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Let n>p >k > 0 be integers. Let & be any technique for fitting
k-planes to p-variate data sets of size n, for example, linear regression,
principal components or projection pursuit. Let . be the set of data sets
which are (1) singularities of §, that is, near them & is unstable (for
example, collinear data sets are singularities of least squares regression)
and (2) nondegenerate, that is, their rank, after centering, is at least k. It
is shown that the Hausdorff dimension, dimg4(5), of & is at least
nk + (E + 1)(p — k) — 1. This bound is tight.

Under hypotheses satisfied by some projection pursuits (including
principal components), dimy (%) = np — 2, that is, once singularity is
taken into account, only two degrees of freedom remain in the problem!

These results have implications for multivariate data description, re-
sistant plane-fitting and jackknifing and bootstrapping plane-fitting.

1. Introduction. Ellis (1991a) investigates plane-fitting, that is, the
general class of multivariate procedures including linear regression and
(some) projection pursuits (including principal components). It is shown that
under very mild hypotheses, a plane-fitting technique must have singulari-
ties, that is, data sets near which the plane-fitting technique is unstable (see
Section 2 for precise definitions).

Others have investigated the singularity of particular plane-fitting tech-
niques. The singularities of least squares regression are precisely the
(multi)collinear data sets [Belsley (1991)]. Hettmansperger and Sheather
(1992) investigated the singularities of the least median of squares regres-
sion.

Singularity is a very basic issue in plane-fitting, or data analysis generally.
It is undesirable, or at least creates a need for caution. For example, if one
wishes to make an inference about a population plane from a multivariate
sample, a confidence set for the plane ordinarily will be large if the data lie
near a singularity [see Examples 2.3 and 2.4 in Ellis (1991a)].

Even if one wishes to fit a plane to data, not to make an inference, but
merely to describe the linear tendency in the data, doing so near a singularity
requires caution. Near a singularity, the sort of linear pattern to which the
plane-fitter is sensitive will only be weakly or ambiguously present and so the
fitted plane will be a poor data summary.
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Ellis (1991a) concerns existence and severity of singularities. A practical
issue is how often will they be a problem? Investigating this in a general way
means asking how large is the collection of data sets near the set of singulari-
ties. The dimension (“degrees of freedom”) of the set of singularities gives
insight into this question. (This is illustrated in Section 2.) The hard part is
assessing the dimension of the “singular set” of the plane-fitter, that is, the
collection of its “nondegenerate” singularities.

Ellis (1993a) measures the size of the singular set using a notion analogous
to covering dimension. Here, I give a tight lower bound on the Hausdorff
dimension of the singular set (Theorem 2.6). The lower bound is surprisingly
large. More surprising is Theorem 2.2. Under its mild hypotheses, which are
satisfied by important projection pursuit methods (like principal components
plane-fitting), singularity uses up all but at most 2 degrees of freedom.

Singularity in plane-fitting is due to topological aspects of the global
geometry of the plane-fitting problem. So to prove general results, topological
methods are used in Ellis (1991a, 1993a) and here. In the present paper I also
use a few facts about Hausdorff dimension.

By using such tools one can get nontrivial results with almost vacuous
hypotheses. In particular, unlike most results in mathematical statistics, the
theorems in this paper are neither asymptotic nor do they include any
distributional assumptions.

In fact, the results are so general that they can be applied to plane-fitting
behavior, not just plane-fitting algorithms. Let a data analyst be free to fit a
plane after unlimited data snooping and subjective judgment. If he/she
recognizes a perfect fit when presented with one, the results of Ellis (1991a,
1993a) and the present paper apply to him/her regarded as a plane-fitter.
(The fine print: The data analyst must behave like a function, that is, when
confronted with the same data set under the same circumstances, he/she
must always fit the same plane. To apply Theorem 2.2 below, something must
be known about the analyst’s handling of data sets which are nearly a perfect
fit.)

There is, of course, a cost to such great generality. The results give only
qualitative information. The techniques used here need to be developed to
give more information under stronger assumptions.

I expect that the topological approach could be fruitfully applied to investi-
gate the singularities of many multivariate techniques [e.g., Ellis (1991b)].

The results are presented in the next section. They raise some issues
concerning multivariate data description, resistant plane-fitting and jack-
knifing and bootstrapping plane-fitting. These are briefly discussed in Section
3. Proofs are sketched in Section 4.

2. Main results. Let
n>p>k>0

be fixed integers. A “data set” is a point in the space, %, of all n X p matrices
with the topology of R"P. (So a data set consists of n p-dimensional observa-
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tions; R = reals.) By a “plane” I mean a linear manifold, that is, an affine
subspace of Euclidean space.

“Fitting” a plane to Y € Z means assigning to it a k-dimensional plane in
R? describing its linear structure. Operationally, a plane-fitting technique
will be any rule assigning k-planes to data sets which gives the right answer
at those data sets that lie exactly on a unique k-plane. (This is made precise
presently.) Let & be such a rule. It may not be defined at literally every data
set, but assume it is defined on a dense subset %’ C %. One can study the
behavior of 8 via the map @ defined as follows. If Y € %7, let ®(Y) be the
k-dimensional subspace (i.e., plane through the origin) of R? parallel to 8(Y).
The range of ® is the “Grassman manifold,” G(k, p), consisting of all
k-planes in R? passing through the origin [Boothby (1975), page 63]. The
map ® is a plane-fitter.

I now formalize this. If Y € Z, let y denote the lowest dimensional plane
in R? containing all the rows of Y. Let A(Y) be the linear subspace of R?
(i.e., plane through the origin) parallel to y and having the same dimension.
[Thus, if ¥y € y, then A(Y) = vy — 9.] Y is degenerate if A(Y) has dimension
less than k. Let & C Z be the set of all degenerate data sets. Let &, ={Y €
% dimension of A(Y) = k}. &, consists of those data sets which are perfect
fits, that is, Y €%, if and only if the rows of Y lie exactly on a unique
k-plane. Assume 2, N %' is dense in #,. A plane-fitter is a map, @, from %"’
into G(k, p) satisfying the following:

(2.1) ifYe®, NZ', then ®(Y) = A(Y).
From now on @ will denote a plane-fitter.

ExaMpLE 2.1 (Notation) Suppose p = 2 and k = 1. In this case, a data set
(e, an n X 2 matrix) Y is in &, if and only if its rows lie exactly on a unique
hne in R2. The line need not-pass through the origin. A(Y) is the line through
the origin parallel to this line. Let 1, be the n X 1 column vector of 1’s. Then
Y is in &, if and only if the rows of Y are not all the same and, if Y, Y ? are
the columns of Y, there exist a,b € R s.t. (such that) Y2 =al, + bY! [in
which case A(Y) = {(x, bx) € R? = R?, x € R}l or Y! = al, + bY ? [in which
case A(Y) = {(by, y) € R?, y € R}]. Y is degenerate if and only if all its rows
coincide, that is, lie exactly on a 0-plane. Then A(Y) is the origin {(0, 0)}. [If
Y&, and Y €9, then A(Y) = R? = R”]

Now suppose 8 is (simple) least squares linear regression. If a and b are
the estimated intercept and slope, respectively, from a data set Y, then 6(Y)
is the line (1-plane) {(x, a + bx) € R?, x € R}. If ® is the plane-fitter corre-
sponding to 8, then ®(Y) = {(x, bx) € R?, x € R}..If Y is nondegenerate, but
all the entries in Y! are equal, then Y is collinear and ®(Y) is not defined.
We may choose to define ®(Y) = y-axis, but even if we do not, ® is still
defined on a dense subset of Y and on a dense subset of &,. Moreover, (2.1)
holds.

A singularity of ® is a data set Y, € Z s.t. limy_, y ®(Y) does not exist.
For example, the collinear data sets are the s1ngular1t1es of least squares
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regression. The singular set, .%,, of ® is the set of all its nondegenerate
singularities.

Recall the definition of Hausdorff dimension [Falconer (1990), Chapter 2
and Morgan (1988), page 9. See Falconer (1990), Chapter 3 for alternative
definitions of dimension]. If m is a positive integer and A c R™, the Haus-
dorff dimension of A, denoted by dim;(A), is the supremum of the set of
r > 0 for which the following quantity is positive:

lelf% Agbfsj Y diam(S;) .
diam(Sj)< e

Here, the infimum is taken over all countable coverings {S;} of A, each
element of which has diameter no larger than £ > 0. For calibration, note
that if A is a smooth g-dimensional manifold, then dim4(A) = q.

Typically, .%;, will have Lebesgue measure O so the possibility of getting a
data set in .%, can be ignored. However, by definition, ® is unstable near .%;
and dim ;(.%;,) gives information about the volume of the set of points near
% In fact, we have the following. If Y € %, let |Y| = Vtrace Y7Y, where the
superscript T indicates transposition. If R > 0, let

F(R) = Y €% Y| <R)

andif £> 0,let I(R) ={Y € Z: 1Y — Y'| < ¢ for some Y’ € % (R)}. So 7,(R)
is the set of points within & of Sy;(R). Let ¥ be Lebesgue measure on %.
Suppose 0 < 1 < dimgz[.%(R)] < np. Then as ¢ |0, LI (R)] — 0, but more
slowly than £"?~7, that is,

lim &7~ "27[7(R)] = =

[Falconer (1990), pages 42—-43 or Proposition 1.1 in Ellis (1993b)]. In the
interest of brevity, most technical details are omitted from the present paper.
See the last reference for a thorough treatment of them. It follows that if Y is
a random element of % with a continuous nowhere vanishing density, then
Pr{Y € 7(R)} goes to 0 as & — 0 more slowly than &"?~".

Let

d=nk+(k+1)(p—k)—1.

THEOREM 2.2 Let R > 0. Suppose dimy[%, N % (R)] < d. Then
dim ;[ %% (R)] = np — 2..

Under the hypotheses of the theorem, singularity accounts for all but at
most two of the available degrees of freedom.
» The idea of the proof is as follows. First, one proves the theorem under the
assumption that ® has no singularities in an open neighborhood of #,. A
subset of Z of positive volume is filled with disjoint two-dimensional cones,
each of which, for topological reasons, contains at least one singularity. [In
Ellis (1991a, 1993a), cones are also used, but they have higher dimension.
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The use of two-dimensional cones leads to sharp bounds.] The lower bound
np — 2 is then intuitive. (Recall that % has dimension np.) Next, suppose
dim [ 2, N F%(R)] < dim(£,) — 1 and dimgz[FH(R)] <np — 2. This can
be reduced to the first case by pulling the singularities on the manifold %,
away from it along directions normal to &,. The result is a plane-fitter ©
covered by the first case. However, each point of &, N%(R) has been
stretched out into a set of dimension dim (%) — dim;(£,) — 1 of possible
singularities of ®. Thus, the set of singularities of ® which arose from points
of #, N%(R) has dimension less than [dimy(%,) — 1] + [dimgz(2) —
dim (2, — 1] = np — 2. The remainder of #(R) was already assumed to
be of dimension less than np — 2. This contradicts what we found in the first
case. Thus, the integer d is just dimy[%,] — 1.

Plane-fitters satisfying the hypotheses of Theorem 2.2 are not uncommon.

ExaMPLE 2.3 (Principal components plane-fitting). Let Y € Z. The covari-
ance matrix of Y is S(Y) = n~}(Y — 1,5)7(Y — 1,5), where ¥ is the mean of
the rows of Y. (Recall that 1, is the n X 1 column vector of 1’s.)

Principal components plane-fitting based on the covariance matrix is the
plane-fitter, ¥, defined as follows. Let A; = A, > - 24, >0 be the eigen-
values of S(Y) and if A, > A, 1, let vy,..., v, be (row) eigenvectors of S(Y)
corresponding to Aj,..., A, respectively. W(Y) is defined to be the plane
spanned by vy,...,v,. It is not hard to see that ¥ has no singularities in &,.
Thus, by Theorem 2.2, dim ;[.#(R)] = np — 2 for every R € (0, »). In fact,
dim ;[ Z(R)] = np — 2.

The principal components plane-fitter, ¥,, based on the correlation matrix
is defined similarly. Let D = D(Y) be the p X p diagonal matrix whose
diagonal is the same as that of S(Y). The correlation matrix of Y is
R(Y) = D-V/28(Y)D~'/2, providing D! exists. [Otherwise, R(Y) is not
defined.] Let w; > py > ++* = pu, > 0be the eigenvalues of R(Y'), providing it
exists, and if p, > py. 1, let wy,...,w, be (row) eigenvectors of R(Y) corre-
sponding to p,, ..., wy, respectively; ¥ (Y) is defined to be the plane spanned
by w,DY?,...,w,DY?, so ¥, is a plane-fitter.

¥ has some singularities in #,. Let 2" denote the set of data sets in &,
whose correlation matrix is not defined. Suppose k > 1. Then &, N% (R) C
Z, but dim;(2) < d. Thus, by Theorem 2.2, if & > 1, then dim [y (R)] >
np — 2. (Theorem 2.6 below can be applied if & = 1)

ExaMPLE 2.4 (Projection pursuit plane-fitting). If ¢ € G(k, pland Y € Z,
let the rows of I1,(Y) € & be the orthogonal projections onto ¢ of the rows of
Y. Let Z =, UD, so I1,(Y) €. Let @ be an R-valued function on % and
et Qy (&) denote Q[II,(Y)] regarded as a function of & with Y held constant.

In projection pursuit with projection index @, a plane is chosen which
maximizes Qy(£). Q[II,(Y)] is supposed to quantify how “interesting” the
projection I1,(Y) is. See Huber (1985) for an overview.

As a referee points out, projection pursuit fits planes for a different
purpose than that which I used above for motivation. It is designed to
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uncover nonlinear structure, not linear. Just the same, singularities are
important in projection pursuit. In fact, suppose @ is continuous on % and
Y, € ¥ is a singularity of the projection pursuit method with projection index
Q. Then it is clear that @y, achieves its maximum at more than one plane. So
if Y, has one interesting prOJectlon it has at least one other, that is, it has a
rich structure. If Y € % is near Y, then there are at least two planes which
(nearly) maximize @y. This provides a mathematical justification for the
common practice of searching for several planes which (nearly) maximize Qy.

First, we consider a version of Friedman-Tukey projection pursuit [Fried-
man and Tukey (1974)]. Here, the projection index takes the form,

Q(Z) =s(Z)e(Z), Zex

where s(Z) measures the spread and c(Z) the extent of clustering of the rows
of Z €.

Given Y € %, let E(Y) be the set of ¢ € G(k, p) s.t. Qy(¢) is maximal.
Define ®(Y) to be an arbitrary element of E(Y). Consider the following
assumptions:

(i) c is strictly positive.
(ii) ¢ is continuous on &,.
(i) If Z €%, y is a 1 X p row vector and M is any p X p matrix s.t.
ZM € #,, then

c(ZM + y1,) =c(Z).

(iv) s is nonnegative and continuous.
W) s(Z2)=0if Z €2.
(vi) If Y €, then s[II,(Y)] is uniquely maximized by ¢ = A(Y).

The idea behind (iii) is that ¢(Z) is invariant under multivariate affine
changes in scale and location. The idea behind (v) is that s is sensitive to
k-dimensional spread, for example, s(Z) could be the product of the 2 largest
eigenvalues of the covariance matrix of Z € 4. It follows from Rao [(1973),
Section 1f.2(vii), page 64] that principal component plane-fitting (based on
the covariance matrix) is a version of Friedman—-Tukey projection pursuit
with this s and ¢ constant.

It turns out if ¢ and s satisfy assumptions (i)—(vi), then %, N %, is empty.
Therefore, by Theorem 2.2, dimy[.%(R)] > np —2 for every R € (0,).
Moreover, @ turns out to be continuous, so, as discussed above, if Y €.%,,
then @y has nonunique global maxima.

Next, consider the projection pursuit method of Friedman (1987). In this
procedure, the projection index is not evaluated until after some preprocess-
ing of the data. Among the preprocessing is possible dimension reduction
[Friedman (1987), Section 6.2]. If the data lie near a plane of dimension g,
then the data are projected onto that plane prior to further analysis. In
Example 7.3 of Friedman (1987) it is stated that the plane is to be chosen
using principal components. If g = &, after the dimension reduction there is
nothing more to do (particularly if 2 = 1 or 2). Thus, in practice, near %,
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Friedman’s (1987) method is just principal component plane-fitting. Since the
hypotheses of Theorem 2.2 depend only on the behavior of the plane-fitter in
the vicinity of &,, it follows that this projection pursuit method has already
been treated in Example 2.3. It is not necessary to consider the projection
index.

REMARK 2.5 (Equivariance). Let ® be an equivariant plane-fitter, by
which, abusing nomenclature, I mean the following. If s >0, M isan n X n
permutation matrix (i.e., a matrix obtained by permuting the rows of the
identity matrix), P € O(p) [the orthogonal group; Guillemin and Pollack
(1974), page 22], y is p X 1 and Y € 7, then

®(sMYP + y1,) = ®(Y)P.

Here, if £ € G(k, p), éP ={yP € RP: y € £ (y is 1 X p)}.

Equivariance is often a natural property to require of a plane-fitter, for
example, principal components analysis is equivariant. Equivariance of ®
may influence dim ;(%). For example, if Y, €%, then so is every point in
the orbit of Y,, which consists of all matrices of the form sMY,P +y1,,
where s, M, P and y are as above. Since there are only a finite number of
permutation matrices, varying M contributes nothing to the dimension of the
orbit of Y,, but varying s, P and y might. Now, dim4[O(p)] = 3p(p — 1)
[Guillemin and Pollack (1974), page 23], so

(2.2) dim ; (orbit of Yy) <1 + 3p(p — 1) +p.

Moreover, let Y € % be symmetric, that is, for some P € O(p)\{I,}
(“\” indicates set theoretic subtraction; I, =p X p identity matrix) and
permutation matrix M, YP = MY. If there exists a sequence {v,}) cz st
Y, > Y, ®(Y,) > £ € G(k, p),say, and (P #+ €, thenY +y1, €554 for every
p X 1 row matrix, y. It can be shown that

dimy({Y + 1,y: Y € % is symmetric, y is 1 X p})
<n(p-1)+3zp(p—1) +p.
This bounds above how much of dim ;;(%,) can be explained by equivariance.
This bound and (2.2) apply a fortiori to plane-fitters having in/equivariance
properties weaker than the ones listed above. Thus, if n is large, equivari-

ance cannot fully explain the large size of the singular sets of plane-fitters to
which Theorem 2.2 applies.

The first statement in the following is immediate from Theorem 2.2.

THEOREM 2.6 If R € (0,%), then dimy[.%,(R)] > d. There is a plane-fitter
which, for every R € (0, ), achieves this lower bound.

REMARK 2.7 (Degeneracy). Under (2.1) every degenerate data set is a
singularity. Now, dim;(2) < d < dimy(%). Thus, most singularities of a
plane-fitter are nondegenerate.
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ExAMPLE 2.8 ([Multivariate] least squares [multiple] regression [Johnson
and Wichern (1992), pages 314-316]). Let k£, m and n be positive integers
with n > & + m. Let ® correspond to least squares regression of m-dimen-
sional responses on k-dimensional predictors based on samples of size n. So
p =k + m. It turns out that %, consists precisely of those nondegenerate
data sets which are collinear, that is, their predictor components lie on a
plane in R* of dimension less than k. From this one can calculate

(2.3) dimy (%) =n(p—1) +k >d.

Equality holds in (2.3) precisely when m = 1. Much has been written [e.g.,
Belsley (1991)] about the singularity (“collinearity”) problem in the m =1
case. In terms of Hausdorff dimension this problem is as mild as possible.
Other plane-fitting methods (Examples 2.3 and 2.4) apparently have worse
singularity problems.

3. Implications. This section briefly treats a few issues raised by the
results in Section 2.

Theorems 2.2 and 2.6 show that the singular set of a plane-fitter is large.
Thus, diagnostics are important, not just in regression [Belsley (1991)], but in
plane-fitting in general (especially when Theorem 2.2 applies). By “diagnostic”
I mean a statistic indicating how stable the plane-fitter is at the data.

However, what should one do if the data fall near a singularity of one’s
plane-fitter? One possibility is to use other plane-fitters, whose singularities
are not near the data. [This is intermediate between using a single plane-fitter
and the “grand tour” of Asimov (1985).] Another is to employ techniques of
multivariate data description which do not rely on plane-fitting [see, e.g.,
Chapter 12 in Johnson and Wichern (1992) and Wegman (1990)].

Theorem 2.6 has interesting implications for situations in which observa-
tions are set aside and a plane is fitted to those which remain. One such
situation arises from a simple interpretation of resistance in plane-fitting.
Informally, ® is resistant of order r if whenever r or fewer observations lie
far from the rest, ® fits a plane to the rest.

Formally, let A and o be measures of location and spread for p-vectors. If
m is a positive integer, let %, be the set of m X p matrices. If X € %,,, with
TOWS ¥1,..., ¥m, define N X) = Myy, ..., y,,). Define o(X) similarly.

Let r be a positive integer s.t. r < min{in,n — p}. Let M € (1,»), let
s € [1,7r] be an integer and let Z € Z, have rows z,,...,2, € RP. Now let
P(Z; M) be the set of Y € 7 s.t.:

1. For some choice of 1 <i; < -+ <i, <n, the ijthrowof Y is z;.

2. If X € %, _, is obtained by deleting rows i,,...,I, from Y, then fzj - MX)|
>Mo(X),forj=1,...,s.

3. The rows of X lie exactly on a unique k-plane, y(X), in R”.

Let ® be a plane-fitter. Say that ® is a resistant plane-fitter of order r if it is
defined on a dense subset %’ of % (as usual) and there exists a constant
Me(@@,o) st forany s =1,...,r and z,,...,2, € R?:
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4. For a dense subset #,(Z) of #,(Z; M), Y € #,(Z) implies Y € %’ and
®(Y) is parallel to y(X) [i.e., if y € y(X), then ®(Y) = y(X) — y]. (Here,
X and Z are as above.)

The following argument shows that if ® is a resistant plane-fitter of order
r, then dim () will be at least r(p — k) + d. If r observations lie far from
the bulk of the data, then ® will fit planes to the remaining data. Thus, for
each choice of r outliers, we have a plane-fitter on %, _,. By Theorem 2.6, the
dimension of the singular set of this plane-fitter will be at least (n — r)k +
(B + 1)(p — k) — 1. However, the set of r p-dimensional “outliers” has di-
mension rp. Adding, we have

(3.1) dimy(H)2m+(n—r)k+(E+1)(p—Fk)—1=r(p—Fk) +d.

[See Ellis (1993b) for a careful proof.]

Consider the multiple regression case (Example 2.8 with m = 1). Then
p — k =1 and we know that the Hausdorff dimension of the singular set of
least squares regression (LSR) is d. By (3.1), the Hausdorff dimension of the
singular set of a regression plane-fitter which is resistant of order r is at
least r larger than that of LSR.

Hettmansperger and Sheather (1992) show that the least median of squares
(LMS) regression has more singularities than does LSR. In fact, LMS regres-
sion is resistant in the sense defined above. The order is the largest integer
strictly less than min{in, n — p}.

For what other formalizations of resistance will one observe an enlarge-
ment of the singular set of resistant regression methods?

Observations are also set aside in the jackknife or bootstrap [Efron (1982)].
As in the case of resistant plane-fitting, this can have the net effect of
increasing the size of the singular set [Ellis (1993b)]. Might this effect
positively bias jackknife or bootstrap estimates of variability of a plane-fitter?

4. Sketches of proofs. Let m,m;,my, > 0 be integers. If r > 0 and
x € R™, let B,(x,r) be the open ball in R™ with center x and radius r. If
A CR™, amap g: A > R™ is Lipschitz if there exists k < = s.t. |g(x) —
g(y)l < klx — y| for every x, y € A. In this case

(4.1) - dimg[g(A)] < dimy(A)
[Falconer (1990), Corollary 2.4, page 30].

For simplicity, take R = », so % (R) =.%,. The following result is crucial
to proving Theorem 2.2.

PROPOSITION 4.1.  Suppose there is an open neighborhood % C % of P, s.t.
® has no singularities in %. Then dimy(5%) > np — 2.

ProoF. For a point u = (s, t) on the unit circle S, let U(x) be the 2 X 2
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matrix
(s é) ift>0,
uw =1,
S .
(t 0), if t <O0.

Note that U is a continuous map of S! into the space of 2 X 2 matrices. Let
W(u) and V be the (k + 1) X (k + 1) matrices

(k=1)x 2
1, 0<k—1)x2) B L, O
b

W(u) = (Ozx(k—l) U(u) 02x¢*k-1 (8 2)

(Here, “0” denotes a matrix, of the indicated or implied dimensions, filled
with 0s) If u € S}, A €[0,1], a,b € R, M is a2 X (p — 2) matrix and N is
an (n — 2) X p matrix, define an n X p matrix by

Z(u,A,a,b,M,N)
=/\(8 W?u))+(1—)t) u (]g Z) +(1—/\)(8 3)

—a

Notice that Z is a continuous map into %.

Choose ¢ € (0, 1) so small that for u € S}, A €[0,1], a,b €(~¢,8), M €
By ,-2(0,8) and N € B, _3,(0, £) we have Z(u, N\, a,b,M,N) ¢€2. Since
% NS, = &, by making ¢ still smaller, if necessary, we can find some Ay, Ay
8t.0< Ay <A <1land

Z(SI’[O’ Ay) U ()‘1’1]?(_8’ £),(—e, 8)’B2(p—2)(0’ 8)’B(n—2)p(0’ ‘9))
nyq) = @.

Let A =S! X[y, ;] X (—£,8) X (—&, &) X By,_5(0, &) X B, _5),(0, &)
and let ¥ = Z(A). Z~! is defined and Lipschitz on &. Thus, by (4.1), to show
that dim (%) > np — 2, it suffices to show that dimy(Z ™' [ NF] = np
- 2.

Let a,b € (—¢&,8), M € By, _5(0,¢) and N € B, _2),(0, £) and consider
the two-dimensional cone

g=%a’b’M,N=Z(S1,[O,1],a,b,M,N) C?.

A topological argument shows & NF N, # &. The basic idea is this. ¢
wraps the base of # (the points where A = 1) around a void in G(k, p). Thus,
~ only by tearing a hole in % can ¢ map all of it into G(k, p). Tearing means
~ singularity.

Hence, if I1: A > E =(—¢, &) X (=&, &) X By,_5(0, &) X B, _9,(0, &) is
projection, then TI(Z™[%, N F]) = E and so, by (4.1),

dimy(Z ' [S% NF]) = dimg(E) =np — 2. O
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PROOF OF THEOREM 2.2. %, is an imbedded smooth (d + 1)-dimensional
submanifold of %. Let N be the normal vector bundle of %, in Z. To define it,
first define the inner product of Y;,Y, € % tobe trace Y{"Y,. ThenN c#, X %
consists of all pairs (Z, X), where Z € #, and X is normal to &, at Z. Let II:
N -2, be the projection II(Z, X) = Z.

By the tubular neighborhood theorem [Guillemin and Pollack (1974); Lang
(1972)], there is a neighborhood 7" of &%, in % and a C”-diffeomorphism, T,
of 7 onto N s.t. if Z €%, then T(Z) is (Z, 0).

If(Z,X) eN,let f(Z, X) € N be defined by

(2, X), if | X| > 2,
£(z,X)={(2,(X|-1)X), ifl<|X|<2,
(Z,0), if |1X] < 1.

Let
DT 1o foT(Y), fYeEZ,

oY) = d(Y), otherwise

(“o” indicates composition of functions). ® is a plane-fitter with no singulari-
ties in T771({(Z, X) € N: | X| < 1}). Therefore, by Proposition 4.1, dim 5 (%) >
np — 2.

Suppose dimy(#, N%) <d, but dimy(%) <np — 2. I show that
dim (%) < np — 2, a contradiction. On Z\ 7, ® = @, so dimyz[(Z\ 7)) N
Fol < np — 2. By 4.1), dimz(T"Y(Z, X) € %: (Z,X) e N, 1 <|X[) <np —
2.

The interesting and delicate case is 72 = {T"1(Z, X) € %: (Z,X) €N,
|X| = 1). Suppose (Z, X) € N with |X| = 1. It is easy to see that T"(Z, X) €
F only if Z €%, NP,. Thus, locally, # looks like a subset of [%, N#,] X
S9-1, where q = dim4(%) — dim;(#,) =np —d — 1 and S~ ! c R? is the
unit sphere. By Corollary 7.4 in Falconer [(1990), page 95] we may add
dimensions:

dimy (%) < dimy[H% N#] +q-1<d+g—-1=np—2. o

PRrROOF OF THEOREM 2.6. I only need to prove that the lower bound is tight.
Let ¢ be a fixed element of G(k, p) and Q be the set of £ € G(k, p) s.t. £
contains a nonzero vector orthogonal to {. Q is closed in G(k, p). There is a
neighborhood % of £, in % in which the principal components plane-fitter,
¥ (based on the covariance matrix), is defined and continuous. Let € =
AN Q) cp, P=P\Cand =\ (2 UE).If 7=(Y e %: ¥(Y) & O},
then & C 7’C 2 and %'\ 7" has an open neighborhood, #'C %, whose closure
(in %), 7, is disjoint from 2. Let u: % — [0, 1] be a continuous function
which is 1 on 7 and 0 on 2.

Let TI be orthogonal projection onto ¢ and, for ¢ € [0,1] and ¢ € G(k, p),

let
g(t, &) ={(1—t)x +tl(x) € RP: x € £}.
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Then g is a continuous map of [0, 1] X Q° into G(%, p).
Define a plane-fitter ® on % as follows:

g[m(Y),¥(Y)], ifYe?\7,
(YY) = {A(Y), ifYee,
Z, otherwise.

Then .%, C @, but dimy(&£) <d. O

Acknowledgments. Fred Cohen suggested using two-dimensional cones.
The presentation benefitted from comments from the Editors, and Example
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