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LOCAL ASYMPTOTIC MINIMAX RISK BOUNDS FOR ASYMMETRIC
LOSS FUNCTIONS

BY YOsHIJI TAKAGI
University of Osaka Prefecture

Hijek established a local asymptotic minimax risk bound for appropri-
ate symmetric loss functions and also gave a necessary condition for the
risk of an estimator to attain the lower bound. We extend these results
to the case of asymmetric loss functions. The asymmetry brings about the
shift of location of the loss functions. Besides, the optimal estimator that
attains the bound is shown to have asymptotic normal distribution with
asymptotic bias.

1. Introduction. In asymptotic theory of estimation problems, local
asymptotic minimax risk is often used as a measure of asymptotic optimal-
ity. The concept has been discussed in detail by Hdjek (1972), Le Cam (1972)
and Ibragimov and Has’minskii (1981), among others. Héjek (1972) has es-
tablished a local asymptotic minimax risk bound for appropriate symmetric
loss functions under the assumptions of local asymptotic normality (LAN).
It is also proved that the maximum likelihood estimator and Bayes estima-
tor attain this lower bound under certain regularity assumptions [see, e.g.,
Ibragimov and Has’minskii (1981)].

There are some cases where asymmetric loss functions may be more ap-
propriate than symmetric ones. Asymmetric linear loss functions have been
considered by several authors, including Ferguson (1967), Aitchison and
Dunsmore (1975) and Berger (1980). Varian (1975) introduced an asymmetric
LINEX loss function that rises approximately exponentially on one side of zero
and approximately linearly on the other side [for details, see Zeller (1986)].
Since then, many asymmetric loss functions have been applied to various sit-
uations. However, different from the symmetric case, it seems that a unified
theory about asymptotic optimality in the case of asymmetric loss functions
has not been established. The only interesting approach, which is based on
the asymptotic minimax theory in the normal distribution case, has been pre-
sented by Lepskii (1987). In this paper, we provide a local asymptotic minimax
risk bound for appropriate asymmetric loss functions under the assumptions
of LAN. Moreover, we give a necessary condition to attain the lower bound (see
Theorem 4.1). The asymmetry of loss functions causes the shift of location of
the loss function involved in the minimax risk bound. Another result of our
paper is that if there exists an optimal estimator, its asymptotic distribution
must be the normal distribution with asymptotic bias.
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In Section 2, we describe notation and assumptions. Section 3 contains some
preliminary lemmas. In Section 4, we provide main results on the risk bound.
Minimax bounds are calculated for two types of loss functions, namely, linear
and LINEX, in Section 5.

2. Notation and assumptions. Let X;,X, ...,X, be a sequence of in-
dependently and identically distributed real-valued random variables with
family of distributions P = {P(-,0): 8 € ©}. The parameter space © is an open
interval of the real line. We consider a sequence of statistical experiments
(Xn, Ap, Py(-,0)),n > 1. Take a point ¢ € © which represents the true value of
the parameter 6. We simply write P, = P,(-,¢) and P, , = P,(-,t + h/\/n).

Let us introduce a family of likelihood ratios

rn(hyxs) = dP"’h( 2)y  hER,R>np,x, € Ay,

where n;, denotes the smallest integer such that n > n; entails ¢ +h/\/n € ©.
In what follows, the argument x, will usually be omitted.
Hajek (1972) defined local asymptotic normality as follows.

DEFINITION 2.1. The sequence {P,} is said to be locally asymptotic normal
(LAN) if

ra(h) = exp{hln; — 34212+ Z,(h,t)}, heR,n>ny,

for 4; > 0. Here the random variable A, ; satisfies £L(A, ;|P,) — N(0,~?), and
Z,(h,t) — 0 in P, probability for every h € R.

Let 4(z) be a loss function that may be asymmetric. In this paper, the fol-
lowing Assumptions A and B on 4(z) are made:

ASSUMPTION A.

(A1) 4(2) > 0 and 4(2) is nonincreasing for z < 0 and is nondecreasing for
z>0.
(A2) [% tz)exp{—1Lcz?}dz < o, for any ¢ > 0.

(A3) [27 2%0(d — z) exp{—3icz?} dz < oo, for any ¢ > 0 and any d.
We shall also introduce a truncated version of £(-):

£(y) = min(¢(y),a), for0<a < co.
ASSUMPTION B.

(B1) For any constant k& > 0, the function g(3) defined as

g(ﬂ)-ﬁ f(ﬁ y)exp{ 2,:2}dy
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attains its minimum at 8 = 3. The minimizer G, which depends on , is finite
and unique.

(B2) For any k > 0, any large a,b > 0 and any small X > 0, the function
&0B),

#0) = S

gy e {-31+ 0%} @,

attains its minimum at g8 = B(a,B, A). The minimizer B(a, b, )), which also
depends on £, is finite.
(B3) It holds that

ﬂ(a b, ) =Bo.

a—-»oo b—voo

While Assumption A is very general, Assumption B looks atypical, and one
may feel anxious about how restrictive Assumption B is. It will be shown in
the Appendix that Assumption B is satisfied by very general asymmetric loss
functions, such as convex ones. We note that if 4(-) is symmetric, Assumption
B is satisfied with 3, = B(a,b,)\) =

. Throughout this paper, we w111 conmder a randomized estimator £2Z,U),
where U is a randomized variable that is uniformly distributed on (0, 1) and
(mdependent of Z and 6.

Prehmmary lemmas

LEMMA 3.1. Let a loss function £(-) satisfy Assumptions A and B. Let Z be a
normal random variable with mean 6+ Gy and variance k2, where (3, is defined
in Assumption (B1). Then for any € > 0 there exist positive numbers a,b,aand
a one-dimensional probability density n(-) with the following property:

For any randomized estimator £(Z,U) of 0 such that

@1 ez U) -2 >cl6=0) e,
b .
(3.2) / T(OBL(6(2,0) - 0)10} d0 2 (5) + o

PROOF. We shall assume 6 to be normally distributed as N(0, %), where
the variance 02, which depends on ¢, will be appropriately chosen later. Then
the conditional density 1(8|2) of 6 given Z = z is distributed as

Z—ﬂo 2 k20'2
N(k2+ 27 }2 1 o2

and the marginal density f(2) of Z is also distributed as N(Go, k2 + o2).
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From now on we assume that |z — | < b — Vb. Setting

z— [ o2 =
TRvo2’ TP

it follows that

b
/_ \ L, (€(2,u) — 0)4(0)2) db
vb
- B VE2 + o2 k2 + 02
2 [y (d) ) Y {2}

On the other hand, if |¢(z,u)—z| > € and |2— 5| < M, we'have for (k2 + 02)/k2 >
2M /e that

(3.3)

£(z, u) ﬂO 2 :60 >

k2+ 29

2
5

Since |B(a,b,k%/0?) — By| < 3¢ for sufficiently large a,b and o2 by Assumption
(B3), we have that

3
> SE.

(3.4) 3

- B 3 k?
6(2: u) k2 +o 02 2 :6 ((1, b: ?
Now note that the distance between ((a, b,%%/02) and any other minimizer of

&(P), if it exists, is less than €/4. Then we have from Assumption (B2) that if
|8 - Bla,b k2/02)| > 3,

m/ (8- y)exp{ +o? 2}dy

V2rko 2227
(3.5) ,/k2 + 02 k2 B2 4 o2 )
\/Q;ka b, - —y)exp BTEPOR y“ s dy+6
= &(a,b, A) +6,

where 6 > 0 depends only on ¢, but not on a, b and 02 when a, b and o2
are sufficiently large. Altogether, we have from (3.3), (3.4) and (3.5) that, for
|z — Bo| < b — Vb, |z, u) —2| > ¢ and |z — By| < M,

b k2
(3.6) / \ 6, (&(z,u) — 0)¥(6)2) do > & (a, b, 0—2) +6.
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On the other hand, it follows that
/_ I; m(0)E {¢.(¢(2,U) - 0)|6} do
- gl N '; £a(6(z,w) — O)p(612)f (2) db dz du
>z (a,b, f—:) Pr(|Z — Bo| < b — V)

+6 Pr(|¢(Z2,U) - Z| > ¢,|Z — Bo| < M).

3.7

Denote D = {(z,u) € R x (0,1)] [£&(z,u) — 2| > €, |z — By <M} Then we have, for
any (z,u) in D,

f(2) { o%(z - 3)? }
(3.8) (1/\/_k) exp{— (z .30)2/2132} Vk2 + o2 2(k2 + 02)k2
k
R

Since Pr(D|6 = 0) > %s for sufficiently large M by (3.1), we have from (3.8) that

Pr(D)://Df(z) dz du

1 (Z ,60)2
@9 > [ | v exp{ = } de
k

Now, by utilizing the inequality

k2+ 2 y2
o~} > (1- 35) oo {35}

we have from Assumptions (A3) and (B3) that, for sufficiently large a,b and o2,

. k2 vb y2 k2 1 2
H(o0a)2 L4 (=) ( (o0 5) -2) ool -35}

a K
Zg(ﬁo)—E-'a—z’

for some a > 0 and K > 0 which do not depend on a,b and o2, and

Pr(|Z —fBol <b-Vb)>1- ——— (0)
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Therefore we have that

2
(3.10) g(a,b, %) Pr(1Z - ol < b~ VB) 2 8(60) — o~ o5

Now, putting

. 1 k K
1 = Sle e —

(8.11) 2a 265 s o

we establish (3.2) in view of (3.7), (3.9), (3.10) and (3.11). O

LEMMA 3.2. Let Z be the same random variable as in Lemma 3.1. Then,
for every 6 > 0, there exist positive numbers a and b and a probability density
w(-) such that, for any randomized estimator £(Z,U),

[ w(@)mtee@.v) - o) do = g(50) -5

LEMMA 3.3. Assume that the joint probability measure P,(-) is LAN. For
any sequence of statistics {S,}, define

s,,(x,u) = inf{y: P,,[S,l <y|lAp:= x] >u},

for x € R,0 < u < 1. Denote by F, j the distribution of S, under P,  and
by Fy , the distribution of sy(An,:,U) also under P, j, where U is uniformly
distributed on (0,1) and independent of An,:. Then it follows that, for each
heR, ’

Tim [[F, 1 — 4] = 0.

LEMMA 3.4. Assume that the joint probability measure P,(-) is LAN. Denote
G, 1(®) = Py 1(An,¢ < %) and ®(x) = (1/V2r) [* exp{-3y?} dy. Let G}, , be the
distribution of G, \®((Z — Bo)y,), where Z is N (h + fo,1/42). Then it follows

n,

that, for each h € R,

im [[Go, i — Gl = 0.

Lemma 3.2 can be proved along the same lines as in the proof of Lemma
3.1. Refer to Héajek (1972) for the proofs of Lemmas 3.3 and 3.4. We note
that our lemmas are slightly different from those in H4jek by the effect 5y of

asymmetry.
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4. Main theorem.

THEOREM 4.1. Assume that the joint probability measure P,(-) is LAN and
that a loss function {(-) meets Assumptions A and B. Let {T,} be any sequence
of estimators for 6 based on X3, ...,X,. Then a lower bound of the risk of {T,}
is given as follows:

lim liminf sup Eo{e[\/_ (T -9)]}

§—0 n—oo

4.1)

Furthermore, if the lower bound is attained, then

(4.2) Vn(T, —t) - ﬁ;—‘ —Bp—0
Ve

in P,-probability.

PROOF. Since the upper bound of values of a function over a set is at least
its mean value on this set, we may write, for n sufficiently large,

b h
43) Isil:lg Eo{t[y/A(Ta-6)]} > /_ bvr(h)E{ea[\/fz(Tn—t)—h]|t+%} dh,

whatever the constants a and b and density #(-) may be. Now suppose that
the random variable Z satisfies that L(Z|¢ + h/+/n) = N(h + Bo, 1/~42). Then, by
Lemma 3.2, we fix some 6§ > 0 and choose a,b and 7 in such a way that

/: (h)E {ea[g(z, U)-h] |1+ %} dh

4.9

1 -
> \/—- é(ﬂo y) exp {—57?y2} dy - &,
for any estimator £(Z, U).

Next we identify S, = v/n(T, —t) in Lemma 3.3. Then we have from Lemma
3.3 and the boundedness of 4(-) that, for every A € R,

h h
E{ea[ﬁ(rn _t)—h)jt+ Tﬁ} _E {e,,[s,,(A,,,,, U) B[t + ﬁ}l 0.
~ Furthermore, by Lemma 3.4, setting

&(2,U) = 5,(G;12((Z - Bo)x), U),

we obtain for every A € R

E{e,,[s,,(A,,,,,U) —hjt+ %} —E{e,,[g,,(z, U) - h]ft+ %}l - 0.

(4.5)

(4.6)
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It follows from (4.5) and (4.6) that, for n > n(a, b, 7, §),

b .
/ (h)E {ea[\/ﬁ(T,, 1)~ hlfe+ i} dh
-b vn
4.7
b h _
> - ——— - .
> /_ n(n)E {e,,[g,,(z, U) -~ hlfe+ ﬁ} dh -3
Combining (4.3), (4.7) and (4.4), we obtain (4.1).

Now we shall prove the necessity of (4.2) for the attainment of the lower
bound. Recalling Lemma 3.3, we can see by putting S, = /n(T,—¢) and Lemma
3.3 that (T, — t) — Ap,¢/7? — Bo has the asymptotically same distribution
under P, as .

(4.8) 8n(An s, U) — ‘:‘2" - Bo.

t

Assume that (4.8) fails to converge to zero in probability. Then &,(Z, U)—Z also
fails to converge to zero in view of Lemma 3.4 and asymptotic distributions of
Ap,: and Z. In this case, there is an € > 0 such that for every n there exists
an m > n such that

Pr(|n(2,U) - 2| > ) > «.

Therefore, according to Lemma 3.1, we can choose a,b,a and «(-) so that

b h
(h)E {ea[g,,(z, U) = h] |t+ _} dh
4.9) /‘ b . ‘/1'7
> \/% | _Bo—y)exp {—Qvfyz} dy +a.

This fact in connection with (4.3) and (4.7) contradicts the attainment of the
bound, since é can be made smaller than «. O

REMARK 4.2. Comparing our result (4.1) with Hdjek’s, we are conscious
of the important role of asymmetry. At first sight it seems that asymmetry
of loss functions causes a large change of the risk function. However, indeed,
the asymmetry does not change the general form of the minimax bound and
brings about only the shift of location function in the minimax bound. If it is
symmetric, the two results coincide.

REMARK 4.3. If there is an optimal estimator 7}, in the sense that its
risk attains the lower bound, T satisfies (4.2) and has asymptotic normal
distribution with asymptotic bias 3, and asymptotic variance 1/2.

5. Examples. Now we shall obtain the local asymptotic minimax risk
bound for two familiar types of loss functions, namely, linear and LINEX.
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5.1. Linear loss function. We consider the linear loss functions as follows:

_Jez, ifz >0,
Z(z) - {—czz, ifz<0,.

where c¢; and c; are positive constants. We note that Assumptions A and B
are met since this loss function satisfies the conditions given in Corollary A.3
in the Appendix.

Simple calculation leads to

8(6) = (cx+e2)B0(48) + (e +ez) o exp { 6% } — at.

Therefore, g(3) has a minimum value g(3)) at 8y = (1/7)® (cz/(c1 +c3)),

where
g(6o) = (c1 +c2)L exp _1 {(I)—l ( Co )}2 '
‘/2—77% 2 c1+c2

5.2. LINEX loss function. We consider the LINEX loss function as follows:
£(2) = co{exp(c12z) — c12 — 1},

where c¢; # 0 and ¢; > 0. We note that Assumptions A and B are satisfied in
virtue of Corollary A.3.
In this case, simple calculation shows

2
g(8) =cz exp { —12 + ,301} —c1c28 —co.
2y
Therefore, g(3) has a minimum value g(8o) = cjca /297 at Bo = —c1/2+7.
APPENDIX

Here we explore sufficient conditions for #(z) to satisfy Assumption B.

LEMMA A.1. Let f(x,y) and f(x) be continuous, and let f(x,y) converge uni-
formly to f(x) as y — y,, where yy is a real constant and may be infinity.
Furthermore, f(x) attains its minimum at a finite and unique value xo and
satisfies

A, ) > flxo)-

Then, for a fixed y sufficiently close to yo,f(x,y) attains its minimum at xo(y),
and it holds that xo(y) — xo as y — yo.

Lémma A.1 is shown by standard techniques in real analysis and thus the
proof is omitted. Now, we establish the next theorem, using Lemma A.1 and
the definitions of g(3) and 2(3).
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THEOREM A.2. Suppose that {(-) satisfies Assumption A and that g(8) at-
tains its minimum at a finite and unique value By and satisfies

A1) Sim 2(8) > 2().
Then, #(-) meets Assumption B.

COROLLARY A.3. Assume that {(-) satisfies Assumption A. Assume further
that {(-) is convex and that {(-) is neither constant for x > 0 nor for x < 0, for
example, excluding ((-) that is convex for x > 0 and is constant for x < 0. Then
£(-) meets Assumption B.

PROOF. It is easily shown that g(3) is strictly convex. This fact along with
the assumptions of the corollary shows that £(z) — oo as 2 — *oo. Therefore
we have that g(3) — oo as § — +oo. Altogether, g(3) attains its minimum
value g() at a finite and unique value 3, and (A.1) is also satisfied. Thus,
the proof is complete by using Theorem A.2. O
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