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ESTIMATING THE NUMBER OF PEAKS IN A RANDOM
FIELD USING THE HADWIGER CHARACTERISTIC OF
EXCURSION SETS, WITH APPLICATIONS TO
MEDICAL IMAGES!

By K. J. WORSLEY
McGill University

Certain three-dimensional images arising in medicine and astro-
physics are modelled as a smooth random field, and experimenters are
interested in the number of peaks or “hot-spots” present in such an image.
This paper studies the Hadwiger characteristic of the excursion set of a
random field. The excursion set is the set of points where the image
exceeds a fixed threshold, and the Hadwiger characteristic, like the Euler
characteristic, counts the number of connected components in the excur-
sion set minus the number of “holes.” For high thresholds the Hadwiger
characteristic is a measure of the number of peaks. The geometry of
excursion sets has been studied by Adler, who defined the IG (integral
geometry) characteristic of excursion sets as a multidimensional analogue
of the number of “upcrossings” of the threshold by a unidimensional
process. The IG characteristic equals the Euler characteristic of an excur-
sion set provided that the set does not touch the boundary of the volume,
and Adler found the expected IG characteristic for a stationary random
field inside a fixed volume. Worsley, Evans, Marrett and Neelin used the
IG characteristic as an estimator of the number of regions of activation of
positron emission tomography (PET) images of blood flow in the brain.
Unfortunately the IG characteristic is only defined on intervals: it is not
invariant under rotations and it can fail to count connected regions that
touch the boundary. This is important since activation often occurs in the
cortical regions near the boundary of the brain. In this paper we study the
Hadwiger characteristic, which is defined on arbitrary sets, is invariant
under rotations and does count connected regions whether they touch the
boundary or not. Our main result is a simple expression for the expected
Hadwiger characteristic for an isotropic stationary random field in two
and three dimensions and on a smooth surface embedded in three dimen-
sions. Results are applied to PET studies of pain perception and word
recognition.

1. Introduction. Many studies of brain function with positron emission
tomography (PET) involve the interpretation of subtracted PET images,
usually the difference between two three-dimensional images of cerebral
blood flow under baseline and stimulation conditions. The purpose of these
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studies is to see which areas of the brain show an increase in blood flow, or
“activation,” due to the stimulation condition. The experiment is repeated on
several subjects, and the subtracted images are averaged to improve the
signal-to-noise ratio. The averaged image is standardized to have unit vari-
ance and then searched for local maxima, which might indicate points in the
brain that are activated by the stimulus. An example of such an image is
shown in Figure 1 and a more detailed explanation is given in Section 6. The
main statistical problem has been to assess the significance of these local
maxima.

Worsley, Evans, Marrett and Neelin (1992, 1993) have shown that the
averaged image can be modelled as a Gaussian random field with a covari-
ance function depending on the known resolution of the PET camera. The
maximum of the random field was used to test for activation at an unknown
point in PET images, and the IG (integral geometry) characteristic of excur-
sion sets was used to estimate the number of regions of activation. The
excursion set inside a fixed set C is just the set of points where the field
exceeds a fixed threshold value. The IG characteristic of Adler (1981) equals
the Euler characteristic of an excursion set provided that the set does not
touch the boundary of C, and so it counts the number of connected compo-
nents minus the number of “holes.” The number of regions of activation is
estimated using the IG characteristic for a high threshold, chosen so that if
no activation is present, the expected IG characteristic equals a small value
a = 0.1, say.

Similar problems arise in astrophysics. In a series of 19 papers, starting
with Gott, Mellot and Dickinson (1986) and ending most recently with
Rhoads, Gott and Postman (1994), methods similar to those discussed in this
paper have been used to study the density of matter in the universe. Torres
(1994) has used similar tools to study the fluctuations in the cosmic mi-
crowave background which were recently discovered by Smoot et al. (1992).

Unfortunately the IG characteristic is only defined on intervals: it is not
invariant under rotations and it can fail to count connected regions that
touch the boundary. This is important since activation in cognitive experi-
ments often occurs in the cortical regions near the boundary of the brain. The
Hadwiger characteristic, which is defined on arbitrary sets, is invariant
under rotations and does count connected regions whether they touch the
boundary or not, should provide a better estimator of the number of regions of
activation. The purpose of this paper is to extend the work of Adler (1981) to
derive the expected Hadwiger characteristic of the excursion set of a random
field. In Section 2 we define and compare the different excursion characteris-
tics. In Section 3 we shall derive results in two dimensions and in Section 4
we shall derive results in three dimensions. Alternative derivations are
presented in Section 5, based on the kinematic fundamental formula of
integral geometry, and another derivation for small convex sets based on a
linear approximation to the field. In Section 6 we shall apply this work to
some PET images from studies in pain perception and word recognition.

This work has been extended in several ways. For C an interval, Worsley,
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Evans, Marrett and Neelin (1993) find the expectation of the IG characteris-
tic in three dimensions when the mean of the random field is nonzero. This
makes it possible to find the exact bias of the Hadwiger characteristic as an
estimator of the number of peaks. Siegmund and Worsley (1995) consider the
problem of detecting a peak with an unknown scale as well as an unknown
location. Worsley (1994a) gives results for xy2, F and ¢ fields, and Worsley
(1994b) uses Morse theory to generalise the present work to an arbitrary
number of dimensions, provided C has a smooth boundary.

2. Excursion set characteristics. Let X(t), t = (¢,,...,ty) € RY, be a
stationary random field in N dimensions and let C be a compact subset of
R¥. Two examples in three dimensions are shown in Figure 1. We define the
excursion set A, of X(t) above a threshold b to be the set of points in C
where X(t) exceeds b:

A, ={teC: X(t) > b}.

Adler (1981) considers two different characteristics of an excursion set: the
DT (differential topology) characteristic and the IG (integral geometry) char-
acteristic. Both characteristics equal the Euler characteristic of the excursion
set when the set does not touch the boundary of C. When the set does touch
the boundary, as inevitably happens for a random field, then the characteris-
tics can differ, depending on the way in which the set touches the boundary
and its orientation. Thus even though the Euler characteristic is invariant
under translations, rotations or indeed any elastic deformation of Euclidean
space, the same is not in general true of the DT and IG characteristics, as
illustrated in Figure 2. Nevertheless, as Adler (1981) shows, both characteris-
tics have the same expectation, which is invariant under translations and
rotations. Worsley, Evans, Marrett and Neelin (1993) show that their expec-
tations do differ when the field is nonstationary. The precise definitions of the
characteristics are as follows, and illustrations are shown in Figure 2.

2.1. Definition of the DT characteristic. The DT characteristic is defined
on arbitrary compact sets C ¢ RY directly from the field X(t), provided that
X(t) is suitably regular as defined by Adler [(1981), Chapter 3]. These
conditions ensure that the derivatives of X(t) up to second order exist with
probability 1. Let X = X(t), X; = X/(t) = 0X/dt; and X = X;,(t) =
3*X/0t;dty, j, k=1,...,N. Let Dy_; = Dy_y(t) be the (N — 1) X (N - 1)
matrix of second-order partial derivatives of X(t), with (j, k) element X, (t),
J, B =1,..., N — 1. The DT characteristic is defined by Adler [(1981), Section
4.4] as

N-1
xor(8) = (=)™ B (=1)'n(®),
where v;(b) is the number of points t € C satisfying the conditions: (a)
X(t)=0b,(Mm) X (t) =0,..., Xy_4(t) =0, (¢) Xy(t) > 0 and (d) the number of
negative eigenvalues of Dy _ ((t) is exactly /. An equivalent definition, written
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Fic. 1. An illustration of a random field in R®. Three horizontal slices through the set C for (a)
the pain study (Section 6.3) and (b) the word recognition study (Section 6.4). For the pain study,
C covered the top half of the brain. For the word recognition study, C was restricted to a thin shell
covering the outer cortex of the brain. The average blood flow difference across the subjects,
divided by its estimated standard deviation, X(t), is shown inside C; high values are more darkly
shaded, as shown on the legend below the art. No activation was expected for the pain study, but
three areas of activation were identified in the word recognition study (arrows).
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(a) DT=3, HA=5, IG=2, AIG=2 1/2 (b) rotation of (a): DT=2, HA=5, IG=4, AIG=2 1/2

t1 t1
_ excursion set, Ab

O +1 contribution; O -1 contribution
Fic. 2. Illustrations of excursion set characteristics in R% for C an interval. Interior points
contribute to all characteristics. On the boundary there are no contributions to the DT characteris-
tic, but those points marked HA contribute to the Hadwiger characteristic and those points
marked IG contribute to the IG characteristic. The AIG characteristic is the average of the IG
characteristic for all reflections of the coordinate axes. Note that the DT and IG characteristics are
not invariant under rotations.

as a sum over all t € C, is often more useful. Using the notation advocated by
Knuth (1992), where a logical expression in parentheses takes the value 1 if
the expression is true and 0, otherwise, we can write

xpr(b) = X (X =0)(X; =0) (Xy_; = 0)(Xy > 0)sign[det( —Dy_,)].
teC

Examples in two dimensions of the points that contribute to the DT charac-

teristic, together with their contributions, are shown in Figure 2, where the

DT characteristic is

xpr(d) = ZC(X= b)(X; = 0)(X; > 0)[(Xy;, < 0) — (X1, > 0)].
te
Note that the summation is nonzero only for points where the contour X = b
has a tangent in the #; direction (X; = 0) and the excursion set is on the
upper (increasing t,) side of the contour (X, > 0). Contributions to the
summation are +1 if the excursion set is convex (X;; <0) or —1 if the
. excursion set is concave (X;; > 0).

2.2. Definition of the Hadwiger characteristic. Hadwiger (1959) defines
the Hadwiger characteristic /( A) iteratively for a large class of sets A called
basic complexes. A compact subset B of RY is called a basic if the intersec-
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tions of all k-planes with B are simply connected, 2 = 1,..., N. Aset Aisa
basic complex if it can be represented as the union of a finite number of
basics such that the intersection of any of these is again a basic [see Adler
(1981), page 71].

For N = 1, Let ¢/(A) be the number of disjoint intervals in A. For N > 1,
let

(2.1) y(A) = L{w(ANn&) - ¥(ANE.)}

u
where &t € C: ty = u} and
Y(ANE&,-) =limy(ANE,).
vtu

The Hadwiger characteristic is the only characteristic which satisfies the
following additivity property: If A, B, A U B and A N B are basic complexes,
then

(2.2) X(AUB) = y(A) + y(B) — y(ANB).

If X(t) is sufficiently regular, as defined by Adler [(1981), Chapter 3], then
the excursion set A, is almost surely a basic complex. The Hadwiger charac-
teristic is then defined as

Xua(b) = ¥(Ap).

2.3. Definition of the IG characteristic. The IG characteristic is based on
the Hadwiger characteristic [Adler (1981), Section 4.2]. It is defined only on
an interval, which without loss of generality we can take as I ={t: 0 <¢; <
1,j=1,...,N}. Let I, ={t: t; = 0 for some 1 <j < N) c I be the “faces” of
I which contain the origin (0,...,0). The IG characteristic is then defined as

Xic(b) = ¥(A,) — ¥ (4, Nn1).

The IG characteristic is the direct analogue of the number of “upcrossings” of
a threshold b by a one-dimensional process X(t). Adler (1981) shows that the
IG characteristic is in fact invariant under a permutation of the coordinate
axes, so that &, could be replaced by {t € I: ¢, = u} for any 1 <j < N. For
more general sets that are the union of a finite number of intervals which
only intersect on (N — 1)-dimensional faces, the IG characteristic is defined
as the sum of the IG characteristics on each interval.

2.4. Expectation of the DT characteristic. Using the point-set representa-
tion given in Section 2.1, Adler and Hasofer (1976) and Adler (1981) give the
* expectation of the DT characteristic for a stationary random field X(t). This
result requires some conditions on the regularity of the process X(t). Adler
(1981) gives some simpler conditions on the correlation function of X(t) which
ensure that these conditions are met; one such example is the Gaussian
correlation function used for the applications in Section 6. These conditions
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depend on the moduli of continuity of X; and X, inside C, defined as

lt—sli<h lt—sli<h

where the supremum is taken over allt,s €C, j, £k =1,..., N.

THEOREM 1 [Adler (1981), Theorem 5.2.1, page 105]. Assume that for any
>0,

(max{ i(R), jk(h)}>e)=o(hN) ash |0,

the second-order partial derivatives of X have finite variances, the joint
density of X, X,,..., Xy, Dy_, is continuous in each of its variables and the
conditional density of X, X,,..., Xy_; given X and the second-order deriva-
tives X, 1<j<N, 1<k<N-1, is bounded above. Let
dn_ (%, %q,..., xy_1) be the density of X, X,,..., Xy_1, so that ¢o(x) is the
density of X, and define the rate of the DT characteristic as

pN(b) = E{X;\—r det(DN_l)lX = b, Xl = 0, ceey XN—]. = O}(PN—I(b’O’ e ,O).
Then the expected DT characteristic is

E{ XDT(b)} =|Clpy(0),
where |C| is the Lebesgue measure of C.

Adler [(1981), Theorem 5.3.1] shows that the rate of the DT characteristic
for a Gaussian field has the following very simple form:

(23)  py(b) = det(A)*(2m) "V P *Hey_(b)exp(—b%/2),

where A = Var[ 0X(¢)/dt] is the N X N variance matrix of the derivatives of
the field and Hey_,(d) is the Hermite polynomial of degree N — 1 in b.
Worsely (1994a) extends this result to x?, ¢ and F fields.

2.5. The choice of characteristic. The definitions of the characteristics
appear superficially to be unrelated. However, Adler (1981) shows that within
the domain of definition of all characteristics, and when the excursion set
does not touch the boundary of C = I, then the characteristics are equal, and
equal the Euler or Euler—Poincaré characteristic of the excursion set, that is,
Xor(0) = xua(d) = x1c(b). The proof of this relies on Morse’s theorem, an
important result from differential topology. In two and three dimensions
the difference between the characteristics comes from points on the boundary
of I.

From our point of view, an important advantage of the DT characteristic is
‘that it has a point-set representation in all dimensions. It is this key feature
which enabled Adler and Hasofer (1976) and Adler (1981) to find the expecta-
tion of the DT characteristic in all dimensions as given in Theorem 1.
Point-set representations fqr the IG characteristic are more difficult to obtain.
Adler (1981) gives such a representation for the IG characteristic in two
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dimensions. It is easy to show using symmetry arguments that for stationary
fields the expectation of the IG characteristic is the same as that of the DT
characteristic, at least in two and three dimensions. Another advantage of the
DT characteristic is that it is defined over arbitrary sets, such as the brain,
whereas the IG characteristic is only defined over intervals.

However, from a practical point of view the IG characteristic has one
overriding advantage: Adler [(1977) and (1981), page 117] gives a very simple
method, based on Serra (1969), of approximating its value when X(t) is
sampled on a finite lattice of voxels. On the other hand, approximation of the
DT characteristic would involve some very awkward calculations of the
curvature of contours of X(t). The fact that the IG characteristic is only
defined over intervals or a finite union of intervals is still a disadvantage, but
in practice the brain C is approximated by the union of a large number of
intervals or “voxels.”

The last drawback is that both the DT and the IG characteristics are not
invariant under rotations and reflections of the coordinate system, as illus-
trated in two dimensions in Figure 2, although this will occur rarely if the
threshold is large. Worsley, Evans, Marrett and Neelin (1992) partially
overcame this by using what we shall refer to as the AIG characteristic,
Xaig(d), the average of x;q(b) over all reflections of the coordinate axes
formed by replacing ¢; by 1 —¢;, 1 <j<N. Note that X1c(b) is already
invariant under permutations of the axes. Similar methods have been used by
Gott, Melott and Dickinson (1986). This will obviously not affect its expecta-
tion, but it does mean that the AIG characteristic takes fractional values.
These fractional values turn out to have a simple interpretation: if a con-
nected component of the excursion set with no holes touches the boundary
(see Figure 2), then its contribution to the AIG characteristic decreases below
1. Its value depends on the shape of the boundary where the excursion set
touches. If the boundary is flat, then the contribution is 3; if it is convex, then
the contribution lies between 0 and %; if it is concave, then the contribution
lies between % and 1. Thus the AIG characteristic measures, in some sense,
the proportion of the solid angle of a connected component of the excursion
set that lies in C. This is close in spirit to Poincaré’s interpretation of
the Euler characteristic as the integrated curvature of the boundary of A
inside C.

In practice, regions of activation in PET images frequently occur in the
cortex of the brain which is close to the boundary of C and so these regions
are partially missed by the AIG characteristic. The Hadwiger characteristic
seems to overcome all these difficulties. It takes integer values, it counts
regions near the boundary, it is defined on any set C and it is invariant under
any rotations or reflections.

3. The Hadwiger characteristic in two dimensions.

3.1. Point-set representation. A crucial step in deriving statistical proper-
ties of excursion characteristics is to obtain a point-set representation which
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expresses the characteristic in terms of local properties of the excursion set
rather than global properties such as connectedness. The definition of the DT
characteristic is already a point-set representation. Adler [(1981), page 84]
gives a point-set representation of the IG characteristic in N = 2 dimensions
similar to that of the DT characteristic, provided realisations of the field X(t)
satisfy the same regularity conditions as those required for the DT character-
istic. We shall now do the same for the Hadwiger characteristic.

We shall assume that JC, the boundary of C, is smooth except at a finite
number of points. At a point t € JC, let X, denote the derivative of X(t) in
the direction of ¢, pointing into C, so that X, =X, if t is on the left
boundary of C and X, = —X, if t is on the right boundary of C (see Figure
3). For points where the tangent to JC is parallel to the ¢, axis, let X = X,
when the tangent is above JC and let X | = —X, when the tangent is below
dC. Let X;; denote the derivative of X tangent to JC in the positive direction
of ¢,. Finally, let 9Cj; be the set of points in JC that contribute to ¥(C), the
Hadwiger characteristic of C, and let (C; t) be their contribution at t, so
that

(3.1) ¥(C) = L w(Cst),

9Cy

where the summations are taken over t (see Figure 3, points A and B).

<" boundary of C
L | excursion set, Ab

@ +1 contribution
QO -1 contribution

t1
F16.3. Contributions to the Hadwiger characteristic in R2.
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LEMMA 1. Assume that the field X(t), t € R?, satisfies the same regularity
conditions given in Section 2.1. Let
Yp= L(X=b)(X,<0)(Xy>0) and ¢y= Y (X=b)y(C;t).
aC aCy

Then with probability 1,
xua(®) = xpr(0) + ¥ + Yy
PrOOF. We shall drop the subscript b and write A = A, throughout this
proof. Recall that the definition of the Hadwiger characteristic is
v(A) = L{w(Ang,) - v(ANE,)}

u

where &, = {t € C: t, = u} and t = (¢,, ¢,) € R? We shall start with the case
where JC is smooth. For points in the interior of C, Adler [(1981), Section
4.2], shows that their contribution to the IG characteristic, and hence the
Hadwiger characteristic, is the same as the DT characteristic of A in C:
points with X =5, X, = 0 and X, > O contribute +1 if X;, <0 and —1 if
X;; > 0, respectively, to y(A) (Figure 3, points D and E, respectively). We
now consider the boundary ¢C. If X = b, X, <0 and X;; > 0, then (A N
&)=1, y(ANEg,)=0 and this point contributes +1 to y(A) (Figure 3,
points C and F). Finally, points in dCy that contribute to ¢(C) will also
contribute to y(A) whenever X > b (Figure 3, points A and B). Summing
over all these regions gives the result for a smooth boundary. It is now
straightforward to extend the result to the case where there are a finite
number of points where JC is not smooth, since if these points lie in
dC \ dCy, then they will almost surely never contribute to ¢ (A). O

3.2. Expectation. We shall use the notation du, where u is a unit vector,
to denote the unsigned scalar differential in the direction of u.

LEMMA 2. Assume that the conditions of Theorem 1 hold. Let t;; denote a
unit vector tangent to JC in the positive direction of t,. Then

E(vp) = [ E((X. < 0)Xj 1X = by(b) dty.

ProoF. We evaluate the expectation of the point-set representations given
in Lemma 1 following the methods used to prove Theorem 5.1.1 of Adler
[(1981), page 95]. For any £ > 0 let §,(x) be a function of R defined to be
1/(2¢) on |x| < ¢ and 0, elsewhere. Under the conditions of the above
theorem applied to the point-set representation of ¢ we have

Yg=1lim [ 6(X—b)(X,<0)(Xy>0)Jdty,
aC
where J is the Jacobian

I(X —b)
2
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Following a similar method of proof to that of Theorem 5.2.1 of Adler [(1981),
page 105], we obtain the result. O

3.3. Isotropic fields.

THEOREM 2. Assume that the conditions of Theorem 1 hold for an isotropic
stationary random field X(t), t € R%. Then

E{xua()} = ICl pa(b) +15C1 ps(b) /2 + $(C)P(X > b).
where |dC| is the perimeter length of C.

ProorF. We take expectations term by term of the result of Lemma 1. The
first term follows from Theorem 1. For the second term, we evaluate the
expectations in Lemma 2 by changing to polar coordinates. Let X | = r cos «
and X, =rsina,r > 0,0 < a < 2. Let § be the angle between t;; and the
direction of ¢, pointing inside C, 0 < 6 < m, so that

X, =X, cosf+ X,sin60=rcos(a—0);
see Figure 3. Since the field is isotropic, then « is uniformly distributed on
[0, 27) independent of r, conditional on X. Thus
E{(X,<0)X} | X} = E{(cos a < 0)rcos(a — 8)[cos(a — 0) > 0] | X}
=E{(n/2<a<m/2+ 0)rcos(a— 0) | X}
=E(r1X
rixf”
=E(r1X)(1-cos6)/(2m).
Integrating around the boundary of C we have

7Vzwcos&(az - 0)do/(2m)

f (1 — cos 6) dty =|dC].
ac

Converting back from polar coordinates,

E(r1X=b)
(3.2) =7E{(-7/2 < a < w/2)rcos a/(27) | X = b}
=7E(X{ |1 X=0).

Combining these results, we get

E(yp) = f& (1= cos 0) dtyE(r | X = b)¢(b)/(2m) =19CI ps(8) /2.

The third term follows on taking expectations of 5 from Lemma 1 and (3.1).
O

4. Hadwiger characteristic in three dimensions.
4.1. Point-set representation. As for two dimensions in the previous sec-

tion, we start with a point-set representation for the Hadwiger characteristic,
find its expectation, then simplify it for the special case of an isotropic field.
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We shall assume that JC is smooth except for a set JCj of smooth edges or
creases of finite length, where the tangent to JC exists in only one direction,
and a finite set JCy, of vertices or corners, where no tangent exists in any
direction.

We shall drop the subscript b and write A = A, throughout this section.
Recall that the definition of the Hadwiger characteristic is

¥(A) = L{v(ANnE) - y(ANnE&,)},

where &, ={t € C: t; = u} and t = (¢, ¢,,t;) € R3. For points in the interior
of C, Adler [(1981), Section 4.2] shows that their contribution to the IG
characteristic, and hence the Hadwiger characteristic, is the same as the DT
characteristic of A in C: points with X =56, X, =0, X, =0 and X, >0
contribute +1 if det(Dy) > 0 and —1 if det(D,) < 0, respectively, to ¢(A).
Let 9Cg = 9C\ dCy \ dCy be the smooth portion of JC. There are two
ways in which ¢(A N &) can differ from (A N &,-). The first is when a
point which contributes +1 to ¢ (A N &,) does not contribute to Yy(A N &,-)
(Figure 4, point A). This will occur if A € &, contains only the point
t=(¢t,t,u) and AN &, v <u, is empty in a neighbourhood of t. Let X |
denote the derivative of X in the plane &, in the direction of the inward
normal to dC N&,. Let X, denote the derivative of X tangent to JC,
orthogonal to the plane &, in the positive (upward) direction of ¢;. Let X,
denote the derivative of X in the plane &, tangent to JC N &, and let Xy

_~~ boundary of Cn Eu

. _boundary of Cn Ev, v<u

Excursion sets in R2:

/\Ab nEu

X(t)=b X(t)>b

\?/ AbnEv, v<u

O +1 contribution in R2

O -1 contribution in R2

t1
Fic. 4. Contributions to the Hadwiger characteristic in R3. Two planes through C are shown
schematically: C N &,, whose boundary is the inside curve, and C N &,, v < u, whose boundary is
the outside curve. Portions of the excursion set in these planes are shown as shaded regions.
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denote the second derivative of X in this direction. Finally, let ¢ denote the
curvature of JC N &, in the plane &,. By the implicit function theorem, the
curvature of dJA N &, is X;7/(—X ). Then dA N &, will intersect JC N &,
only at the point t in a neighbourhood of t if X <0, X; =0 and the
curvature X;;/(—X ) is less than c;p. If in addition we have X;; > 0, then
dA N &, will not intersect /C N &, in a neighbourhood of t. We thus con-
clude that the point t will contribute +1 to ¢(A) if X=56 at t, X, <0,
Xy >0, Xp=0and Xpp +cpp X, <0.

The second possibility is that a point t = (¢,, ¢,, u) does not contribute to
w(A N&,) but contributes +1 to y(A N &,-) (Figure 4, point Bl), or t
contributes —1 to (A N &,) but does not contribute to y(A N &,-) (Figure
4, point B2), making a contribution of —1 to ¥(A) in either case. This will
occur when dC N &, contains JA N JC N &, in a neighbourhood of t, but
AN ICNE, v<u, contains a “hole.” Following the same reasoning as
above, this will happen when X =56 at t, X, <0, X;; > 0, X; = 0 and the
curvature of JA N &, is greater than the curvature of JC N &,, that is, if
Xpp + cppX | > 0. Combining these two types of contribution, we obtain, on
summing over t,

¥s = L (X =0b)(X, <0)(Xy > 0)(X=0)

aCg
X{(Xpr + crp X, <0) — (Xpp + cpp X, > 0)}.

We now consider points t = (¢,, t5, «) at the intersection of an edge JCj
and the plane &,. We shall partition 9Cy into two sets: those points where
dC N &, is convex, denoted by dCy, (Figure 4, point C), and those points
where 9C N &, is concave, denoted by dCy_ (Figure 4, point D). We shall
first assume that 9C N &, is convex at t. Then t will contribute +1 to ¢(A) if
A N &, contains only the point t and A N &,, v < u, is empty in a neighbour-
hood of t. Let X denote the derivative of X tangent to the edge JCy in the
positive (upward) direction of ¢,. Let X, and X;, denote the two derivatives
of X in the plane &, in the direction of the two tangents to JC N &, on either
side of the edge at t. Then t will contribute +1 to ¢(A)if X =b at t, Xz > 0,
Xy, <0 and X;, < 0. Next we shall assume that 9C N &, is concave at t.
Then t will contribute —1 to ¢(A) if JC N &, contains JA N JCN&, in a
neighbourhood of t, but JA N 9C N &,, v < u, contains a “hole.” This will
occur if X =5 at t, Xz > 0, X;; > 0 and X, > 0. Combining these two
types of contribution, we obtain, on summing over t,

dp = X (X =b)(Xg > 0)(Xr, <0)(Xpp <0)

9Cpg.

- L (X =b)(Xz > 0)(Xp; > 0)(Xpz > 0).

dCg_

Finally let 9C}; be the set of points in JC that contribute to y(C) and let
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¢(C; t) be their contribution at t, so that on summing over t,
¥(C) = X ¥(C;t)
19CH

as in two dimensions. These points will also contribute to (A) whenever
X > b, so that their contribution to (A) is

(4.1) b= T (X 20)p(C0).

Vertices in dCy not included in any of the above contributions will almost
surely never contribute to ¢/(A). We have thus proved the following result.

LEMMA 3. Assume that the field X(t), t € R3, satisfies the same regularity
conditions given in Section 2.1. Then with probability 1,

Xua(0) = xpr(0) + ¥s + g + ¢y

4.2. Expectation. The next result gives the expectation of contributions to
¥ (A) from the smooth part of 4C.

LEMMA 4. Assume that the conditions of Theorem 1 hold. Let t; be a unit
vector in the plane &, tangent to JC N &, and let t; be a unit vector
orthogonal to t; and tangent to JC, pointing in the positive (upward)
direction of t3 at the point t = (¢y,t,,u). Let ¢p(x,x5) be the density of
(X, X7). Then

E(4s) = ~ [[  BU(X.<0)X{(Xrr + ergX.) |X = b, X = 0)
X ¢p(b,0) dty dty.

Proor. We evaluate the expectation of the point-set representations given
in Lemma 3 following the methods used to prove Theorem 5.1.1 of Adler
[(1981), page 95]. For any & > 0 let b(&) be the ball of radius & defined by
b(e) = {(x, 25): [I(x1, 25)ll < &} and §,(x,, x,) is a function on R? defined to
be constant on b&(s) and zero elsewhere, normalised so that
/8,(xq, x5) dxy dx, = 1. Under the conditions of the above Theorem applied to
the point-set representation of 3 we have

g = lim [jac ss(X — b, X;)(X, < 0)(Xy > 0)

e>0
X{(Xpr + cpp X, <0) — (Xpp + cpp X, > 0)}J dty dty,
~where J is the Jacobian
| (X — b, Xp)
d(tr,ty) )
and Xy is the partial derivative of X with respect to t; and t;. Note that

J = =Xy Xpy — Xy (Xpp + cpp X )|

det (
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as ¢ > 0, X; — 0 and so
(Xy > 0O){(Xpp + cpr X, <0) = (Xpp + cpp X, > 0)}J
- —X5(Xprr + cprX ).

Following a similar method of proof to that of Theorem 5.2.1 of Adler [(1981),
page 105], we obtain the result. O

The next result gives the expectation of contributions to (A) from edges
of 9C. The proof is similar to that of Lemma 2 and is omitted.

LEMMA 5. Assume that the conditions of Theorem 1 hold. Let t; denote
the unit vector tangent to the edge dCy in the positive (upward) direction of
t5. Then

E(ug) = [ B{(Xry < 0)(Xrq < 0)Xi | X = b)g(b) dt,

E+

—[w ;E{(XTI > 0)(Xpy > 0)X; | X = b)o(b) dty.

4.3. Isotropic fields. The next two lemmas give simplified expressions for
the expectations in Lemmas 4 and 5 for isotropic fields. The proofs are tedious
and have been relegated to the Appendix.

LEMMA 6. Assume that the conditions of Theorem 1 hold for an isotropic
stationary random field X(t), t € R3. Let 6 be the angle between the outward
normal to dC and the positive direction of the t; axis, 0 < 6 < 7. Then

E(yg) =10C| py(b) /2 + [[&C crp(sin 6 — 6 cos 0) dty dty p,(b)/(27),

where |3C| is the surface area of C.

LEMMA 7. Assume that the conditions of Theorem 1 hold for an isotropic
stationary random field X(t), t € R3. Let 0, and 0, be the angles between the
positive direction of the t axis and the two outward normals to dC on either
side of an edge in dCy in a neighbourhood of t,0 < 0, < 7,0 < 6, < 7. Let
w, and w, be the angles between the tangent to the edge in the positive
(upward) direction of t; at t = (¢, t,, u) and the two tangents to 9C N &, in
&, on either side of the edge at t. Finally, let 6 be the internal angle of 9C at t
between the two tangent planes to dC on either side of the edge. Then

E(yg) = [ac (7 — 8— 0, cos w, — 0, cos wy) dty p,(b)/(27).

We now have all the ingredients for the expectation of the Hadwiger
characteristic in three dimensions, but before putting them together, we shall
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prove the following lemma, which we shall use to put the result in a more
familiar form. The proof is once again relegated to the Appendix. Let Crmax and
Cmin e the maximum and minimum inside curvatures, respectively, of dCy at
a point t in planes normal to the tangent plane at t; ¢ and c_.. are also
known as the principal curvatures of dCs.

max min

LEMMA 8. Let S be a subset of ICg with a boundary 38 that is composed
of a finite number of piecewise smooth curves. Let 0, ty, t;, cop, Cmax ONd C i
be defined as above. Let r denote a unit vector tangent to 3S, pointing in the
same direction around JS, and let w be the angle between r and t,. Then

fchT(sin 60— 6cos0)dt; dt, — f fcos wdr = [[(Cmax + Cpin) dtp dty.
S aS S
We now come to our main theorem. Define

H(4C) = (/fac (Cmax + Cmin) dtp dty + [ac (m—8) th)/z.

If 9C is smooth everywhere, so that the second term is zero, then H(9C) is
known as the mean curvature of JC [see Santalé (1976), page 222]. If C is a
polyhedron, so that the first term is zero, then H(9C) is half the sum of the
lengths of the edges of C multiplied by their angular deficiency. If C is
convex, let A(C) be the average, over all rotations, of the maximum perpen-
dicular distance between two parallel planes that touch JC; this is known in
stereology as the mean caliper diameter of C. Then it can be shown that
A(C) = H(9C)/(2m) [see Santalé (1976), page 226]. Values of H(JC) for
some common geometric solids are given by Santalé [(1976), page 229].

THEOREM 3. Assume that the conditions of Theorem 1 hold for an isotropic
stationary random field X(t), t € R3. Then

E{ Xsa(b)} = ICl py(b) +19C1 py(b) /2 + H(9C) py(b) /7 + w(C) P(X = b).

PrOOF. Combining Lemmas 3, 6, 7 and result (4.1) we get
E{ xua(b)} = ICl p3(b) +13Cl py(b) /2 + Lpy(b)/(27) + $(C)P(X = b),

where

L= ff cpr(sin 6 — 6 cos 0) dt, dt, — f 0, cos w, dt
9Csg iCx

—[ 02cosw2th+f (m— 8)dty.
aCg 9Cg ‘

Let us partition the surface of C into a finite number of components, each
with a piecewise smooth boundary. This can be done, for example, by incorpo-
rating the edges dCp and the vertices dC, into the boundaries of the
components of the partition. Then Lemma 8 can be applied to each compo-
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nent and summed over all components. Clearly the surface integrals add to
give the surface integral of 2H(JC). Consider the boundary where two
adjacent components of the partition meet. The line integrals around the
boundary of one partition will contribute — f6; cos w; dtz and the line inte-
gral around the boundary of the second will contribute — [0, cos w, dtg. This
contribution is zero if the components do not meet on an edge of C, since
6, = 0, and w; + w, = 7. The summation of Lemma 8 applied to all compo-
nents thus equals the first three integrals of L and so L = 2H(4C). O

Applying Theorem 3 to a sphere C of radius a, we have |C| = (4/ 3)mwal,
|9C| = 4ma?, ¢y = Cqin = 1/a, H(JC) = 4ma, ICy is empty, $(C) = 1 and
S0

E{ xua(b)} = (4/8)mabs(b) + 2may(b) + 4apy(b) + P(X = b).

For C a cube of side h, we have |C|=h3, [9C|=6h% cpay = Cmin =0,
m—6=m/2, H(dC) = 3wh, ¢(C) = 1 and so

(42)  E{xua(b)} = hby() + 3h%py(b) + 3hpy(b) + P(X 2 b).

4.4. Application to surfaces embedded in R3. We can use the result of
Theorem 3 to find the expected Hadwiger characteristic of the intersection of
the excursion set of an isotropic stationary field in R® with a piecewise
smooth surface S. Suppose we form a solid S, by “thickening” S by a small
amount 4. If we apply Theorem 3 to S, and let the thickness 4 tend to zero,
then the first term vanishes since the volume of S, tends to zero. The second
term approaches |S| p,(b). As h approaches zero, the curvatures and angular
deficiencies cancel on either side of S,, the mean curvature H (4S,) ap-
proaches |3S|m/2, and so the third term approaches |3S| p,(b)/2. Since ¥(S;)
approaches (8), the last term is just ¢(S)P(X > b) and so we have

(43)  E{xua(b)} =ISlpy(b) +1881py(8)/2 + ¢(S)P(X = b).

It is rather surprising that this is identical to the result of Theorem 2 in two
dimensions, obviously a special case of (4.3) when S is flat. Thus no matter
how S is folded or even creased, the expectation of the Hadwiger characteris-
tic is given by (4.3). If S is homeomorphic to the surface of a sphere, so that it
has no boundary, then E{ xz,(5)} = S| py(b) + 2P(X = b) since the surface
of a sphere has a Hadwiger characteristic of 2. This result has been given by
Gott, Park, Juszkiewicz, Bies, Bennett, Bouchet and Stebbins (1990), where it
is applied to the cosmic microwave background, which is modelled as a
random field on the surface of a sphere.

5. Alternative derivations for isotropic fields. In the next two sub-
sections we shall use a heuristic argument, based on the kinematic funda-
mental formula of integral geometry [see Santalé (1976), page 113], to find
the expected Euler—Poincaré characteristic of the excursion set of an isotropic
random field. Because the Euler—Poincaré characteristic equals the Hadwiger
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characteristic within the domain of definition of both, we shall see that
results for the Euler—Poincaré characteristic agree with those for the Had-
wiger characteristic given by Theorems 2 and 3.

5.1. Kinematic fundamental formula in two dimensions. Let B and C be
two sets in R? bounded by a finite number of piecewise smooth curves.
Suppose B is fixed and C moves rigidly under rotations and translations, and
assume that for all positions of C the intersection B N C has a finite number
of connected components. Let y(A) be the Euler—Poincaré characteristic of a
set A. Then the kinematic fundamental formula states that

(5.1) /X(B N C) = 27{|Bl x(C) + IC| x(B)} + |4BllJC|,

where the integral is over all rotations and translations of C [see Santald
(1976), page 113]. Let S be a fixed disk of large radius s and suppose C
moves relative to S. As s tends to infinity, the proportion of positions of C in
which C intersects the boundary of S, relative to the interior of S, will tend
to zero. Applying the kinematic fundamental formula to S and C we obtain
Ix(SNC)/IS| - 27 as s — », over all movements of C. Now let B be the
excursion set of an isotropic random field X(t) inside S above the threshold
b, B={teS: X(t) > b}. If X(t) satisfies the conditions of Theorem 1, then
B is almost surely bounded by a finite number of piecewise smooth curves.
Now suppose that X(t) is fixed so that B is fixed, but C moves relative to B.
Applying the kinematic fundamental formula to B and C, normalising by
27|S| and writing A = B N C for the excursion set of X(t) inside C, we have

/x(A) |B] x(B) 4Bl 14C|
sl ~ X0 HICTg + e 5

Taking expectations over X(t), letting s tend to infinity and noting that X(t)
is isotropic, the right-hand side converges to E{ x(A)} and we obtain

(1B X(B)\ _(1BI)IaC]
Bt xa - tim ({35 e + e8| )+ 27 ) 52

Now E(|B|/IS]) - P(X > b) and E{ x(B)/IS[} = py(b) as s — «. The last
term is proportional to the mean boundary length of the excursion set per
unit area, which can be found by another application of the kinematic
fundamental formula to the special case where C is a thin rectangle T of
length [ and breadth 4. We then have

[oBl\ 2(l + h)

E{x(BNT)} =P(X>b) +lhpy(b) + imE|— | ———=
§— |S | 2

Dividing both sides by ! and letting [ - «© and 2 — 0, so that T approaches a

line, the left-hand side approaches the rate p,(b) of the Euler characteristic of

the excursion set along a line, and we have lim,_,, E(|dB|/IS])) = mp,(d).
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Combining these results we obtain
(52)  E{x(A)} =ICl py(b) +13CI py(5)/2 + x(C)P(X = b),
which is identical to the result of Theorem 2.

5.2. Kinematic fundamental formula in three dimensions. Let B and C
be two sets in R? bounded by smooth surfaces except for a finite number of
smooth edges of finite length and a finite number of vertices. Suppose B is
fixed and C moves rigidly under rotations and translations, and assume that
for all positions of C the intersection B N C has a finite number of connected
components. Then the kinematic fundamental formula states that

fX(B N C) = 87%{|Bl x(C) +IC| x(B)}

+ 2w{|9BIH(4C) + |dC|H(B)},
where the integral is over all rotations and translations of C [see Santalo
(1976), page 262]. Let S be a fixed ball of large radius s and suppose C moves
relative to S. Applying the kinematic fundamental formula to S and C we
obtain [y(S N C)/|S| - 872, as s > . Nowlet B = {t € S: X(t) > b}, where
X(t) is an isotropic random field satisfying the conditions of Theorem 1.
Applying the kinematic fundamental formula to B and C, normalising by
872|S| and writing A = B N C for the excursion set of X(t) inside C, we have

/x(A) Bl X(B) |0B| H(é’B)
s=7g) s X (O TICT g {ISI H(3€C) +1oC—g—~ }/4"'

Taking expectations over X(t), letting s tend to infinity and noting that X(t)
is isotropic, we obtain

E{x(A)}=slgn{ ('lg')xw) |C|E( I(SI))}

lim { & il H(sC |[0C|E H(9B) 4
« 1 (B[ o) 16018 S o

As before, E(|B|/|S|) » P(X = b) and E{x(B)/IS]} = ps(b) as s — . The
third term is proportional to the mean surface area of the excursion set per
unit volume, which can be found by another application of the kinematic
fundamental formula to the special case where C is a cylinder T of radius !
and height &. We then have H(4T) = wh + 72l [Santalé (1976), page 230]
and so

(5.3)

E{x(BNT)} =P(X = b) + wl2hpy(b)
+ lim {E

. |6B] .
(5.4) s |\ 18I )(77 +mh

H(4B)
+(2mwI% + 27rlh)E( 5] )}/477.
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Dividing both sides of (5.4) by the height 4 and letting I - 0 and & — %, so
that T approaches a line, the left-hand side approaches the rate p,() of the
Euler characteristic of the excursion set on a line, and so lim, ,, E{|oBl|/IS}
= 2mp,(b). Now dividing both sides of (5.4) by the base area 712 and letting
l > o and h — 0, so that T approaches a plane, the left-hand side ap-
proaches the rate p,(d) of the Euler characteristic of the excursion set in a
plane, and so lim, ., E{H(dB)/IS|} = 4p,(b). Combining these results we
obtain

E{x(A)} =IClps(b) +15Clpy(b) /2
+ H(5C) py() /mx(C)P(X > b),

which is identical to the result of Theorem 3. This immediately suggests a
generalisation to higher dimensions, but we shall not pursue it in this paper.

The similarity between (5.2) and Theorem 2 and between (5.5) and Theo-
rem 3 runs deeper. A closer inspection of the proof of the kinematic funda-
mental formula, given for example by Santalé [(1976), pages 114 and 262],
shows exactly how the terms in (5.1) and (5.3) arise. The proof uses the
Gauss—Bonnet theorem which expresses the Euler—Poincaré characteristic of
a set bounded by a piecewise smooth boundary as the product of the principal
curvatures averaged over the boundary. The first term |B| y(C) comes from
the part of 9C inside Bj; this becomes the last term y(C)P(X > b) of (5.2)
and (5.5), which corresponds to the contribution of 9C inside the excursion
set in Theorems 2 and 3. The second term |C| y(B) comes from the part of ¢B
inside C; this becomes the first term |C|p4(b) of (5.2) and (5.5), which
corresponds to the contribution from the excursion set in the interior of C in
Theorems 2 and 3. Finally the third and fourth terms of (5.1) and (5.3) come
from the intersection of 4B with dC which correspond with the contributions
of Lemmas 2, 4 and 5.

(5.5)

5.3. Small convex sets. We can check the results of Theorems 2 and 3 for
small compact convex sets C c RY as follows. Let t be an interior point of C
and approximate X(s), s € C, by the linear function

X(s) =X+ (s - t)'X,
where X = X/t = (Xy,..., Xy). Then Xua(b) is approximated by the
Hadwiger characteristic of the excursion set of X(s), which is 1 if its maxi-
mum, which must occur on JC, exceeds b and 0, otherwise. Thus

E{ xua (b)) = p{ max X(s) > b}.

Let ¢*(x | x) be the density of X conditional on X = x. Then conditioning on
X = x and approximating the distribution function of X as a linear function
about b, we have

P(Xzb - ma)é(s—t)'xlx=x)
s€d

~P(X>b|X=x)+ max (s — t)'x¢*(b | x).
s€dC
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Taking expectations over X and reversing the order of conditioning, we have
E{xua(b)} = P(X > b) + E{ max (s ~ )X | X = b}qbo(b).
sEJ

Now let X = ru, where r = |X|| and u is a unit vector. Because X(t) is
isotropic, u is uniformly distributed on the surface of the unit N-sphere
independent of r. Thus max, (s — t)'X is just r times the maximum
perpendicular distance of JC from t projected onto u; averaged over all u,
this becomes r times half the average caliper diameter of C, or rA(C)/2.
Thus

E{ max (s - )X | X = b} = A(C)E(r | X = b) /2.

segC

Combining these results, we obtain
E{xua(b)} = A(C)E(r | X = b)y(b) /2 + P(X > b).

In two dimensions an elementary result of integral geometry states that
the mean caliper diameter of a piecewise smooth convex set equals the
perimeter length divided by =, A(C) = |dC|/w [see Santal6 (1976), page 30].
Combining this with (3.2) we get

E{ xua(b)} =19Cl py(b) /2 + P(X 2 b),

which agrees with the last two terms of the result of Theorem 2. In three
dimensions it can be shown that A(C) = H(dC)/(27) [see Santal$ (1976),
page 226]. Combining this with (A.6) we get

E{ xua(b)} = H(3C) py(b) /m + P(X > b),

which agrees with the last two terms of the result of Theorem 3.

This agreement suggests that the expected Hadwiger characteristic can
serve as a good approximation for the exceedence probability of the maximum
of an isotropic random field above high thresholds in a small convex set. This
is of particular interest in the medical applications described in the next
section, where C is often restricted to a small part of the brain such as the
left temporal lobe. This approximation is related to work by Knowles and
Siegmund (1989) and Sun (1993).

6. Applications.

6.1. Approximating the Hadwiger characteristic from a finite sampling of
X(t). In practice random fields are sampled on a square lattice of pixels in
two dimensions, or a cubic lattice of voxels in three dimensions. If the set C is
an interval, Adler [(1977) and (1981), page 117] gives a method based on
Serra (1969) of approximating the IG characteristic in two and three dimen-
sions. It is straightforward to show that the Hadwiger characteristic can be
approximated in a similar way, as follows. In two dimensions, suppose C = I
and the lattice points are /;; = (i/M, j/M), i, j=0,..., M. Let Py be the
number of lattice points inside the excursion set A,, let E;; be the number of
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edges joining two adjacent lattice points /;; and [, ;, or [;; and [; ;. ;, both of
whose end points are in A,, and let F,, be the number of faces of four
adjacent lattice points /;;, 1, ;, I; ;-1 and l; y j, 1, all of which are inside A,.
Following the proof of Adler [(1981), Theorem 5.5.1] it is straightforward to
show that for a random field in two dimensions satisfying the regularity
conditions of Theorem 1,

Xua(b) = Allim Py — Ey + Fy,

with probability 1.

For three dimensions, suppose C = I and the lattice points are /,;, = (i/M,
Jj/M,k/M), i, j, k=0,..., M. Let Py, be the number of lattice points inside
the excursion set A,, let E,;, be the number of edges joining two adjacent
lattice points {5, ;1 14}> (Lijeslijr1a} OF {Uijps1; 541}, both of whose end
points are in A,, let F;, be the number of faces of four adjacent lattice points
ijes Liv g Lije v Liwngends Qino Liv s Lijrrn Livnjnsd OF Uijns Lijiaes
Liik+1> Lij+1e+1)s all of which are inside A,, and let @, be the number of
cubes {15, Liv1jps Lijorms Livvgonms Lijrens Livnjrrn Lijripets Livnjrins 1
all of whose vertices are in A,. Then for a random field in three dimensions
satisfying the regularity conditions of Theorem 1,

Xua(b) = A]leleM_EM+FM_QM,

with probability 1.

Three-dimensional sets C that have piecewise smooth boundaries can be
tesselated with a finite number of components, all of which are bounded by a
ball of radius & for any &£ > 0 in such a way that tangent planes of the
tesselation approach those of C as ¢ —» 0. Let P, E,, F, and @, be the
number of points, edges, faces and components of the tesselation contained in
A,. Then extending the above arguments, it can be shown that for a random
field satisfying the regularity conditions of Theorem 1,

XH.A(b) = liI%Pe_EE-i_F's_Qe’

with probability 1, with the obvious extension to a tiling in two dimensions.

In practice, it is a difficult programming task to carry out such a tessela-
tion in three dimensions working with data sampled on a cubic lattice. One
possibility is to choose the components as the cubes entirely contained in C
together with truncated cubes, with faces suitably triangulated, whose ver-
tices touch the boundary of C. Another possibility, which we shall use in the
example in the next section, is to simply drop all cubes that touch the
boundary of C and let C be the union of all cubes entirely contained in C.
Although the volume of C approximates the volume of C, C is not very
satisfactory, since now the tangent planes of C do not approximate those of
C, but it is very easy to work with. The expectation of yy,(b) inside C for a
suitably regular isotropic field can be calculated as follows. Let P Dbe the
number of points in C, let E;, E, and E; be the number of edges in C in the
t;, t, and ¢, directions, respectively, let Fy3, Fy; and F;, be the number of
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faces in € normal to the ¢;, ¢, and ¢, directions, respectively, and let @ be
the number of cubes in €. Finally, let 8,, 6, and 8, be the separation
between adjacent voxels in the directions ¢,, ¢, and ¢;. Generalising (4.2), it
can be shown that

IC] = 5,8, 55,
10C1/2 = (Fiy — Q)6,6, + (Fyy — @)858, + (Fps — @)8, 5,
H(oC)/m= (El — Fyy — Fyy + Q)6 + (B, — Fyy — Fyy + Q)3
+(E3 —Fy — Fpy + Q)Ba,
$(C) = P — (B, + By + Ey) + (Fpy + Fyy + Fp) — Q.

Substituting these in Theorem 3 gives the desired expectation.

The observed Hadwiger characteristic of the excursion set in C can be
approximated by P — E + F — @, where P, E, F and @ are the numbers of
points, edges, faces and cubes, respectively, of C entirely contained in the
excursion set. For a large number of thresholds, these calculations can be
performed very rapidly by cumulating P, E, F and @ in parallel with one
pass through the data. The computer program used in the following subsec-
tions takes the values of X(t) at eight adjacent voxels and first determines
their range. Obviously there will be no cumulative contributions to xya(b)
from thresholds b outside the range of the eight values, and so contributions
are cumulated only for thresholds within the range. At the same time, the
program determines the volume, surface area, mean curvature and Hadwiger
characteristic of C as defined above. Memory usage is negligible since only a
small portion of the data is needed at any one time. This make it possible to
find the Hadwiger characteristic for a 1.3 million voxel three-dimensional
field at 1000 thresholds in a few minutes on a typical workstation.

6.2. Gaussian random fields with a Gaussian correlation function. Wors-
ley, Evans, Marrett and Neelin (1992, 1993) modelled the noise in PET
images in R® as a white noise Gaussian random field convolved with a kernel

r “point response functlon proportlonal to exp(—h'%"'h/2), where h is a
vector in R3, 3 = diag(o?, of, 0f) is a 3 X 3 diagonal matrix that governs
the width of the kernel and the pnme denotes transpose. The width of the
kernel is usually measured in terms of the full width at half maximum, or the
width of the kernel at half its maximum value. If F;, F, and Fy are the full
width at half maxima in each of the three dimensions, then by equating

“expl —(F;/2)?/(20®)] to 1/2, we obtain o, = (8log, 2)~ 1/ ’F;. Rescaling the
image by d1v1d1ng the jth coordinate by (4 log, 2)"'/*F; g1ves an isotropic
point response function and thus an isotropic Gauss1an random field X(t)
with Gaussian correlation function R(h) = exp(—|hl|®>/2). Such a field satis-
fies the conditions of Theorem 1, A is the identity matrix and det(A) = 1.
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6.3. Application to the study of pain perception. Talbot, Marrett, Evans,
Meyer, Bushnell and Duncan (1991) carried out an experiment in which PET
cerebral blood flow images were obtained for eight subjects while a thermistor
was applied to the forearm at both warm (42°C) and hot (48°C) temperatures,
each condition being studied twice on each subject. The purpose of the
experiment was to find regions of the brain that were activated by the hot
stimulus, compared to the warm stimulus. For the present work, we shall
analyse the difference images of the two warm conditions as a data set which
should have an expectation of zero throughout. The difference images were
reconstructed to a resolution of F, = 20 mm, F, = 20 mm and F; = 7.6 mm,
then aligned and sampled on a 128 X 128 X 80 lattice of voxels, separated at
approximately d;, = 14 mm, dy, = 1.7 mm and ds =15 mm on the
front-back, left-right and vertical axes, respectively. Rescaling the coordi-
nates to produce an isotropic field gives §; = (4log, 2)'/%(d,/F)), j =1, 2, 3.
These images were averaged and divided by a pooled estimate of their
standard deviation to produce an image X(t) that was modelled as a zero
mean, unit variance, isotropic stationary Gaussian random field with a
Gaussian correlation function R(h) [see Worsley, Evans, Marrett and Neelin
(1992, 1993)]. 3 3

The region of jshe brain C of interest occupied~a volume of |C| = 1564, with
surface area |¢C| = 979, mean curvature H(JC) = 137 and Hadwiger char-
acteristic ¢(C) = 1 calculated from Section 6.1 (see Figure 1(a)). The ex-
pected Hadwiger characteristic from Theorem 3 and (2.3) was plotted against
the threshold b in Figure 5(a), together with the observed Hadwiger charac-
teristic approximated as at the end of Section 6.1. Also shown for comparison
is the AIG characteristic and its expected value, which equals the first term
|Cl p5(b) of Theorem 3 [Worsley, Evans, Marrett and Neelin (1992)]. The
agreement between observed and expected seems reasonable, and both char-
acteristics are very close for excursion sets above high thresholds [Figure
5(b)]. The number of regions of activation was estimated using the method of
Worsley, Evans, Marrett and Neelin (1993). For a nominal bias of a = 0.1,
the value b, chosen so that E{ ygA(b,)} = a was b, = 4.24. The observed
Hadwiger characteristic at this threshold was yg,(b,) = 0, indicating no
regions of activation, as predicted. The same result was obtained with the
AIG characteristic.

6.4. Application to the word recognition study. D. Bub (private communi-
cation, 1992) carried out an experiment in which PET cerebral blood flow
data were collected from 10 normal volunteers. Visual stimuli were presented
for 1 s with an interstimulus interval of 1 s on a monochrome monitor,
suspended in front of the subject and covered by a light-tight curtain. The
.baseline condition was a black plus sign on a white background and for the
activation condition, single words were presented on the monitor for 1 s with
an interstimulus interval of 1 s. The same methodology as for the pain study

was repeated. The region of the brain C of interest occupied a volume of
|C| =997, with |9C| = 2318, H(4C) = 93 and (C) = —3, since in this case
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C contained several “holes” in the thin shell chosen as the search volume (see
Figure 1(b)). Note also that the surface area is large and the mean curvature
is small, since C is a thin shell.

Figure 5(c) plots the same information as in Figure 5(a), but this time
there are substantial discrepancies between observed and expected Hadwiger
characteristic, particularly for high threshold values as shown in Figure 5(d),
which can be attributed to peaks or regions of activation due to the word
recognition task. We can estimate the number of peaks by the method of
Worsley, Evans, Marrett and Neelin (1993). For a nominal bias of o = 0.1,
the value b, chosen so that E{ xys(b,)} = @ was b, = 4.22. The observed
Hadwiger characteristic at this threshold was xpa(b,) = 3, indicating three
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Fic. 5. Application of the excursion set characteristics to the data sets. The observed Hadwiger
characteristic for X(t) (jagged line) and its expectation (smoothed line) are plotted against the
threshold b for (a) the pain study and (c) the word recognition study, together with the AIG
characteristic (shaded lines). Parts (b) and (d) show the upper tails of (a) and (c), respectively.
For the pain study the observed characteristic is close to the expected characteristic, indicating no
evidence of increased activation. For the word recognition study the observed Hadwiger character-
istic is approximately three units larger than expected in the upper tail (4 < b < 5), indicating
evidence of at least three regions of activation. The AIG characteristic, on the other hand,
indicates only one region of activation.
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regions of activation. These were identified by Worsley, Evans, Marrett and
Neelin (1992) in the extrastriate, left temporal and left frontal. The regions
are shown in Figure 1(b) close to t = (—2.8, —6.7, —0.9) cm, t = (—5.8, —0.3,
—0.9) cm and t = (—4.7, 4.3, 0.3) cm, respectively. The observed AIG charac-
teristic at the a = 0.1 threshold of 4.07 is 1.125. Since the excursion set
touches the boundary of C, the AIG characteristic picks up only one of the
three regions of activation. This example clearly shows the superiority of the
Hadwiger characteristic when the regions of activation are close to the
boundary of C.

APPENDIX

A.1. Proof of Lemma 6. We evaluate the expectation in Lemma 4 by
changing to polar coordinates. Let X =rcosa and X;=rsina, r 20,
0 < a < 2, so that we can write X;; = X, cos 6 + X; sin 6 = r cos(a — 0).
Since the field is isotropic and X, X, and X; are derivatives of X in
orthogonal directions, then « is uniformly distributed on [0, 21) independent
of r or X;p, conditional on X = b and X, = 0. Taking expectations over «
conditional on X = b and X, = 0, we have

E{(X, < 0)X{(Xpp + crr X )}
(A1) = E{(cos a < 0)rcos(a — 6)[cos(a — 0) > O]( Xy + cpprcos a)}
= E(rXpp)(1 — cos 6) /(2m) — E(r®)epp(sin 6 — 6 cos 0) /(47).

We start with the first term of (A.1). Converting back from polar coordinates,
we have, conditional on X = b and X, =0,

(A2)  E(rXpp) = WE{r [Tsin ada/(27‘r)XTT} - 7E( X Xrr),
0

and since X(t) is isotropic,
(A3) E(X{Xyp | X = b, Xp = 0)dp(5,0) = —py(b).
We now tackle the second term of (A.1). Since X(t) is isotropic, we can write

the joint density of (X, X, ) conditional on X = x at (x7, x ) as f(xf +x7%)
for some function f. Note that f is not a density function. Then

(A4) E(X21X=b,X;=0)¢s(b,0) = [ x3f(x2)de, do(d).

Now converting to polar coordinates X, =ycos @ and X 6 =ysinw for
y>0and 0 < w< 2w, we have

E(X11X=b)=[ [ «if(sf+a?)derde,= 2[0 y2f(¥?) dy.

Combining this with (A.4) applied to X; as well as X, and noting that
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r?=X?% +X2, we have
E(r*1X=15b,X;=0)¢y(b,0)
= 2E(X%1X = b)gy(b) = 2py(b).
Putting together (A.1), (A.2), (A.3) and (A.5), we have

_E{(XJ. <0)X{(Xrp + crp X)) | X=b,Xp = 0}¢T(b,0)
= pa(0)(1 — cos 6) /2 + py(b)cpr(sin 6 — O cos 0) /(27).

(A5)

We obtain the final result by integrating over the surface of JC and using

[ (1= cos ) dty dty = laCI. O

A.2. Proof of Lemma 7. We start with the case where 4C N &, is convex
at t and we evaluate the expectation of the first term in Lemma 5 by
changing to polar coordinates. Let X; = r cos a sin 8, X, = r sin « sin 8 and
X3=rcosB,r>0,0<a<27 and 0 < B < 7. Let 0 be the angle between
the edge JCy in the positive (upward) direction of ¢, and the plane &, at
t = (¢;,¢,, u). Then for some 0 < @; <27, 0 < a, < 27, 0 < ap <27,0<6
< m, we can write X;; = X, cos &; + X, sin ; = r cos(a — a))sin B, j = 1, 2,
and X = r{cos(a — ap)sin B cos 6 + cos B sin ). Since the field is isotropic,
then r, @ and B are independent random variables conditional on X; a is
uniformly distributed on [0, 277) and the density of 8 is (sin 8)/2 on [0, =].
Then since r > 0, sin 8 > 0 and sin 6 > 0,

E{(Xr; < 0)(Xp, < 0) X3 | X)
= E{[cos(a — a;) < 0][cos(a — a,) < 0]
Xr[cos(a — ag)sin B cos 6 + cos B sin 6]
X [cot B> —cos(a — ag)eot 0] | X}
= E(r1X)E{[cos(a — a;) < 0][cos(a — a,) < O]sin (1 — y cot )} /4,

where y = cot™'[ —cos(a — ag)cot 6], 0 < y < 7. Converting back from polar
coordinates, we have

w/2 .
E(r1X =4E(r cos,Bsm,BdB/ZIX)
(A.6) ( ) j;)
= 4E{(rcos B) "1 X} = 4E(X; | X).
Because the edge is convex, we can assume without loss of generality that
0 <ay — a; <, sothat

[cos(a — @;) < O][cos(a — a,) < 0] = (7/2 + a, < a < 37/2 + a;).
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Then taking expectations over «, we have
27 E{[cos(a — a;) < 0][cos(a — a,) < O]sin 6(1 — y cot y)}

3m/2+ay

= sin (1 — ycoty) da
T/2+ agy
tan(a; — «a tan 6
= tan‘l((.;E)- — cos(a; — ag)cos ftan ! - ————
sin 6 sin( a; — ag)
tan(a, — «
+ - tanl(—(—,i————E—l)
sin 6

tan 0 )

— cos( @, — ap)cos O tan | ——mM8 ——
(e, 5) (sm(al—aE)

Using standard Euclidean geometry it can be shown that, for j = 1, 2,

(—l)j tan 6

cos w; = cos( a; — cos 6, tan §, = ——m——
K (& = ap) 7 sin(ay — ag)
and
tan(a; — « tan(a, — «
8: tan_l —('1—_E_)_ — tan_l .____(_'_2_—E_)_ .
sin 6 sin 6

Combining these results, we obtain
E{(Xp, < 0)(X7, <0) X5 | X = b}o(b)
=(m— 86— 0;cos w; — 0,c08 wy)p1(b)/(27).
Similar arguments for the concave case show that
E{(Xpy > 0)(X7, > 0) X5 | X = b}o(b)
= —(m— 86— 0, cos w; — 0, cos wy)p(d)/(27),

and combining these two results proves the lemma. O

A.3. Proof of Lemma 8. Let ¢y be the curvature of S in the direction of t,,
and let ¢;; be the curvature of S in the direction of t;. Since t; is inclined at
an angle 6 to &,, then ¢y = cppsin 0 and, by the Frenet formula, ¢y =
—d#/dty. Since the sum of curvatures in orthogonal directions is invariant
under rotation, we have

Coax T Cmin = Cr + €y = Cpp sin 60 — d0/dty;.

Substituting this into the first term of the right-hand side of the lemma, we
have

fchT(sin 0— 6cos 0)dt; dty
s

(A7)
= fj:g(cmax t Cpin) dtp dty + fj:g

deé
a-U- —cppBcos 0] dty dty,.
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It remains to show that the second term of the right-hand side of (A.7) cancels
with the line integral of the second term of the left-hand side of the lemma.
To do this, define the vector field F = 6t; so that F - r = 6 cos w and so by
Stokes’s theorem,

(A.8) fsecos wdr=¢SF-rdr=ffscurlF-thTdtU,
a a

where N is the unit outside normal to S. Let ¢, and ¢, be coordinates with
respect to axes t; and t; and origin at t on S. Then dF/dt, = (d0/dt )t
and, by the Frenet formula, dF /dt; = cpp 0t | , where as before t | was the
unit inside normal to S N &,. Since t; is inclined at angle 6 to t | , then

g IF- N dF dF ¢ do
( ) cur —dTU _d—tT U———dtU

Combining (A.7), (A.8) and (A.9) gives the result. O

t, — cpp6cos 6.
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