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I wish to thank Buja and Hastie for their interesting and stimulating re-
marks. In particular, Buja’s improvement over my Lemmas 3.3 and 3.4 is very
elegant and may be useful in other contexts. His joint work with Donnell and
Stuetzle on the analysis of additive dependencies in data sounds intriguing,
and I look forward to reading about it soon.

Hastie gives a brief but excellent description of the formula language in S
and the ease with which it can be used in the context of linear and general-
ized linear models to specify main effects as polynomial splines and selected
interactions in terms of the corresponding tensor products. He points out that
stepwise model selection procedures are also available in S for determining
which main effects and interactions to include; that is, in the notation of the
present paper, for adaptively choosing S. As he also notes, however, these fa-
cilities are not convenient for selecting the number and placement of knots.
The high-level stepwise model selection facilities that are currently available
in S are compatible with the spirit of the theory developed in the present pa-
per, but not with that of methodologies such as MARS that are adaptive at
the level of the individual basis functions, that is, that adaptively select the
individual knots and tensor product basis functions.

Recently, in Kooperberg, Stone and Truong (1993b), the theory developed in
the present paper has been modified to handle hazard regression, which can
be nonproportional and which includes a smooth model for the baseline hazard
function. The corresponding MARS-like adaptive methodology is described in
Kooperberg, Stone and Truong (1993a). Kooperberg has written a program in C
that implements this methodology and an interface based on S. The combined
software is available from statlib by sending an email with the body send hare
froh S to statlib@stat.cmu.edu. Concurrently, Kooperberg and Stone (1993)
described similar methodology and software for hazard estimation without
covariates. Kooperberg, Truong and I are now working on the theory and
methodology for logspline spectral density estimation, while Bose, Kooperberg
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and I are modifying the theory and methodology to handle polychotomous
regression and its application to multiple classification.

Thus, distinct but closely related theories have been or are being developed
for regression, logistic and Poisson regression, polychotomous regression, haz-
ard regression and the estimation of hazard, density, conditional density and
spectral density functions. It would be worthwhile to synthesize this theoret-
ical work. Similarly, it would be worthwhile to synthesize the corresponding
adaptive methodologies and their interfaces based on S.

Buja asks how I think about the problem of confounding, both theoretically
and in terms of guidance for practitioners. Theoretically, I have thought of
confounding in the context of the present paper as being handled by Lemmas
3.1 and 3.6 under Condition 1 (that the density function f be bounded away
from zero and infinity). From Buja’s comments, however, I suspect that he and
his coauthors have developed a deeper and more interesting understanding of
this issue. Practically, I believe that confounding is considerably ameliorated
by adaptive model selection at the level of the individual basis functions. In
order to lend credence to this belief and to illustrate the use of some of the soft-
ware and modeling tools in S described by Hastie, I will discuss the analysis
of a simple fractional factorial experiment.

The experimental data are taken from John [(1971), page 182]. According to
John’s description, there were four major operating variables in the treatment
of lube oil at a refinery, each of which was quantitative; these were taken as
the factors in the experiment and referred to as A, B, C and D. The objective of
the experimental program was to find a set of operating conditions that would
optimize a measure of quality in the lube oil, which was used as the response
variable. Three levels of each factor were used. John assigned the levels 0 for
“low,” 1 for “medium” and 2 for “high,” and he denoted the levels of A, B, C
and D by x1, x9, x3 and x4, respectively. A complete factorial experiment would
involve 3% = 81 factor—level combinations. The actual experiment involved the
one-third fraction of the complete factorial experiment containing the 3*! =
27 factor-level combinations such that x; + x5 + x5 + x4 = 0 mod 3. Thus if we
ignore any one of the four factors, we can view the experiment as a complete
factorial experiment with one run at each combination of a level of the three
remaining factors. The experimental data are shown in Table 1.

John states that “the two-factor interactions are hopelessly jumbled.” This
can easily be seen in S by looking at the output of

alias(aov(y ~ (A + B + C + D)"2)).

Indeed, for the given design, the model involving all the main effects and two-
factor interactions is nonidentifiable, which is an extreme form of confounding.
On the other hand, if we exclude all two-factor interactions involving one of
the factors or all those not involving that factor, the remaining components
are orthogonal. In particular,

summary(aov(y ~ (A+B+C)A2+D))
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TABLE 1
Lube oil data

0000 42 0012 5.9 0021 8.2
0102 13.1 0111 164 0120 30.7
0201 9.5 0210 222 0222 31.0
1002 7.7 1011 16,5 1020 14.3
1101 11.0 1110 29.0 1122 55.0
1200 85 1212 374 1221 66.3
2001 114 2010 21.1 2022 57.9
2100 13,5 2112 516 2121 765
2202 31.0 2211 745 2220 85.1

TABLE 2

ANOVA table
DF SS MS F P.value
A 2 44963 2248.1 51.301 0.00017
B 2 2768.7 1384.3 31.590 0.00065
C 2 5519.8 2759.9 62979 0.00009
D 2 283.4 141.7 3.233 0.11149
A:B 4 310.8 1.7 1.773 0.25267
A:C 4 1232.9 308.2 7.034 0.01886
B:C 4 669.7 167.4 3.820 0.07069

Residuals 6 262.9 43.8

yields the ANOVA table shown in Table 2. Alternatively,
summary.aov(lm(y ~ (poly(x1,2) + poly(x2,2) + poly(x3,2))/\2 + poly(x4,2)))

yields the equivalent ANOVA table shown in Table 3.
Moreover,

summary(lm(y ~ (poly(x1,2) + poly(x2,2) + poly(x3,2))A2 + poly(x4,2)))

yields the coefficient table shown in Table 4. In this table, poly;(x,,2) and
polya(xs,2) are the orthonormal polynomials given by

Polys(%a, 2) = (xa —1)/v/18 and polys(%a, 2) = [(xa — 1)% - 2]/V6.

Examination of the six linearxquadratic and the three quadraticxquadratic
interaction terms in Table 4 suggests that these nine terms could be dropped
from the model. After similar analyses involving other combinations of the
four factors, we are led to the conclusion that in analyzing the lube oil data,
we should restrict attention to models that exclude the 12 linearxquadratic
and the 6 quadraticxquadratic interaction terms involving x;, x2, x3 and x4.
In other words, we should restrict attention to quadratic polynomial models in
these variables, as would ordinarily be done in the context of response surface
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TABLE 3
Alternative ANOVA table
DF Ss MS F P-value
poly(xy, 2) 2 4496.3 2248.1 51.301 0.00017
poly(xz, 2) 2 2768.7 1384.3 31.590 0.00065
poly(x3, 2) 2 5519.8 2759.9 62.979 0.00009
poly(x4,2) 2 283.4 141.7 3.233 0.11149
poly(xy,2) : poly(x2,2) 4 310.8 7.7 1.773  0.25267
poly(x;,2) : poly(x3,2) 4 12329 3082 7.034 0.01886
poly(xs, 2) : poly(x3,2) 4 669.7 167.4 3.820 0.07069
Residuals 6 262.9 43.8
TABLE 4
Coefficient table
Value SE t
(Intercept) 29.981 1274 23.534
poly;(x;, 2) 66.327 6.620 10.019
polya(x;, 2) 9.852 6.620 1.488
poly; (xz, 2) 51.454 6.620 17.773
polyz(xz, 2) —11.009 6.620 —1.663
poly; (x3, 2) 74.270 6.620 11.219
polyz(x3, 2) —1.946 6.620 —0.294
poly; (x4, 2) 14.614 6.620 2.208
polyz (x4, 2) —8.355 6.620 -—1.262

poly; (x;, 2)poly; (xg, 2) 83.700 34.398 2.433
polya(xy, 2)poly;(xe, 2)  —2.425 34.398 —0.070
poly;(x1, 2)polys(xg, 2) 32.216 34.398 0.937
polya(x1, 2)polya(xg, 2) 18.500 34.398 0.538
poly; (x;, 2)poly;(x3, 2) 180.750 34.398 5.255
polyo(xy, 2)poly;(xg, 2)  —8.747 34.398 —0.254
poly;(x;, 2)polya(xs, 2) —23.123 34.398 —0.672
polya(x;, 2)polys(x3, 2) —2.650 34.398 —-0.077
poly; (xg, 2)poly;(x3, 2)  114.450 34.398 3.327
polys(xg, 2)poly,(x3, 2) —50.836 34.398 —1.478
poly;(xg, 2)polya(xs, 2) —46.332 34.398 —1.347
polys(xg, 2)polyz(vs, 2) —15.850 34.398 —0.461

exploration [see Box and Draper (1987)]. In S, we can use
1m(y ~ poly(xi, x2, x3, x4, 2))

to fit the full quadratic model. After examining summary statistics from this
fit, we > may be led to drop some of the linearxlinear interaction terms or some
of the individual quadratic terms. Whichever model we end up with in this
manner, we can be sure that confounding will not be a serious practical issue.
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Fi1G. 1. An irregular design.

To lend further support to the belief that confounding can be ameliorated
by adaptive model selection at the basis function level, consider two variables
each ranging over [0, 6], the space of linear splines in the first variable having
a single knot at 3, and the space of linear splines in the second variable
also having a single knot at 3. Observe that 1, x;, (x; — 3),, %2, (x2 — 3),,
%123, (1 —8)4 X2, x1(x2—3), and (x; —3),(x2—3), form a basis of the tensor product
of these two spaces. Consider the design of size 12 shown in Figure 1. The nine-
dimensional tensor product space is clearly nonidentifiable relative to this
design since (x; — 3),(x2 — 3), equals zero at all the design points. If the basis
functions are entered one at a time by stepwise addition, however, the last
basis function would never enter and the resulting model would necessarily
be identifiable and not too highly confounded.

In closing this discussion, I would like to emphasize that, in my own col-
laborative work, theoretical results for nonadaptive procedures such as those
contained in the present paper have served as a useful framework for devel-
oping more practical, highly adaptive methodologies.
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