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ON CURVE ESTIMATION BY MINIMIZING MEAN ABSOLUTE
DEVIATION AND ITS IMPLICATIONS!

By JIANQING FAN AND PETER HALL

University of North Carolina and Australian National University

The local median regression method has long been known as a robustified
alternative to methods such as local mean regression. Yet, its optimal sta-
tistical properties are largely unknown. In this paper, we show via decision-
theoretic arguments that a local weighted median estimator is the best least
absolute deviation estimator in an asymptotic minimax sense, under L;-loss.
We also study asymptotic efficiency of the local median estimator in the class
of all possible estimators. From a practical viewpoint our results show that
local weighted medians are preferable to histogram estimators, since they
enjoy optimality properties which the latter do not, under virtually iden-
tical smoothness assumptions on the underlying curve. Among smoothing
methods that are adapted to functions with only one derivative, little is to
be gained by using an estimator other than one based on the local median.

1. Introduction. Local weighted median regression methods have been
considered as an effective robust nonparametric smoother. See, for example,
Hérdle and Gasser (1984), Tsybakov (1986), Truong (1989), Hall and Jones
(1990), Chaudhuri (1991) and references therein. Yet, its asymptotic optimal-
ity properties are largely unknown. Tsybakov (1986) showed that the local
weighted median estimator achieves optimal rates of convergence. However,
it still remains unknown how efficient the local weighted median smoother is.

To motivate our study, let us first consider L,-theory. Consider the regression
model,

Y, =gx)+e;, Ee=0, var(e;) = 1,

where {¢;} are independent and identically distributed random variables, and
{x;} are design points. The popular approaches in the vast nonparametric lit-
erature include the methods of kernel, splines (polynomial splines and smooth-
ing splines) and orthogonal series. For details, we refer to the recent books by
Hérdle (1994) and Wahba (1990), among others. All of these procedures are
locally linear, in the sense that the estimator admits the form g(x) = ¥; w,Y;,
where the weights are independent of Y;. In other words, all popular regression
methods in the literature are a subclass of the class of smoothers {a} which
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868 J. FAN AND P. HALL
minimise

(LD > wil¥; —al,

i=1

for weights w;. Here the optimal weights are derived from a quadratic kernel
function, the so-called Bartlett—-Epanechnikov kernel, and the formula for w;
depends on x;.

Different methods assign different weights. Among linear smoothers, Fan
(1993) found a best linear procedure and proved that the local polynomial re-
gression is an asymptotic linear minimax procedure. He also showed that there
is little to gain if one attempts to use a nonlinear procedure. In other words, the
class of linear smoothers is small enough for one to be able to identify the best,
and is large enough for there to be little loss of efficiency by restricting attention
to this subclass of estimators. See Ibragimov and Khas’'minskii (1984), Donocho
(1994) and Donoho and Liu (1991) for comprehensive studies of the minimax
theory of both linear and nonlinear procedures. See also Brown and Low (1992).

The above motivations suggest that the best local median smoother should
be optimal in the class of least absolute deviation (LAD) smoothers. To fix this
idea, let © denote the class of all possible estimators 9 = 6, that are obtained
by minimising the weighted sum of absolute deviations [compare with (1.1)]

1.2) > wilY; -6,

for an arbitrary choice of nonnegative weights w = (w,,...,w,). Here, the
weights do not depend on the random variables {Y;}. Throughout the paper,
we call © the class of LAD estimators.

To simplify our discussion, we consider estimating the median regression
function g(x) at the point x = 0. Define the class of unknown regression
functions by

= {g: g(x) — g(0)| < ajx| for all x},

where a is a positive constant. We limit ourselves to this class to avoid tech-
nicalities; possible extensions are discussed in Section 3. Let Ryap denote the
LAD minimax risk:

Riap = 1nf sup Eg]0 g(0)|
bebd g€

We then find an asymptotic formula for Ry ap for this highly nonlinear class of
regression estimators and show that the local weighted median smoother with
a triangular kernel (2.5) achieves the minimax lower bound. In other words,
the local weighted median is the best LAD in an asymptotic minimax sense.
(Henceforth, for the sake of simplicity, we shall omit the adjective “weighted”
from this description.)
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How much can one possibly gain by searching for a smoother other than the
local median smoother? To answer this question, let

Ry = inf sup Eg|6 —g(0)|
6 g€G

be the minimax risk, for estimating g(0), among all possible procedures. Let
rn/L, defined by (2.8), be the ratio between the minimax risk of the nonlinear
procedure and that of the linear procedure for the bounded normal mean prob-
lem, under L;-loss. According to Donoho (1994), ry,z, > 1/1.23, obtained by Liu
via numerical computation. Then, we show that

R Lo\
(13) 1> R_LIZD > rN/L (—4—};—2—(0—)> {1 +0(1)},

where f(0) and I. are the density and the Fisher information of the random
variable €. The first factor can be interpreted as the loss of efficiency by using
the “linear class” of estimators, and the second factor as the loss of efficiency
by using the least absolution deviation method instead of local maximum like-
lihood. See Remark 2.3 for details. The second factor of (1.3) equals unity if
the error distribution is double exponential. In this case, the local maximum
likelihood and the local LAD method are the same.

In the above discussion of minimax risks, we keep the distribution of the error
¢ fixed. Since the least absolute deviation method does not use knowledge of
the error distribution, it is also reasonable to consider the minimax risk which
takes the error distribution to be a nuisance parameter. If we allow the error
distribution to vary in such a way that f(0) > fo, then we have

(1.4) 1> B0 >y {140(D)} > 0.813{1 40D},
Risp

where R}, is defined similarly to Ry except that the class of unknown functions

is now defined by

(1.5) {(g, F): & € S, F(0) > fo and f is equicontinuous at 0}.

In other words, in a more global minimax sense (which allows the error distri-
bution to vary), there is little to be gained by using a nonlinear procedure. The
justification is given in Remark 2.1.

This conclusion is of practical significance, but the data-analytic implica-
tions of our work extend beyond such results. The main practical competitor
with the local median, under virtually identical smoothness assumptions and
enjoying a broadly similar convergence rate, is the histogram estimator. How-
ever, since histogram methods do not enjoy the same optimality properties as
those based on local medians, then the latter approach is preferable. In this
sense, the relationship between local median estimators and histogram esti-
mators is similar to that between local mean estimators and kernel estimators.
Fan (1993) showed that, while kernel estimators enjoy more popular appeal
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than their counterparts based on local means, they do not enjoy the optimality
properties of the latter. In practical work on curve estimation, the local median
and local mean should be seen as significant competitors with histogram and
kernel estimators, respectively.

Our minimax scenario is stimulated by the pioneering work of Ibragimov and
Khas’'minskii (1984), Donoho (1994), Donoho and Liu (1991) and Fan (1993).
However, the current study is also very different. For example, quadratic loss
was used in most of the above studies; linear procedures were singled out for
specific consideration; and Gaussian white noise models were assumed. Al-
though L;-loss was also considered by Donoho (1994), the statistical procedure
that he used is still linear. Yet, the LAD estimators studied in this paper are
certainly nonlinear.

The paper is organised as follows. Section 2 gives the main results on mini-
max theory. Section 3 discusses the possible extensions and implications of our
main results. The technical proofs are given in Section 4.

2. Bounds for mean absolute deviation. Assume that the pairs (x;,Y;),
1 <i < n, are generated by the model

Y =g(x) +e;,

where g € G,; the sequence x1,xy, ... (which is taken to be fixed, i.e., is condi-
tioned upon) represents a realisation of a sequence X;,Xp, ... of independent
and identically distributed random variables from a population whose distribu-
tion function admits a bounded derivative d in a neighbourhood of the origin,
satisfying

(2.1) d is continuous at the origin, and d(0) > 0;

and the ¢;’s are independently and identically distributed, with a bounded den-
sity f satisfying

2.2) f is continuous at the origin, and £(0) > 0.

The median of ¢; is zero. Let Z denote a standard normal random variable, and
define

Gw)=u"Y3E|Z +u|, u>0.

Letug = 0.65735. . . denote that value of u which minimises G, and let min,, G(u)
= G(up) = 1.109064. .. be the minimum value of the function G(u). The value
uo and G(uo) were computed via numerical integration. Set

(2.3) h =n~13{2a%£(0)*d(0)/3} /2.

We begin by describing a lower bound to the best worst-case convergence rate
of LAD estimators of g(0).
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THEOREM 2.1. Assume the conditions stated above, in particular (2.1) and
(2.2). Then,

(2.4) inf sup E,|0—g(0)] > {1+0(1)}n~Y3a1/3{18£(0)2d(0)} " *Gluy).
€O g€ G,

Next we describe an upper bound, which shows that the “optimal” mean
absolute deviation suggested by Theorem 2.1 is asymptotically attained by the
LAD estimator which uses the weights

{h —|wil, if x| < A,
w; =

2.5
2.5) 0, otherwise,

where h is given by (2.3).

THEOREM 2.2. Assume the conditions of Theorem 2.1. Let w be given by
(2.5), and let 8y denote the estimator constructed using that particular choice of
weights. Then,

(2.6)  sup Eg|fo —g(0)] < {1+0(1)}n~3a/3{18F(0)2d(0)}~ */*Gluy).
€S

Combining the inequalities (2.4) and (2.6), and noting that the lower and up-
per bounds are asymptotically equivalent, we see that in each case the inequal-
ity may be replaced by an equality. In other words, the local median smoother
with the triangular kernel (2.5) is the best LAD estimators and the asymptotic
LAD minimax risk is given by

Riap = {1+0(1)}n~3a1/3{18£(0* d(0)} ~ °Gluy),

where G(ug) = 1.109064. ... To our knowledge, this is the first time that mini-
max risk has been derived for the class of highly nonlinear smoothers.

The value G(uy) is indeed closely related to the bounded normal mean prob-
lem under Li-loss. Let

@.7) @) =infsup E|bZ — 6|,  pn(® = infsup E|6Z) - 6], Z~ N©,1),
b o<t § 10)<t

be the linear minimax risk and minimax risk for estimating 6, knowing
|0] <t.Set

(2.8) rN/L = ll;lf pN(t)/pL(l‘).

Thé similar quantities under L,-loss have been extensively studied in the lit-
erature. See, for example, Levit (1980), Bickel (1981) and Donoho, Liu and
MacGibbon (1990). Using the fact that E|bZ — 6| is convex and symmetric in
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6, its maximum over {|f| < ¢} must attain at § = ¢. This, together with some
simple algebra, shows that

sup oz (Ot~ /3 = Gluo)(2/3)%/3(1/3)Y/3.
t

Thus, we can express Rpap as
(2.9) Riap = {1+0(1)}{3a/8%(0)d(0)n}"* sup pp )t~ /3.
t

We next examine the minimax lower bound among all possible estimators.
Let us impose some condition on the density f of the random variable ¢.

ConpITION 2.1.  The function { f(x + ¢)/ f(x)}/? is differentiable in quadratic
mean at ¢ = 0 with the derivative function v(x) [see Le Cam (1985), pages 574—
578], that is,

(2.10) E{\/Fe+D]f© —1—tv(e)}’ =o(t), ast— 0.

Condition 2.1 is used to ensure experiments under consideration converge to
a Gaussian shift experiment, as defined by Le Cam (1985). See Lemma 4.3 for
more details. As a consequence of (2.10), the Fisher information

I. = 4Ev%(e) < 0.

THEOREM 2.3. If the density satisfies Condition 2.1, then we have the fol-
lowing minimax bound.:

(2.11) Ry > {1+0(1)}{3a/2nd(0)I.} /> supt=/3py(2).
t>0

Indeed, Theorem 2.3 is a special case of the following setup. Let G be a class
of the median regression functions. Let the modulus of continuity of functional
g(0) be

wg(e) = sup {Igo(O) -g100): g €5, llgo—&1ll < 6}’

where || - || is the usual Lg-norm. In many nonparametric setups such as Theo-
rem 2.3 [see Donoho and Liu (1991) for the calculation of wg, ()], the following
condition holds.

-CONDITION 2.2. G is convex and the extremal pair of wg(e||H||) can be chosen
to satisfy

(2.12) go(x) — g1(x) = e?H (x/e"?) {1 +o(D)},
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uniformly in x as ¢ — 0 for a continuous function H(-) with a compact support,
whereqg =1 —p.

Note that (2.12) implies that ||gop — g1 || = ¢||H||{1 + 0(1)}. Thus, Condition 2.2
implies that

2.13)  wg(IH|e) = |g0o(0) — g1(0)|{1 +0(D)} = [H(0)[” {1 +o(1)}.

We are now ready to state Theorem 2.4.

THEOREM 2.4. Suppose that Conditions 2.1 and 2.2 hold. Let £(-) be a convex
loss function satisfying ((tx) = t"l(x) for all t > 0. Then, we have the following
minimax lower bound for estimating g(0) in the class G under the loss func-
tion 0(-):

Ry(S;€) = inf sup E¢(g — g(0))
& geg

(2.14) e T
> {1+0(1)} [wg<{I€ d0)n} )2-‘1] sup t~ 7 py(t; £),
t

where pn(t; £) is defined similarly to (2.7) except the loss now is .

REMARK 2.1. The least absolute deviation method does not use the knowl-
edge of error distribution. Thus, it is also appropriate to study the minimax
risk among the class of unknown parameters defined by (1.5). Then, the LAD
minimax risk is given by [see (2.6) and (2.9)]

Riap < {1+0(1)}{3a/8f2d0)n}"? sup pr(t)t~ /2,
t

Now, if we take f(x) = fy exp(—2fp|x|) in Theorem 2.3, then the minimax lower
bound is

Ry > {1+0(1)}{3a/8f2d(0)n}"* sup py(t)t~ /3.
t

Thus, (1.4) holds. There is not much gain (at most by a factor of 1.23) by using
an estimator other than the local median estimator.

REMARK 2.2. Keeping the distribution of ¢ fixed, the ratio of the minimax
risks is given by (1.3). [Compare (2.9) and (2.11).] The second factor can be
interpreted as the loss of efficiency inherent in using the least absolute deviation
estimator instead of using the maximum likelihood estimator:

n
(2.15) SMLE = argm&ax{ Zwi log f(Y; —a) }
_ i=1
The first factor can be explained as the loss of efficiency when restricting the

estimator to the class of estimators obtained by minimising linear forms in the
log-likelihood, as defined by (2.15).
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REMARK 2.3. If we take the L,-loss in Theorem 2.4, then
Ry(S,0) > {1+0(1)} (w'g [{IE dO)n}~ 1/2] 9~ q) sup ¢~ "9 py(t; ).
t

In particular, if we take G = G,, then

inf sup E|§ — g(0)" > {3a/2d(0)1.} sup ¢"/2py(t;r) forr > 1,
6 g€g, t>0

where

pn(t;r) = inf sup E|6(Z) — 0, Z ~ N(0,1).
& jeI<t

3. Discussions. We have derived the asymptotic minimax risk under L,-
loss for a specific class of smoothness G,. Yet, the minimax scenario does not
end here. We mention here several possible extensions, to indicate the general
phenomena behind the theory that we presented. The proofs of these conjectures
are beyond the scope of this paper.

Convex loss function and the class of linear estimators. Consider again es-
timating g(0) in the class of mean functions G,. Let £ be a convex function with
a unique minimiser at 0. Let the function g be defined by

gx) = argmin E{{(Y — b) | X =x}.
b

Let(X;,Y;), i =1,...,n,be arandom sample from the population (X,Y). Define

the class of “linear estimators” 6 = §,, that are obtained by [compare with (1.1)
and (1.2)]

(8.1) 6= argmin{ > wil(Y; - 9)},

o i=1

where w; are nonnegative weights depending only on the covariates {X;}. Here,
the linearity refers to the fact that the deviation function is linear in the func-
tion £(Y; — 6). In the Ly-case, this linearity entails that the resulting estimators
depend linearly on {Y;}. We would expect that the estimator (3.1) with triangu-
lar kernel defined by (2.5), where the bandwidth A minimises the corresponding
maximum risk of the estimator, is an asymptotic “linear” minimax estimator
and that there is little gain by using nonlinear procedures.
To make the above statement more precisely, suppose £ satisfies

(8) =clt| {1+0(1)} ast— 0.
With Z ~ N(0, 1), set
Gew)=E{u""*lu+2)}, u,=argminGeu).
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Then, the asymptotic “linear minimax” risk under the convex loss function £ is
expected to be

Ry = {1+0(1)}{2a0%/9nd(0)}"*Gy(us),

and the optimal weight is given by (2.5) with & = {6uZ02/d(0)na?}'/3, where
with ¥(®) = E[{Y — g(0)+ £} | X = 0],

o? = E( ey —g(O)}]2 ]X = o) / ("0}

This conjecture is stimulated by (2.9) together with the expressions, given by
Tsybakov (1986) and Fan, Hu and Truong (1994), of the asymptotic bias and
variances that arise in estimating g. We would also expect that Remark 2.1
holds with appropriate changes. For example, the constraint (1.5) should be
changed to o7 < B, instead of f(0) bounded from below.

Other classes of constraints. Consider, for example,
S = {g: |gx) — g(0) — g'(0)x| < ax?/2 for all x}.

Define the class of “linear smoothers” & which together with 3 minimises

> wilY; — o — X)), oreven Y wil(Y;— o).
i=1 i=1

~

Of course, a estimates g(0). We would expect that the optimal weight is
Epanechnikov-kernel weight:

w; = (1-|Xi/h?),,

where A is chosen to minimise risk. We would also expect that one cannot much
improve on the best linear smoother.

We finally remark that the constant factors in the asymptotic minimax risks
(linear and nonlinear) given in Section 2 depend on the class of unknown func-
tions only through the modulus of continuity as explained by Donoho (1994)
and Donoho and Liu (1991).

4. Proofs.

ProoF oF THEOREM 2.1. We preface the proof with two lemmas. Their
proofs are conceptually straightforward, although algebraically tedious, and
may be found in Fan and Hall (1992). ‘

LEMMA 4.1. Let wy,...,w, be chosen to minimise E |g(0) — g(0)|, with

) = {alxl, if x| <e

(4.1)
ac, if |x|>ec.
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Ifc > Ois taken sufficiently small and the conditions of the theorem are imposed
on the design and error distributions, then, for each n > 0,

() / ($m) o

LEMMA 4.2. Fixa,c > 0,and define g(x) = a|x| if |x| < ¢, g(x) = ac otherwise.
Assume that the design variables x; are as stipulated in Theorem 2.1. Let £\
and £;%) denote, respectively, the infimum and supermum of ¥ w;g(x;), subject
to Sw? = 1. Let £V < ¢, < 2. Then the maximum m(f) of ¥, w;, subject to
Y wig(x;) = L and Y w? = 1, satisfies

asn — oQ.

n= Y30 Ym(e,) » 0 if £, — oo,
n~Y3m,) - 0 if ¢, — 0.

Let g be defined by (4.1), and let b,¢ > 0 be as defined in the proof of Lemma
4.1. Define J;(u) = sgn{e; +g(x;) —g(0) +u}, and set A = E|§ — g(0)| = E|6|. Then

4.2) A= /Ooo {P{ zn:w,-Ji(u) < 0} +P{ iwiJi(—u) > 0}] du.
i=1

i=1

Assume that the weights w; are chosen to minimize A when g is given by (4.1).
In view of Lemma 4.1, § = {Sw;g(x;)}/(Zw;) — 0 as n — oco. Define u(u) =
Y w;EJ;(u), and let

(4.3) V@) =Y wi{Jiw) - EJy(u)}.
i=1
Now p(6v) = 2f(0)(1 + v)¥ w; glx;) — Ry (v), where, for each vy > 0,
(4.4) |slup |R1(v)| = o{ Zwig(xi)}.
vl <vo i=1

In this notation, for each vy > 0,

A=6 / ” [P{V(ev) < (0} + P{V(~60) > —u(—~5v)} |dv
0

45 = 6/01;0 [P{V(év) < -2f(0)1 +v)Zwig(xi)+R1(v)}

i=1

+ P{V(-av) > —2f(0)1-v)) w;glx;) +R1(—v)}] dv.

i=1
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We may standardise the w;’s by asking that
n
(4.6) > wi=1
—

This assumption will be imposed in all that follows. By passing to a subsequence
of n-values, if necessary, we may assume without loss of generality that, for some
0< A< oo,

n
i=1

We claim that A = 0 and A\ = oo are both impossible. Let us first treat the
case A\ = co. Here, if 0 < v < 1 then, since E{V(—6v)?} is uniformly bounded
[indeed, by (4.6), is bounded by unity], the second probability in the integrand
of (4.5) converges to unity. Therefore, A > {1 +0(1)}é. In the context of Lemma
4.2, let £, = Y w; g(x;) for the particular choice of weights w; that minimise A.
Then 6 exceeds af,/m(4,), where m is as in Lemma 4.2; and by that lemma,
n'/3¢, /m(£,) — co. Thus, n'/3A — oco. However, Theorem 2.2 shows that it is
possible to choose the weights w; so that A = O(n~'/3). Hence, the assumption
X = oo contradicts our assumption that the w;’s are chosen to minimise A when
g is given by (4.1).

Next we show that A = 0 is also impossible. If v > 0 then, writing C; = supf,
we have

g (x;) + 6v
0 < EJ;(6v) =2 f(y)dy < 2C1{g(x;) + bv},
0

with a similar inequality for v < 0. It follows that

u(6v)| <> wi|EJi(80)] < 2C1 (1 +[v]) Y w;glxy).
i=1 i=1

Hence, if v > 0,q) = P{V(év) < —u(bv)} + P{V(év) > u(—év)} satisfies

q) > P{V(év) <-2C,1+0v)) wig(xi)}
(4.8) i=1
+P{V(—6v) >2C1(1+0)) wig(x,-)}.
i=1
Let L; = sgn{e; + g(x;)} and W = S w;(L; — EL;). Then,

var{V(6v) - W} < 3" w?E{J;(6v) - L;}"
i=1
(4.9) < > w?P{le +g)| < 6|}
' i=1
< C18lo| > w? = Cy6lv).
i=1
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If¢ > 0and

n -1
(4.10) lv| < 51{01 > w; g(xi)} )

i=1

then 6jv| < &,CT ! and so var{V(sv) — W} < & . Therefore, defining ¢ = 5;/3, we
see that if (4.10) holds, then

P{V(6v) < —€} > P(W < —2¢) — P{|V(6v) — W| > £}
>P(W < -2¢)-¢.

Similarly, P{V(—év) > ¢} > P(W > 2¢) — ¢. Thus,
P{V(bv) < —€} + P{V(-6v) > ¢} > P(|W| > 2¢) — 2¢.

Combining this result with (4.8) we see that, for each ¢ > 0,

n -1
(4.11) /0 q)dv > {P(|W| > 2¢) — 25}53{01 Zwig(xi)} )
i=1

To conclude our proof that A = 0 is impossible, we may assume without loss
of generality that, for some 0 < M < 1and 0 < ¢ < 1, maxw; — X\ and
var(W) — o2, [Otherwise, use a subsequence argument. Ifc is sufficiently small,
then o #0. Assumption (4.6) guarantees that o < 1.] Suppose the indices ; have
been permuted, so that maxw; = w,. If \’ = 0, then Lindeberg’s theorem may
be used to prove that W is asymptotically normal N(0,c2). Writing Z for a
standard normal variable, and taking £ > 0 to be so small that g, = {P(c|Z|
> 28) — 2¢}¢3 > 0, we see from (4.11) that

n -1 n -1
(4.12) 6/0 q)dv > {1 + o(1)}q06{C1 Z wig(xi)} ~ qo (Cl Z wi) .
i=1

i=1
If M > 0, then
P(|W| > 2¢) > iBfP(wn|K,, +u| > 2¢)
= i{tlfP[wn|I{a +g(xn) > 0} +u| > 5].

For £ > 0 sufficiently small, the right-hand side above is bounded above 2¢ as
n — oo. Taking ¢ of this form and defining g, to equal the liminf (as n — oo)
of the right-hand side, minus 2¢, we deduce once more from (4.9) that (4.10)
holds. Now apply the second part of Lemma 4.2, with £, = Yw; g(x;), to show
that n'/3yw; — co. Hence, n/3A — oo, which (as in the case )\ = co) we know
from Theorem 2.2 to be false. We may therefore assume that, in formula (4.7),
0<A<oo.
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It now follows from (4.4), (4.5) and (4.7) that

Az [ [P{V(En) < -2 FONL+0)+ Reo)
(4.13) /o [plven < -—2f D+ R}
+P{V(=60) > —2f(ON1 - v) + Ry(-v)}] d,

where 0 < A < oo and ¢’ = supy, <, [R2(v)| = o(1). Let W be as defined two
paragraphs above. In view of (4.9),

sup P{|V(év) — W| > 6"/*} < 6=1/2 sup E{V(év) — W}2 < Cqvob1/2.
|

[v] <wo ] <wo
Hence,
P{V(év) < —2f(0)A(1 +v) +Ry(w)} > P{W < —2f(0)A(L +v) — (67/* + §")}
- 01U051/2,

uniformly in |v| < vg. Similarly, P{V(év) > —2f(0)A(1 — v) + Ra(—v)} may be
bounded below, whence by (4.13),

A>5 /0 " [P{W < 201 +v) - 6V + )
+P{W > —2f(OX1 —v) - (64 + 8"} | dv — 2C1006*/?
=5 /0 " [P{W < -2f0NL+0)} + P{W > ~2fOX1 - 1)} dv +0(6).
Noting that E(W 2) is bounded, and defining W’ = {2£(0)\}~'W, we obtain

/ h [P{W < —2fO@X(1+v)} + P{W > ~2f(ON1 - v)}] dv

Vo

5E(W’+1)2/ v=2dv — 0,

Vo

uniformly in n as vg — oc. Therefore,

A> {l +0(1)}6/oo {P(W' +1< -0)+PW' +1>v)}dv
0
= {1+0(WYSEW’ +1| = {1+0(1)}EB,

Finally, we show how to choose wy, . . ., w, to minimise B asymptotically, sub-
ject to Lw? = 1, when g is given by (4.1). The method of infinitesimal calculus,

(4.14)

where

{2fO)} 'Y wiLy — EL) + ) wigle:)|-

i=1 i=1
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with a Lagrange multiplier, provides the formula

Wi = { a{aB —gl;)}, ifglx;) <ap,

0, otherwise,

with «, 3 > 0 to be selected. A little asymptotic analysis shows that, in order
to attain a minimum, we must have 8 = 8(n) — 0 as n — oo, in which case
(maxw?)/(X w?) — 0, which implies that, since L w? = 1,

> wiL; - EL;) — N(0,1)

i=1

in distribution. Therefore, if the random variables Z is standard normal,
. -1 -1
inf B ~ ] 'E|{2(0)} " 'Z +15),

where

t1 = aaz — |xi|)I(|xi| < B) ~ naag®d(0),

to=a O‘Z — i) el (jx;| < B) ~ 3na 2a8% d(0).
The constraint ¥ wf = 1is equivalent to

1= na2a2z |x,| (jx:| < B) ~ Zna®a?B d(0).

Therefore, a = {2rna?63d(0)} ~ /2, whence

t1 ~ {$dOnp}?,  ty ~a{ldO)ng®}"?,

inf B ~ {3d(0)} ™ *n"3(np)" /"
x B|{2£(0)}'Z + a {1 d(0)} 2(ng®)"V/?|.

Define (s) = s~ Y8E|{2f(0)} Z + a{% d(0)}!/2s'/2|, and let sy > 0 minimise .
Taking § ~ (n~ 1s9)1/3, we see that

inf B~ n=3{3d0) V*1(s0), @ {2a2s3d0)}
From this result and (4.14) we conclude that

A> {1+o(D)}n~Y3{2d0)} V4(so),
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which is equivalent to (2.4). This completes the proof of Theorem 2.1. O

PROOF OF THEOREM 2.2. Let us standardise for scale in definition (2.5) of
w; by redefining

n

-1/2
w; = {(h — eI (%] < ) }{ d(h- i) 1 (1] < h)}

j=1

This definition will be used throughout the arguments below. Observe that if
& € Gq, then,

(%) >_wil¥i— 0l = > w;sgn{e; +g(x;) — g(0) +2(0) — 0}
i=1 i=1

n

< - w;sgn{e; —alx;| +2(0) - 6}
i=1
n

> — ) w;sgn{e; +alx| +£(0) - 0}.
i=1

Therefore, with 8, denoting the solutions 6 of the equations

n
Z w; sgn{si + a|xi| +g(0) — 0} = 0,
i=1

we have _ < 50 < @,. It is straightforward to prove that Eg{gi —g(0)}? is
uniformly bounded, and so

(4.15) sup sup Eg{% —g(O)}2 < 0.
n> 1 g€ 911

Let > 0 be a very small but fixed constant, and observe that
Pg{|6o — £(0)] > 1} = Py{bo > g(0) — n} + Py {f0 < £(0) + 1}

(4.16) n d
= P{ ZwiJi(—’I]) > 0} +P{ Zwl'Ji(T]) < O},

i=1 i=1

where J;(u) is as before. Bernstein’s inequality may be used to prove that, for
each k > 0, both of the probabilities in (4.16) equal O(n~*) uniformly in g € G,.
Therefore,

(4.17) sugpg{@o —g(0)| >n} =0m="),
£€5
for all n,k > 0. Combining (4.15) and (4.17), we obtain

sup E, [|50 —g(0)|I{|§o —g(0)| > 17}]
EEG,

1/2
< sup [Eg{loo — 80" }P;{|8 - 20| > n}] = 0(nb),
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for all n,k > 0. Thus, it suffices to prove Theorem 2.2 with Eg|§o — g(0)| re-
placed by

n ~ ~
Mgy = /0 [Pefo > 80+ u} + P {8 < £0)  u}] d,

for n > 0 arbitrarily small.

It follows that we may let = n(n) — 0 sufficiently slowly, and this we shall
do below.

Set

5= (a iw,lx,{)/(iw), wu) = zn:wiEJi(u)-
i=1 i=1 i=1

Define V(u) by (4.3), and note that
n/é
Mgy =6 /0 [Pe{V(60) < ~u(60)} + Po{V(~50) > —u(~50)} ] dv.

Now, ¥ w;|x;| — C, where 0 < C < 00, and so

n g (x;) —g(0)+6v
uew =23 w; [ F(») dy
4.18) i=t 0
=23 wi{gx) - g0)+ v} £(0) +o(1+ [v]),

i=1

uniformly in g € G, and |v| < 7/6. The nonuniform version of the Berry—Esseen
theorem may be used to prove that, if Z is a standard normal random variable,

sup sup sup (1+ |y|)3|Pg{V(6v) <y} -PZ<y)|dv—0
g€5, |v|<n/§ —0<y<oo

as n — oo. Hence,
n/8
Mg =6 / [P(Z < ~u60)} + P(Z > —u~50)}] v
0

+o<6 /O"/& [{1 + o)} 2+ {1+ I,u(—&v)l}_S] dv), |

(4.19)

uniformly in g € G,,.

In view of (4.18), |u(6v)| > Cifv|Swilx;| > Calv| uniformly in C3 < |v| <
n/é, for C3 > 0 sufficiently large. Therefore, the term o in (4.19) equals o(6) =
o(n~1/3), Hence, by (4.19),

> av Z wilxil] dv + 0(6),

i=1

n/6 n
mg , = 6/0 p HZ - Zwi{g(xi) -g(0)}

i=1
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uniformly in g € G,. Thus,

o0
sup mg,nrv&/ P(
g€8 0
n -1
(Zw,) Z+6
i=1

From this point, the proof of Theorem 2.2, may be completed by using routine
methods to develop an asymptotic approximation to the last-written
expectation. O

n
> avai|x,~|) dv
i=1

n
Z+aZw,~|x,~|
i=1

=K

ProoF oF THEOREM 2.3. The modulus of continuity for g(0) in the class of
Ga i8

wg, (6) = 31/301/382/3.
See Donoho and Liu (1991). Now, applying Theorem 2.4, we obtain the result. O

PRrROOF OF THEOREM 2.4. The first step consists of the following result,
whose proof may be found in Fan and Hall (1992).

LEMMA 4.3. Let a, ; be a sequence of constants such that

n
max a,; —0 and » al;,—A>0.
1<i<n =t !

i=

Then, based on the observations from the model Y; = a, ;0 + ¢;, where {;} are
i.i.d. with density f satisfying Condition 2.1, we have

inf sup E&@-6)>{1+o0(1)}inf sup E¢{6(Z)-6}, Z~N(@©,1/AL).
0 1o1<1/2 8 jo1<1/2

The above inequality is indeed equality when £ is bounded. If moreover, {(tx)
= t"U(x), for all t > 0, then

inf sup E@—6)> {1+0(1)}AL)""/?pn{(AL)"?¢}.
6 191<1/2
The idea of the proof of Theorem 2.4 is to use the “hardest one-dimensional
subproblem,” due to Donoho and Liu (1991). For fixed go, g1 in G, let
go(x) = 0go(x) + (1 — )g1(x) = g1+ 0(&o — 81)-

The convexity assumption ensures that my € G for all 0 < 6§ < 1. Without loss
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of generality assume that go(0) — g1(0) > 0. Thus,
Rp(S,0) > 1nf sup Eé{e g0(0)}

0<6<1
(4.20) = {go(o) £1(0)} inf sup Et® - 0)
0<60<1
= {g0(0) — g1(0)}" mf sup E¢@ - 0).
0 101<1/2

The observations are based on the submodel Y; = go¢(X;) + ¢; or equivalently
based on Y} = Y; — g1(x;) = 0{go(x;) — g1(x;)} + €;. Now, take the pair g; and g
as in Condition 2.2 with ¢ = ¢, to be determined later. Then, by the definition
of g1 and gy [see (2.13)], |g1(0) — go(0)| = {1+ o(1)}wg(||H ||c,). Thus, expression
(4.20) can be written as

“21)  Ry(,0>{1 +o(1)}{w9(HHH5n)} inf ?uBZEE(O 0),

based on the observations Y = a;0+¢;, where a; = e H(x; /e29). Take ¢, = cn~1/2
with a positive constant c. Then, it can easily be shown that

n

Y a?=e2r [n d(0) 29| H|[? + o{ (ne2a)" 2}]
a = {1+o(1)}A,

where A = d(0)||H||2¢2. By Lemma 4.3 and (4.21), we have

(4.22) Ry(S,0 > {1+0(1)} {wg(HHch_ 1/2) }'(AL)-f/2pN{(AI€)1/2 /2;6}.

Set t = (AI.)'/2/2 = {d(0)I.||H||?/4}}/%c. By (2.13) and (4.22), we have
4.23) Ry > {l+o(1)} (wg [2{16 d)n} Y 2] )rtrp(Zt)_rPN(t; 0.
Since (4.23) holds for all £, we have

Ry > {1+o(1)} <w9 [{IE d0)n} ™Y 2] / 2<I>r supt " p(t; 0

This completes the proof.‘ O
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