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ON GOOD DETERMINISTIC SMOOTHING SEQUENCES
FOR KERNEL DENSITY ESTIMATES!

By Luc DEVROYE
McGill University

We use the probabilistic method to show that iff;,, is the standard kernel
estimate with smoothing factor &, then there exists a deterministic sequence
hy such that, for all densities,

f'fnh,, f'
liminf ————"—
n—co infy E [ |fan —f-

1. Introduction. Let X;j,..., X, be i.i.d. random variables with common
density f on the real line. We consider the kernel estimate

1 n
falx) = - ;Kh(x -Xp),

where Kj,(x) = (1/h)K(x/h), h > 0, is the smoothing factor depending upon n
only, and K, the kernel, is a given function integrating to 1 [Akaike (1954),
Rosenblatt (1956) and Parzen (1962)]. Sometimes we will write f,;, to make the
dependence upon £ explicit. We assume throughout that K is L;-Lipschitz, that
is, that there exists a constant C such that

Clu —v|
max(u,v)’

/ K, () — K, ()| dx <

Furthermore, we require that the smallest symmetric unimodal majorant of
|K| be in L; and L,. (Both conditions are satisfied for all kernels of general
interest.) The L,-error given by

Jon= [ Vfon ]
measures in many situations the quality of the estimate f,.

THEOREM 1. There exists a deterministic sequence h, such that, for all
densities,

lim inf E J 1o, = =1.
n— o0 lnfthlfnh-'fl
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This theorem shows that there is a deterministic sequence of smoothing
factors that is asymptotically optimal for any density in the world, at least along
a subsequence. What is interesting is that there is an uncountable continuum
of possible rates to zero for inf, E [ |f,, — f|. (To see this, play a bit with the
unsmoothness or the tails.) Yet, our sequence has only countably many values.

One would think that data-based smoothing sequences should do better than
this. Maybe we might even suspect that there exists a sequence of functions
H,: R" — (0,0) (called data-based smoothing factors) such that, for example,

flanu l =1
mfhflfnh _fl

almost surely for all densities, where H,, = H,(Xy, ..., X,). However, such a
rule has not been exhibited to date. In fact, it is probably futile to look for
one. Theorem 1 simply says that if we are going to prove that any data-based
smoothing sequence is poor, it can only be provably poor along subsequences.

The proof is nonconstructive. However, with probability 1, an i.i.d. exponen-
tial sequence will do. While almost every exponential random sequence has
the optimality property stated in the theorem, no data-based smoothing factor
published in the literature shares this property, as all methods I am aware of
are asymptotically suboptimal on given subclasses of densities.

2. Proof.
We introduce two real number sequences, o, and 3, linked by the relation

E [ Ifup, ~fI=10€E [ Ifun ~f1 = o

The existence of 3, follows from the continuity of the L, criterion with respect to
h.From Devroye and Gyorfi [(1985), page 12], we have n3, — oo. Ifthe kernel K
has a characteristic function that is not identically 1 in an open neighborhood of
the origin, or if f has a characteristic function of unbounded support, then 3, —
0 as well [Devroye (1989), Lemma S1]. For now, we assume such a situation.
Also, a;, — 0 for all densities. For fixed ¢ > 0, we further note that if 4 €

(Bn — €0nBn, Pn + €anf,), then
E/lfnh “fl< E/ \fuss 11 +E/ \fogs — Fo

<ap+ /|Kﬁn K|

C| Bn — h|
max(8,,h)
< ap(1+Ce).

La,+

If we take a random sequence of i.i.d. exponential random variables H, as
smoothing factors and make sure that the sequence is also independent of the
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data, then
P{|H, — Ba| < e0nfn} = (2 +0(1))eatsBn.
Let A, be the event that
E{J,, |H,,}
ol S el P (Y )
inf,Ed, S1tC°
Then

P{A,} > (2+ o(l))ganﬂ,,.

As the A,’s are independent, we see that

P{A,i0}=1
when

Z 0 B = 00.

n=1

By Devroye and Gyorfi [(1985), page 139],

1
an > §E/lfnﬁ,. —Kg, * f|.

Next, by Devroye [(1988), Lemma 5] and the fact that 3, — 0,

IR VE
4

liminf \/ngB, o, >
n— oo

We therefore need only verify that

oo

> =
n

n=1

but this is a simple consequence of the fact that n3, — co. We have shown that,
for our random sequence,

P{Ve>0:A4,i0}=1.

Therefore, there exists at least one deterministic sequence {h,} such that, for
alle >0,

E{Jnh, }
infy B

for infinitely many n. For more examples of existence proofs through random-
ization, we refer to the literature on the so-called probabilistic method [see
Alon, Spencer and Erdés (1992)].

<1+C:e
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When the kernel has a characteristic function that is identically 1 in an
open neighborhood of the origin, and the characteristic function of f vanishes
outside a compact set, then 3, tends to a constant 8 > 0. It is easy to modify
the proof to handle this case as well. Note that this is the reason why we need
a density with full support on [0, co) such as the exponential density instead of,
say, the uniform [0, 1] density, as we want to ensure that £ is in the support of
the H, sequence. O
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