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WEAK CONVERGENCE OF RANDOMLY WEIGHTED DEPENDENT
RESIDUAL EMPIRICALS WITH APPLICATIONS TO
AUTOREGRESSION!

BY HIRA L. KOUL AND MINA OSSIANDER
Michigan State University and Oregon State University

This paper establishes the uniform closeness of a randomly weighted
residual empirical process to its natural estimator via weak convergence
techniques. The weights need not be independent, bounded or even square
integrable. This result is used to yield the asymptotic uniform linearity
of a class of rank statistics in pth-order autoregression models. The latter
result, in turn, yields the asymptotic distributions of a class of robust and
Jaeckel-type rank estimators. The main result is also used to obtain the
asymptotic distributions of the least absolute deviation and certain other
robust minimum distance estimators of the autoregression parameter vec-
tor.

1. Introduction. This paper establishes the uniform closeness of a ran-
domly weighted residual empirical process to its natural estimator via weak
convergence techniques. This result is shown to form a basis for the large
sample investigation of an analogue of Jaeckel’s 972) rank and some ro-
bust estimators of the autoregression parameters in pth-order autoregression
[AR(p)] models.

More precisely, let p > 1 be a fixed integer, let R? denote the p-dimensional
Euclidean space, R = R!, and let t' denote the transpose of a p x 1 vec-
tor t € RP. Let F be a distribution function (d.f.) on R; let ¢1,¢9, ... be in-
dependent and identically distributed (i.i.d.) F' random variables (r.v.’s); let
Yo = Xp, ...,X1-p) be an observable random vector independent of {¢;,i > 1}.
In an AR(p) model one observes {X;} satisfying the relation

(1.1 Xi = p1X,'_1 +:--+ pri—p + &g, i> 1,

where p:=(py, ...,pp) € RP is the parameter vector of interest.

AKkin to linear regression, a class of estimators of p that are robust against
outliers in the errors and have desirable asymptotic efficiency properties can
be obtained among rank estimators. To define these, let Y;_1:=(X;_4, ..., Xi_p),
1 < i < n, let ¢ be a nondecreasing real-valued function on (0, 1), let R;; denote
the rank of X; — t'Y;_; among {X; —t'Y;_;, 1 <j<n},1<i<n,teR,
and let g :=(g1,82, ...,8p) be a p-vector of measurable functions from R? to
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R. Define, for 0 <u < 1,t e R?,

7(1) =Y o (F) (% - ¢ ¥i),

- n+l
Si(t) 1=n"lzgj(Y'-1)¢(%),
12) Z(u,t) =13 (Yoo ) (Ric < ),
5(u.t) = 2w, t) B
gi:=n"'> g(Yi.1), 1<j<p.
i

Here and in the sequel, the index i in the summation and the maximum
varies from 1 to n, unless specified otherwise. Let Sg(t) := (S1(t), ..., S,(1)Y,
Zy(u,t):=(Z1(u,t), ..., Zpu, b)Y, Z4(u,t):=(2,(u,t), ..., Z,u,t)),0<u< Lte
RP. Write S,Z and so on for S, Z; and so on whenever g is the identity vector,
that is, gy) = y,y €R”.

Jaeckel (1972) used an analogue of 7 suitable in linear regression models,
where Y]_, is replaced by the ith row of the design matrix, to define a class of
rank estimators of the slope parameters. Hettmansperger (1984) has shown
that these estimators and the corresponding 7 play a fundamental role in the
development of the analysis of variance based on ranks in linear regression
models. Using Jaeckel’s arguments, one can prove the following facts in the
present case.

If (Yy, X3, ..., X,) has a continuous joint distribution, and if ¢ satisfies

(p1) Zgo(i/(n +1)) =0,

then J is nonnegative, continuous and convex on RP”. In addition, the al-
most everywhere differential of 7 is -nS and, for every 0 < b < oo, the
set {t € R?; 7(t) < b} is bounded for all those data points (Yj,Xj, ...,X,) for
which 2;(Yi_; — Y)(Y;_1 — YV is positive definite, where Y := (X, ...,)_{p)’,
X = n~1y.X;_;, 1 <j < p. Consequently, the estimator

(1.3) py = argmin J(t)
t
is well defined.
Unlike in linear regression, the estimators {p;} are not robust against out-

liers in the errors in (1.1). A class of such rank estimators, akin to G-M estima-
tors of Denby and Martin (1979), is given by generalized rank (G-R) estimators

(1.4) Py = argtmin IS (t) |,

where g is typically a vector of bounded functions. An example of g would be
the Huber function [Huber (1981)]: g(y) :=yI(llyll < &) +y ¥yl (lyl > &),
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y € R?, where k and c are some constants. The choice of g(y) =y makes pg
asymptotically equal to p;.

Another class of estimators of p that has desirable efficiency and robustness
properties is obtained by minimizing certain Ly-norms based on Zg-processes
of (1.2). More precisely, let G be a d.f. on [0, 1] and define

1
(1.5) Kg(t) :=/0 ||n1/2zg(u,t)||2dG(u), teRP;  pyi= argtmian(t).

Analogues of pg; and p, in linear regression appear in Koul (1992).

It is clear from the above definitions that the investigation of the asymp-
totic distributions of these estimators is facilitated by the weak convergence
properties of {n'/2Z4(u,p+n~/2s); 0 < u < 1, s € RP}. As will be seen in Sec-
tion 3, the processes whose weak convergence properties in turn facilitate this
investigation are of the type

Wi(y,t) = n72 ) A(Yio)I(X; - t'Yiy <),
(1.6) v(y,t) = n71Y A(Yi1)F(y + (t— p)'Yio1),
Wh(y,t) = nl/Z[Wh(y,t)—Vh(y,t)], yeR,teRP,

where £ is a measurable function from R? to R.

This paper actually contains a more general result which, when special-
ized to the above model, yields the required weak convergence properties
of {(Wr(y,p + n‘l/zs); y € R, s € RP}, under some growth conditions on
{Yi_1,h(Y;_1)}. To state this general result, let (?2,.4,P), be a probability
space and let H be a d.f. on R. For each integer n > 1, let (1, &ni, Vui)s
1 <i < n, be an array of trivariate r.v.’s defined on (£, .A) such that {n,;, 1 <
i < n} are iid. r.v’s with d.f. H and 7,; is independent of (y;,&ni), 1 <i < n.
Furthermore, let {A,;} be an array of sub-o-fields such that A4,; C A1,
Ani C Anstiy 1 <0< n,n > 1; (4, &) is Ap-measurable, the r.v's {7, ...,
Tnj—15 (Tn1,&n1), 1 < i < j} are Apj-measurable, 2 < j < n; and 7,; is independent
of A,j, 1 <j < n. Define, for an x € R,

n n
Va(x) = 07 il (s Sx+€wi), Vi) :=n"1Y vl (nai < x),
i=1 i=1

In(x) = 07 E{yuil (i < %+ &ni) | Ani}

i=1

n> " yuiH (x + &),

i=1

.7

Ji(x) = n7tY uH(x),
i=1

Un(x) = n2(Va(x) = Ju(x)), - Up(x) =n2(V;(x) — Jn(x)).
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Note that if in (1.7) we take

Yoi = B (Yi_1), Tni =&,  &ui=n"Y28"Y;_y,
Apn = U-ﬁeld{Yo}, Ani = a-ﬁeld{Yo,el, . ,Ei_l}, i>2,

(1.8

then V,(y), Vi (y), U.(y) and U} (y) are, respectively, equal to Wy(y, p + n~12g),
Wi (y, p), Wi(y, p+ n~1/28) and Wj(y, p), for all y € R and for each s € R”.

To state the main result of this paper, we also need to introduce a pseudo-
metric

dp(x,y) == sup|H(x +a) —H(y+a)|1/2, x,y € Rand b > 0;
lal<d

the covering number of R with respect to dp and the entropy integral, respec-
tively, given by

N(6,b) := cardinality of the minimal 6-net of (R,d); 6>0,b > 0;

1
7(3) : f (InN(w,5)}?du, b>0.
0

The function In N(-,b) is known as the metric entropy of R with respect to the
pseudometric dp. This function has been used extensively in studying the weak
convergence of empirical processes [see, e.g., Dudley (1978) and Ossiander
(1987)1.

In what follows, 0,(1) [O,(1)] stands for a sequence of r.v.’s that converges
to zero (is bounded) in probability, ||A||« := sup{i(x); x € R} for any function
h from R to R, Inx := log,(x), x > 0, and all limits are taken as n — oo, unless
specified otherwise.

Since the processes {U,} and {U;}, although right continuous with left
limits, are possibly nonmeasurable in the uniform metric, we use here the
Hoffman—Jorgensen definition of weak convergence: Let L:={f: R — R, ||f||o0 <
oo} be a subset of bounded functions in R. A sequence of L-valued processes
{T»; n > 1} is said to converge weakly in distribution to an L-valued process
T, (T, = T, if E*g(T,) — Eg(T) for every g € C(L, || - ||), Wwhere E* denotes
the outer expectation.

It is well known that in our context, weak convergence will follow from
finite-dimensional convergence and asymptotic equicontinuity (eventual tight-
ness) with respect to some totally bounded psuedometric, which we take to be
dp. Details of the argument involved can be found, for example, in Andersen
and Dobrié¢ (1987). See also Dudley (1984) and Giné and Zinn (1986) for some
other related issues. We are now ready to state our main theorem.
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THEOREM 1.1. In addition to the above, assume that the following hold:

n 1/2
(A1) (n"1 Z’Yfi) =v+0,(1), v a positive r.v.
i=1
-1/2 | =
(A2) n llgias)ihml _Op(l)'
(A3) max |6l =0, (1).
(A4) H is continuous.
(A5) There exists a by > 0 such that Z(bo) < co.

Then the processes {U,} and {U;} are eventually tight in the uniform metric
and

(1.9) IUn = Ulloo = 05(1).
Under the additional assumption (A6),
(1.10) U, = vB(H), U; = vB(H),

where B is a Brownian bridge in C[0,1], independent of v, and where the
following holds:

(A6) For each n > 1, {y,;; 1 <i < n} is square integrable.

Conditions (A1), (A2) and (A6) suffice for the finite-dimensional convergence
of U;; while (A3) and (A4) are added to yield the finite-dimensional convergence
of U,. The eventual tightness of U}, requires (A1)-(A4) only while that of U,
requires (A1)—(A5).

Here, we briefly discuss (A5). Under (A4), N(6,0) = [1/62]. Moreover, it is
not hard to see that

N(2Y/26,b) <N(6,0)(1+2b/w(5)), b2>0,
where
w(8) := min {H1((k +1)é?) - H~}(k6%); 1 <k < 1/6%},

with H~1(u) := inf{x, Hx) > u},0<u < 1.

Now consider the following assumption:
(A4*) H has a uniformly continuous density #; which is positive a.e.

Under (A4*), h; is bounded and w(§) > 62/||h1]|c0- Hence,

InN(u,b) < -In(u?/2) +In(1 +4b|h1|leo/u?), 0<u<1,b>0.
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Thus, if (A4) is strengthened to (A4*), then (A5) holds a priori.

Our proof of Theorem 1.1 uses a truncation argument, an adaptive chaining
argument similar to that of Ossiander (1987) and Greenwood and Ossiander
(1991) and an exponential inequality of Freedman (1975). It is given in Sec-
tion 2. In the case where the weights {v,;} are bounded, a proof of a variant
of Theorem 1 appears in Koul (1991). Applications of (1.9) to the empirical
processes of the residuals, the weighted empirical processes with bounded
weights used in defining the G-M estimators and some other inferential prob-
lems in the AR(p) model are also given in that paper. However, as is seen from
(1.2) and (1.3) the weights involved in the definition of Jaeckel’s estimators
are necessarily unbounded and hence the result of Koul (1991) is not applica-
ble. The weights involved in efficient G-R estimators p, or efficient minimum
L,-estimators p, are also generally unbounded. To cover these cases we now
have the following lemma.

LEMMA 1.1. In addition to (1.1), assume that the following hold:

(al) max n~Y2||Y;_1|| = 0,(1).
(h1) max n"V2|h(Y;_1)| = 0,(1).
1/2
(h2) <n"1 > hZ(Y~_1)> =a+0,(1), «a positive r.v.
(h3) nty ||h(Y,~_1)Y,-_1” =0,(1).

(F1) F has a uniformly continuous density f which is positive a.e.

Then,V 0<b < oo,

(1.11) sup IWh(y,p+n"1/2s) - Wa(y, p)‘ =0,(1),
Y€R, |Isl|<b
and
sup |nl/2 [Wh (v, p+n7128) — Wi (y, p)]
YER, |Is]<b

(1.12)

gt Zh(Yi_l)Y~_1f(y)l = 0,(1).

PROOF. The result (1.9) applied to the entities given in (1.8) readily yields
that

suplWh(y,p+n‘1/2s) —Wh(y,p)l =0,(1), VseRP.
y
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The uniformity with respect to s is obtained by exploiting the monotonic prop-
erty of the indicator function and the d.f. and the compactness of the ball
{t e R?; ||t|| < b}. The details are similar to those in Koul [(1991), proof of
Theorem 1.2.]. The only difference is that one uses (1.9) which allows % to be
unbounded, wherever (1.7) of that paper was used. O

Using the asymptotic uniform linearity result of Jure¢kova (1971), Jaeckel
(1972) showed that in the case of linear regression the suitably normalized
analogue of p; is asymptotically normally distributed and asymptotically equiv-
alent to the suitably normalized analogue of a solution t of the equation
S(t) = Yp, % := [¢(u)du. The corresponding result for p; under (1.1) is the
second major contribution of this paper and is facilitated by the following
theorem, which is general enough to be useful in obtaining the asymptotic
distributions of {pg, py; g varies} of (1.4) and (1.5).

THEOREM 1.2. Let g(Y;_1):=(g1(Y;_1), ...,8o(Y;_1)), 1 < i < n. In addition
to (1.1), (al) and (F'1), assume that the following hold:
(a2) n~1Y ([Yiiall = 0p(1).
i
@3)  nV2max|g(¥; 1)l =0p(1).

@) n'Y |lg(Yio1)Yica|| =0,(1),  1<j<p.
’ 1/2
(ab) {n‘1 ng(Y-_l)} =a;+0p(1), aja positiverv., 1<j<p.
i

(a6) n~! Z (8(Yi-1)-8) (Yi-1 -Y)' = £g+0,(1), where Ty is a positive definite
matrgx.

Then, for every 0 < b < oo,

(1.13) sup

0<u<1, ||s||<b ni/? [Zg (u,p+n""/%s) ~ 2:(“)] —Zgsf(F'(u))

‘ =0p(1),

where

(1.14) Zg(u):=n"1 Z (g(Yi-1) - 8) [I(F(e,-) <u)- u], 0<u<l

In addition, if ¢ € C, where

(¢2) C := {¢: [0,1] = R, p nondecreasing, right continuous, ¢(1) — ¢(0) = 1},
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then,V0 < b < oo,

(1.15) sup
PEC, IslI<b

nl/Z{Sg(p+n‘1/2s) -gp— §g} + 2¢s/fd<p(F)“ =0p(1),
where

(1.16) Sg=n"! > (&(Yi1) - 8) [w(F(e,-)) - rp-], g=n"'Y g(Yioy).

REMARK 1.1. The result (1.15) is an analogue of Juretkovd’s linearity
result suitable under (1.1). It readily follows from (1.13) and the identity
Set) =87 — fy Zg(uln + 1)/n, t) dpw).

A proof of (1.13) appears in Section 3. In the case p = 1, g1(y) = y and
Ee* < o, its analogue was proved in Koul and Sen (1991), using a very cum-
bersome truncation argument, the AR(1) structure and the weak convergence
techniques of Billingsley (1968). Such a proof does not extend easily to the
AR(p) model (1.1) and the general processes Zg. Theorem 1.2 gives an im-
portant extension of that result to a larger class of linear rank processes Zg
and statistics Sg and to AR(p) models whose errors need not even have finite
second moments. However, if Yy, {¢;} are so chosen as to make Y,,X;,Xg, ...
stationary, ergodic and if E||g(Y,)||? < co, Ec? < oo, then (al)~(a6) are a priori
satisfied.

The asymptotic distributions of the above estimators is given in the follow-
ing lemma and two corollaries. Their proofs appear in Section 3.

LEMMA 1.2. In addition to (1.1), (F1) and (p2), assume that the following
hold:

(aT) All roots of the equation xP—pyxP~1—... — p, = 0 are inside the unit circle.
(a8) E<? < oo.
(29) E||g(Yo)||* < 0.

Then T'g :=p lim, n=13;(g(Y;_1) — @(@Y;_1) — g)' exists and

(1.17) n/28g = N,(0,02 Ty),
where o2 :=Varlp F(e1))].
COROLLARY 1.1. Assume that (1.1), (1), (F1), (¢2), (a7) and (a8) hold. Then

S:=p lir{n n-1 Z(Yi—l - Y) (Yi—l - ?)/
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exists, is positive definite and

(1.18) n'2(p;—p) = N(o, o2 ( / fd<p(F)) _22-1).
If, in addition, (a9) and
either 0'(g(Y;_1) -8)(Yi.1-Y)0>0,
VO eRP with || =1andV1<i<n,as.,
or 0'(g(Yi-1)-8)(Yi-1-Y)0<0,
V6O eRP with || =1andV1<i<n,as.,

(al0)

hold, then

119) a2, -p) = N(o, o2 ( / fdcp(F))

-2
-1 -1
;T )

/

COROLLARY 1.2. Assume that (1.1), (Fl) (a7), (a8), (a9) and (a10) hold
Then s b L

(1.20) 1/2(p - p)=>N( T z;lr,z:;l),

)

where
fo fo [uAv—uv)g(u)g(v) dG(u) dG(v) — £(F-1
3 i q:=f(F).

Another estimator whose asymptotic distribution can be obtained from some
of the results in this paper is the least absolute deviation (LAD) estimator
defined as a minimizer ¥;|X; — t'Y;_,| or, alternatively, the estimator p),4 :=
argminy {S(t)}?, where S(t) := n~V/2%,Y;_{IX; - t'Y;_; < 0) — 1}. Using
Corollary 2.3 and certain monotonic structure that is present in S(t) we obtain
Corollary 1.3:

COROLLARY 1.3. In addition to (1.1), (a7) and (a8), assume that the follow-
ing holds:

The error d.f. F has density f in an open neighbor-
(F2) hood of 0 such that f is positive and continuous at 0
and F(0) = 3.

Then n-1y Y 1Y,_; = 31 +0p(1), where X is a positive definite matrix, and

nY2(Praq — p) ;»N(O, 21—1/4f2(0)).
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The proof of this corollary also appears in Section 3. We shall now briefly
discuss the asymptotic relative efficiencies of the above estimators. For con-
venience take p=1 and assume that Eeq = 0. Let 0% := Ee?. Then ¥ =
(1 - p?)~1o? = ;. Let 02, 02, and o2, denote, respectively, the asymptotic
variance of nl/ 2(ps—p)n 12 (Praa — P) and n'/2(p — p), where p is the p, with
g(y) =y. Thus, with o? :=(1 — p*)0~2,

-2
(1.21) of= (/fd(p(F)) o, ol = (2f(0))—2a2’ 0%, = 12a?.

Now take p(u) = u = G(u) and denote the correspondmg ps as py and p
as p;. Then, for F(x) = 1/(1 + exp(—x)), x € R, 72 = 3.0357, (2f(0))"2 4 and
2( [fde(F)~2 = 3; for F with density f given by f(x) = lexp(—|x|), x € R,
2 = 1.2, (2f(0)"2 =1 and az(ffdgo(F))_ = 1.333; for F equal to the d.f. of
N(0,1) r.v., 72 = 1.0946, (2(0))~2 = 7/2 ~ 1.5708 while a?p(ffd@(F))-Z =7/3~

1.0472.

It thus follows that at the double exponential errors the m.d. estimator p; is
asymptotically more efficient than the Wilcoxon-type rank estimator py, and
the two estimators have almost the same asymptotic variance at the logistic
and the normal errors. Similarly, p; is asymptotically more efficient than p,4
at the logistic and normal errors. Moreover, from (1.21) and Lehmann (1975),
it follows that Py (P.q) is asymptotically most efficient at the logistic (double
exponential) errors. Finally, compared to the least square estimator, all three
are more efficient at heavy tail error distributions.

2. Proof of Theorem 1.1. The proof of Theorem 1.1 will be a consequence
of the following several lemmas.

LEMMA 2.1. If (A1), (A2) and (A6) hold, then the finite-dimensional dis-
tributions of {U}(x): x € R} converge to those of {U(x): x € R}, where U(") =
vB(H(-)) with B denoting a Brownian bridge in C[0, 1], independent of .

PROOF. We need only check that the conditions of Corollary 3.1 of Hall
and Heyde (1980) hold. For simplicity, we will do the necessary calculation

for a single point x. Note that the 7, ;_; of Hall and Heyde is our Ay;. First,
for any fixed ¢, 8 > 0,

lim supP(n‘l Z’YziI[l'Ynil > snl/z] > B) < lim supP(max [Yni| > snl/z) =0.
n i n 13
Next, for each fixed x € R,
n~! ZE['Y;%i{I[ﬂni <x| - H(x)} ‘Am] =n! Z'Ym (x)(1 - H(x))
i

=H(x)(1—-H(x))'y +0p(l). O
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The next lemma, due to Freedman (1975), is used repeatedly to obtain an
upper bound on the tail probability of the sum M, of martingale differences
on the set where the quadratic variation of M, is bounded.

LEMMA 2.2. Suppose that M, = X! ,D; is a sum of martingale differences

defined on the increasing filtration {G;: 1 <i < n} with |D,~| <a,as.,1<i<n.
Then, for any n Aa > 0,

2.1) P(M >7)n [ZE 2(Gi1) < ]>5exp{—n2/2(an+a)}-

To state the next lemma it is convenient to introduce the following events:

Apg = [maxmil Sanl/z],
11

2.2) Bu = [max]&nilgb], aAb >0,
Cpe = [ ‘lzfymsc] c>0.

LEMMA 23. For any fixed x € R and a AbANc An > 0, with
Hx+b)—H(x—-b)<a,

(2.3) P([|U,,(x) ~ Ui (x)| > n] N Ang N By N c,,c> <exp{ _:772/2a(17 +c)}.

PROOF. Fix anx € R and choose aAbA7n > 0, with H(x +b) — H(x - b) < a.
Using the monotonicity of H, on the set B,;, the quadratic variation of U,(x)—
U} (x) is bounded above as follows:

n! Z%?,-E [{I (i S x+&ni) —I(nmi <x) —H(x + &) +H (x)}zlAm-]
<n7! Z’eru' [H(x+b) —H(x-b)] <an™! ny,?,-.

Thus, applying Lemma 2.2 we obtain the following: the left-hand side of (2.3)
is bounded above by

P( ['n'l/ 2 Z%J [lmil < an'/?]
X {I(nni <+ &) — I(mni < x) — H(x + &) +H(x)}| > n]

N [n‘lzi—:fy,?i[H(x+b) —H(x-b)] Sac})

- <exp{-n’/2a(n+c)}. D
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The finite-dimensional asymptotic equivalence of U, and U} follows quite
easily from this lemma.

COROLLARY 2.1. If (A1)-(A4) hold, then for each fixed x € R,
@2.4) U, (x) - U2| = 0,(1).

PrROOF. Fix x € R, e An > 0. Choose ¢ > 0 sufficiently large to have
P(y% > ¢) < ¢; choose a > 0 sufficiently small to have exp { —7%/2a(n+c)} < ¢;
and choose b > 0 sufficiently small to have [H(x + b) — H(x — b)] < a. Then

P(|Un(x) ~ U3 ()] > )
<P ([lUn(x) - Un(x)| > n] N Apa N By N c,w) +P((Ana N Byy N Cre)°)
<exp{—1n2/2a(n+c)} +P(miax i | > anl/z)
+P(m?x €] > b) +P<n-lzi:7,?,. > c).

The first term above is less than ¢. As n tends to infinity, the second and
third terms converge to 0, by (A2) and (A3), and by (A1) the fourth term tends
to P(y2 > ¢) < €. Thus

limsupP(IUn(x) - Up(x)| > n) < 2e.
n
Since ¢ is arbitrary, this completes the proof. O

COROLLARY 2.2. If (A1)+A4) and (A6) hold, then the finite-dimensional
distributions of {U,(x): x € R} converge weakly to those of {U(x): x € R}.

From the proof of Corollary 2.1, it is clear that the following also holds.

COROLLARY 2.3. If (A1)(A3) hold, then, for any fixed x € R at which H is
continuous, |U,(x) — Uy (x)| = 0,(1).

To state the next result we need the following notation: For an x € R,
6Ab > 0, let mgp(x) be a real number such that ng(x) > x, dp(msp(x),x) < § and
msp(x) belongs to a minimal §-net in (R,dp) U {co}. In addition, define

L. (6,b :=/ 1+InN(z,b)Y2du, n>1, >4(2)",
m(8b)= [ (1+InN(,b)) 2L NG ©

where 26(n):=5/ 2{(1 +In N(8,b))n/n}'/*. We are now ready to state and prove
the following.
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PROPOSITION 2.1 (Eventual tightness of U, in dp metric). For any n > 1,
b>0,n>1and § >0, with /(1 +1n N(6,b))'/2 > 4(n/n)'/2,

P([s&p |Un (%) = Un(msp(x))| > (c1+nez) (6 + Ly (6, b))]

(2.5) n [max il < 6/(1+1nN(5,5))" 2] NBus N c,,,,)
13

< c3 exp{-n},

where c¢1, cg and c3 are universal constants.

PrROOF. Fixn >1,b>0,7>1and 6§ > 0, with §/(1 + InN(6,b))1/2 >
4(n/n)'/2. For k > 0, let 6, = 27*6, and for x € R let the pair (x},x) satisfy
the following:

(2.6) db(x,xk) < O, db(x,xg) < O, x, <x < xp,

where x; and x}, are both either in the minimal &-net in (R,d}) or are =oo.
We also need to define the following: Ly :=0,k < e; Ly, :=Ink, k > e;

By = (2Ly)Y2 + 1+ InN(6,0)) "%, ax=6/hs, m=&hs, E20;
and
m = min {k: 6% < 4m(n/n)"/%}.

Notice that {a;} is a strictly decreasing sequence with a, — 0 as & — oo.
Moreover,

Oms1 = 5m—1/4 2 77;/2771/4/2”'1/4
and

S
= [6,,(2Lk)1/2+2 / (1+1nN(6k,b))1/2du]
5k+l

0<k<m 0<k<m

<y [2"’6(2Lk)1/2+2/:1t (1+lnN(u,b))l/2du]

0<k<m k41

< 6 +2I,,(6,b),

where c is a fixed consfant.
Next, define for 1 <i < n,

B = Il <axn'?], O0<k<m
and

2k
nt

Iagant? < |ynl < apn'’?), 0<k<m,
Ve kE=m.

ni ?
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Also let
Dni(x) = I("Im’ Sx"'fm‘) —H(x+§,,,-), <i<
Snk(x) = n7Y2> " 4iGo¥ [Dni(r—1) — Dni )], 1<k<m

i
Rnk(x) =n~1/2 Z l')’ni'(% [I(x;a +&ni < Mpi Sxp + fni)
+H(xk+£,,,~)—-H(x§e+£ni)], 0<k<m.

We are finally ready to start our stratification and chaining. For any x € R,

a(x)[< “/227 (1= G [Dni(0) — Dpi ()]

@.7)
+| 2 072y Gt [Dai(xo) — Dui(x)]|.
0<k<m :
However,
Dyi(0) — Dni(%) = 3" [Dpi(r) — Dui(®rs1)] + [Dni(s) — Di ()],
0<r<k
> =Gt 1sisn

r<k<m

Moreover, because of the monotonicity of the d.f. H and the indicator function,
and because x;, < x < x3, for all i and &,

IDni(xk) _Dni(x)l < I(x;;, +&ni < i < Xp +§ni) +H(xk + fni) _H(x;a +£ni)-

Combining these observations with (2.7), we readily obtain that the second
term in the right-hand side of (2.7) is bounded above by

Z n_1/2 Z ’7’”<nt Z nl(x") Dm(xr+1)]

0<k<m 1<i<n o<r<k
+ Z n-1/2 Z |ymi | G2 D,,i(xk)—D,.,-(x)I
0<k<m 1<i<n
< Z _1/227711 1l Dy; xr Dni(x"+1)] + Z R"k(x)'
0<r<m O<ksm

The last inequality is obtained by summing the first term over & first. Now
combine this with (2.7) finally obtaining that, for all x € R,

[Un (%0) — Un(x)| < 2n‘1/2Z Ivmll[max il > @0 n”z]

+ Y 1Sm()l+ Z R, ().

1<k<m 0<k<m

(2.8
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The first term on the right-hand of (2.8) is obviously only positive on the
set [max; |y,;| > aon'/2]. The second term is bounded in probability using (es-
sentially) Freedman’s lemma as is shown next. Notice first that the quadratic
variation of S,;(x) is given by

Qui(x) =171 ARG H (xp + €ni) — H (-1 + &ni)|

X (1 — |H (2 + &ni) — H (%1 + &ni)|)

which, on the set B,;, is bounded above by
n? Z Vai (6% +65_1) =58n~" Z Tai
i i

Thus, Vx € R,1 < k < m, By N Cry C Bpp N [Que(x) < 5n6Z]. We now apply
Freedman’s lemma to see that

P( Z lS,,k(x)l > 107 Z m, for some x € R] NB,y N C,,,,)

1<k<m 1<k<m

< > (N(6,b) + 1) (N(6p-1,6) + 1)

1<k<m

x SI:pP([IS,,k(x)I > 107 7] N By N C,,,,)

2.9
< ) 2exp {21n (1+N(8,b)) — 1007212 /2[5n6f + 107 n,,a,,]}
1<k<m
=2 Z exp {2ln (1+N(8,b)) - 10nh§/3}
1<k<m ;
<2 Z exp{—n-2L} <cexp{-n}, Vn=>1,
1<k<m .

where again c is a fixed constant. ' .
In order to handle the third term on the right-hand side of (2. 8) we need
to center it conditionally. Let R,(x) denote the conditional centering of

So<k<m Rnr(x), that is,

Rn(x) = n—1/2 ZE(( Z |'7nt| {I xk + fm < Mi = < X + fnt]

0<k<m » .
+ H(xp, + & — H(x), + §,,,~)})

= 2n"1/2 Z Z |’7ni|<3¢k [H(xk + Eni) - H(x;z + Em’)] .

i 0<k<m

-Ani)
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On the set B, N Cy,, using the definition of m,
Role) <202 Y prulc2iet

i 0<k<m

<4ntY D CHR an + 40t (n 1Y il 6%

i 0<k<m

i
1/2
< 2471 Z Z V2iCE M + 41/ (n_l > 73;') 5

i 0<k<m i

2.10
(2.10) <2t ( Z 77k+1> n_IZ’Yfi +4n/ 21262
i

0<k<m

= 24{( > 77k+1) n‘l;vfﬁnno}

0<k<m
<2 ) m

0<k<m

The quadratic variation of the conditionally centered R,;(x) is bounded, on
Bnb n Cnm by

n"US ARG [H (xp + bni) — H(xg +6n,0)] <2807 ym <285,
i i
Thus

p ([ Z R.x(x) > 227 Z m, for some x € ]R] N By nC,,,,)
0

<k<m 0<k<m

sP([ > Ru(x) —Ru(x)>6n > m, forsomexeR]

0<k<m 0<k<m
n Bnb n Cnr,)
(2.11)

< Z N(6x,b) exp { — 36n%nZ/2(6nmas +2637) }

0<k<m
< > exp{ln N(&,b)—2nhi}

0<k<m
< > exp{-n-2L;} <c exp{-n}, n>1

0<k<m

Combining (2.8)—(2.11) gives the result. O

We immediately have the following results.
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COROLLARY 2.4. If (A1)+A4) hold, and if (A5) holds for some by > 0, then,
foranyn>1,0<b<byand § >0,

lim supP( sup
n x

Un() = Un(mss(x))|

> {c; +c2n}{6 + f:(l +In N(u,b))1/2du})
< P(y* > n) +cgexp{—n}

where c1,c9 and c3 are universal constants.

COROLLARY 2.5 (Eventual tightness of U} in d metric). If (Al), (A2) and
(A4) hold, and if I(by) < oo for some by > 0, then, for any n > 1,0 < b < by
and § > 0,

Uy (x) — Uy (mas ()| > {e1 +can}
(2.12) x 6+/6(1 +In N(u,b))1/2du}>
< P(y* > n) +czexp{-n},

limsup P ( sup
n x

where c1,c and c3 are universal constants..

REMARK 2.1. Because N(6,0) = [1/62], the entropy integral Z(0) is a a priori
finite. Take b = 0 in (2.12) to see immediately that U}, is eventually tight in
the dy-metric under assumptions (Al), (A2) and (A4).

PROOF OF (1.9). Fix e > 0. Take 7 > 1 large enough to have P(y2 > n) <e
and c3 exp{—n} < ¢. Fix by > 0 so that (A5) holds. Pick § > 0 small enough to
have

5
(2.13) {e1 +c2n}{6 + / (1+In N(u,bo))l/2 du} <e,
0
and choose a > 0 small enough to have both
g? € B
(2.14) exp{ - } < and a < .
2a(e+n) J = N(8,bo) (1+1n N(5,b0))"*

Since N(u, b) increases in b for u fixed, if (2.13) and (2.14) hold for b, they
also hold for all b < by. Pick b € [0, bo] sufficiently small to have

sx:p[H(x+b) ~H(x-b)] <a.

Let A, = Apg N Buy N Cny. Then limsup,P(A]) < ¢ and, for any
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n > 167(1+1n N(,b))/62,
P([|Un - Unlloo > 3¢] N A5)
< N(6,5) sup P([|Un(x) — Uz (x)] > €] N A,)

+ P([sr:plU,,(x) — Up(7ep(x))| > e] ﬂA,,)

+ P([sgpw;‘;(x) - Uz(mep(x))| > e] N A,,)
< N(6,b) exp{—¢€?/2a(e + 1)} + 2c3exp{—n} < 3.
Thus
limsup P(||U,, — Uy || > 3¢) < 4e.

Now let ¢ — 0 in this to conclude (1.9). Note that this proof did not
use (A6). O

ProOF OF (1.10). This follows from (1.9), Lemma 2.1 and Corollary 2.1.
This also completes the proof of Theorem 1.1. O

8. Proofs of Theorem 1.2 Lemma 1.2 and Corollaries 1.1-1.3. Recall
Lemma 1.1. We also need the following preliminaries.

LEMMA 3.1. Assume that (1.1), (al) and (h1)-(h3) hold. Then thé following
hold:
For every y at which F is continuous and for every 0 < b < oo,

3.1) "S:.Ilgblwh(y,p-f-n—lﬂs) - Wh(y,p)l =0p(1).
8IS

Consequently, for every y at which F posseses a density f that is continuous
in a neighborhood of y, and for every 0 < b < oo,

sup V3 (Wa 5,17 %8) = Wi, )]
S = DAY (5)] o (1).

PrOOF. Corollary 2.3 applied to the entities given in (1.8) readily yield
that, Vy € R,Vs € R?, [Wy(y, p+n~28) - Wi(y, p)| = 0p(1). Uniformity in s
is obtained as in Lemma 1.1. O

(3.2)

Next, define
Fo(y,t):=n"1) I(X;-t'Yi.1<y), ye€R,
i
(3.3) Tj(u,t) :=n"1Y g(Yii)I(X; -t Y;y <F7'(u)),

1<j<p,0<u<],teRr.
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Observe that if in (1.6) A(y) = 1, then W;, = F, and if A(Y;_;) = gi(Yi_,), then
Wi(F~1,.) = T;. Let Tg:=(Ty, ..., T,). Write T for Ty whenever g(y) = y. From
Lemmas 1.1 and 3.1, we thus readily obtain the following.

COROLLARY 3.1. Assume that (1.1) and (al) hold.
In addition, if (a2) and (F2) hold, then,V 0 < b < oo,

(34) sup
lIsll<&

n1/2 [F,,(O, p+ n‘l/zs) - F,,(O, p)] - s'n'l ZYl—lf(O) = Op(l)
i
In addition if, (a2) and (F1) hold, then,V 0 < b < oo,

(3.5) sup
YER, ||s]|<b

n'/2[Fo(y, p+n"?8)=Fu(y,p)] -8’01 Y _Yi_1f(y)| = 0p(1).
i
In addition, if (a) with gi(y) =y and (F2) hold, then, V0 < b < oo,
1 1
12|m( L -1/2.) _ 1
oo o) (L)
R S f(O)“ = 0,(1).
i

In addition if (a2)~(a5) and (F1) hold, then,V 0 < b < oo,

sup
Isli<b

(3.6)

W2 [Tg(u, p+ n/%8) ~ Tylu, )]

— n_l Z g(Y'_l)YE_lsq(u)

sup
3.7 0<u<l, ls|i<b

= 05(1),

where q = f(F~1), g(Y;_1) = (g1(Yi-1), ...,8(Y;—)). O

PROOF OF THEOREM 1.2. As mentioned in Remark 1.1, it suffices to prove
(1.13). To that effect, let F;}(u) := inf{x; F,(x, p + n~'/28) > x}, and

Zg(u,8) =01 g(Yi)I(ei <Fpl(u) +n"/?%'Yi1), s€R’,0<uc<l
i

Note that Z4(u,s) = Tg(FF;(u), p + n~'/?s) and that

sup  n'2||Zg(u,p+n"12s) — Zg(u,s)||
0<u<l,|is|I<b

< 2 max n~V2||g(Yi_1)|| =0p(1), by (a3).

Thus it suffices to prove (1.13) with Z, replaced by 23 From (3.7), it readily
follows that

(3.8)  n'2Z4(u,s) = n'/?Ty(FFl(u), p) + Ensq(FF (1)) +0,(1),
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where &, := n‘lzig(Yi_l)Yg_l and o0,(1) is a sequence of r.v’s converging to
zero uniformly in 0 <u < 1,||s|| < b, in probability. Now, let

pg(u) =n"1> " g(Yi_1)u,
(3.9) pg(u,8) =n1) g(Yi ) F(F'(u) +n~V/26'Y,_,),
Ty (u) := nl/z(’i‘g(u, p) —ng(u)), O0<u<l scRr.

Note that T; is a vector of U *(F~1)-processes. Corollary 2.5 applied with 7,; =
F(g;) and the other entities given in (1.8) with s = 0 readily implies, under
(al)~(ab) and (F1), that, Ve >036>0 >

(3.10) lim supP( sup ||Ty(x) - Te(v)|l > e) <e.
n lu—v|<é
On the other hand, with F,4(-) = F,(-, p + n~1/2s),
(3.11) FF.}(u) —u=FF;}(u) — FusF; 2l (u) + O(n7}).
Hence, from (3.5), we obtain
(3.12) sup  |FF}(u) —u| =0,(1).
lIsll <b, u€l0,1]

Again, from (3.5), (3.11), (3.12), (al) and (F1), we obtain
WU/2{FF 3 () - u] =—nV2 [F (F~ () - u]

(8.13) —S'n-IZYi-IQ(u) +6p(1)’

where F, stands for F,,, the empirical of {¢;; 1 <i < n}.
Put (8.10) together with (al)~(a5), (3.12) and (3.13) to conclude that

n'/2[Tg(FFp (), p) — pg(w)]
= Ty (FF (w) +n7" 3 g(Ye)n 2 [F(FL (u)) - u]

= T*(u) +0,(1) +n! Zg(Yi-l){ —n'2[Fy(F(u)) — u]
-n-IZY}_ls q(u)} +0,(1)
= n-1/2 Z (&(Yi-1) - 8) {I(ei <F(u)) - u} ~gYsq(u) +3,(2).

il

This together with (3.8) and (F1), which implies the uniform continuity of g,
yields that

W2 Zy8) - glu)] =n 2 (6(Yis ~ B (e S F- (1)) —u)

#0710 (8(Yim1) —8) (Vi - ¥)'s a(u) +35(1),
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which, in view of (a6), proves (1.13). O

PROOF OF LEMMA 1.2. Recall, from Anderson (1971) or Brockwell and
Davis (1987), that under (a7) and (a8), Yy,X;,Xs, ... can be chosen to be sta-
tionary and ergodic. Hence the ergodic theorem and (a8) and (a9) together
imply that (al)-(a6) are a priori satisfied, I'g exists and that there exists a
constant vector ¢ such that g — ¢ a.s. Now, rewrite

8¢ =80+ (@ o)n ™ Y [p(F (&) - 7]

Sgr:=n"! Z (&8(Yi-1) — ) [¢(F(e:)) — 7]

By the C.L.T., [n~Y2%;[0(F(e;)) — B]| = O,(1), so that n1/2||§‘ - §‘1|| = 0p(1).
Note that Sg; is a mean-zero square-integrable martingale. By Hall and Heyde

(1980), Corollary 3.1, it follows that under (2) and (a7)—(a9), n'/28;; =
N,(0,02T). This proves (1.17). O

PROOF OF COROLLARY 1.1. The proof of (1.18) uses the same argument as
in Jaeckel (1972) with the following modification: Use (1.15) and (1.17) with
gi(y) =y wherever he uses Jureckova’s theorem and the asymptotic normality
of simple linear rank statistics in linear regression. Note that for these g;’s (a7)
and (a8) imply (al)—(a6), (a9) and the claim about the existence and positive
definiteness of X [see, e.g., Anderson (1971), page 193].

To prove (1.19), note that in view of (p1), o = arg tmin |Sg(D)]|, where

§g(t) =n"t Z(g(Yi—l) - §)<p(ﬁ,~t/(n +1)),

with Ry = Ry = rank(X; —t'Y;; —X +t' Y) among {X; - t'Y;_; - X + t'Y,
1<j<n},1<i<n,teRP. From Héjek [(1969), Theorem II.7E] it follows,
under (a10), that, for every unit vector 6 € R, 8'Sg(p + n~1/2r6) is a monotonic
function of r € R, a.s. Use this and argue as in Koul [(1985) proof of Theorem
3.1], with the help of (1.15), to show first that ||nY/2(, — p)|| = Op(1). Then,
again use (1.15) to conclude that n1/2(5; — p) = £7'n1/284 +0,(1). This together
with (1.17) now readily yields (1.19). O

PROOF OF COROLLARY 1.2. Let
o~ l o~
Ky(s) := / InY2Zg(u) + Tgq(u) 8|2 dG(u), secRP.
0
Oi)sewe that Theorem 1.1 applied p times, jth to v,; = gj(Y;_1), m; = F(e;),

£y =0, 1 <j < p, implies that sup {|[n/2Z4w)|;0 < u < 1} = 0,(1). Assump-
tions (a7)—-(a9) imply (A1), (A2), (A3) and (A6) in this case. This, together with
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(1.13), implies that, V0 < b < oo,

sup |Kg(p+n128) —Ky(s)| =0,(1) and that Kg(p)=0,(1).
lIsl<&, GeC

Use this, (a1l0) and an argument like the one given in [Koul (1985), proof of
Theorem 3.1] to conclude that

w2(5e=0)={ [ 4405} [ n12)a(e) 46(u) +0,()

=— { /0 lqu zg}_ln-l/2 Z (&(Yi-1) - 8)

1

x{¥(F(e:)) - Ev(F(e:))} +0p(1),

where (u):= f(;‘ qdG,0 < u < 1. Now (1.20) follows by arguing as for the proof
of (1.17). O

PROOF OF COROLLARY 1.3. Write T* and p for Tg and ug of (3.9) when
&i(y) =y. Note that n'/2T*(}) = S(p). Because of (F2), F-(}) = 0, so that

S(p+n~Y2s8) = nVAT(1/2,p +n"%s) — u(1/2)}.
Hence from (3.6) it follows that
(3.14) S(p+n~12s) =S(p) +n71 > Y, 1Y, 15f(0) +5,(1).
i

Assumptions (a7) and (a8) imply that (al)~(a5) hold, n~'%;Y; 1Y, ; = ¥ +
0p(1) and by Hall and Heyde [(1980), Corollary 3.1] that S(p) = N(0,X,/4).

Next, note that, for every 6 € RP, 8¢’S(p +n~'/?re) is a nonincreasing func-
tion of r € R. These facts together with an argument like the one that appears
in the proof of Corollary 1.1 yield that |n}/2(py,q — p)|| = Op(1). Hence from
(3.14) it follows that nY/2(py,y — p) = N(0, 2;/2f%(0)). See Pollard (1991) for
another proof in the casep=1. O
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