The Annals of Statistics
1995, Vol. 23, No. 2, 593-597

A NOTE ON ADMISSIBILITY WHEN
PRECISION IS UNBOUNDED

By CHARLES ANDERSON AND NABENDU PAL

University of Southwestern Louisiana

The estimation of a common mean vector § given two independent
normal observations X ~ N,(0, 0,2I) and Y ~ N,(6, 0,2I) is reconsidered.
It being known that the estimator nX + (1 — )Y is inadmissible when
7 € (0, 1), we show that when 7 is 0 or 1, then the opposite is true, that is,
the estimator is admissible. The general situation is that an estimator X*
can be improved by shrinkage when there exists a statistic B which, in a
certain sense, estimates a lower bound on the risk of X*. On the other
hand, an estimator is admissible under very general conditions if there is
no reasonable way to detect that its risk is small.

We will prove, among other things, the following theorem:

THEOREM 1. Assume independent normal observations X ~ N,(0, o,’I)
and Y ~ N,(6, ayzl ) are the only observables and suppose 6 is to be estimated
with squared Euclidean norm error. Then X is an admissible estimator.

This result may appear surprising in view of the fact, proven in George
(1991) and Krishnamoorthy (1992), that for any fixed n € (0,1), 6 = nX +
(1 — 9)Y is inadmissible. It may also be noted that under the conditions of
Theorem 1, an unbiased estimator of o2 is given by

62=p'X'(X-Y),

a fact which may lead one to doubt the validity of Theorem 1 since the results
of George and Krishnamoorthy indicate that a shrinkage estimator which
improves on X can sometimes be constructed using a variance estimator
which is not independent of X. Hence a careful derivation of Theorem 1 will
be given.

The reason X is admissible is basically that its precision cannot be
bounded. To emphasize this, we note that a careful analysis of the main
argument used by George in establishing the dominance of shrinkage estima-
tors shows that what is required for such an argument is not an estimate of
g2, but rather a well-behaved statistic representing a probable lower bound
for this quantity. In Theorem 2, we attempt to clarify the situation by stating
a simple pair of sufficient conditions for use of such a bound to produce a
dominating shrinkage estimate. We may note immediately, however, that the
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unbiased estimate mentioned above is not necessarily positive and hence does
not satisfy the required conditions.

We begin with an easy general result. In the more general setup, X* is an
estimator of # € R? and T is an R%valued statistic representing all other
data. It is not assumed that T is independent of X* or that X* is normal.

LEMMA 1. Suppose that for every 8, € R? and for every open set Vin R? it
is possible to vary all parameters so that 0 — 6,, E[I|IX* — 6?1 - 0 and so
some version of P(T € V|X = x) is uniformly bounded away from 0. Then no
continuous function of X* and T dominates X*.

Proor. If g(X*,T) were such a function, then one could find £ > 0 and
open sets U,V so that when § € U, X* € U and T €V, then ||g(X*,T) —
X*|> 2¢ and || X* — 0]l < &. We could vary the parameters so the probability
of all this happening at once was bounded below, causing E|lg(X*,¢) — 6|*
to be bounded away from 0 while E||X* — 6]|*> - 0, and this would contradict
the assumption that g(X*,T) dominates X*. 0O

It is very easy to verify that the hypotheses outlined in Theorem 1 imply
the hypotheses of Lemma 1 with X* =X and T =Y. More difficult is the
task of showing that, under the conditions of Lemma 1, admissibility in the
class of continuous functions of X and Y, the conclusion of Lemma 1, is
equivalent to admissibility (in the class of measurable functions of X and Y).
Since we are dealing now with an exponential family of distributions for
(X,Y), we might be able to adapt the results of Brown (1986), where it is
shown that generalized Bayes estimators of the canonical parameter are
continuous and, in the Appendix, that the family of generalized Bayes
estimators is essentially complete. Another possibility is to generalize the
proof, suggested in a remark in Stein (1955), of the essential completeness of
continuous functions of X when X is assumed to have the distribution
specified in Theorem 1 and when only X is observed. We will adopt this latter
approach.

Proor OF THEOREM 1. Suppose g(X,Y) is an estimator of 6 which
dominates X, with g being measurable but possibly not continuous. Since
the problem is invariant under translations and orthogonal linear transfor-
mations acting simultaneously on X and Y, it is clear that for fixed A € R?
and Q € O(p) (the set of p X p orthogonal matrices), X is also dominated by

g5o(X,Y)=Q '[g(QX +4,QY +A) - A].

Let A and Q then be chosen randomly, independently of X and Y and with a
smooth joint distribution. Then

h(X,Y) = Eg} o(X,Y)| X, Y]

will be a smooth function of X and Y and will also dominate X. Then Lemma
1 applies. O
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ALTERNATIVE PROOF OF THEOREM 1. We can also prove Theorem 1 without
appealing to the symmetries of the problem by making use of Lebesgue’s
metric density theorem [see Section III of Hobson (1927) or Section 12 of
Dunford and Schwartz (1958), for example]. Suppose g(X,Y) dominates X,
g being some Borel measurable function. Then there exists ¢ > 0 such that
llg(x, y) — x|l > & for all (x, y) in a Borel set M having positive Lebesgue
measure A M). Without loss of generality, let M be bounded and assume
there is a positive lower bound for the Lebesgue measure of each cross section

M,={yeRP’:(x,y) € M}
with x in
N={xeRF: M, +J}.
Then
b=inf([P(YeM,):0€N,x€N, o’ =1

is also positive. Let # € N be a point at which the metric density of N is 1,
meaning that if K is a cube of vanishingly small diameter centered at 6, then
MK N N) ~ MK). It follows that as o> —» 0, while § and ¢, = 1 remain
fixed, we have P(X € N) — 1 and liminf P(X,Y) € M) > b. Thus the risk
of g(X,Y) is eventually greater than bs? while the risk of X approaches 0,
contradicting our assumptions. O

Now we will try to clarify the difference between the case 1 € {0, 1} and the
case 1 € (0,1) when considering the estimator 6 = nX + (1 — n)Y. Abstract-
ing from the arguments used by George (1991), we find that the key to
making a successful improvement by shrinkage is obtaining a probable lower
bound on the variance of the original estimator, in a sense spelled out
technically in the following theorem, which therefore represents a partial
converse to Theorem 1.

THEOREM 2. Suppose 6 € R? is to be estzmated by some measurable
function of X* and T, the loss of 6 being 10 — 61%>. Assume that X* has the
multivariate normal distribution centered at 6 with unknown scalar nonzero
covariance matrix oI, assume p > 3 and assume, finally, that B is a smooth
nonnegative function of X* and T satisfying

(1) E[Bz/IIX*Hz] gKazE[B/IIX*IIZ] for some known constant K,
(2) E[X*W/X*I*] =0 where W= VE(BIX*).

Then, for any constant ¢ € (0,2(p — 2)/K), the risk of 6° = X * is larger than
the risk of 6° = X*1 - cB/IIX*IIz] for all values of 6 and o>

PrOOF. Using Stein’s normal identity and proceeding as in George (1991),
the risk difference R(8°, 6) — R(6°, 0) is seen to be

c?E(B?/IX*I?) - 2¢Ka?(p — 2)E(B/IX*I?) — 4ca*E(X*'W/IX*|*) = 0
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If B is a known positive constant, then condition (2) holds trivially but
condition (1) holds only if B can be taken to provide a known bound on o 2.
More generally, if B is merely independent of X*, then condition (2) is still
trivial, because W = 0, and condition (1) reduces to the condition

o? > K 'E(B*)/E(B),
which says in a sense that B is underestimating Ko 2. O

Note that the conditions of the theorem are especially simple when B is
independent of X* and distributed as chi-squared times a constant. Exam-
ples covered by this case may be found in a host of papers, for example, in
Baranchik (1970), Strawderman (1971) and Lin and Tsai (1973).

Our Theorem 2 merely extracts the main argument from George’s Theorem
2.1. Thus if we take X* and B to be, in his notation, 6, and S =||X — Y2,
then the conditions of the theorem are, in his notation, (1) A,/A, < K and (2)
Ajz > 0. One notes that the difficult part of George’s paper is the proof of our
condition (1). The slightly stronger result of Krishnamoorthy (1991) does not
follow from our Theorem 2.

Using Theorem 2, one can actually generalize George’s result slightly by
taking B = SH where H is any nonnegative, nondecreasing function of
| X*|* which can be bounded away from O and «. Then condition (1) with
B = SH is equivalent to condition (1) with B =S, which was proved by
George in his Lemma 3.1. Condition (2) can be established as follows: First
note that the conditional expectation of S given X* is of the form a + BZ'Z,
where @ and B are nonnegative functions of the unknown parameters and
Z =X* - 6. Then VE[B|X*] =B(Q2HZ + Z'ZVH). The inner product of
Z'Z VH with U = X* /|| X*|® is never negative while, by the normal identity,
the inner product of HZ with U has the same expectation as the divergence
of HU, which is easily seen to be nonnegative.
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REFERENCES

BARANCHIK, A. J. (1970). A family of minimax estimators of the mean of a multivariate normal
distribution. Ann. Math. Statist. 41 642-645.

BrowN, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in
Statistical Decision Theory. IMS, Hayward, CA.

Dunrorp, N. and SCHWARTZ, J. T. (1958). Linear Operators Part 1: General Theory. Interscience,

4 New York.

GEORGE, E. I. (1991). Shrinkage domination in a multivariate common mean problem. Ann.
Statist. 19 952-960.

Hosson, E. W. (1927). The Theory of Functions of a Real Variable and the Theory of Fourier’s
Series. Dover, New York.



WHEN PRECISION IS UNBOUNDED 597

KRISHNAMOORTHY, K. (1992). On a shrinkage estimator of a normal common mean vector. J.
Multivariate Anal. 40 109-114.

Lin, P. E. and Tsarl, H. L. (1973). Generalized Bayes minimax estimators of the multivariate
normal mean with unknown covariance matrix. Ann. Statist. 1 142-145.

STEIN, C. (1955). Inadmissibility of the usual estimator for the mean vector of a multivariate
normal distribution. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 197-206.
Univ. California Press, Berkeley.

STRAWDERMAN, W. E. (1971). Proper Bayes minimax estimators of the multivariate normal mean.

Ann. Math. Statist. 42 385-388.

DEPARTMENT ‘OF STATISTICS
UNIVERSITY OF SOUTHWESTERN LOUISIANA
LAFAYETTE, LOUISIANA 70504-1006



