ Fa — w2 (1= Buyny) )
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where the probability is taken over three mutually independent variables: an
F variable Fy ,, .n,, a Beta variable B,, ,, = Beta(n;/2,n,/2), and a combined-¢
variable u having the density (3.8). The evaluation of p§ can be easily accom-
plished by Monte Carlo simulation, which perhaps is the most practical method
for computing posterior predictive (and other) p-values in general; see Gelman,
Meng and Stern (1993) for further discussion.

The posterior predictive p-value of (3.10) is slightly different from the fol-
lowing well-known solution:

(3.11) 5 = Pr{Fl 5 > (fl —52)2(711 +ng — 2) }
: - ,ny+ng—2 Z ,

5123;:11— 1ng-1+85 (1 =Bn—1,n,-1) '

where F1 , +n, -2 and B, _1 ,, -1 are independent. This p can be viewed as
Jeffreys’ Bayesian solution [Jeffreys (1967)] or the Behrens—Fisher fiducial so-
lution] (e.g., Wallace (1980)], depending on one’s perspective. It can also be ob-
tained by using Tsui and Weerahandi’s (1989) generalized p-value approach.
Interestingly, as in Section 3.1, this p is also numerically identical to a pos-
terior average of the conditional p-value of (3.6) if the information p; = pg is
ignored in deriving the posterior distribution of (¢2, 62). Specifically, under the
standard joint noninformative prior 7(u, u2,0%,02) o720, % [Box and Tiao
(1973), Chapter 2], the marginal posterior of (¢2, 02) is

(ny — Ds? (ng — 1)s2

2 ’ 2
an—]. Xng—l

(3.12) [(03,03) [ %1,2] ~ [ :
where the two chi-square variables are independent. Taking the posterior mean
of p©(02,02) of (3.6) with respect to (3.12) yields the p of (3.11). Although p§
and p are essentially identical when the sample sizes are not too small, their
difference may be of theoretical interest since there seems no obvious nonran-
domized classical test statistic that could reproduce p as a (correct) posterior
predictive p-value.

4. An application to multiple-imputation inference.

4.1. General setting of multiple imputation. A problem that is closely re-
lated to the two-sample problem in Section 3.2 arises in multiple-imputation
inference [Rubin (1987)]. Multiple inputation is a general and efficient method
for handling incomplete data, especially for handling nonresponse in large-
sample surveys to produce public-use databases. Very recent overviews of mul-
tiple imputation are given in Meng (1994) and in Rubin (1995). In the multiple
imputation framework, one first builds a model, explicitly or implicitly, that
describes the predictive distribution (e.g., posterior predictive distribution) of
missing data given the observed data and all relevant information. One then
draws independently m > 2 sets of missing values from this distribution as m
sets of imputations. Each set of imputed values together with the fixed set of
observed data forms a completed-data set, to which one can apply standard
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complete-data techniques to compute, say, the MLE of 6, a £-dimensional quan-
tity of interest, and the large-sample variance associated with the MLE.

Let 01, . 0 be those m estimates with U, ..., U,, as the associated vari-
ances, respectlvely The multiple imputation estlmate of 6 is then [Rubin (1987),
Chapter 3]

with associated variance

where ”
1
2 U
measures the within imputatzon r1ab111ty, and

2(91 Om)B) — BT

measures the between imputation varlablhty.
Assuming the size of the observed data x,,s is large and the imputation is
proper [see Rubin (1987), Chapter 4], the following approximations hold:

(41) [517 e 7§m lxobs] ~iid. N(aooaBoo)a

(4.2) [Ulv ceey Um 'xobs] ~iid. [Uoo, < Boo],

where 0o, Boo and U, are the limits of 6,,, B, and U,,, respectively, as m — oo
(conditional on x4ps), and [A, < C] means the distribution is centered around A

with lower order of variability than C. Furthermore, the large-sample distribu-
tions of 0., B and U, as functions of x.,, can be approximated by

(43) [aoo I 'L/)] ~ N(e, UO + BO),
(4.4) [Boo | %] ~ [By, < U + Bol,
(4.5) [Uoo |9] ~ [Us, < Uy + By,

where 9 = (8, Uy, Bg) consists of the primary parameter 6 and nuisance param-
eter v = (Uy, By). If we ignore the lower order of variability, we can assume from
(4.2) and (4.5) that U = Un,, and from (4.4) that By = B It follows then that

(4.6) [6m | 0] ~ N(e, Up + <1 + %)Bo>
and, independently,

1
4.7 [Bm [9] ~ mB}/ *W,, _1By?,

where W,, _; is a Wishart random variable with m — 1 degrees of freedom.
Notice that in (4.6) and (4.7) the only nuisance parameter is By, since Uy(= U},)
is treated as known.
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4.2. Significance levels from multiple imputation. The estimates 6,, and
T, given in the previous section provide a simple method for combining m
sets of completed-data estimates and variances to produce a valid inference. In
practice, standard complete-data analyses often also include calculations of sig-
nificance levels. This suggests a need for corresponding procedures within the
multiple-imputation framework for calculating significance levels from multi-
ply imputed data sets. This task is more complicated primarily because the
number of multiple imputations is commonly small (e.g., m < 5) in practice,
and thus standard large-sample theory (with respect to m) does not apply.
Bayesianly motivated methods for computing significance levels are thus cru-
cial in order to ensure their frequency calibrations in general. The approach of
posterior predictive p-value appears to be one such method.

Suppose one is interested in testing 6 = 6y from (4.6) and (4.7). For simplicity,
assume 6 is a scalar quantity, and hence W,,_1 = x2 _ ;. As a consequence of
(4.6), the CLR is a monotone function of

(6 — 60)
Uo + (1 + l/m)BO’

(4.8) DC(x,y) =

which yields (use Uy = Uy,)
(4.9) pC¢(By) = Pr{xi >

(O — 60)? }
Un+(1+1/m)ByJ

To determine pg, one needs the conditional posterior distribution of the nui-
sance parameter B, given 6 = 6y and the data x, which consists of the observed
data and all imputed data. Under the noninformative prior n(By | 6) « By ! fin
fact, m(By | 6p) is all one needs], it is easy to verify that

_(m - l)Bm }

2B,

~1/2 ~

X (Up + <1 + —1—>Bo exp{ ——— o — Om) ,
m 2[Un + (1+1/m)Bo]

that is, it is a product of an inverse chi-square density and a Pearson type V
density [e.g., Johnson and Kotz (1970), page 12]. The calculation of p§ then
follows from averaging p¢(By) over By according to my(By |x) above, which can
be accomplished by a Monte Carlo simulation.

As before, a measure that is different from p§ can be obtained by ignoring
# = 6y in deriving posterior distribution of By. Specifically, under the additional
prior assignment () « 1, the marginal posterior distribution of By is

m(Bo|x) ~ (m — DBnx,2 ;.

0(Bo | x) oc By ™V exp{

Averaging (4.9) with respect to this posterior density leads to

7 g2
F=Pr{xd>— O %) —
Up+ (1+1/m)(m — DBpx,* ;
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where the two chi-square variables are independent. This p is closely related to
the p of (3.11) by assigning one of the samples in (3.11) an infinite number of
observations. It is also identical to the Bayesian p-value given in Rubin ([1987),
Chapter 3]—the posterior probability of all & whose posterior density does not
exceed the posterior density at 6. An additional consideration when comparing
p$ with p in this case is that mo(By | x) depends on the approximation U,, = Uy,
whereas m(By | x) does not. With large m, the difference between p§ and p will
not be of practical concern, and p might be preferred because its computation
is slightly easier. However, in typical applications of multiple imputation, m
is small (e.g., m < 5), in which case the difference between p§ and p may be
worth further quantitative investigation. Multivariate (i.e., when 6 is multidi-
mensional) extensions of p§ and p are straightforward and are closely related to
the multivariate Behrens—Fisher problem [Li, Meng, Raghunathan and Rubin
(1991)]. Various approximations to p and related calculations are presented
in Rubin (1987), Raghunathan (1987), Meng (1988, 1990), Li, Raghunathan
and Rubin (1991) and Meng and Rubin (1992). Those results may be useful in
approximating p§.

We emphasize that since the Bayesian formulation used above for deriving
pg and p may not be a part of analyses by users of these procedures, the full
Bayesian analysis, although typically more desirable, cannot be recommended
as a general procedure. For example, in analyzing multiply imputed data sets,
an investigator may perform a standard regression analysis on each completed
data set using an existing sortware and then may use p§ or p as a procedure
to calculate the significance level for testing whether a regression slope is zero.
The investigator may not want to perform a full Bayesian analysis for various
reasons, but may be willing to use a Bayesianly motivated frequentist procedure
that has good frequency properties, such as the ones demonstrated in the next
section for posterior predictive p-values.

5. Frequency evaluation. Inthe classical setting, use of p-valuesis often
associated with a preselected nominal level «, typically 0.01, 0.05 or 0.1. A
decision to reject the null hypothesis is made if p < «. It is often stated that
such an «a controls the Type I error—the probability of wrongly rejecting the null
hypothesis based on an a-level test will never exceed a—because, under the null
hypothesis, the sampling distribution of p is either uniform or stochastically
larger than uniform, depending on whether or not the sampling distribution of
the test statistic is continuous, and thus [see, e.g., Bahadur and Bickel (1970)]

(5.1) Pr{p <a|Hp} <c.

The left-hand side above may depend on unknown nuisance parameters, in
which case the replication underlying (5.1) is only conceptual in the sense that
it cannot be simulated in reality.

Such a frequency evaluation is not required for Bayesian analyses, especially
when an analysis is carried out for a particular data set. As pointed out by Rubin
(1984), however, such “frequency calculations that investigate the operating
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characteristics of Bayesian procedures are (Bayesianly) relevant and justifiable
when investigating or recommending procedures for general consumption.” In
fact, in the current context, frequency calculations are more straightforward
and flexible with the Bayesian formulation because the Bayesian formulation
provides a natural way to quantify different replications under which the “T'ype
I” error is measured.

For example, if one is interested in the error rate under the replication with
the free parameters under the null hypothesis having the same (unknown)
value as in the actual study, one then can use the posterior predictive distri-
bution, given in (2.3), as the replication. Of course, such a replication may be
viewed as too restrictive since data sets from different studies may well be gen-
erated from different values of the free parameters even if they share the same
null hypothesis. It is, therefore, practically more relevant to measure the Type
I error rate of pg under the prior predictive distribution conditional on Hy:

5.2) F(XIHo) = [ £(X]9) Do),

¥y

which allows different values of i being drawn from the conditional (on Hy)
prior distribution ITo(3) with each replication. Notice that, in order to do so, the
conditional prior distribution needs to be proper [i.e., f‘l’o IIo(dvy) = 1], as in Box
(1980). Other replications (e.g., fixing some of the free parameters) can also be
of practical interest; see Rubin (1984) and Gelman, Meng and Stern (1993).

Notice that (5.1) is a comparison of the sampling distribution of a classical
p-value with a uniform distribution. The following result establishes a general
relationship between the prior predictive distribution of a posterior predictive
p-value and a uniform distribution on [0, 1].

THEOREM 1. Suppose, given 1) € Uy, the sampling distribution of a discrep-
ancy measure D(X,4) is continuous. Then under the prior predictive distribu-
tion (5.2), the corresponding posterior predictive p-value, pg of (2.8), is stochas-
tically less variable than a uniform distribution but with the same mean; that
is, if U is uniformly distributed on [0,1], then (i) E(pg) = E(U) = % and (ii)
E[h(pp)] < E[RU)] for all convex functions h on [0, 1], where the expectations
involving pp are with respect to (5.2).

PROOF. By the two-stage derivation of Section 2.2, pp can be expressed as
(5.3) DB =E[p(x|1/1) Ix,Ho],
where

p(x|¢) =Pr{D(X,9) > Dlx,Y) [y}, ¥ € ¥y,

is the conditional p-value, which contains (2.9) as a special case with ¥, being
a point hypothesis for §. Under our assumption, given ¢ € ¥, the distribution
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of p(X | ¢) is uniform on [0, 1]. Thus, for any convex functon 4, we have, by (5.3),
E[h(pp)] = E{h(E[p(X[zp) |X,HO]> }
<E {E [h ( p(X| z/))) l X, Ho] } (by Jensen’s inequality)

- E{E[h(p(XW)) 'u; € \po]} = E[h(U)].

Hence, (ii) holds. Identity (i) follows by taking A(z) = ¢ in the above derivation
(obviously the equality holds in this case). In fact, (i) is a consequence of (ii) by
taking A(t) =t and h(¢) = —¢t. O

The above result indicates that, under the prior predictive distribution (5.2),
pp is more closely centered around % than a uniform variable since it gives less
weight to the extreme values [obviously Var(ppg) < %2— by taking A(t) = ¢2 in (ii)].
Intuitively, this suggests that there exists an ag small enough such that

(5.4) Pr{pg <a}<a forall a e [0,a],

where the probability is taken over (5.2). Of course, the value of oy will depend
on the underlying model so there is no general lower bound on «y. However,
the left side of (5.4) cannot be too big compared to o« because of (i) and (ii) of
Theorem 1. Indeed, we have the following result, which is only slightly coarser
than (5.4), but holds in general. Since this result itself may be of independent
interest in other contexts, we list it as a lemma, an elementary proof of which
is given in the Appendix.

LEMMA 1. Let G(a) be the c.d.f of a random variable W on [0,1]. If W is
stochastically less variable than U|0, 1] but with the same mean, then Vo € [0, 1]

o 1/2 « 1/2
(6.5) a— [az — 2/ G(t)dt] <Ga)<a+ [a2 - 2/ G(t)dt} <1.
) 0 0

The first or second inequality becomes an equality for all aif and only if G(a) = .
One direct consequence of (5.5) is that

(5.6) Gla) <2a foralla < %

Applying (5.6) to pp, it implies that, under the prior predictive distribution,

the Type I error rate of pg will never exceed twice the nominal level (e.g., with

a = 0.05,Pr{pp < a} <0.1), and this is true for any nominal level. The bound
2« in (5.6) is achievable in the following pathological example at o for a Go(a)
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satisfying the conditions of the lemma:

0, 0<a<ap,
Gola) = { 20, ap < a < 2oy,
a, 200 < a <1,

but inequality (5.5) suggests that in most practical situations the factor 2 is
simply too large and G(«) should be quite close to . For example, if G(a) > ca
on « € [0, a*] for some ¢ < 1, then (5.5) implies that

5.7 Gla) < [1+(1- c)l/z]a for a € [0, a*].

Inequality (5.7) is interesting because it says that if the error rate of pp is not
too low compared to the nominal level, then it cannot be too high either. For
example, if Pr{pp < a} > 0.75a for o < 0.05, then (5.7) implies that

0.75a < Pr{pp < a} < 1.5ac for o < 0.05.

Sharper bounds, such as Pr{pp < a} < o when a < 0.5, are conjectured for
certain (common) models. Also conjectured are bounds on Pr{pg < a} when
the prior density in (5.2) differs from that of (2.8), a replication that is more
relevant in practice.

APPENDIX

ProoF oF LEMMA 1. By Proposition 8.5.1 of Ross [(1983), page 270], W
being stochastically less variable than UJ0, 1] is equivalent to

1
A1) / [1-G®]dt < }(1—a? forallac (0,11,
Since E(W) = 1/2, inequality (A.1) is equivalent to

a 2
(A.2) / Godi< % forallae (0,11
0
Given o € [0, 1], for any s € [0, 1], we have from (A.2) that

2 S « S o
52 / G(t)dt = / G)dt + / Gt)dt > / G@)dt + Gla)(s — o),
0 0 o 0

since G(t) is nondecreasing. It follows then that, if s € (o, 1],

s?/2 — [ G(t)dt
s—a

(A.3) Gla) < = b,(s).

It is easy to verify that b,(s) attains its minimum at sy € (o, 1] that satisfies
b (sg) = sg, solving which yields

o 1/2
Gla)<sp=a+ [az — 2/ G(t)dt] <1.
0
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The first inequality in (5.5) is established by considering s € [0, ), in which
case “<” in (A.3) becomes “>” and b,(s¢) = s is solved on sy € [0, ). The rest of
the lemma is easy to verify. O

Acknowledgments. The author is grateful to R. R. Bahadur, A. Gelman
and D. B. Rubin for inspiring conversations and constructive suggestions, and
to referees and, especially, an Associate Editor for a set of exceptionally stimu-
lating comments on an early version of this paper. Thanks also go to T. Belin,
S. Pedlow, H. Stern, G. C. Tiao, D. L. Wallace, W. H. Wong, A. M. Zaslavsky and
A. Zellner for helpful exchanges.

REFERENCES

BAHADUR, R. R. (1967a). An optimal property of the likelihood ratio statistic. Proc. Fifth Berkeley
Symp. Math. Statist. Probab. 1 13-26. Univ. California Press, Berkeley.

BAHADUR, R. R. (1967b). Rates of convergence of estimates an test statistics. Ann. Math. Statist.

) 38 303-324.

BAHADUR, R. R. and BICKEL, P. J. (1970). On conditional levels in large samples. In Essays in
Probability and Statistics (R. C. Bose, I. M. Chakravarti, P. C. Mahalanobis, C. R. Rao,
K. J. C. Smith, eds.) 3 25-34. Univ. North Carolina Press, Chapel Hill.

BAHADUR, R. R., CHANDRA, T. K. and LAMBERT, D. (1984). Some further properties of likelihood
ratios on general sample spaces. In Proceedings of the Indian Statistical Institute Golden
Jubilee International Conference on Statistics: Applications and New Directions (J. K.
Ghosh and J. Roy, eds.) 1-19. Indian Statist. Inst., Calcutta.

BAHADUR, R. R. and RAGHAVACHARI, M. (1972). Some asymptotic properties of likelihood ratios
on general sample spaces. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 1 129-152.
Univ. California Press, Berkeley.

BERGER, J. and DELAMPADY, M. (1987). Testing precise hypotheses (with discussion). Statist. Sci.
2 317-352.

BERGER, J. O. and SELLKE, T. (1987). Testing a point null hypothesis: the irreconcilability of p
values and evidence (with discussion). J. Amer. Statist. Assoc. 82 112-122.

BERGER, J. O. and WOLPERT, R. L. (1984). The Likelihood Principle. IMS, Hayward, CA.

Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness. ¢.
Roy. Statist. Soc. Ser. A 143 383-430.

Box, G. E. P.and T1a0, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley,
Reading, MA.

BROEMELING, L. and ABDULLAH, M. Y. (1984). An approximation to the poly-t distributions.
Comm. Statist. Theory and Methods 13 1407-1422.

CASELLA, G. and BERGER, R. L. (1987). Reconciling Bayesian and frequentist evidence in the
one-sided testing problems (with discussion). J. Amer: Statist. Assoc. 82 106-111.

Cox, D. R. (1975). A note on partially Bayes inference and the linear model. Biometrika 62
651-654.

Cox, D. R. (1977). The role of significance tests (with discussion). Scand. J. Statist. 4 49-70.

DEMPSTER, A. P.(1971). Model searching and estimation in the logic of inference (with discussion).
In Foundations of Statistical Inference (V. P. Godambe and D. A. Sprott, eds.) 56-81. Holt,
Rinehart and Winston, Toronto.

DEMPSTER, A. P. (1973). The direct use of likelihood for significance testing (with discus-
sion). In Proceedings of Conference on Foundational Questions in Statistical Inference
(O. Barndorff-Nielsen, P. Blaeslid and G. Schou, eds.) 335-354. Dept. Theoretical Statis-
tics, Univ. Aarhus, Denmark.



1160 ' X.-L. MENG

GELMAN, A., MENG, X. L. and STERN, H. (1993). Bayesian model checking using tail area proba-
bilities. Technical report 355, Dept. Statistics, Univ. Chicago. To appear in Statist. Sinica.

Goop, 1. J. (1992). The Bayes/non-Bayes compromise: a brief review. J. Amer. Statist. Assoc. 87
597-606.

HwaNG, J. T., CASELLA, G., ROBERT, C., WELLS, M. T. and FARRELL, R. H. (1992). Estimation
of accuracy in testing. Ann. Statist. 20 490-509.

JEFFREYS, H. (1967). Theory of Probability, 3rd ed. Oxford Univ. Press.

JounsoN, N. L. and Kotz, S. (1970). Continuous Univariate Distributions—I. Wiley, New York.

L1, K. H., MENG, X. L., RAGHUNATHAN, T. E. and RuBIN, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statist. Sinica 1 65-92.

L1, K. H., RAGHUNATHAN, T. E. and RuBIN, D. B. (1991). Large sample significance levels from
multiply-imputed data using moment-based statistics and an F reference distribution.
J. Amer. Statist. Assoc. 86 1065-1073.

McCULLAGH, P. (1990). A note on partially Bayes inference for generalized linear models. Tech-
nical Report 284, Dept. Statistics, Univ. Chicago.

MENG, X. L. (1988). Significance levels from repeated significance levels in multiple imputation.
Ph.D. qualifying paper, Dept. Statistics, Harvard Univ.

MENG, X. L. (1990). Towards complete results for some incomplete-data problems. Ph.D. disser-
tation, Dept. Statistics, Harvard Univ. (Printed by UM.I., Ann Arbor, MI.)

MENG, X. L. (1994). Multiple-imputation inference with uncongenial sources of input (with dis-
cussion). Statist. Sci. 9 (4).

MENG, X. L. and RuBIN, D. B. (1992). Performing likelihood ratio tests with multiply-imputed
data sets. Biometrika 79 103-111.

RAGHUNATHAN, T. E. (1987). Large sample significance levels from multiply-imputed data. Ph.D.
dissertation, Dept. Statistics, Harvard Univ.

Ross, S. M (1983). Stochastic Processes. Wiley, New York.

RUBIN, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied
statistician. Ann. Statist. 12 1151-1172.

RuBIN, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.

RuBIN, D. B. (1995). Multiple imputation after 18 years. J. Amer. Statist. Assoc. To appear.

SHAFER, G. (1982). Lindley’s paradox (with discussion). J. Amer. Statist. Assoc. 77 325-351.

Tsul, K.-W. and WEERAHANDI, S. (1989). Generalized p-values in significance testing of hypothe-
ses in the presence of nuisance parameters. J. Amer. Statist. Assoc. 84 602-607.

WALLACE, D. L. (1980). The Behrens—Fisher and Feiller-Creasy problems. In R. A. Fisher: An
Appreciation (S. F. Fienberg and D. V. Hinkley, eds.) 119-147. Springer, New York.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO

5734 UNIVERSITY AVENUE
CHICAGO, ILLINOIS 60637
MENG@GALTON.UCHICAGO.EDU



