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BAYESIAN VARIABLE SAMPLING PLANS FOR THE EXPONENTIAL
DISTRIBUTION WITH TYPE I CENSORING

By LaM YEH

Chinese University of Hong Kong

In this article, a model of single variable sampling plan with type I cen-
soring is studied. Under the assumption that the variable is exponentially
distributed and the loss function is a polynomial, an explicit expression of
the Bayes risk is derived. Then, a simple and finite algorithm to determine
an optimal sampling plan for minimizing the Bayes risk is suggested. Fur-
thermore, a discretization method is proposed so that one can easily obtain
an approximately optimal sampling plan.

1. Introduction. Intherealm of quality control, there are various schemes
for choosing a single sampling plan [e.g., see Wetherill (1977)]. Among these
schemes, the decision approach is probably more scientific and realistic because
the sampling plan is determined by making an optimal decision on the basis
of some economic considerations such as maximizing the return or minimizing
the loss. The research work using this approach has generated an extensive
literature; most statisticians working on this problem are confined to a linear
loss function, however [see, e.g., Fertig and Mann (1974) and Wetherill and
Kollerstrom (1979)]. Hald (1967, 1981) considered polynomial loss functions,
but the optimal sample size derived is by and large not an integer.

Lam (1988a, b) developed a model for single sampling plans with polynomial
loss function. In his papers, the quality of an item in a batch is assumed to be
a random variable with normal distribution N(u, 72), where 72 is known and
1 has a normal prior distribution; then an explicit expression for the Bayes
risk is obtained. He also suggested a finite algorithm for numerical solution to
the optimal sampling plan. Later on, Lam and Lau (1993) considered the same
problem for the case when 72 is also unknown.

In practice, the normal distribution has often been used in modelling many
random variables. However, if the quality of an item is measured by its lifetime,
the normal distribution may be appropriate only if its negative tail is negligi-
ble. In this event, the exponential distribution will be a better alternative in
modelling the lifetime data.

Suppose we are given a batch of N products for acceptance sampling. The
quality of an item in the batch is measured by its lifetime X, with standard value
po. IfX > 1o, we shall accept the item without any additional cost. Assume that
X has an exponential distribution Exp()\) with density f(x) = e~ ™, x > 0. Lam
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(1990) showed that when the batch is accepted the cost function is given by

A

=a0+a1)\+a2)\2+-~,

w1 N/”" Cluo — %)X exp(—Xx)dx = NC{Mo - l__ip(__i’i)}
. 0

where C, o, a1, ag, . .. are constants and independent of ).

The quality of an item may be measured by the reliability of the item at #,.
Suppose that X is the lifetime of an item. Then the reliability of the item at ¢,
is given by R(tp) = P(X > ¢,), with standard value p,. If R(¢y) > po, we shall
accept the item without any extra cost. Assume again that X has an exponential
distribution Exp()). Lam (1990) showed that the cost function of an accepted
batch is given by

NC'(po — R(to)) = NC/{po — exp(—to)}

1.2) ’ / /22
=qy+ oA+ oA+
where C', og, o, 0}, . .. are constants and independent of ).

In both cases, the exact cost functions are all power functions of . Hence, it
is more befitting to consider a polynomial cost function rather than a linear cost
function, because the former is more accurate in approximating cost functions
(1.1) and (1.2).

Furthermore, lifetime data are often censored. For example, in clinical trials,
a patient’s lifetime may be censored in one of the following forms: loss to follow-
up, dropping out or termination of the study. If the cost of inspection increases
heavily with time, we may put n items on inspection and terminate it at a
preassigned time ¢y. This is type I censoring. If the items are unduly expensive,
we may put n items on inspection and terminate it when a preassigned number
of items, say m (< n), have failed. This is type II censoring.

In the past twenty years or so, a great deal of research work has focussed
on the acceptance sampling problems for the exponential distribution with
type II censoring. Among those are Grubbs (1971), Pierce (1973), Guenther,
Patil and Uppuluri (1976), Engelhardt and Bain (1978) and Kocherlakota and
Balakrishnan (1986). The same problem was also investigated by Lam (1990).
For a polynomial loss function, Lam (1990) derived an optimal single sampling
plan for minimizing the Bayes risk. He also suggested a simple algorithm for
determining an optimal sampling plan in a finite number of search steps.

In this paper, we deal with the problem of a single sampling plan with a
polynomial loss function for the exponential distribution with type I censor-
ing. In Section 2, the model is formulated. After considering the sampling plan
(n,t,T), where n is the sample size, ¢ is the preassigned censoring time and T is
the minimum acceptance time, an explicit expression for the Bayes risk will be
derived. In Section 3, a finite algorithm for determining an optimal sampling
plan (ng,ty, To) is given. Furthermore, a discretization method for finding an
approximately optimal sampling plan is proposed, followed by some numeri-
cal illustrations. Finally, in Section 4, we explain why the proposed sampling
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plan can save some resources. The sensitivities of the parameters of the prior
distribution and of the coefficients of the loss function are also discussed.

The same problem for the exponential distribution with random censoring
has been studied by Lam and Choy (1993).

2. Model. Suppose that a batch of items is presented for acceptance sam-
pling or further processing. The lifetime of an item is a random variable X
which has an exponential distribution Exp()\) with density function

e, x>0,

Moreover, ) has a conjugate Gamma prior distribution I'(a, ) with density

b~ 1e®2 (@), A >0,
g\ =

(2.2)
0, A<0,
where parameters a¢ and b are known.
A random sample X = (X3,...,X,) of size n is taken from the batch, giving
an observation x = (x1,...,x,).
As in Lam (1990), the polynomial loss function has the following form:

nCs+ag+aiA+---+a;Nf,  6x) =d,,

2.3 N6 =
@3) { (X)} {nCs +C,, 6(x) =d;,

where coefficients ag,ay,...,a:, Cr and C; are constants, C; refers to the in-
spection cost per item and C, is the cost of rejecting a batch, §(x) is the decision
function, dy denotes the decision of accepting the batch and d; the decision of
rejecting the batch. In addition, we assume that

2.4) ao+a A+ +aAF >0  VYA>0.

Inequality (2.4) is a reasonable assumption because the left-hand side of (2.4) rep-

resents a part of loss due to accepting the batch and hence must be nonnegative.
Let X4y < --- < X(n) be the order statistics of X = (Xj,...,Xy). Since the

sample is subject to type I censoring, the true observations are as follows:

{Xa), Xa <t,

2.5 Y, =
) ! t, X(i) >t

i=1,2,...,n.

Let M = max{i: X;) < t} be the number of failures by time ¢. It is known that
if M > 0, the maximum likelihood estimator (MLE) of the expected lifetime
6 = 1/ is given by

) _Z?=1Yi§_2?l=1X(i)+(n—M)t‘
2.6) =i i Y + ,
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if M = 0, then Oy = nt [see, e.g., Sinha (1986)]. Obviously, M has a binomial
distribution B(n,p) with

@.7) P(M =m) = (Z)pm(l—p)”'m, m=0,1,....n,

where p = 1 — e, Furthermore, for A > 0 and M = m, the joint density
function of (X(y), . .. ,X(m)) is given by

( n! m m
o m)!)\ exp {—)\(Zx(i) +(n— m)t) },

i=1

(2.8) f(x(l),...,x(m))=< m=1"°"n) Osx(l)S"'Sx(m)St’

L 0, otherwise.

Here, it is natural to use the one-sided decision function

do, Oy>T,
(2.9) sXy=¢ M=
dy, O <T.

As mentioned in Section 1, if the quality of an item is measured by its lifetime
X, when X > 9, we shall accept it without additional cost. In other words, we
can accept the batch if the value of 6 is large. It follows from (2.6) that we should
use the one-sided decision function (2.9). If the quality of an item is measured
by its reliability R(to) = exp(—\#o), when R(#y) > po, we shall accept the item
without extra cost. Since the MLE of R(¢y) is exp(—to/6x), we also have the
one-sided decision function (2.9). Besides, if the M-th order statistic X7 = ¢,
then 8y, is the best linear unbiased estimator of 6 [see, e.g., Balakrishnan and
Cohen (1991)]. This justifies again our choice of decision function (2.9).

Later on, we may drop the parentheses in the subscripts for convenience.

It follows from (2.6) that 0 < §M < nt. Then, on the basis of (2.9) we can
assume that

(2.10) 0<T<nt

In fact, if T > nt, then §(X) = d; and we shall always reject the batch; if T = 0,
then 6(X) = dy, and we shall accept the batch at all times. However, the Bayes
risks for both cases include the term nCj; they are, respectively, greater than
the Bayes risks corresponding to the case without sampling. Hence (2.10) is a
natural assumption.

To illustrate the evaluation of the Bayes risk, we assume that the degree of
the loss function in (2.3) is 2.
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Now, the loss function is quadratic and the Bayes risk is given by
r(n,t,T) = E{E(Z(A, 5X) | A)}
= E{(nCs +ag + a1\ + ax\2)P(Gy > T) + (nCs + CIP(Gy < T)}

=FE [nCs +ag+a ) +aa)? +(Cr —ag — a1\ — ag)?)
- n!
x {I(nt<T)P(M=0)+Z/"'/m
m=1 Am

x A™ exp (-—A(Zx,-+(n—m)t)) dxl-ndme ,
i=1

where I, is the indicator of A,

(2.11)

An = {(xl, ey Xm)

m
O0<x; <o < <t in<bm}
i=1

and b,, =mT — (n — m)t.
From (2.2), (2.10) and (A.9), (2.11) becomes

r(n, t, = nCs +Qo+ayuy +agl

o0 2 n!
(2.12) + /0' (C,- —aog — alx\ - az)\ )mz-—.l -———(n — m)'
aya—1,—b\
X eXp{-A(1 — M)E}Gim(bm, ) 2 € g,

I'(a)

where p; and pg are the first and second moments of A about 0, respectively.
Let [x] be the integer part of the real number x, and write

nt nt
my = I:TT-i-_t] +1, mg = I:T] and mg=mgy + 1.
Then, we shall assume tentatively that
(2.13) 0< mi<mg<mg<n.

Now, from (A.9), we havé the following:

1. m < my<b,, <0 and hence

(2.14) Gm(bm,t) = 0;
2. m1 <m < my=0 < b,, < mtand then

~ Gup(bm,t)
@15 _  am el

bn =3t [ .
Z/ (J.)(—l)fu”“lexp[—)\(u+jt)]du;
0

T mliim — 1!
m!(m — 1! =
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3. m > mg«<=b,, > mt and
(2.16) Gy t) =~ (1 — &)™,
Thus, the Bayes risk (2.12) can be partitioned into three terms:
r(n,t,T)=ry+ro+rs,
where
r1=nCs +ao + a1y +azps,

mgy fo'e)
rg = Z /0 (C,- — Qg — al)\ ol az)\2)

m=my
b2)*~Lexp(—b))

T'(a) a

n!
X T exp{ — A(n — m)t} G (b, t)

and
n fo%)
=Y [ € -a-ar-ad
m=mg 0

dX.

n! b2\%~ 1 exp(—b\)
X i O { = A~ M)t} G, ) F(a)p
Note that if (2.13) does not hold, then r(n,¢, T) will either be the sum of r; and
rg or the sum of r; and r3 only.

Note that if (2.13) does not hold, then r(n, ¢, T') will either be the sum of r;
and ry or the sum of r; and r3 only.

It follows from (2.15) that

my [bm/t]
n\/m A | be
ra= . Y (m) (j>(_1)1(m—1)!m

m=m; j=0

b —Jt (Cr —ap)T(m+a) aI'm+a+1)
2.17 m—1 r — Qo o a
( ) X/o u { (d+jt+u)(m+a) d +jt+u)'"+a+1

_ al'(m +a +2) d
(d+jt+uyn+o+2

where d = (n — m)t + b. To simplify the expression further, let
y
By(u,v) = / x*~ 11 —x)’ldx, 0<y<1,
0

be the incomplete Beta function. Then after taking a transformation w =
cx/(1 — x), we have

2 1

w4~
0 (w + c)u+v

(2.18) = B,
cv
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where y = z/(z + ¢). Note that I,(u,v) = 8,(u,v)/B(u,v) is the Beta distribu-
tion function, the values of I,(u,v) and Beta function 3(u,v) can be computed
using numerical subroutines [e.g., IMSL (1991)]. By (2.18), equation (2.17) is
reduced to

my  [bm/t]

re= Y > (;) (?)(—l)j(l/(m - 1) (6*/T(a))

m=m; j=0
(2.19) x {(Cr — ag)T(m +a)d +jt)*B,(m,a)
— a1'(m +a + 1) +jt)3,(m,a + 1)
— agl(m +a +2)B,(m,a +2)}/(d +jt)* +2,

where v = (b,, —jt)/(b,, + d). Moreover, it follows from (2.16) that

v T EEQ)
. m=mg j=0
{(C, — ap)d +jt? — ara(d +jt) — azala + 1)}
% d + )i+ '

In general, for a loss function given in (2.3) of degree & > 2, the Bayes risk
can be evaluated in a similar way.

3. A finite algorithm and the discretization method. Based on the
explicit expression of the Bayes risk, a simple algorithm to determine an optimal
sampling plan can be implemented using the following steps:

1. Start with n = 0; minimize r(0, ¢, T') with respect to ¢ and 7.

2. Move n to 1; minimize r(1,¢, T) with respect to ¢ and T.

3. Move n to n + 1; repeat the above procedure and continue.

4. By comparison, choose the triple (ng, ¢y, To) corresponding to the smallest
Bayes risk r(n,¢,T).

As a result of the algorithm, r(ng, o, Ty) is the minimum Bayes risk and
(no, to, To) is the optimal sampling plan.

The following theorem implies that the algorithm is finite, that is, we can
find an optimal sampling plan in a finite number of search steps.

THEOREM 1. Forn > 1, let r(n,t,,T,) = min, 7 r(n,t,T). Then the size ng of
the optimal sampling plan satisfies

. C, ag+aypy +agus r(n,t,, Ty)
. < — .
3.1 no < mm{ c. C. , C.

Proor. From (2.3) and (2.4), it is easy to see that for an optimal sampling
plan (ng, to, Ty) we have

(3.2) r(ng, to, To) > noCs.
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Let (0, 0, c0) be the plan of rejecting the batch without sampling, and let (0, 0, 0)
be the plan of accepting the batch without sampling. Then, obviously,

(3.3) r(no, to, To) < min (r(0,0, 00),7(0,0,0),7(n, tn, T)).

It is clear that r(0,0,00)) = C;, and r(0,0,0) = ag + a1y + agus.
The proof is completed by the combination of (3.2) and (3.3). O

Theorem 1 gives an adaptive upper bound for the size of the optimal sampling
plan, which will save the computing time considerably.

The expression of r(n, ¢, T) is very complicated because Gn,(x,?) is not even a
continuous function. Many numerical optimization methods, such as Newton—
Gauss, steepest descent and conjugate gradient methods, are not applicable in
this situation. An alternative method is to consider a sequence of particular
sampling plans (n,t,lt), where [ takes the values from a discrete set of (0, n].
Thus, for fixed n and /, we can minimize r(n, t,lt) with respect to ¢ (it is a one-
dimensional problem only !), then determine the minimum Bayes risk and the
optimal sampling plan by comparison.

This method can be applied to the case where a lower bound and an upper
bound of ¢ can be preassigned. Although ¢ is bounded below by 0, it is not clear
in general whether ¢ is also bounded above. However, an alternative way is to
find an interval [#;, ] such that

P <X<ty=1-

where 0 < v < 1. To do this, we can choose ¢z and ¢y such that P(X < ) = v/2
and P(X > ty) = v/2. Because

t
P(X<tL)—/ /LA -MFIZ o\ le P dwd

-1-(1+3) =%
hence

(3.4) = b{ (1- -2”-)'1/" _ 1}.

Similarly

3.5) tU=b{(-;—)_1/a—1}.

Such ¢7 and ¢y can be called a v/2 lower bound and v/2 upper bound, respectively.
Although the optimal sampling plan obtained by searching a sequence of
particular sampling plans (n,¢,1t) is in general not a globally optimal sampling
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TABLE 1
The minimum Bayes risks and optimal sampling plans as a and (or) b vary (varies)
(6)
(1) (2) 3) (4) (5) Risk for true )
a b r(ng,t0,Ty)  ng to T, parameters Efficiency
0.2 0.2 12.1499 4 0.0270 0.1080 31.0779 0.8024
2.5 0.4 29.7506 1 0.7978 0.7978 27.3042 0.9133
2.5 0.6 27.7834 3 0.8537 0.4268 25.1406 0.9919
1.5 0.8 16.6233 3 0.5262 0.2631 25.4831 0.9786
2.0 0.8 21.2153 3 0.6051 0.3026 25.0864 0.9940
2.5* 0.8* 24,9367 3 0.7077 0.3539 24.9367* 1.0000
3.0 0.8 27.6136 3 0.8170 0.4085 25.0589 0.9951
3.5 0.8 29.2789 2 1.0037 0.5019 25.7683 0.9677
2.5 1.0 21.7640 3 0.5483 0.2742 25.3408 0.9841
2.5 1.2 18.6097 3 0.4158 0.2079 26.6736 0.9349
10.0 3.0 29.5166 2 0.7928 0.3964 25.2993 0.9857
TABLE 2
The minimum Bayes risks and optimal sampling plans as ag varies
Risk for true
ay r(ng, to, To) ny to To coefficient Efficiency
0.1 23.9743 4 0.6539 0.3269 24.9904 0.9979
0.5 24.1874 3 0.6808 0.3404 24.9451 0.9997
1.5 24.6925 3 0.6808 0.3404 24,9451 0.9997
2.0* 24.9367 3 0.7077 0.3539 24.9367* 1.0000
3.0 25.4172 3 0.7346 0.3673 24.9457 0.9996
5.0 26.3287 3 0.7884 0.3942 25.0071 0.9972
10.0 28.2745 2 1.0037 0.5018 25.7682 0.9677

plan, it is at least an approximate one. This approximation is called the dis-
cretization method.

To illustrate the model, the algorithm and the discretization method devel-
oped in Sections 2 and 3, some numerical examples are studied and tabulated
in Tables 1-6. The values a = 2.5,b = 0.8,a¢ = 2,a; = 2,a3 = 2,C, = 0.5 and
C, = 30 are used for comparison. In each table only two parameters or one
coefficient can vary and the others are fixed. As before, r(ng, ty, Ty) is used to
denote the minimum Bayes risk, while (n, ¢, T) is the optimal sampling plan.

In these examples, the interval [#;,¢y] is determined such that P(f; < X <
ty) = 0.95. For each n, a sequence of sampling plans (n,¢,1t) is chosen in the
following way:

t=1Ir +

ity —t1)

100 °’

i=0,1,...

, 100,
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TABLE 3
The minimum Bayes risks and optimal sampling plans as a, varies
Risk for true
ay r(ng, 9, Tp) ng t T, coefficient Efficiency
0.1 22,7788 4 0.5732 0.2866 25.2265 0.9885
0.5 23.2897 4 0.6001 0.3000 25.1146 0.9929
1.5 24.4325 3 0.6808 0.3404 24,9451 0.9997
2.0* 24.9367 3 0.7077 0.3539 24.9367* 1.0000
3.0 25.8399 3 0.7884 0.3942 25.0071 0.9972
5.0 27.2715 3 0.9499 0.4749 25.4143 0.9812
10.0 29.2151 2 1.5687 0.7844 27.3580 0.9115
TABLE 4
The minimum Bayes risks and optimal sampling plans as as varies
Risk for true
a r(ng, ty, Top) ng t T, coefficient Efficiency
0.5 15.0859 0 0 0 35.5938 0.7006
1.0 20.8319 3 0.3848 0.1924 27.1835 0.9173
1.5 23.3494 3 0.5463 0.2731 25.3528 0.9836
2.0* 24.9367 3 0.7077 0.3539 24.9367* 1.0000
3.0 26.8155 3 0.9499 0.4749 25.4143 0.9812
5.0 28.5677 3 1.3804 0.6902 26.9175 0.9264
10.0 29.8049 1 1.7032 1.7032 29.1599 0.8552
TABLE 5
The minimum Bayes risks and optimal sampling plans as Cs varies
Risk for true
Cs r(ng, ¢y, To) no to To coefficient Efficiency
0.1 22.6644 11 0.6270 0.3135 27.0644 0.9214
0.3 24.1116 5 0.6808 0.3404 25.1116 0.9930
04 24.5696 4 0.6808 0.3404 24.9696 0.9987
0.5* 24.9367 3 0.7077 0.3539 24.9367* 1.0000
0.6 25.2367 3 0.7077 0.3539 24.9367 1.0000
1.0 26.2303 2 0.7077 0.3539 25.2303 0.9884
2.0 27.7605 1 0.7884 0.3942 26.2605 0.9496
TABLE 6
The minimum Bayes risks and optimal sampling plans as C; varies
Risk for true
Cr r(ng, ty, To) ng to T, coefficient Efficiency
10 10.0000 0 0 0o 30 0.8312
15 14.8625 1 2.1068 1.0534 28.0265 0.8898
20 18.8574 2 1.1382 0.5691 26.1560 0.9534
30* 24.9367 3 0.7077 0.3539 24.9367* 1.0000
40 29.1674 4 0.5194 0.2597 25.5741 0.9751
50 32.1176 5 0.4117 0.2059 27.1179 0.9196
100 35.5938 0 0 0 35.5938 0.7006
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and

=%, j=12..,2n.
Finally, the minimum Bayes risk is obtained and the corresponding optimal
sampling plan is determined by comparison.
For the loss function given in (2.3) of degree k > 2, the finite algorithm and
the discretization method can be developed similarly.

4. Discussion. According to our model, the optimal sampling plan (n,,
to, Ty) should have a smaller Bayes risk than the existing plans. As an example,
we consider the operating characteristic (OC) curve sampling plan. Now, the
percentage of defectives is given by

¢=PX < T)=1- exp(—=\T).

To determine an OC curve sampling plan (n,¢,T), we should start with three
points on the OC curve: the producer’s risk point (¢1, 1 — @); the customer’s risk
point (ps, 3); and a third point, the central point (ps3, 0.5), say. Then, for each
given value ¢;,i = 1,2, 3, we can solve the equations ¢; = 1 — exp(=\;T) for ).
Finally, for given a and 3, the OC curve sampling plan (n,¢,T) is determined
by solving the following equations:

4.1) POy>T=1-a
4.2) Py >T) =8,
(4.3) Py >T)=0.5

where )\, Ao and )3 are substituted in (4.1), (4.2) and (4.3), respectively, for A.
In general, the OC curve sampling plan (n, ¢, T') should have a higher Bayes risk
than the optimal sampling plan (ng, %9, To). This means that a higher expense
will normally be involved.

Moreover, from Tables 1-6, the size ng of the optimal sampling plan (n, to, To)
is quite small; so are the censoring time ¢, and the minimum acceptance time
Ty. This implies that using the optimal sampling plan will spare some resources
such as money, time, manpower and the like.

From the tabulated results, it appears that when six out of seven parameters
or coefficients are fixed, r(ng, o, To), o, to and Ty are, respectively, monotone or
unimodal in the remaining one.

In practice, the parameters and coefficients are usually unknown. However,
parameters a and b can be estimated by the standard methods, such as the
MLE method. Coefficients ay, . . . ,a; can be obtained from the Taylor expansion
of (1.1) or (1.2). C; is the inspection cost per item; if the inspection is destructive,
the production cost must be taken into account. C, is the cost of rejecting the
batch; it might include the production cost of the batch, a security deposit and
the loss of goodwill. Often, the loss of goodwill is difficult to estimate.

If we are unable to estimate the parameters or the coefficients accurately,
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what is the consequence if some of the parameters or coefficients are inac-
curately estimated? Sensitivity analysis investigates the behavior of the so-
lution due to a change in parameters or coefficients in the model. In Tables
1-6, we envisage that the estimated parameters or the estimated coefficients
are given in column 1, the “minimum” Bayes risks and the “optimal” plans
are given in columns 2-5. As the minimum Bayes risks and the optimal plans
are evaluated using the estimated parameters or coefficients, they are called
the estimated Bayes risks and the estimated plans, respectively. Under the
estimated plans, by using the true parameters and coefficients, the true (but
not the minimum) Bayes risks are shown in column 6. Moreover, assume that
the true parameters are ¢ = 2.5 and b = 0.8, while the true coefficients are
ap = 2,a1 = 2,a3 = 2,C; = 0.5 and C, = 30. In each table only one or two
parameters or one coefficient could be incorrectly estimated, since the others
are the true values. The true parameters or coefficients and the true minimum
Bayes risks are marked by an asterisk in Tables 1-6. For example, in Table
1, if a and b are inaccurately estimated as 3.5 and 0.8, respectively, the esti-
mated Bayes risk is 29.2789 and the estimated plan is (2, 1.0037, 0.5019). By
using the estimated plan, as the true ¢ and b are 2.5 and 0.8, respectively, the
true Bayes risk (but not the minimum) is 25.7683. Since the true minimum
Bayes risk is 24.9367, the efficiency of the estimated sampling plan (2, 1.0037,
0.5019) is 0.9677 = 24.9307/25.7683 [see Hald (1981) for reference]. The sen-
sitivity analysis for the other values of a or b can be carried out by similar
treatment.

The sensitivity analysis for the coefficients is exactly the same. For instance,
in Table 6, if C, is incorrectly estimated as 15, the estimated Bayes risk is
14.8625 and the estimated plan is given by (1, 2.1068, 1.0534). By using the
estimated plan, since the true value C; is 30, the true Bayes risk (but not the
minimum) is 28.0265. The efficiency of the estimated sampling plan (1, 2.1068,
1.0534) is 0.8898 = 24.9367/28.0265.

From the results in Tables 1-6, we can conclude that in most cases, the effi-
ciencies are higher than 0.9 even if the errors of the parameter or the coefficient
are over 100%. For instance, in Table 2, even if a¢ is incorrectly estimated as
10.0 with relative error 400%, the efficiency is 0.9677. It is still very high.

In conclusion, our model is insensitive to the parameters and the coefficients.
This is an additional advantage of the proposed sampling plan. Even if we do
not know the parameters and coefficients exactly or we cannot estimate them
precisely, our model can be employed. In application, in response to a small
change in some parameters or coefficients, an obsolete sampling plan may be
retained tentatively until there is a chance to adjust it. For all that, a close
examination of Tables 1-6 reveals that the minimum Bayes risk seems to be a
bit more sensitive to the cost C, than to the others. Correspondingly, we have to
be more attentive about the estimation of C,. Also, we must pay more attention
tothe implementation of an optimal sampling plan as C;, changes.

Although this paper deals mainly with the case of quadratic loss function, the
model and the algorithm as well as the discretization method are all applicable
to the case of polynomial loss function.
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APPENDIX
Consider the integral

m
@y Guwmn= [ f /\mexp{—/\ij}dxlmdxm.
0<x) <o Sy <t Jj=1

Zﬁlxj«

To evaluate the value of G, (x, t), first of all, by symmetry we have

@2 Guemp=n [ f /\mexp{—)\ij}dxl-udxm.
m Jj=1

Zj-l’fj <z

0<% <tVj
Let

_ [ dexp(—)x), O<x<t,

g1kx) = 0, otherwise.
Then (A.2) becomes
1 X
(A.3) Gplx, t) = —,/ gmdu,
m! 0

where g;(x) = f: &1(w)gj_1(x—u)du, j=2,3,..., m, is the j-fold convolution of g1
with itself. Now assume that 0 < x < m¢ and let Gj(w) be the Fourier transform
of gj(x), that is,

Gi(w) = / gix)exp(—iwx)dx, j=1,2,..., m.

Since g; € L(—o0, 00), we have

/\m

A49) Gnw) = Gy(w)™ = Or i

{1 —exp (—t\+ iw))}m.

Assume that m > 2. Then, obviously, g,, € L(—o0, ), Gy, € L(—00,00) and
1 o o)

(A.5) Emx) = — / Gn(w)explixw)dw a.s.
2m J_o

[see,_ e.g., Rudin (1966)]. Substituting (A.4) into (A.5) yields

m

am ; .
(A.6) Em(x) = ~2—7—rj=zo (T) (=1Y exp(—jAt)A; a.s.
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where

A= / ” hiw)dw and hjw)= exp (iw(x — jt)).

1
O\ +iwym

To evaluate A;, we consider two cases separately.

CaAseE 1 (x > jt). Let Cg be the upper half of the circle |z| = R, where R > \.
By integrating A;(z) counterclockwise around the boundary of the semicircular
region and letting R — oo, we have

(o — jtym—1

A; = 2i Res{hj(A\i)} = 2mexp (—\x — Jt))(——ﬁ'—.

CASE 2 (x < jt). Let C;'z be the lower half of the circle |z| = R. Integrating

hj(z) counterclockwise around the boundary of the semicircular region and then
letting R — o0, it follows that A; = 0 for x < jt.
Now, (A.6) becomes

(x Jt)m -1

(A.7) gm(x) = )\" eXp( )\x)z (J )( 1)‘](7—1—)'—,

Jj=0

where & = min(m, [x/t]), and [x] is the integer part of the real number x. Fur-
thermore, direct checking shows that (A.7) is also true for m = 1.

In order to obtain a simpler expression of G, (x, ) for 0 < x < mt, the following
lemma is useful.

LEMMA A. Assume that f(x),j = 1,2,...is a sequence of integrable functions.
Then

X [u]

[x]
(A8) Z fw)du = / fwdu.
Jj=0

PRroOOF.

x [ul [x1-1  nks1 [u] x [ul
/Zﬁ(u)du— Z/ > fawdus [ 3w
=0

x]1-1 & b+l x [x]
= Z Z/ }S(u)du+/ Z)‘)(u)du
=0j=0 =0

[x]-1[x]-1 ,p4+1

-y

Jj=0 k=j

/ fiw)du.
J

f}(u)du+z / fiw)du
j=0/Ml

=
8

Jj=0
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Then, from (A.3), (A.7) and (A.8), we have

Gnlx,t) =

=m'(m 1)12 '[t ( )( 1Y(u —jty™ " exp(—du) du

x—jt )
Z/ (n?)(——l)Ju’"“l exp[ — AMu +jt)] du.
=070 J
Finally, it is clear that if x < 0, then G,,(x,¢) = 0; if x > m¢, then (A.3) gives

1 g L | m
Gl 0= ( / gl(u)du> = L1 exp-an)]
In conclusion, we have the following important result.

THEOREM A.
(0, x <0,
\m [x/t]

o m —
(A9)  Gnlx, )= ; mi(m — 1)l ?3 /0 ( j >(—1)Ju
X exp [ - Mu +Jt)] du, 0<x< mt,

1
i [1 - exp(-At)]™, x > mt.
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