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Suppose that Xj,..., X, are iid. from a continuous distribution
function F and Y7, ..., Y, areii.d.from a continuous distribution function

G; X’s and Y’s are independent. A minimum variance unbiased estimator
of P{X <Y} is the Mann—Whitney statisticc. We show that the
Mann-Whitney statistic is admissible under a class of weighted squared
error losses and is minimax under a proper weighted squared error loss.

1. Introduction. Suppose that X,,..., X, are ii.d. from a continuous
distribution function F and Y3,...,Y, areii.d. from a continuous distribution
function G; X’s and Y’s are independent. The Mann-Whitney statistic
[Mann and Whitney (1947)], p,, is a minimum variance unbiased estimator
of P{X <Y}, where

PP
(1.1) Po=— 1[X; < Y],
0 mn /=) [T [ J ]

and 1[ A] is the indicator function of a set A. p, is consistent and asymptoti-
cally normal [Govindarajulu (1967, 1976)].

In Section 2, we consider the admissibility and minimaxity issue. We prove
that p, is admissible under a wide class of loss functions, with the form

(1.2) (p —p)’h(F,G) where h(F,G) is a positive function.

Furthermore, p, is minimax under the loss function (p, — p)?/oc%F,Q),
where o %(F,G) = Var(p,), that is,

7*(F,6) = {p=p* + (m = 1) [(FX(t) ~p*) dO()

+(n - 1)[[(1 - G(t))* - p?] dF(t)} /(mn).

It is worth noting the following well-known results about the binomial
distribution.

Suppose that X has a binomial distribution with sample size n and
probability of success 0. The estimator 6 = X/n is admissible under the loss
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(8 — 0)21(6), where h(6) is a positive weight function. Furthermore, X/n is
minimax under the loss (6 — 6)%/[6(1 — 0)]. [See, e. g., Yu and Kuo (1992)].

It should be pointed out that Var(X/n) = 61 — 6)/n and (p, —
p)2/Var(p,) # (p, — p)?/[ p(1 — p)/n]. Thus these two problems are similar
but not exactly parallel.

It is natural to consider using a traditional Bayes approach in proving
admissibility and minimaxity. A difficulty arises since the family of distribu-
tion functions we considered is one of all continuous distribution functions.
The well-known Dirichlet prior [Ferguson (1973)] is a prior which takes
discrete distribution functions with probability 1. So we do not have a
suitable prior on the family of continuous distribution functions.

Yu and Kuo (1992) showed that the empirical distribution function F(¢) =
(X", 1[¢ = X, /m is admissible and minimax under the loss function

J{[F@) - F@)]"/IF()(1 = F(£))]} dW(2),

where dW is a finite measure and F(¢) is an unknown continuous distribu-
tion function. Thus they faced the same difficulty as we do here. In our
original approach, we used an idea similar to that of Yu and Kuo (1992). Due
to a referee’s suggestion and the special feature of this problem, the current
proof uses a different approach to overcome this difficulty.

2. Main results. We first address the admissibility issue. There are two
steps in our proof in order to overcome this difficulty that there is no proper
prior over the family of all continuous distribution functions. The first step is
to consider the discrete version of the problem, that is, to assume that G(¢) is
a discrete distribution function. By making a transformation, the problem can
be reduced to one with the family of multinomial distribution functions. Thus
we can make use of the result on the multinomial distribution function. The
second step is to convert the continuous problem to the discrete version
mentioned in step 1.

Since we need to transfer the nonparametric problem to a multinomial
distribution problem, we first introduce the latter problem: The multino-
mial distribution has a probability density function (pdf) of the form £, (q) =

(','l') [1**} =7, where m = (n,,...,7m,,,), the n’s are nonnegative integers,

Yrrlm=m, wy,...,m >0, m + - +m, ;=1 and ('::) is the multino-
mial coefficient. The parameter of interest is p = L}_; a;7;, where the a;’s
are constants. The loss function is (p p p)2h(sw), where h is a pos1t1ve
function. An estimator of p is §,(n) = L, a,n;,/m. We have the following

result.

LEMMA 1. Suppose that M has a multinomial distribution, with the pdf
f.(M). Let p be an estimator of p which does not equal §_. Let k be the smallest
positive integer (1 < k < n) such that p(nm) # X'_; a,n;,/m for at least one
which has k entries of m, Mip---» M, * 0, and the remaining entries m; = 0,
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i #1y,...,1;. Forthesei,,...,i,, let
(h(*n'))_1 I—I}LI ﬂ{jll[ﬂ'il oty = 1] dm; - dm;,_,
ifk > 2,
dr =
(h(w)) ™" m i m my + = 1]dm,,  ifi,#*landk =1, |
(h(w))~" 7y 1[77 +my=1]dm,, ifi,=1andk =1,
be a prior on w = (my,...,m,). Then
(2.1) [IR(p,8,) - R(p, )] dr < 0.

Note that the Bayes risks may not be finite, thus, (2.1) cannot be replaced
by ‘

JR(p,8,)dr < [R(p, p) dr.

Proor. Under the assumption given in the lemma, the risk of an estima-
tor p is
n+1

22 R(p.5) = Z(p - () h(m) ) TT
n =

In the following, we use the notation as in Lemma 1. If 2 < 2, the prior
dr is proportional to a binomial distribution, and the lemma is trivial.
Thus without loss of generality (w.l.o.g), we can assume % > 2. Let V =
{n; p(n) # Z7_ a;m;/m}and V, = {q € V; n, = 0if i & {i5,...,i,}}. Then due
to the definition of %, V, is a subset of V such that n has nonzero entries of
Mip oo M, and zero entries otherwise.

The reason that we restrict our attention to V, is as follows. If n* & V, but

* €V, by definition, there is an entry of m*, say n} # 0, where i, ¢
{zl, -,i). Under dr, m; =0, and then 71-"10 =0. Consequently, the corre-

sponding summand in (2. 2)
n+1

(= 5(0)*h(w) (7| TT o =0,

i=1

for any estimator p(v), including §,. It follows that we have

JIR(p,8,) - R(p, 5)] dr
= [E{(p - 5,(M))*h(m)1[M € V,]} dr
(2:3) )
~ [E{(p — 5(M))"1(m)1[M € V,]} dr

_f Z [(p—s(n)) -(p- p(n))]h(w)( )'ﬁ:ﬂ}d%
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Note under the prior dr, o, = 0 for i & {iy,...,i,;}, and consequently, if

€V, then 1, =0 (as) for i & {iy,...,i;}. We define (7% =) 0°=1 if
i &{iy,..., ;). Integrating each summand corresponding to m € V, in expres-
sion (2.2) yields

0< [---f(’;:)(éa,-wi —ﬁ(n))z

k
(24)  x [I#wmh(w)(h(w)) ot - 7t day - dm,
j=1 7 !

i 131 le-1

=ff('17]1)( i" a;m, — p(n)) [Lmpt dm, - dm, <

since ; —1>0 for j=1,...,k, and =, =0 if i €{iy,...,i;}. Then the
mult1ple integral in (2.4) can be evaluated for each m € V.. Note that
h(w)h~1(w) = 1, so w.l.o.g. we can assume that A(w) = 1. It follows that the
Bayes estimator §, is

k
8 =E,(pIm)/E(1Im) = ¥ a;E (m;, |m)/E(1|m).
Jj=1
It can be shown that
(2.5) E (m,Im)/E.(1Im) =m/m, j=1,..k

[the proof is similar to that in Brown (1988), page 1576]. Then

k
Z aijET(ﬂ-ij | n)/E'r(]‘ | "l)

8b =
j=1
(2.6) ) )
= Y a;m,/m= Y am/m=28;
Jj=1 i=1

the third equality holds since m, = 0 if i & {i;,...,i,} and if n € V. It is
important to note that

(2.7 p#8. =8, ifneV,.

Note that integrating each term with m € V, over dr in (2.2) yields a finite
value. In view of this together with (2.5), (2.6) and (2.7), (2.1) follows. This
completes the proof of the lemma. O

To the best of our knowledge, in the literature of the multinomial problem
[see, e.g., Brown (1988)], the case of estimating an arbitrary linear combina-
tion of ..., m, has not been considered. The proof of the lemma is not
trivial either. Let Y,y),...,Y,, be the order statistics of Yy,...,Y,, Yo = —
and Y, . = . Denote Z, = X <Yy, Z; = E’" ALX; < Y] -
L UX, <Y, ), j= I, and Z,,, = m—Z1 —Z,. To take ad-
vantage of the result in Lemma 1, we need the followmg lemma which
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enables us to reduce the family of all continuous distribution functions to the
family of multinomial distribution functions.

LEMMA 2. Given Y;)=y;,i=0,...,n,n+1,Z=(Z,,...,Z,,,) has the
conditional density function PXZZ =0 |Y =y} = f,(q) = (,'fl) [174! 7, where
m=F(y)—F(y,_)),i=12,...,n + 1.

The proof of the lemma is trivial and is omitted.

Now we make use of the result based on the multinomial distribution. Let
N be the cardinality of the support set {£;,..., £y} of G and let .#, be the
family of all discrete distributions G(¢) with the cardinality of the support set
less than or equal to N. In the following theorem we first consider a discrete
version of our problem.

THEOREM 1. Suppose that X,,...,X,, are i.i.d. from a distribution func-
tion F,Y,,...,Y, arei.i.d. from an arbitrary discrete distribution function G
and X’s and Y’s are independent. Suppose that the loss function is as in (1.2).
Suppose that {¢,,..., £y} is the support set of G, where N is an integer. If
there is an estimator p and y such that p(x,y) # p(X,y) on a set of x with

positive measure and y,,...,y, € {&,,..., £y}, then there exists a prior dr on
F such that
(2.8) JR(p(F,G), po) dr — [R(p(F,G), p) d7 < 0.

ProOF. Since the order statistic is a sufficient statistic, without loss of
generality, we can restrict ourselves to the class of estimators which are
functions of the order statistic. With a slight abuse of the notation, we let
(Y,,...,Y,) be the order statistic [of (Y3,...,Y,)]. As a consequence of Lemma
2, there is a transformation from (X,,..., X,,,Y;,...,Y,) [= X, V)] to (Z,Y),
where Z = (Z,,...,Z, ;) is a multinomial random vector. An estimator of p
can be written as p = p(m,y) [write Z = (1, ..., 1,,,)]. It can be shown that

n n—1 1

2.9 bo = —m, + o —,.
(2.9) Po mn m mn M2 mn M

That is, p, is a linear combination of 7n’s (or Zs). Write p, = po(m,y).
Furthermore, it can be verified that

n 1
(2.10) p= ;{;WM '"+;7Tn}P{Y=.v},

where 7; = F(y;,) — F(y;_;), i =1,...,n + 1, and that the random vector
(Z,Y) has the distribution dP = (:“)I—I il anP{Y = y}. If G is discrete, then
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the risk of p is

n+1

(211 R(p(F,0),5) =X L(p-5(n)*h(F.0)( 3] T mrP(Y-y).
y m L=
We proceed to prove the theorem by induction on N.
N = 1. Then Y, =y, = £, with probability 1, n, = - = 7, = 0. Further,
Zy,= -+ =Z%Z,=0and p=F(¢{)(=m)and 7y = -+ = m, = 0. Thus,

n+1

R(p(F,G), 5) = T(p - B(n)*h(F,G)( 1) [T mp
- T(p — B(0)*h(F,0) | rmins

Note that the risk is the same as one in the multinomial problem, p =
and p, = n,/m. It follows from Lemma 1 that if p # p,, then we have (2.1)
or (2.8).

Now assume that the theorem is true for N — 1. We need to show that the
theorem is true also for N. Without loss of generality, we can assume that for
any proper subset of {&,,..., v}, say, {§;,..., &} (B < N), we have p = p,
when y,,...,y, €{&,..., &} Othemlse k <N implies (2.8) by the induc-
tion assumptlon and the proof is completed. Let V be the set of (7, y) such
that p # p,. Then for any (n, y) € V, the set of distinct points in {y,, ..., y,}
is the same as the set {£4,. .., &). Without loss of generality, we can further
assume that n > N. Given y = (y,,...,,), let ¢, = ¢,(y) = X7_; 1y, = &1,
that is, the number of y; = £, Then ¢;(y) = 1if (n,y) € V.

Let du = (h(F,G) pi" -+ py' dp; - dpy_1, where p, = F(&), p, =
F(&,) — F(&),... and py = F(&y) — F(&y_1). It can be checked that for any
(m,y) € V, either y, —y,_; =0 and thus 7; = 0,0or y, —y;,_, = § — §;_; and
thus

(2.12) m, =p; wherei =1+ - +¢_;+ 1

In the latter case [i.e., (2.12) holds], denote

(2.13) ij=i(y)=i, Jj=1,...,N.

Ify and £ = N are given, then du = dr, where dr is defined as in Lemma 1.
For any (m,y) € V, if &; = 0, then n, = 0 (with probability 1). In this case,
define 7 = 7w = 1. Given G €.#), the measure du is a measure on F only

and is independent of P{Y = y}. Thus, p [= P{X < Y}, see (2.10)] is a linear
combination of py,..., py. That is,

p= T LRv-y (e - T LA -n) (2,

y i=1 y Jj=1

where given y, i; satisfies (2.13) [note that implicitly, i and j in (2.13) depend
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on yl. In view of (2.9), p, can be written as

. n N n—1 1 PlY
Po= |7+ ———my ok —, § {Y =y}
n n—i+1\n
= PlY = - |2
r L )2
N n—1i;+1\mn,
- ¥ re -t
y j-1 n m
Note that
JR(p(F,G), 5) du
n+1

= [T (2 - 5(0)*x(#.0)( 3] IT 7Y - 3} di
1) =T T [(o-s)hF.0) () T opsanP(x =)

PR (CR CVRIERT

N
l_I “tdp, - dpy_ P(Y =y}

It is important to note that the integral of the summand corresponding to
(m,y) €V in (2.14) exists, since m;; — 1 = 0 by the induction assumption, and
given (n,y) € V, the Bayes rule with respect to du is p,. The derivation is
the same as in the proof of Lemma 1. It follows that

[~ [ _ﬁo(“))zh(F’G)(ﬁ)Jllfllpj"f”ldp1 ~ dpy_,

(<)~ (o -pm)aer.a(2)

N :

; . f(n,y) eV

X Mi; 1d e d _ 1 ’ 4
jl:ll Ch Py 1{otherwise.

Consequently, (2.8) holds. Thus the theorem holds for N. This completes the
induction argument and the proof of the theorem. O

"The theorem implies that p, is admissible in the discrete case. In the
following theorem we will remove the discreteness-assumption on G.

THEOREM 2. Suppose that X,,...,X,, are i.i.d. from a continuous distri-
bution function F,Y,,...,Y, arei.i.d. from a continuous distribution function
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G and X’s and Y’s are independent. Suppose that the loss function is
(p — p)?h(F, Q). Then p, is admissible.

Proor. We will show the following:

(C.1) Ifthere is an estimator p such that its risk is smaller than and equal to
the risk of p, for all F and G in the family of all continuous distribu-
tion functions, then

(2.15) p =P, with probability 1 for all F and G.

We will assume that (C.1) does not imply (2.15) and reach a contradiction.
Due to sufficiency, we restrict ourselves to the class of estimators which are
functions of order statistics X; < +- <X,, and Y; < -+ <Y,. Suppose that
p satisfies (C.1) and p # p, on a set B of positive measure. W.Lo.g., we can
assume that the measure is the Lebesgue measure (in R™""). Then using
Littlewood’s three principles [see, e.g., Royden (1968), page 71], it can be
shown that there is a product set I such that B NI is of positive measure,
where I =[a,, b)) X X [a,, b,,) X [uy, vy) X = X [u,,v,) and [a;, b;)’s
and [u;, v,)’s are disjoint intervals. Furthermore, b, < a;,; and v; < u;,, for
all i (due to order statistics).

Without loss of generality, we can further assume that [a;, b;) = [2i,
2i + 1) and [u;, v;) = [2i — 1, 2i) for all possible i. Define a subclass of the
family of all continuous distribution functions F and G as follows: F' and G
have densities of the forms

f(x) = ZXV: a;1[x € [2i,2i + 1)] and
i=0

(2.16) N
g(y) = X Blly e[2i-1,2i)],

i=1
respectively, where «;, B; > 0 and YNoa=XN, B =1Then p#p,ona
set B of positive measure for some F and G satisfying (2.16). Define the
transformations

m
U=Y1[X €[2j-12/)], j=0,....,N
i=1
and X

VVJ,:

i

M=

[y, e[2j,2j+1)], Jj=1,...,N.

1

Let U = (Uy,...,Uy), W = (W,,...,Wy) and denote in an obvious way u, w,
etc. Then U and W are random vectors with discrete density functions
fi@) = P{UX) = u} and g,(w) = P{W(Y) = w}, respectively.

Since we want to take advantage of Theorem 1 (the discrete version of
Theorem 2), we define a class of discrete distribution functions F; and G,
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parallel to those in (2.16) with densities as follows:
fa(i) = a;, :=0,1,...,N, and

ga(i) =B, i=1,...,N.
Let U, =YX UX;=i] and W;; = X7_; 1[Y; = i] for all possible i, and
denote in an obvious way U; and W,.

It can be verified that:

(f.1) U and U, have the same multinomial distribution and so do W and W,.

(£.2) p(F,@) = p(F;,Gy).

(£3) (p(F,G) — py(x,y))? is constant on the set B, ={x,y); Ux) =u,
W(y) = w}.

On the latter set, we write p(u, w) = p(x,y). Replacing (F, G) by (F,;, G,), the

risk of the estimator p, remains the same, since

R(p(F’G)aﬁO)
y ff (p(F,G) — bo(x,3))' T1&(x) T1(5,) dx dy
u,w Buw i=1 =1

(2.17)

(2.18)

¥ (p(F,G) — po(u, w)) g,(u) fy(W)

=R(p(F;,Gy), Po) by (f.1), (f2) and (£.3).
Note that (f.3) may not be true for p. However, p satisfies
R(p(F,G),p)

¥ f[B (p(F,G) _ﬁ(x’y))2ﬂg(xi)zlf[1f(yi) dxdy

(2.19)

%

¥ (p(F,G) — p,(u,w))’g,(u) fy(w)

R(p(Fd’Gd)’ﬁc)’

where

5,(u, W) = [ /U(x)=u,W(y)=w p(x,y) 172, g(x;) 1171 f(y;) dxdy
Pelth g1(u) f1(w) .

Furthermore, the strict inequality holds unless p = p, w.p.1. [This follows
from E(X — p)? = Var(X) + [E(X) — p]? > [E(X) — p]? for any random
variable X and any constant p.]

If p=p, wp.l for any F and G satisfying (2.16), then p, # p, since
Do # p. Otherwise, we have a strict inequality in (2.19) for at least one pair of
F and G satisfying (2.16). Thus, it follows from (2.18), (2.19) and (C.1) that -

(2.20) R(p,p.) <R(p,p,) forallpossible p =p(F;,G,)

and R(p,, p,) < R(p,, p,) for some p, = p,(F,;, G,). It is obvious that p, # p,.
Thus in any case, p, # p, and (2.20) holds.
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Since F,; and G, are discrete, Theorem 1 applies to F; and G;. It follows
that (2.8) holds replacing p by p.. However, (2.8) contradicts (2.20). It follows
that (C.1) implies (2.15). 0O

THEOREM 3. Suppose that X,,...,X,, are i.i.d. from a continuous distri-
bution function F',Y,,...,Y, arei.i.d. from a continuous distribution function
G and X’s and Y’s are independert. Let the loss function be (p —
p)?2/o%(F,Q). Then p, is minimax.

Proor. Note that p, is the UMVU estimator of p and it is easy to derive

A (Po(X,Y) — p)’
R(p’ pO) = E Var( ﬁo) = 1

Since p, is admissible and is an equalizer rule under the loss function, it is
minimax. O

Acknowledgment. The authors are grateful to the referee for a very
useful suggestion which simplified and replaced our original version of the
proof of Theorem 2.
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