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CONSISTENCY IN A PROPORTIONAL HAZARDS MODEL
INCORPORATING A RANDOM EFFECT!

By S. A. MURPHY

Pennsylvania State University

The frailty model is a generalization of Cox’s proportional hazards model
which includes a random effect. Nielsen, Gill, Andersen and Sgrensen pro-
posed an EM algorithm to estimate the cumulative baseline hazard and
the variance of the random effect. Here existence and consistency of the
estimators are proved. An example using truncated and censored data is
considered.

0. Introduction. The frailty model, which is a multivariate generalization
of the proportional hazards model, allows for heterogeneity of hazard by incor-
porating a random effect. Estimation in the frailty model has received much
attention; for example, see Clayton and Cuzick (1985), Self and Prentice (1986)
and Nielsen, Gill, Andersen and Sgrensen (1992). The parameters include re-
gression coefficients, parameters describing the distribution of the random ef-
fect; and the cumulative baseline hazard. In the usual proportional hazards
model, the maximum likelihood estimator (MLE) of the regression coefficients
and the nonparametric MLE (the Nelson—-Aalen estimator) of the cumulative
baseline hazard have been shown to be consistent and asymptotically efficient
[Greenwood and Wefelmeyer (1990)]. This paper addresses the problem of con-
sistency for the one-sample frailty model. The method of proof should generalize
to the regression setting. To form MLE'’s, the counting process approach out-
lined in Nielsen, Gill, Andersen and Sgrensen (1992) and Andersen, Borgan,
Gill and Keiding (1993) is used. In Section 1 a brief introduction is given. The
consistency theorem and proof are in Section 2. The Appendix contains techni-
cal details.

1. Statistical model. As mentioned above, much of the following descrip-
tion is a review of the counting process approach presented in Nielsen, Gill,
Andersen and Sgrensen (1992). Using their notation, the frailty or random
effect is defined on the probability space (¥, G/, P;) and is denoted by Z =
(Zy1, ..., Zp). Let (", {G}, ), Py,) be afiltered probability space for each Z = z,
so that under P),, (i.e., conditionally on Z = z) the multivariate counting process
N = (N;:i=1,...,n) hasintensity process X given by

Ai(w) =z Y;(wa(u).
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CONSISTENCY IN A PROPORTIONAL HAZARDS MODEL 713

The N; can be thought of as the aggregate of the counting processes for group
i, so that each N; can have more than one jump. The members of the ith group
share the same frailty, Z;. The Z; are assumed to be independent random vari-
ables, each distributed according to a gamma distribution with mean 1 and
variance §. Of course this means that if § = 0, then the random effect Z; is iden-
tically equal to 1 and the random effect does not induce a dependency between
members of group i. The Y; are observable, nonnegative, predictable processes,
and o is an unknown baseline hazard rate. Note that this model would have
to be reformulated to allow for a discrete hazard. In a discrete model the in-
tensity Z;o(u) is bounded by 1, which certainly does not allow Z; to have a
gamma distribution.

The goal is to estimate 6 and the cumulative baseline hazard A(¢) = fé a(u)du
based on observation of (N,Y) only and via maximum likelihood estimation.
There are two ways to form the likelihood of (N, Y). The first method is to write
the likelihood of (N, Y, Z) as the density of (N,Y) given Z = z times the density
of Z and to integrate out over the variable z. Actually, only a partial conditional
likelihood of (N, Y) given Z = z is specified, and it is assumed that the remaining
term in the conditional likelihood does not involve z [Nielsen, Gill, Andersen
and Sgrensen (1992) state this in Assumption 2, “Conditional on Z = z, censor-
ing is noninformative of z”]. The partial likelihood for (N, Y) given Z = z is

- 2;Y;()a(t) : exps—z; ’ Y, dA .

i=1 t
Multiplying by the density of Z and then integrating over z yields the partial
likelihood

n Ht ((1 + 9N,-(t—))Y,~(t)a(t)) AN
i (1+0f(;rYl(t)dA(t))l/9+N,(‘T)

It is also straightforward to see that the distribution of Z; given (N,Y) is a
gamma distribution with mean

(1.1

1+ ON;(7)
1+6 f(;r Yi dA
and variance 1+ 0N:()
(1+06 ) Y;dAR®’

A second method of forming the partial likelihood of (N,Y) is to use the
innovation theorem [Bremaud (1981)]; that is, in order to derive the intensity
of N with respect to the observed history (i.e., the product of the trivial sigma
field on ' with G”), Z; is replaced by its conditional mean relative to this history.
Therefore the intensity of N is

1+6N;(u—)
1+0 f; Yi(s)dA(s)
Note that if # = 0, then the intensity of N takes the multiplicative form with Z;

Ai(w) = Y (w)a(w).
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identically equal to 1. The partial likelihood function is given by
n g _ ANi(u)

I1 { 1 ( L+ ONilu—) Yi(u)a(u)>

i=1 u 1+0 fO Yi(s) dA(S)

x exp(— / T 1HONGD) dA(t)) .
o 140 [, Yi(s) dA(s)

Since A is continuous, (1.1) and (1.2) can be shown to be equivalent via inte-
gration by parts [see (1.3)]. Both are full likelihoods for (6, A) if the omitted
term does not depend on (6, A) [Nielsen, Gill, Andersen and Sgrensen (1992)
call this noninformative censoring for the parameter (6, A)]. The true values
of the parameters [say, (6, Ap)] lie in [0, co)x {absolutely continuous cumula-
tive hazards}. However, maximization of the log-likelihood over this parameter
space leads to the same difficulties as in estimation of a density function. The
problem is that there is no absolutely continuous estimator A which will max-
imize the likelihood. There appear to be two approaches to this problem. If an
estimator of the hazard « is desired, then it is necessary to restrict the pa-
rameter space further for a finite sample, for example, employ the method of
sieves or penalized likelihood estimation. The interest here is in the estimation
of the cumulative hazard, and a second approach is used. This second approach
extends the parameter space so that the estimator A is allowed to be discrete.
The parameter space is then [0, 0c0)x {cumulative hazards}. This is the type
of extension of parameter spaces which allows one to consider the empirical
distribution function as a nonparametric maximum likelihood estimator of a
continuous distribution function. To allow for a discrete estimator, replace a(u)
by AA(u), the jump of A at the point u, in (1.1) and (1.2). Unfortunately (1.1)
and (1.2) are no longer equivalent and will not lead to the same estimators. The
natural logarithm of (1.1) is given by

nL,0, A) = Z /T In(1 + 6N;(u—)) dN;(u)
i=170

(1.2)

~ (67! +Ni(7'))ln(1 +0 /T Yi(u)dA(U)>
0
' / " In(Yiw) AA@)) dN,w).
0

If 6 = 0, the second term above is defined by its right-hand limit at 0, that is,
foT Y; dA + N;(1). The natural logarithm of (1.2) is

nLy©,A) =" / " D))
o\ 140 7 Yie)dA®)

~ /T 1+ ON;(u-)
o 1+0 [ Yi(s)dA(s)

+ / ’ In(Y;(u) AAw)) dN;(w).
0

Y;(u)dA(u)
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In fact,

nLy(0, A) = nLn(9, A)+ Y / " (67 + N;w)) d[ln(l +0 / ‘ Y,dA)]
L 0 0
(1.3) i=1

" T 146N
- AN ) da).
2;/0 130 Yad OB

Note that the last two terms would cancel if A were continuous. Nielsen, Gill,
Andersen and Sgrensen (1992) maximize L, via the EM algorithm. In this paper,
only estimators derived by maximizing L, are considered.

Taking the derivative of L, with respect to the jump sizes of A and setting
the derivative equal to zero yields the following equation for A:

~ -1
~ t 3 —
Aw) = / nt Y O vy dvw,
0 140 f] Yi(s)dA(s)

i

where N(u) = n~13"  N;(). This equation also results from the M step of the
EM algorithm; see Nielsen, Gill, Andersen and Sgrensen (1992) for details.

2. Existence and consistency. Assume that the (V;,Y;) are i.i.d. copies
of (N,Y), where Y is a.s. left-continuous with right-hand limits and takes on
nonnegative integer values. Both N and Y are bounded in supremum norm.
The counting process N satisfies

1+6,N@u-)

Y () dAo(w),
140, [* Y(s)dAo(s) (w)ddo)

2.1 E/T C(u)dN(u):E/TC(u)
0 0

for C left-continuous and adapted to the filtration o {N(s); Y(s), s <¢};-¢ € [0, 7].
The variance parameter 6, lies in a known interval, say, [0, M]. The cumulative
baseline hazard A is strictly increasing and is continuous on [0, 7] for 7 < co.
Call the first jump of N, T.

THEOREM 1. If max; N;(7) > 1, then a maximizer of L,(0, A),(0, A) = (5, Z),
exists and is finite.

The proof of this theorem is in the Appendix.

THEOREM 2. Assume the following:

(a) Y is a nonincreasing step function, and P[Y(¢t) > 1] has at most a finite
number of discontinuities in t € [0, 7] [or (a’) Y is a step function with at most a
bounded number of steps and an upper bound on Ay(t) is knownl;

(b) inf, €(0,7] EY(u) > 0;

(¢) PlY(Ty+)>11>0.
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Then

sup |A@®)—Ao®) »0 as.
te(0,7]

and

|§—00 |— 0 a.s.

REMARKS. Assumption (a) is used to prove that A does not diverge to infin-
ity, but it should not be necessary. Note that it excludes applications requiring
Y to be nonmonotonic. However, if one is willing to make the assumption that
Ag(71) belongs to a finite range, then Y is allowed to be nonmonotonic. It is
unclear whether the assumption of a finite range for 6, is necessary. If this
assumption is necessary, then this may indicate that there is a sequence of
large values of # which maximize the partial likelihood and are inconsistent.
Assumption (b) ensures that N has sufficient activity on the entire interval so
as to estimate the parameters. Note that (c) excludes the possibility of N having
at most only one jump. Some version of this assumption should be necessary
because, as pointed out by Nielsen, Gill, Andersen and Sgrensen (1992), the
model is unidentifiable if all of the N; have only one jump. The method used
in this proof should extend to the regression setting as long as an assumption
which excludes colinearity of the covariates is made.

EXAMPLE (Survival analysis with left-truncated, right-censored data). As
in the above, assume that the frailty Z has a gamma distribution with mean 1
and variance 6. Given Z, let (X, ..., X};) be i.i.d. survival times with hazard
Zog(-). Let (Ty,...,Ty)and (Cq,. .., Cy) be truncation and censoring times which
are independent of both Z and the X;’s. Define

Gi=0{Z, I{X;<s}, {Tj<s<C},s<t,j=1,. ..k}

Then N;(t) = I{X; < t},j = 1,...,k, is a multivariate counting process with
intensities I{X; > t}Zao(t),j = 1,...,k. Now define N(¢) = ©}_, KT <s <
C;} dN(s). Because I{T; < s < C;} is left-continuous (considered as a function
of s) and adapted, N has intensity Y(#)Zag(t), where Y(¢) = Zj’?= I{T; < s <
C;}I{X; > t}. Since the conditional distribution of (T, ...,T}) and (Cy,...,Cy)
given Z = z is certainly independent of z, the innovation theorem [Bremaud
(1981)] can be used to derive the intensity of N with respect to the observed
history F; = o{N(s),s < t; Y(s),s < t} to obtain (2.1). The filtering approach
to truncation follows Keiding and Gill (1990). Note that the survival times are
indeed truncated in that X; is observed only if X; A C; > T and X; < C|.

As in the beginning of this section, assume the observations of (NV;,Y;, i =
1,...,n) are i.i.d. copies of (N, Y). Let (9, A) be the maximizer of L,. Ay will be
strictly increasing if oy # 0 a.s. Since Y will not be monotone, assumption (a)
cannot be satisfied; but if there is a known p, p € (0, 1), for which P(X; < 1) < p,
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then (a’) will be satisfied. It is intuitively clear that it must be possible to
observe a failure time in any subinterval of (0, 7] in order estimate Ay on that
subinterval. To ensure this, assume that inf; ¢ (o, - Z}}L PIT; <t <Cj]1 > 0.1t is
also clear that one needs to ensure the possibility on two or more failure times
occurring in (0, 7] in order to estimate the variance of the random effect. Here
a stronger assumption is made; assume that Plinf; ¢ (o, -] Zj’?= I{T; <t < Cj} >
2] > 0. This is enough to satisfy both assumptions (b) and (c).

An outline of the proof of consistency. Under (a’), A is not allowed to diverge
to infinity. However, if (a) is assumed, then the first step, and the hardest, is
to show that A does not diverge to infinity. A natural approach is to show that
since A max1mlzes L, it cannot diverge. Because (0 A) maximizes the likeli-
hood, L,,(O, A) minus L,(8,A) must be nonnegative for any (9,A) in the param-
eter space. The idea is to show that if A diverges, then the difference in the
log-likelihoods must be negative eventually. This will be a contradiction. Un-
fortunately if A is continuous, L,(#, A) will be infinite for finite n, thus excluding
the choice of A = Ay. However, as long as A has jumps at the jump times of N,
L (8, A) - L, (8, A) will be finite. A possibility for A is

. n -1
2.2) A()= / oty NG ) aNa),
0 1 1+ 00 fo YldAO

which can be shown to converge to Ag. If 6y and Ay were used as the initial val-
ues in the EM algorithm [Nielsen, Gill, Andersen and Sgrensen (1992) explain
how to use the EM algorithm], then the one-step estimator of the cumulative
baseline hazard is very similar to (2.2). In the proof it is shown that, for A di-
verging to infinity, Ln(é\, A) - L, (8, A) diverges to negative infinity. This rules
out a divergingﬁ as a maximizer of L,,.

Since A is not allowed to diverge, Helly’s selection theorem can be used to
prove the existence of a convergent subsequence of (8, A). The second step is to
show that any such convergent subsequence of (5, K) must converge to (6y, Ag).
The approach taken here is classical, in that it depends on the positivity of the
Kullback-Leibler information. This approach has been used with some success
in sieve estimation [see Karr (1987) and Grenander (1981)]. The idea is to
characterize the limit of a subsequence of (9, A) by using the fact that L, (9, A) —
L, (89, Ag) > 0 for finite n, yet the limiting version of L, (say, L) is maximized
at (6, Ag). These two facts will yield L(0, A) L6y, Ag) = 0, where (0, A) is
the limit of the convergent subsequence of 0, A). Now the problem reduces to
identifiability of the parameters; that is, the parameters are identifiable if and
only if L(0, A) — L(6y, Ap) = 0 implies that (9, A) = (6y, Ap). Note that L(f, A) —
L(6y, Ap) is minus the Kullback-Leibler information. As before, L,(0, A) will be
infinite at A = Ag; instead use A = A from (2.2). Since A converges to Ay the
proof goes through essentially as outlined above. The identifiability equation,



718 S. A. MURPHY

L9, A) — L(6y, Ap) = 0, implies that

" t —
[ rrs i yaat @~ [ frm YA =0 as
0 1+60 [ YdA o 1+6 [, YdA,

This isindeed a question of identifiability, as these are the integrated intensities
when (0, A) and when (§y, Ap) are the true parameter values, respectively. The
question becomes “Does equality of the integrated intensities imply equality
of the parameters?” In the proof it is shown that sufficient conditions are (b)
and (c).

S
telo, ]

PrOOF OF THEOREM 2. Since this is a proof of a.s. consistency, most of
the proof will be for w fixed in a set of probability 1. This set (say, A) is the
intersection of sets each of probability 1. Each of these is a set on which a strong
law of large numbers holds for some average. Instead of listing A explicitly, the
component sets will be obvious as the proof proceeds. It is important to be careful
that the intersection only include a countable number of sets of probability 1
since an uncountable intersection can have probability less than 1. See Lemma 1
for an example in which such care is taken. R

Step 1. Fix w € A and suppose that, for some subsequence, lim,, _, ., A(7) =
0. If necessary, choose a further subsequence fgr which 8 converges (say, to 6).
Choose 8 = 6. The goal is to show that Ly, (8, A) — Ly, (6, A) will be negative
for large n;. In the following, any terms which are bounded away from positive
infinity will be represented by O(1), and, in an abuse of notation, n» will be used
instead of n;. Recall that

0s Ln(b\’ 2) — Ly (6o, K)
=n ;/0 ln[1+0ONi(u——)] le(u)

+(9(;1+Ni(7'))1n(1+90/ Y,’dZ)
0

_ (0 + NI (1 v / "y, dﬁ)
0

+/Tln(AA(u)>dN( \

0 AA(u)

Since # and 0o constrained to lie in [0, M], only the last two terms above are
important to consider,

0<L,8 A -L Ln(Bo 4
<0Q) - —12 L+ Ni(m) 1n(1+0/ Y,-dK)

+/T ln(AA(u))dN( ).
0 AA(u)
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Substituting A from (2.2) yields
o) -n7t Z (5—1 +Ni(m)In (1 + §/T KdA)
oy 0
/ ln< CSrva L+ N S, (u)) dNw.

140 Y,

Let K be a common upper bound on N(7) and sup,, ¢, -] ¥ (). Since

140K~ [V, dA _

(2.3) K1<
140, Y; dA

0 < L,(8, A) — Ly (6o, A)
2.4) <0@1)-n"t E {(0‘ +N; ('r))ln(l + 0/ Y; dA)
i=1
1+ 0N (1)
1 -1 =Y; dN; .
/ n( Z < 14+0K-1 [ Y;dA i )) (u)}

Intuitively, as A diverges to infinity, the second term above will diverge to neg-
ative infinity and the third term will diverge to positive infinity. The idea is
to show that the rate of the second term is faster than the rate of the third
term, so that eventually the difference is negative and a contradiction ensues.
To understand the following argument better, combine the last two terms above

to obtain
- n BNy ()41
—n‘IZ/ 1n(n‘12(1+0/ YdA)
i=1v0 j=1

J=
1+ 0N('r)
1+0K-1 [TY;

Y( )) dN;u).

In the sum over j, the terms with [ Y; dA > LY dA will be approximately
zero if A is large. So the only terms to pay attention to are the terms that are
smaller or of comparable size to fo Y; dA. The key is to show that there are

enough of these terms so that their average times 1 + 6 fo Y; dA diverges to
positive infinity. For simplicity assume that P[Y(#) > 1] is continuous int.
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Partition both of the terms in (2.4) according to a nonnegative strictly de-
creasing sequence T = 8o > 81 > - -- > 0 to obtain

- n_IZ(§'I+Ni(T))1n(1+5/ Yidﬁ)
i=1 0

< —n71S T (F L+ N){Yi(r) 2 1}In(1+ 0AM)
i=1

N n
= > Y (0 N(O){Yilsp) 2 1, Yils, 1) = 0}In(1 +A(sy))

p=1 i=1
Y (B + N (Vi) = O}ln<1+0 / YdA)
i=1
and
~ i 14 0N;(r) v dF
/ ( Zl+0K—1fo Y;dA ) | aNG)

< —n‘IZI{Y(31)> 1}/ ln( —12 1+0N(7')Y( )> dN;(w)
_ Zn—l Zz{n(s,,+1) > 1, Yi(sp) = 0}
p=1  i=1
1+0N(7')
In(2™ 1y L {Yi(s,) = 0}Y;() | N;
/ n( Z1+¢9A (¥ie) =0} (u)> "

—n71) " I{Yi(sys1) = 0}

i=1
1+0Nj(r)
In{n-! _Y;() | dN;(w).
/ n(n Z:1+t9K—1f0 Y;dA (> "

Combining these two sums term by term yields

0 < Ly(@, &) — Ly (89, &)
< O(1) —In[1+§A(r)] ln‘l 3 (F + N {Yi(r) > 1}

i=1

~ 1Y N(OI{Yi(s) > 1}

i=1
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_ Zln [1+8AGs,)] [ —IZ L N(D){Yi(sp) > 1, Yi(sp—1) = 0}

p=1

i=1

—n~1 ZNi(T)I{Yi(S;nl) >1, Yi(sp) = 0}]

(2.5) —n_IZI{Y(sN+1) O}/ 1n<n IZI 011;'011;(7') Y( ))dN(u)
+ 0

N

~ Y nt ZI{Yi(sp+1) > 1, Yi(sp) = 0}

p=1 i=1

X /T In {n“l > (1+ ON;()) Y, {Y(sp) = O}} dN;(w).
0

j=1

The sequence {s;}; > o needs to satisfy three conditions:

(a) the last term above does not diverge to positive infinity;
(b) sy +1 = 0 so that the second-to-last term is zero;

(c) the coefficients of In[1 + ag(sp)] are positive for large n.

Recall that converges to 6. Choose U >landsy=7.1f0=0, choose $1=0.In
this case it is easily shown that lim A(r) = 00 implies that L@, A) - L, (69, A)
diverges to negative infinity, and the first step is completed. Assume that 6 > 0.
Choose s; to be the smallest value (greater than or equal to 0) for which

E(WU0) + N)I{Y(r) > 1} > E(NOI{Y(s1) 2 1}).

Unless s; = 0, continuity of P[Y(T) > 1] implies equality above. Then given sp,
p > 1, choose s,,1 to be the smallest value (greater than or equal to 0) for which

E(U8) " + N(n)I{Y(sp) > 1, Y(s,_1) = 0}
> B(NMI{¥(s5.1) 2 1, Y(sp) = 0}).
Once again, unless s,,1 = 0, continuity of P[Y(¢) > 1] implies equality above.

If there exists an N < oo for which sy, 1 = 0, stop. Suppose this does not occur.
Then the kth partial sum is given by

k
E(U0) 1+ N(O){Y(1) > 1} + Y _E(UO)™ + N(m)I{Y(sp) > 1, Y(sp-1) = 0}

p=1

k
= E(NOI{Y(s) > 1}) + S E(NOI{Y(sp00) 2 1, Y(sp) = 0}),

p=1
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which implies that
E(UO) + N(O)I{Y(sp) > 1} = E(N(T)I{Y(Sk 1) > 1}) .

Since the sequence {s,} is decreasing and is nonnegative, it converges (say, to
s9). Taking the limit as & goes to infinity of the above, results in

E(U8)™ + N){Y(*+) > 1} = E(N(I{Y(*+) > 1}).

This is a contradiction; so there exists a finite N for which sy, 1 = 0 and both
conditions (b) and (c) will be satisfied.

All that is left is to verify condition (a), that is, that the last term in (2.5)
does not diverge to positive infinity. This term is bounded above by

N n
- Zn_l ZI{Yi(sp+l) Z 1) Yi(sp) = O}

p=1 i=1
X / In [n‘l (1 +8N;(D)I{Y;@w) > 1, Yj(sp) = 0} | dN;(w).
0 i
On I{Yj(sp 1) > 1, Yj(sp) = 0}(Nj(sp) — N;(u—)) > 0,

H{Y;(w) > 1, Yj(sp) = 0} (1 + 6N;(7))

1.
I{¥(sp20) > 1, Y(5,) = 0] (Ni(sp) — Njw—)

Inequality (2.5) becomes
0 < Ly, A) — L,,(60,4)

< 0(1) - In[1+9A(r)] [n‘l Y (0 + N {Yi(r) > 1}
i=1

-7y H{Yisy) > l}N,-(T)]

i=1

N n
— S " In[1+8AGs)] [n‘l S (F + N)I{Yi(sp) > 1, Yi(sp—1) = 0}

p=1 i=1

— VY NIV i(sp40) 2 1, Yilsp) = 0}]

i=1

N n
— Y n S I{Yisp41) 2 1, Yisp) = 0}

p=1 i=1

X /T In [n‘l ZI{Y,-(sp,,l > 1, Yj(sp) = 0} (Nj(sp) —Nj(u—))] dN;(u).
0 et
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This last term is just — Z}N IZ”N(”) ;~1(i/n) In(i/n), where

N(p)=n"1) H{Yj(sp+1) = 1, Yj(sp) = O}Nj(sp).
j=1

Since N is finite and each N(p) converges to a positive value, the last term does
not diverge to positive infinity.

If P[Y (¢) > 1] has a finite number of discontinuities, then a similar argument
involving both the discontinuities and the s,’s will achieve the same result.

Step 2. Once again fix w € A. Step 1 implies that lim supZ(r) < o0, that
is, there exists some a, depending on w, which serves as an upper bound on A.
Any infinite sequence in the product of the set [0, M] with the set of bounded
cumulative hazards has a pointwise convergent subsequence, say, for the sub-
sequence {n;}. In an abuse of notation, denote the convergent subsequence of
@, A) by (9, A) and use n instead of n. Let (9, A) be the limit point. In Lemma 1
it is shown that A is continuous. The goal is to show that L(6, A) —L(6y, Ao) =
and then to conclude that (6, A) = (6p, Ao). Recall that A is given by (2.2).

To begin, consider

0 < L,@, A) — L, (60, 4)
- e [ ([1+oN:w-))/[1+8 J; YidA] ) Yiw) AA@) ]
n

i=1v0 ([1+90Ni(u—)]/[1-|-90 fo_deAo])Y,(u) AZ(u)
1+ 69 N;(u-) _
dNi(w) — - Yi(u) dA
) [ ®) 1+6 fo Y. dAy @) (u)]

(2.6)

. ([ +8Niw—)]/[1+8 [~ Y:dA])Yi(w) AAw)
sl s

([1 + 60 N:w—)]/[1+ 60 Jy~ ¥:dAo] ) Yiw) AA)
) [ ([t +N:w—)])/[1+8 f3~ YidA] ) Yiw) dA@w) »
(

[1+60N;w—)]/[1+60 [ dAo])Y,-(u) dA®w)
. 1+ 6y N;(u—)
1+60 [y YidAo
+[Ln(@, A) — L (60, &) - L@, A) + L, (60, A)).

Yi(w) dAw)

Note that, for x > 0, In(x) — (x — 1) < 0, implying that the second term above
is nonpositive. In Lemma 2, it is shown that the first and third terms above
converge to zero; this implies that the limit of the second term is zero. Recall
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that A satisfies

n -1
Z(t)-/ ( > L+ ONi() Y )) dN ()

140 ¥,

n"12i=1 ([1+00Ni(u_)]/[1+00f0—YidAO])n(u) _
= / = = — dA(u).
o | atyp, (R+8N)/[1+8 )7 YidA] ) Vi)

In Lemma 1, it is shown that the above integrand, dZ/dZ, converges in supre-
mum norm to v, where

E [([1 +00N@-)]/[1+60 [~ YdA,])Y(u)]

() =
E [([1 +ON(T)]/[1+6 f; YdA])Y(u)]

and A() = fg vdA,. Similarly, the second term in (2.6) converges to minus the
Kullback-Leibler information [L(6, A) — L(6,, Ao)],

([1+oN@-)]/[1+6 [~ YdA])Y@w)
E./( [ 1+90N(u )]/[1+90f0_YdAQ])Y(u)7(u)]
([2+oN@-)]/[1+6f" YdA]) Y@ -1
- ([1+00N(u—)]/[1+00 (;‘_YdAo])Y(u)’yu B

1+ 00N(u—)
1 +00 fO B YdAo

2.7

Y(u)dAo(w).

The above is equal to zero as stated earlier. Formula (2.7) depends on w and the
subsequence {n;} only through the choice of (4, A).

Next show that (0, A) = (6y, Ag). As Grenander [(1981), page 398] demon-
strates

—nx—1)2, fori<x<3$,

In(@x)—(x-1 <
{_77/|x_1|’ for0<x <1, ng,

where 7 and 7 are positive constants. Applying the above equation to (2.7)
yields, after some easy manipulation, that

08 E /‘r L+0N@-) oo 1460N@-)
. 0

1+0f0_Y’ydAo 1+90f0—YdA0
If the parameters are identifiable then the above equation should imply that
(6, A) = (69, Ap). This equation depends on w and the subsequence n; only

Y(u) dAo(u) =0.
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through the choice of § and 4. Lemma 1 implies that v is a bounded left-
continuous function with right-hand limits. Therefore, v has at most a count-
able number of discontinuities. Because of the left-continuity of all functions
involved, (2.8) implies that

1+6N(@wu-) 1+6yN@u-)
— Yw)Y(u) = -
1+0 [*~ YydA 1+0p [ Y dA,

Y(u),

for all ¥ and a.e. P. Let T'; be the time of the first jump of N. Note that P[Y(T';) >
1] = 1 and the probability that T'; is not equal to any of the discontinuity points
of v is 1. Take the intersection of all of these sets of probability 1 (including the
a.e. set in the last equation) to get a further set of probability 1. Intersect this
set with {Y(T";+) > 1}. This last set will have probability greater than zero by
assumption (c). On this set, one has that both of the following hold:

¥(T1) 1

Y(T) = ———7——Y(TY)
140 [0 YydAy | 140y f] YdAy
and
(1 + 2)’)’(T1) Y(T1+) = 1+—ﬁY(T1+).
1+06 [y YydAo 1+60 fy 'Y dAo

Noting that Y(T;) and Y(T',+) are positive, take the difference of the above
equations [leaving out Y(T';) and Y(T';+)] to obtain

0T _ 6o
146 [['YydAy 1+6 ' YdAo

This implies that 6 = 6.
All that is left to this step is to show that A = Ay. Equation (2.8) yields

u u
'y(u)<1 + 00/ YdAo) Yw) = (1 + 0y / Y’ydAo) Y(u)
0 0
a.e. dAy x dP, which, combined with the left-continuity of Y implies that
u
(v(w) — 1)EY@) + 6, / (v() — @) EY @)Y () dAo@) = 0
0

for all u € (0, 7]. If v can be shown to be identically equal to 1, then the proof
will be done. The supremum and infimum of y on [0, 7] are either attained at a
point or attained by evaluating a right-hand limit of  at a point. For simplicity
assume the former; the proof is similar if the latter holds.

Suppose that the maximum of v on [0, 7] is attained at ¢y, and () > 1.
Setting u = ¢, into the equation for v results in 4(¢y) = 1. Suppose that the
minimum of v is attained at ¢y and that v(¢¢) < 1. Once again setting u = ¢,
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into the equation for  results in ~(¢y) = 1. These two results imply that v is
identically gqual to 1. Therefore v = 1 a.e. dA,.

So if (5, A) is a convergent subsequence, then it must converge to &00, Ap).
Helly’s selection theorem then implies that the entire sequence of (6, A) must
converge to (6p, Ag). The proof can be carried out for each w € A. Since A is
the  intersection of a countable number of sets of probability 1, P(A) = 1 and
,A) — (60, Ag) a.s. The continuity of Ay then gives the a.s. convergence in
supremum norm. O

APPENDIX

PROOF OF THEOREM 1. An outline of the proof goes as follows:

1. Observe that A must be discrete with positive jump sizes at the jumps of
N

2. The log partial likelihood L, is continuous function of § and the Jjump sizes
of A, that is, it is a continuous function on the set [0, M ] x [0, U }: , where U is
finite and N. = ¥_,N;.

3. Show that there exists a U such that for each possible value of ,4A) e
{[0, M ] x [0, 00N }\{[0,M ] x [0, U} there is a value of (6, A) € [0,M] x
[0, U1 which has a higher value of L,. This can be easily done by using a
proof by contradiction, that is, assume the existence of 8y, Ay € {[0,M] x
[0, 00)¥- 1\ {[0, M1 x [0, U IV}, which maximizes L, for each U. Then show that
L,(0y, Ay) can be made as small as desired by increasing U. This is the desired
contradiction.

The proofs of the above steps are relatively straightforward. However, care
must be taken in step 3 because of the possibility that 6y is equal to or arbitrarily
close to 0. O

LEMMA 1. Assume (b) of the consistency theorem. Then

sup |A®)—Ao®)| -0 as.,
tel0,7]

and for each w € A and any subsequence of @, 2), converging to some (0, A) (A
converging to A at all continuity points of A),

~ ~ ;
sup ‘—i—A;(t) - 'y(t)l -0, sup |A(2) —/ vdAy| — 0,
telo,r1|dA telo,r] 0
where v is defined by
1+6yN(t-) 1+6N(r)
O=E| ———————Y@®)| [ E| ————Y (@)
! [1+00f0_YdAo }/ [1+0f0 YdA ]

and A is continuous.
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" PROOF. The A is given by

_ 1+ 09 N;(u-) -1
A() = 1 0 Y; ) dN ().
0= /( Z1+90f0 Yida, W) @

Rao’s (1963) strong law of large numbers implies that both the integrand and
the integrator converge in supremum norm to their expectations. So

-1
1%~ 1+46pN;u—) Y,
( Z].+00f0_YdA() (u)>
-1
g 1+001\_l(u—) Y
1+ 069 [~ Y dAg
-1
¢ 1+6oNu-—) e
E Y d(N@w)—-E(N .
/0< (1+00f0_YdAo (u))) ( () - E( (u)))

The first term goes to zero in supremum norm since N(7) is bounded. To show
that the last term goes to zero, note that the integrand is left-continuous with
right-hand limits; hence a Helly-Bray argument can be used, that is, the inte-
grand can be approximated in supremum norm by a function of bounded varia-
tion. This plus an integration-by-parts argument suffices to prove convergence
to zero in supremum norm.

In order to prove the second result, it is helpful first to characterize the pos-
sible limit of a convergent subsequence of A, A. The following says that A must
be continuous. Let f be any nonnegative, bounded, continuous function. Then

-1
1~ 148N ==
[raa= [ra@-2) /f(u)[ Sy A >] N )

/fdA A) + /f(u)[ 'IZY(u)] dN(u)(1 + MKa),

i=1

¢
A®) - Agt)| < /0

dN(u)

+

where M is the bound on §;K isthebound onY; and a is larger than lim supz(r).
The law of large numbers implies that n~3?_,Y; and N converge in supremum

norm to E(Y) and
‘ 1+0gN@u-)
E| ————=Y dAo(u),
/o <1+f0_YdA0 (u)) o)

respectively. Also, E(Y) is bounded away from zero by assumption (b) of the
consistency theorem. So

1 1+6,Nu-)
EYw) B[ =207 yw) |dAow) (1 + MKa).
/fdAS/f(u)( (Y(w)) (1+f0_YdAo (u)) o) (1 + MKa)
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Choosing f appropriately implies that A must be continuous at the continuity
points of Ay.
Consider

dA P 1400 Ni(t— ", 1+0N;
Al —@® = |n7! Z O NGED) vyl [t Z LN ).

dA T 1+6p [, YidAy 1+0f0YdA
The numerator converges in supremum norm to its expectation by the strong
law of large numbers. One expects that the denominator will converge to

[ 1+6N(r)
1+6 [j YdA

Y.

This requires a more careful argument. Consider,

1= 1+0Ny(7) v [ 1+6N(r) }
)—E| — =7 Y(@®)
Z1 +0 ] Y,dA i 1+6 [, YdA
lz": (6- 0N(T)A Y.
7 1+0 [ Y;dA

(A.2)

Z (1+6N/()Y:(®) ] Y d(0A — 0A)
I 1+0f0YdA)(1+0f0YdA)

1+6N(r)

" 1+6N;(r)
12 T 2T
1+0foTYdA

1+6 ] V;dA™"

———Yt)-E [ Y(t)] .

Note that the first term above is bounded by the difference between 8 and 6
times a constant, and therefore goes to zero. The second term also goes to zero
since it is bounded above by a constant times the supremum norm of |§ A — 6A|.
Since Ay is continuous, A is also continuous, and therefore sup, (o , |K(t) -
A(t)| converges to zero. At first thought it appears that the strong law of large
numbers is sufficient to prove that the last term in (A.2) converges to zero. Recall
that A in Theorem 2 can be at most the intersection of a countable number of
sets of probability 1. However, the set of probability 1 mayAchange with A, and
each w can have more than one limit point for the sequence A. Since there are an
uncountable number of w’s and therefore possibly an uncountable number of A’s,
the intersection of the corresponding sets of probability 1 may have probability
0. Here is one way around this problem. The space of continuous distribution
functions is separable under the supremum norm. Let {G;}; >; be a countable,
dense set. Include in the intersection of sets forming A sets for which

1+nN(1) 1+nN(7)
sup |n7! - Y,t)-E ———T——Y(t)]
tE[Opr] Z 1+nn fo Y;dG; ! 1+qn fo Y daG,;

converges to zero for each rational pair (n,7') and [/ > 1. Continuing with the



CONSISTENCY IN A PROPORTIONAL HAZARDS MODEL 729

proof that the last term of (A.2) goes to zero,

-l = 14 6N;(z) _ [ 1+6N(r) ]
zl+9f0YdAY’(t) Eliroryvaa’®

-l (6 — nN;i(z)
Z:1+49f0 Y;dA

+ln _12 (1+2N:i(D)Yi@) [y Yid(6A — n'Gy)
& A+6 ffYidA)YA + a7 f; YidGy)

+n-1z": 1+nN;(x) Y,~(t)—E[ 1+7N(1) Y(t)]

Y.

1+ [ YidG 147 [ YdG
 — nN(z) ] [(1 +nN@)Y @) [y Yd(A - nn'G,)]
E|l ——— Y@ E
* [1+0f0’YdA @+ (146 [ YdAYA +ny f; YdGy)

As n increases, the above terms can be made as small as desired by proper
choice of n, n” and /. The denominator of (A.1) converges as expected and the
second result is proved.

The third result follows by one more application of the Helly-Bray argument.
O

LEMMA 2. Assume (b) of the consistency theorem, for each w € A. Then the
following hold:

. Z f ([1+8Nw—))/[1+8 f3 ¥:dA])Yiw) dAw)
([2+ 60 Niw—)] /[1+ 60 f3~ ¥:dAo))Yi(w) dA(w)

1+ 6y N;(u-)

converges to zero;

n_lz / ( [ ([t +ONiw)]/[1 +8 /3 ¥:dA])Yi(w) dAw) ]
([2 + 60 Niw—)] /[1+ 60 Jy™ ¥ dAo) ) Yicw) dA(u)

_[ ([ +0Niw-)]/[1+8 f; ¥:dA]) Yi(w) dA(w) _l:l)
([1 + 60 Niu—)]/[1 + 0 f3~ YidAo] ) Yi(w) dA@)

14+ 6yN;(u-)
1+ 6o fo —YidAo

Y;(w) dA(w)
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converges to

. / lnr ([1+6N@-))/[1+0 fo"—YdA])Y(u) .

0 _([1+00N(u—)]/[1+€0 Ix YdAo])Y(u)
[ ([1+ON@-)]/[1+6 fy” Y dA])Y@) w1
_([1+00N(u—)]/[1+90f0"YdAo])Y(u)7 o

1+6yNu-)
1+ 00 fO B YdAo

Y(u)dAo(u);

and
L,(8, A) — L, (60, &) — L!,(8, A) + L, (60, &)
converges to zero.

PrROOF. Inthe first two equations above, dA /dA can be replaced by its limit,
~. This is justified by the second result of Lemma 1. Arguments similar to those
used in proving the second result of Lemma 1 can also be used to justify the
substitution of A for A in the equations in Lemma 2. Finally, both results can
be proved by employing the Helly-Bray argument outlined in Lemma 1, the
{Gi}:>1 and the first result of Lemma 1.

Recall that

n T u 1/6
L,6,A)—L,06,A)=n"" Z/ (1+6N;(w)d [ln(l + 0/ Y; dA) }
i=1Y0 0

1n= [T 1+6N;u-)
Y [ T vy dA).
* i=1/o 135 A WA

Since both A and A converge to continuous limits, it is easily shown that the
above difference evaluated either at (9, A) = (6, A) or (8, A) = (6y, A) converges
to zero. O
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