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PARAMETER ESTIMATION FOR ARMA MODELS
WITH INFINITE VARIANCE INNOVATIONS

By THOMAS MIKOSCH,' TAMAR GADRICH, CLAUDIA KLUPPELBERG AND
ROBERT J. ADLER?

University of Groningen, Technion, ETH and Technion

We consider a standard ARMA process of the form ¢(B)X, = 6(B)Z,,
where the innovations Z, belong to the domain of attraction of a stable
law, so that neither the Z, nor the X, have a finite variance. Our aim is to
estimate the coefficients of ¢ and 6. Since maximum likelihood estimation
is not a viable possibility (due to the unknown form of the marginal
density of the innovation sequence), we adopt the so-called Whittle esti-
mator, based on the sample periodogram of the X sequence. Despite the
fact that the periodogram does not, a priori, seem like a logical object to
study in this non-%? situation, we show that our estimators are consis-
tent, obtain their asymptotic distributions and show that they converge to
the true values faster than in the usual #? case.

1. Introduction. Let {X,},. » be a causal, stationary, autoregressive,
moving average [ARMA( p, ¢)] process satisfying the difference equation

(1.1) X,- Xy -, X,_ , =2, +0,Z, 1+ +6,Z,_,

in which the innovation sequence {Z,},. , is a sequence of iid random
variables, in the domain of normal attraction of a symmetric stable distribu-
tion of unknown index o € (0,2) and with unknown scaling parameter
oy > 0. The aim of this paper is to find an efficient method for estimating the
parameters ¢; and 6; and to derive the asymptotic properties of the esti-
mates. We shall base our estimation on the sample periodogram, as follows:

Let X,,...,X,, n>1, be a sample of n observations from an ARMA
process of the above kind and define the usual sample periodogram
n 2
(1.2) I x(A) =|n"Y* Y, X,e”™™|, —m<Arxgm.
t=1

(The periodogram of {Z,}, . .- is defined correspondingly.) °*
In a setting of Gaussian noise, Whittle (1953) introduced an estimator

which now carries his name. The Whittle estimate, B,, of B =
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(¢1,...,¢,,0,...,6,)" is defined to be the value of B which minimizes the
objective function

(1.3) 62(B) ——z L x()

~g(A,B)°

where the sum is taken over all Fourler frequencies \; = 27j/n € (-, 7],
and the function g(A, 8) in (1.3) is defined as

0(e-i* 2 1+%7 .9 —iak)?
g(/\,B)='(e )' =| r=10p€ I, Cm<A<am

6™ 1 - xpoy e

Periodograms and spectra are, of course, an intrinsic part of the .#? struc-
ture of stationary stochastic processes. Thus, in the stable setting, where
second moments no longer exist, it is not a priori clear what point there is in
defining a periodogram at all, let alone using it as a tool for parameter
estimation. Nevertheless, there is no intrinsic problem involved in defining it
from the data in the usual fashion, and what we shall show in this paper is
the result, perhaps unexpected, that the estimator 8, is a computationally
simple estimator of the ARMA parameters and that its asymptotic distribu-
tion is remarkably tractable.

One of the main strengths of the Whittle estimator, as is clear from (1.2)
and (1.3), is that its value is independent of both « and o,. (Note that
although o appears in the normalisation defining 6.2, this is irrelevant to the
minimisation problem.) This is of particular interest, since both of these
parameters are difficult to estimate in practice. The stable index o will,
however, figure prominently in the asymptotic distribution of the estimators.

The Whittle estimator has been well studied in the case of Gaussian
innovations [e.g., Brockwell and Davis (1991), Section 10.8], where it is
known to be asymptotically equivalent to the maximum likelihood estimator
(MLE). We cannot see how to establish a corresponding result in the present
case, nor, in fact, how to find out very much at all about the MLE. The basic
problem, of course, is the intractable form of the stable density function. This
is not merely a theoretical problem. For example, if one is prepared to assume
that the innovation sequence is not only in the domain of attraction of a
stable law, but is actually stable, then it seems, at first, to be a straightfor-
ward exercise, even without a justifying distributional theory, to attempt
numerical (conditional) maximum likelihood estimation. One discovers very
rapidly however that all algorithms for calculating stable densities are nu-
merically very delicate (very slowly converging expansion, etc.), so that even
from the purely operational side of things, maximum likelihood estimation
seems to be a forbidding task. This is not the case with the Whittle estimator,
which involves no more numerical difficulties in the stable case than in the
Gaussian situation. In fact, from a practical point of view, one can use
standard Gaussian time series packages for estimating B, although the
confidence intervals they give are no longer valid.

The remainder of the paper is structured as follows: In the following
section, we shall present the main results of this paper. These are that B, is




INFINITE VARIANCE ARMA 307

a consistent (in probability) estimator of 8 and that it has a characterisable,
if not familiar, asymptotic sample distribution. The latter result, of course,
yields, en passant, the rate of convergence of B, to the true parameter
values. Perhaps surprisingly, the rate of convergence is considerably better
than in the #? case. Also in this section we shall introduce two other
estimators—one equivalent to the Whittle estimator and one asymptotically
equivalent. It is actually for the last of these that we shall derive the
appropriate distribution theory.

By way of background, and for comparison purposes, in Section 3 we shall
give a brief summary of previously studied estimators for AR(p) processes
with innovations in the domain of attraction of a stable law, including the
Yule-Walker estimator of Hannan and Kanter (1977), the LAD-estimator of
An and Chen (1982) and the M-estimator of Davis, Knight and Liu (1992). It
is worth noting, even at this stage, that the results of the current paper stand
out in that they are the first time a full ARMA, rather than AR or MA,
process has been studied.

Section 4 contains the results of a small simulation study in which we look
at the AR(1), MA(1) and ARMAC(1, 1) cases. The main feeling that one gains
from this study is that our estimator, for the stable case, behaves as well as
the usual MLE does for the Gaussian case.

The proofs of the main results appear in the final Section 6, after some
preparatory results in Section 5.

2. The Whittle estimator : Main results. As in the preceding section,
we consider a causal, invertible ARMA( p, q) process {X,}, . » satisfying

X, — X,y — _¢pXt—p =Z,+ 60,2, + +0th—q
for iid {Z,}, c 5. Set, for complex z with |z| < 1,
8(2) =1~ iz — =+ ~d,2",
0(z) =1+ 6,z + - +6,29,
y(z) = i(i)— =1+ ¢z + 2%+ -,
b(2)

so that {X,}, . ,- also has the infinite moving average representation
(2.1) X=Xz, tez,
Jj=0

with ¢, = 1. Denote the autoregressive and moving average parameters
together by
B=(b1reeer by 01r--0r6,) -
The natural parameter set for B is
C= {B eERPT ¢, +0,0,# 0, $(z) and

0(z) have no common zeros, ¢(z)60(z) # 0 for |z| < 1}.
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We shall consider two sets of assumptions on {Z,}, _ 5. Initially, it suffices to
assume that they satisfy the following three assumptions for some d > 0 and
positive numbers a,, such that a, 1 :

(A1) ' EIZlId < oo,
(A2) n/a?® -0, n-ow ford=1Ad,
n
(A3) lim limsupP(a;2 Y Z? < x) =0.
20 poo t=1

One natural choice for (a?) is given by the unique solution of the equation

z2\*| 1
E — = —, n>1.

1A
x

Note that (A1) and the exponential decrease of the ¢; as j — « imply the
absolute a.s. convergence of the series (2.1) for every ¢ € Z. This is a conse-
quence of the three-series theorem. Furthermore, the conditions EZ?Z < ,
(A2) and (A3) cannot hold together, since (A2) and the strong law of large
numbers imply that

n
a2 Y, Z2 >0 as,
t=1
which contradicts (A3). The final condition (A3) is a relatively weak stochastic
compactness condition.

It will turn out that (A1)-(A3) will suffice to establish the consistency of
the estimators that we shall propose. However, in order to obtain information
on their asymptotic distribution, we require additional assumptions. In par-
ticular, we shall assume that Z, is in the domain of normal attraction (DNA)
of a symmetric, a-stable, random variable [Z, € DNA(«a)] for some (un-
known) « € (0,2). That is,

n
(2.2) nle Y 7,5, Y,

t=1

where Y is symmetric a-stable. Recall that a random variable Y is said to
have a stable distribution [Y =; S, (o, B, n)] if there are parameters 0 < a <
2,0>0, -1 < B <1and u real such that its characteristic function has the
form

TX
exp{~a“|tl°‘(1 — iB(sign t)tan—2—) + i/.Lt}, ifa+1,
E(eitY) — 213
exp{~altl(1 + —(sign t)lnlt!) + i/.bt}, if a=1.
a

If B=pu =0, then Y is symmetric, and we say that Y has a “symmetric
a-stable” distribution, denoted by Y =; SaS.
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Under the above conditions, it is not hard to see that (A1)-(A3) all hold
with the somewhat more explicit choice

1
a, =n'*, n>1,

for the normalising constants [cf. Feller (1971) or Bingham, Goldie and
Teugels (1987)].

We can now return to the estimation problem. Let g(A, 8) denote the
“power transfer function” corresponding to 8 € C; that is,

2

9(@" ) =|¢,(e_“)|2,

¢(e—i)u)

and denote the self-normalised periodogram by

g(A, B) =

. D
I x(\) = ——=—53—> —7m< A<,
7 ’ =1
where I, x is the periodogram of the Introduction.

Furthermore, set

2 (T ~n,X(/\) —9 _2_77_ fn,X()‘j)
a'(B)=[ gyt (A= = 0 B)

where the sum is taken over all Fourier frequencies A; = 2mj/n € (—m, m].
Clearly, as n — o, the sum and integral here should converge to the same
limit.

Suppose B, € C is the true, but unknown, parameter vector. Then two
natural estimators of B, are given by

B, = argming2( B), B, = argming?( B) = argming?( B).
BeC pBeC BeC

Given the assumption that o2(B8) ~ 52(B), it seems reasonable to as-
sume, as is in fact the case, that B, ~ §,, and that therefore the two
estimators are asymptotically equivalent. It is clear that, in practice, En is
the only applicable estimator, since the integral defining ¢,2( 8) will always
have to be evaluated by an approximating sum. Nevertheless, throughout
this paper we shall give proofs of convergence for the estimator based on
0,2( B), since here the notation is considerably lighter. A parallel proof for g,
(based on the function §,?) can be found in Gadrich (1993).

The choice of these estimators is motivated by two facts. The first is that

the function
(d )\, ﬁ

-7 8(A B)

has its absolute minimum at B = B, in C [cf. Brockwell and Davis (1991),
Proposition 10.8.1]. Moreover, by previous results of Kliippelberg and Mikosch
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(1994), Iﬂn’ x(A) can be applied to estimate g(A, By)/P2(B,), where ¥2(B,) is
the quantity

(23) v(8) = LW

corresponding to S,.

Of equal importance, however, is the fact that in the Gaussian case the
estimator B, is closely related to least squares and maximum likelihood
estimators and is therefore a standard estimator for ARMA processes with
finite variance. The idea goes back to Whittle (1953), with a rigorous deriva-
tion of the corresponding sample distribution due to Hannan (1973). [See also
Fox and Taqqu (1986) and Dahlhaus (1989).] It is well known that in the
classical case B, is consistent and asymptotically normal [cf. Brockwell and
Davis (1991)]. The fact that the same estimator works in both the Gaussian
and infinite variance cases is a strong argument in favour of its use.

Our first, consistency, result is the following theorem.

THEOREM 2.1. Suppose {X,}, . » is a causal, invertible, ARMA(p, q) pro-
cess and conditions (A1)-(A3) hold. Then

Bn o BO and 0.n2( Bn) e 277\1,_2( BO)’ n — «.
Furthermore, the same limit relationships hold also for B, and 2.

As an interesting aside, we note that in the Gaussian case a corresponding
result holds for the quantity corresponding to 6,2( 8,), which converges to the
innovation variance of. That is, in the Gaussian case, the self-normalisation
in the definition of ,?> is not required. In the current, non-.#?, situation,
6%(B,) actually converges, in distribution, to a random variable. It is this
fact, which has a considerable complicating influence on the proof of all the
results related to 62(B,), that makes us prefer the self-normalised, but
numerically equivalent, estimator based on & 2.

For ARMA(p, q) processes with finite variance, $, is asymptotically nor-
mal with rate of convergence of order yn . An analogous result in our case
gives a rather less familiar asymptotic distribution, but a considerably faster
rate of convergence of order (n/In n)Y/* (recall that a < 2). To state this
result, let C, be the constant defined by

l-o
['(2 — a)cos(ma/2)’
C, =
2
— if a =1.

’
a

ifa+#1,

THEOREM 2.2. Suppose {X,},c » is an ARMA(p, q) process and {Z},. »
are iid symmetric such that (2.2) holds for some a < 2. Then

) 47w Ly Y, b
@0 (gg) (BB = 4mW (B T Vb,
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where Y,,Y,,Y,,... are independent random variables, Y, =,
S, ,2(C. 74, 1,0) is positive a/2-stable, (Y,),c , are iid SaS with scale param-
eter o = CL/*, W=1(B,) is the inverse of the matrix

dIng(A, By) |[9Ing(A, By) TdA
B B ’

W(Bo) = [

and, for k €4, b, is the vector
ag_l(A’ BO) d
B

where g~' denotes the reciprocal of g. Furthermore, (2.4) holds also with B,
replaced by BB,.

1 o
(2.5) b= 5[ e ™Me(A, Bo) A,

Note that the limit vector in (2.4) is the ratio of an a-stable (p + g)-
dimensional vector over a positive «/2-stable random variable.

3. On what has gone before. There is a small, but interesting and
rapidly growing, literature on parametric estimation for ARMA processes
with infinite variance innovations. As with our approach, the difficulties in
developing a maximum likelihood estimator have led to a number of essen-
tially ad hoc procedures, each of which generalizes some aspect of the
Gaussian case. Nevertheless, a relatively consistent picture, at least as far as
rates of convergence are concerned, has developed. Not surprisingly, the first
estimator studied was a Yule-Walker (YW) type estimate for the parameters
of an AR(p) process.

The YW estimates ¢yy of the true values ¢, of an AR(p) process are
defined as the solution of

Toyw = 7,
where T =[%,(i - ¥=GQ,..., ¥%.(p)T and 9,(h) is the sample
autocorrelation function, %,(k) = C(h)/C(0), h > 0, where C(h) =
n~1Y"h X, X,,,. In the autoregressive case it is not difficult to see that the

YW estimate coincides with the Whittle estimate based on o;”.

Hannan and Kanter (1977) showed that if 0 < @ < 2 and § > «, then
nl/‘s((f)Yw —¢o) >0 as.asn >,

More recently, Davis and Resnick (1986) showed that there exists a slowly
varying function L,(n) such that

nl/“LO(n)(<f;Yw - ¢o) —5 Y asn >,

where the structure of Y is closely related to the right-hand side of (2.4).
A somewhat different approach to parameter estimation, still in the purely
autoregressive case, is based on a least absolute deviation (LAD) estimator,
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which we denote by ¢;,p. The LAD estimate of ¢, is defined as the
minimizer of

n
Z |Xt — ¢ Xy _¢’pXt—p|
t=1

with respect to ¢ = (¢4, ..., ¢,)".

An and Chen (1982) showed that if Z, has a unique median at zero and Z,
is in the domain of attraction of a stable distribution with index a € (1, 2), or
Z, has a Cauchy distribution centered at zero, then, for § > «,

nl/s((l;LAD - (l)o) —-),97 0, as n —> o,

More recently, Davis, Knight and Liu (1992) defined the M-estimate d;M of an
AR(p) process as the minimizer of the objective function
n

Un(‘p) = Z p(Xt - ‘PlXt—l - -¢pXt—p)

t=p+1

with respect to ¢, where p(-) is some loss function. They also established the
weak convergence of ¢,,, for the case when p is convex with a Lipschitz
continuous derivative. Specifically, they showed that

nl/aL1(n)(¢A’M - ¢0) —g & asn — o,

where ¢ is the position of the minimum of a certain random field and L,(x) is
a certain slowly varying function. Their analysis seems extendable, without
too much effort, to a full ARMA model.

Thus, as is the case for the Whittle estimator, the rate of convergence of
the estimator is better than that in the Gaussian case, while the asymptotic
distribution is considerably less familiar.

In closing we note that “more rapid than Gaussian” rates of convergence
for estimators in heavy-tailed problems seem to be the norm rather than the
exception. For example, Feigin and Resnick (1992, 1994) study parameter
estimation for autoregressive processes with positive, heavy-tailed innova-
tions, and obtain rates of convergence for their estimator of the same order as
ours, but without the slowly varying term. Their estimators, however, are
different from ours both in spirit and detail, and involve the numerical
solution of a nontrivial linear programming problem. Finally, Hsing [(1993),
Theorem 3.1] suggests an estimator based on extreme value considerations,
which work for the pure AR case. Once again, he obtains an asymptotic
distribution reminiscent of (2.4), with a similar rate of convergence.

4. An application to simulated data. To get some idea of how the
Whittle estimator behaves in the heavy-tailed situation, we ran a small
simulation study using the estimator B, based on the summed periodogram
A2
gl

It should be emphasized that the estimation requires knowledge of neither
the stability parameter a nor the scale parameter o, of the data.
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TaBLE 1
Estimating the parameters of stable and normal ARMA processes via Whittle and MLE estimates

Model True Whittle Estimate Maximum Likelihood
No. Values Mean St. Dev. Mean St. Dev.
1 $=04 0.384 0.093 0.394 0.102
2 0=0.38 0.782 0.097 0.831 0.099
3 ¢=04 0.397 0.100 0.385 0.106
0=10.38 0.736 0.124 0.815 0.082

Table 1 summarizes some of our results. We generated 100 observations
from each of the models:

1L X,-04X, ,=2,
2. X,=Z,+082Z,_,,
3.X,-04X, ,=Z,+08Z,_,,

where the innovations sequence {Z,}, . , was either iid a-stable with « = 1.5
and scale parameter equal to 2.0, or, for comparison purposes, N(0,2). [In the
stable case we relied on the algorithm given by Chambers, Mallows and
Stuck (1976) for generation of the innovation process.] We ran 1000 such
simulations for each model. In the stable example we estimated the ARMA
parameters via the estimator B, and in the Gaussian case, via the usual
MLE estimator. The results are given in Table 1.

We shall not attempt to interpret these results for the reader, but merely
point out that the accuracy of the Whittle estimator in the stable case seems
indistinguishable from that of the MLE in the Gaussian case.

Finally, a comment about estimating p, q, a and the scale parameter of
the stable innovations. We have assumed throughout, including in the simu-
lation above, that p and g are known. When this is not the case, Bhansali
(1984, 1988) and Knight (1989) have proposed techniques for estimating p
and g that seem to work well in practice. Estimation of a can be done either
from the raw data or from the residuals calculated after parameter estima-
tion. Limited experience with simulations indicates that it is best done on the
(supposedly iid) residual. There are a number of techniques available, includ-
ing those due to Hahn and Weiner (1991), Hsing (1991), McCulloch (1986)
and Koutrouvelis (1980). We have found McCulloch’s technique to be the most
efficient and accurate.

5. Auxiliary results. Since the results of this section hold in somewhat
more generality than those of the remainder of the paper, we consider now
the more general linear process

0

Xt= Z (ijt_j, teZ.

j= —
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We suppose the conditions (A1)-(A3) and, additionally, that
X pllljl<e,  8=1Ad.

j=
For notational ease we use the same symbol for the periodogram in this more
general situation:

n 2

Y Xeir| -7 <A< T,
t=1
and define I, ,(A) correspondingly. Note that we chose a, = n'/® for Z, €
DNA(@) so that this notation is consistent with (1.2). For & € 2 define

Yo, x(h) = ’Yn,X(h)/‘Ynz,Xa y(h) = v(h)/¥*(Bo),
where ¥2(8,) = Yo e z,lljz [for notational ease we use the same symbol for
(2.3) in this more general situation] and

n—|hl

'Yn,X(h) =a;2 Z XtXt+|h|’
t=1

In,X(A) = a;2

V(h) = Z l/’j‘pj+|h|,

j=—
n
2 — 2 2
‘Yn,X_an ZXt .
t=1

The quantities v ,, ¥, (k) and %, ,(h) are defined correspondingly. Obvi-
ously, if EZ? <, ¥ 4(h) is a consistent estimator of the autocorrelation
function y(h) of {X,},. 5. For Z, € DNA(a), a € (0,2), Davis and Resnick
(1986) showed that %, x(%) is consistent in probability with limit %(A) and
rate of convergence (n/In n)'/°.

We shall frequently make use of the following decomposition of the peri-
odogram. Its proof is analogous to Proposition 2.1 of Kliippelberg and Mikosch
(1993).

ProrosITION 5.1. Under the above conditions,

L x(N) =™, () + R,(}), -w<i<m,
where
R, (N) = (e ™M) T (MY~ A) + () I, (V)Y (A) +| V(M)

Ju(A) = a;1 i Zte_i)‘ta
t=1

V(1) =a;" L e MU, (A),
J=—®°

n—j

n
U,i(A) = Y Ze M - Y Ze M,
t=1

t=1-j
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The proof of the following lemma is analogous to Davis and Resnick
[(1986), page 549]. See also Lemma 5.1 of Kliippelberg and Mikosch (1994).

LEMMA 5.2. Under the above conditions,
Yix = V2(Bo) ¥ z(1 + 0p(1)), n = .

PROPOSITION 5.8. Under the above conditions,
:;/n,X(h) e ;;/(h)7 hE‘/I/, n — ®,

PrOOF. We mimic the proof of Davis and Resnick [(1986), pages 548-550].
For any h €.# we have

Z XtXt+h_';'(h) Z Xt2 = Z Z ‘/’i(‘/’j+h - :)"(h)‘/’j)zt—izt—j

t=1 t=1 t=1i+j

+ i Yobi( s — ‘?(h)l/’i)(zf—i - th)

t=1 i

= Vl + Vz 5
where we used the fact that ¥; ¢, (¢,,, — ¥(h)y;) = 0. We obtain for some
¢,>0,i=1,234,

Ela;2V,|® < cina, 22y
i%j

(5.1)

Ui(n — 7))

<cyna,?® -0,

and, by (A2),
Ela,*Vyl** < caa;® Lt = 7(R) )l

<cya,® - 0.
By Markov’s inequality this implies
(5.2) a, (Vi +V,) =4 0.
Furthermore, by Lemma 5.2,
Yo x = ¥*( Bo) % z(1 + 0p(1)).
This, (5.1), (5.2) and (A3) imply that

r XX — ~(h)Z'L X2 o X X,
- - =1 X — Y t=1 ¢ t=n—h+1XtXipp
‘Yn,X(h) - y(h) n X2 - n X2

t=1 43¢ =14

Vl + V2 Z?=n—h+1 XtXt+h
= n X2 - n X2 = OP(l)'
t=1 t t=1 t
In the latter relation we also used (A3) together with the fact that
a2yl i1 X, X, —5 0forevery h. O
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6. Proofs of the results in Section 2. The proofs in this section are
modelled on those in the finite variance case, due initially to Hannan (1973)
[cf. the treatment in Brockwell and Davis (1991), Section 10.8, which we
follow closelyl. The technical differences in the infinite variance case are,
however, substantial. We start with some auxiliary results.

LEMMA 6.1. Suppose {X,}, . . satisfies the condtions of Theorem 2.1. Then
for every B € C,

2 N _2 ”g(A’BO)
(6.1) 7'(B) = W) [ ZEEdA,
and for every & > 0,

2 -2 '"'g()"BO) 5
(6.2) sup |0:75(B) = WH(Bo) [ gy A =, 0,

where C denotes the closure of C,

lo(e= )" + 6

8()" .B) = . 2
¢ [o(e=)]
and
2 T ~n,X(/\)
Un,S(B) - f—ﬂga(A, B) da.

ProOF. We shall only show that (6.2) is satisfied. The proof of (6.1) is
analogous. Set

m-1 . ( &

1-— Z)rke—i/\k’

where

1 = .
= 5o _ﬂe”‘kggl()\, B) dA.

Fix & > 0. Then there exists some m €.# such that

Iqm()" B) _ga_l()" B)I < 3/(477)
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for all (A, B) € [— =, w] X C. Hence

Uza(B)—fﬂf x(Mq (A,B)dA‘sif"i x(A)dr=¢/2, YBeC.
v —1rn’ m 4 _ﬂ-n’ ’

Hence, for fixed &,

g &(A, Bo)
P(zgg ws(B) =V (Bo)f ga(h B)dA >8)
2 g(A Bo) €
<P 2‘25';[ I, x(N)gn(A, B)dr— ¥~ (Bo)f ga(h, B)dA 25)
_ _|_h_| —2 g(X, Bo) ¢
=P Z:g 27T|hlz<:m7n X(h)(l )rh (Bo)/ ”———‘—“ga(A 5) di 22)
|h £
<P|sup (27 ). (%, x(h) —v(h))(l——l)rh 4)
peC |hl<m

Ly g( 30)

+I[8/4 )| SUP
BeC

where I,(x) denotes the indicator function of the set A. The first summand
on the right-hand side converges to zero in view of Proposition 5.3 and as a
result of the fact that r, are uniformly bounded for g C and m fixed. The
second summand is zero provided m is chosen sufficiently large. O

PROOF OF THEOREM 2.1. We suppose that B, does not converge in proba-
bility to B, and obtain a contradiction. From the definition of B,, we have
that, for every ¢,

(63) P(Unz( Bn) = t) = P(o-n2( :BO) < t) - [0,t](27Tq,_2( BO))’

where the convergence is a consequence of Lemma 6.1. By the Helly—-Bray

theorem and the compactness of C, there exists a nonrandom subsequence n,,

such that B, converges in distribution to a random variable B which is

different from' B, on a set of positive probability. The functional F(f, x) = f(x)

mapping #(C) X C to & is continuous, where #(C) is the space of continu-

ous functions on C equipped with the sup norm. According to Lemma 6.1,
g, ;2 5(*) converges in probability to

g(A, Bo)
-2
B —=dA.
G Mrow)
Hence 0'25 is tight. Since B,, —4 B the sequence B, is tight as well. Thus

(0' .5 By,) is tight in Z(C) X C and so there exists a further subsequence (we
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continue to use n, for ease of notation) such that (o,’ ;, B, ) converges in
distribution. By the continuous mapping theorem, we conclude that

_ 7" g(A’B ) -
F(‘Tni,a’ :Bnh) = O'nzh,a( Bn,) o ¥ 2( Bo)f_”m dr=T"2(By)T5(B)-
For a continuity point ¢ = (27 + &)W 2(B,), £ > 0, of T;( B) we have that

limsupP(o,2(B,,) <t) <P(B=PBy) +P(Ty(B) <27+ ¢, B+ By).
k> o

Now, letting & tend to zero, we have
lilzlsupP(a-ni(Bnk) <t) <P(B=B,) +P(To(B) <27+ ¢, B+ By),

where
T 8 ( A, BO)
Ty(B) = —
o( ) f—wg(/\, B)
may assume the value © at the boundary of C. Note that
{B:To(B) >2m} N C={p: B+ B} NC
[ef. Proposition 10.8.1 in Brockwell and Davis (1991)]. By (6.3), we conclude
that for sufficiently small ¢ and ¢ of the above form,

1= limsupP(ani( B.,) < t)
k—

di

<P(B=PBy) +P2w<Ty(B) <2m+ e, B+ By)

=P(B=pBy) +P2m<Ty(B) <2m+¢)

and the right-hand side can be made arbitrarily close to P(B =8, <1
which yields a contradiction and proves the theorem. O

LEMMA 6.2. Suppose the assumptions of Theorem 2.2 hold. Furthermore,
let m be a continuous function on [ —, w] such that

n \Ve .n 3
(——) /ﬂ_"?()\)g(/\,ﬁo)ln,z()\)d)\=Op(1), n = o

Inn _
Then
n

Ve oo )
(_) f_ﬂ(In’X()‘) —V2(By)g(A, BO)In,Z(A))T)( A) dA -, 0.

Inn

Proor. Set x, = (n/In n)/* and recall that a, = n'/® By Proposition
5.1 and Lemma 5.2 we get

[ L x(Na(n) da =28 (1 + 0p(D) [ % 5h, x(Mn(A) dA
= V2 () (1 + 0p(D) [ 1, 2()8(A, Bo) (1) dA

FUR(B) (1 + o (D)% [ Ru(A)(2) dA
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By the assumptions it suffices to show that

%[ Ro(D)n(X) dA = 0p(1).

-

Using the boundedness of 7, the definition of R,()\) (see Lemma 5.1) and
Hoélder’s inequality, we find that, for some c;, ¢, > 0,

/7 Riim(n) ax
<e [ |R,(N)|dA
- 12, 1/2 .
< cz{(f I, (%) d/\) (/ 1Y, (2 [ d/\) + [ %[ dA}.
Thus it remains to show that
22 N dr -, 0

We have

2

n—j
Y et Y Z,e M| dA

i>n t=1-j

_/:|Yn( N[ da < cn‘z/"‘{fﬂi

-

2

m PR d .
+[ Y e N Y Zie M| dA
- t=1

j>n
m
+f
-

m
+
—mT

=cn YV, + Vy + Va3 + V,).

2

di
2
dA}

It suffices to show that the V, are stochastically bounded. We will show this

1

for V. The other estimates are similar. Note that V;, = |7 _1Q( MI? dA, where

0
—iAj —iAt
yie N Y Ze '
1 t=1-j

M=

J

n
%e—i/\j Z Zte—i)\t

1 t=n—j+1

-

J

n—j

-1
QM= Tz L et

j=—o t=(n+1VI+))
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Let B, and B, be two independent Brownian motions on [—, 7] and
suppose that they are independent of {Z,}, ... Then

Eexp( ir f_:Re(Q()t)) dBy( M) + [_ﬂWIm(Q(A)) de(A)))

=E E(exp(ir(f_:Re(Q(/\)) dB,() + f_:lm(Q(A)) dBZ(A)))I(Zt)))

-E E(exp(ir(([_:(Re(Q()t)))z dA) 1/2N1

w 1/2
+(f” (am(@)* aa] Nz))(Zt)
- Eexp(—%fjﬂlQ(/\)lz d)t)
=Eexp(—%vl).

Here N, N, are iid standard Gaussian random variables independent of
{Z,}, < 5. It therefore suffices to prove that the real and the imaginary parts of
/7 @A) dBy()) are stochastically bounded. We restrict ourselves to the real
part. We introduce the gauge function A, for any random variable A by

1/a
Ao(A) = (supt*P(|Al > t)) .

Then for any sequence (d,);. , off :'eoal numbers, we have for some constant
c, >0, ) )
(6.4) Az,( ) d,-zi) < ¢, ¥ 1d,1A%(Zy)
i=1 i=1
[see, e.g., Kliippelberg and Mikosch (1993), Lemma 3.4]. Write
n- Y J” Re(e™*¢+9) dB,(1).

J
t=(n+1)v(1-j) -7

Then, for fixed £ > 0,

P(l f_:Re(Q(/\)) dBl(/\)I > a)

-1
-P|| © zD, 28)
j=-—oc>
-1
< ¢ °E|sups®P|| ). Z;D)>s|B,||.
s>0 Jj=-—»
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An application of inequality (6.4) yields that
(‘f Re(Q(A)) dBy( /\)‘ > g)

-1
sg_“E(ca h A‘j‘I(ZO)IDjI“)

j=—
-1 n—j T . i )
= &%, A0(Z,) L E )y llftf Re(e™""**7) dB,(2)
j=-—® t=(n+1VvQA-j)) -

-1
<& %,A%(Z,) ¥ EIN|®

j=—oc>

n—j a/2
z W)

t=(n+1Vv(QA-j)

(o]
_ 1.
<e& aczzw’jla/\.]'

Jj=1

Here (N)) is a sequence of identically distributed Gaussian random variables
and c,, c, are positive constants. Choosmg £ large enough then establishes
the stochastic boundedness of V;. O

LEMMA 6.3. Suppose the assumptions of Theorem 2.2 hold. Furthermore,
let m be an even continuous function on [ —m,w] and let the Fourier coeffi-
cients f,, k € Z, of n(Ng(A, By) satisfy fo =0 and L,_ _.|f,|* < = for some
uw € (0,1 A a). Then

1/a
(o) [ Lx(n(2) dr =g 4m 2(/30)2

where Y,,Y,,Y,,... are independent random variables, Y, is positive a/2-
stable and (Y,),., are iid symmetric a-stable with characteristic function
E exp(itY;) = exp(—C,[¢|%), t € Z.

PrOOF. In view of Lemma 6.2 it suffices to show that

T . * Y,
%, L, 2(N(VE(A By) dA =g 4w T - fi
-7 k=1 *0
where x, = (n/In n)"/“ Set
x(A) =n(1)g(A, Bo)

and

Xm(A) = X fre™ with f, = [T e x (M) dA.

|kl<m -
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The assumptions on (f,) imply that

Xm(A)_)X(A)= Z fkei/\k, m — %,

k= —»

uniformly in A. We show that for all & > 0,

(6.5) lim limsupP(xn > a) = 0.

m— o

f_ﬂﬂfn,z()‘)(X()t) — Xn(X)) dA

n-—ow

For n € we set y, = (nln n)/ Then for n > m there exists some ¢, > 0
such that

Vl = xnf_q:rfn,Z(A)( X(/\) - Xm(A)) dA

=xnfﬂ( Y Fuz(h)e M Y fke“k)d)‘

TV hl<n |k|>m

:xn277 Z ‘;’n,Z(h)fh

m<|h|<n

n—1 n—h
= cl'Yn_,ZZyn_l{ Z fa Z ZtZt+h}
h=m+1 t=1

n-m-—1

n—t
=cl')’n_,zzyr:1 Z Z, Z fhZsin
h=m+1

n

t=1
n-m-1
=c1')'n_,2z.3’n_1 Z Z, > fh-tZn
t=1

h=m+t+1
e 2
=0 Yn, ZVZ .
Since v, =4 Y, for some positive a/2-stable random variable Y, dis-

tributed as in the statement of the lemma, (6.5) will follow once we show that
for every € > 0,

lim limsup P(|V,| > &) = 0.
m—

n-— o

An application of Theorem 3.1 of Rosinski and Woyczynski (1987) yields for
some ¢, > 0 depending on ¢ that

1
P(IVyl > ) < 2

n-m-—1 n
t

1
r X Ifh—tla(l + log* )
|-

=1 h=m+t+1

where log* x = max(0, In x). Note that for x € (0, 1),

1
x"‘(l + log*—) <x*,
x



INFINITE VARIANCE ARMA 323

where u € (0,1 A @). Hence for constants c¢,, c; > 0, both depending on &,

n-m-1 n

P(|V2| > 8) < 02; Z Z |fh—t|“

t=1 h=m+t+1

1 = ®
<~ L (n-Difi*se; T IfI*
I=m+1 Il=m+1

and, by the assumptions, the rhs converges to 0 as m — . This proves (6.5).
Now it remains to show that, for each fixed m,

T ~ Yk
(6.6) Vo=z, I, (M) xn(V)dA =5 27 T figrs
s o

|kl<m

as n —» «, For n > m we have

Vi=%f [ T 5ah)e ™ T fie]da

“TMhl<n |kl<m
=x,27 Z &n,Z(h)fh
lhlsm
n—|h|
=27T7’n_,22 Z fh(yn_l Z ZtZt+|h|)'
|hl<m t=1

Theorem 3.3 of Davis and Resnick (1986) gives, for & > 0,

n

-1 n—h
7'12»2’ y;l A ZtZt+1’“~ ’ yn_l El ZtZt+h) 9 (Yo’Yl,u- ,Yh)'
t= t=

The specific scaling constants in the statement of the lemma, and in Theorem
5.2, then follow from the representation of the Y; given in Davis and Resnick
(1986) and the results of Le Page (1980).

This together with the continuous mapping theorem and the fact that
fo = 0 proves (6.6) and the lemma. O

Proor oF THEOREM 2.2. A Taylor expansion about B, gives

9,2 (Bo)  9a;2( B, %0, ( By
a(BO): 19(3 )_(Bn_BO) algz )
(6.7) 2_2( g%
9%, (B)
= (B, ~ Bo)—aﬁz—'
for some B} with || BF — B, < || B, — Byll, where |- || denotes the Euclidean

norm. Now
’ 0%} ( By) L a%g~ (A, BY)
e = [ L) da



324 T. MIKOSCH, T. GADRICH, C. KLUPPELBERG AND R. J. ADLER

and since B —, B, similar arguments as in the proof of Lemma 6.1 yield
that

%02 (BY) 928" (M, Bo)
n n -2 i
o —e V(B [ 8O B) o dA
Following the lines of the proof in Brockwell and Davis [(1991) after (10.8.39)],
the same arguments lead to

0’02 ( By)

T -,
where W is the matrix defined in the statement of the theorem. Hence it
suffices to show that

¥2(Bo)W(Bo),

‘90'n2(30) _g > Y,
B 4m¥ (Bo)kg1 7Obk

where b, is defined by (2.5). [Note that we may ignore the negative sign on
the right-hand side of (6.7) because of the symmetry of the limit distribution.]
Equivalently, by the Cramér-Wold device, it suffices to show that for all
vectors ¢c € #P19,

(6.8) x,

3a.2( Boy) “ Y,

xncT———aBJ)—— 5 4m¥2( ,Bo)kg1 ?Zchk.

We have
&02([3 ag~ (A, Bo)
c’ o) [ X(A)—B—Od/\
= [ L x(Mm(x) d,
where
-1 A
’)’]()\)=CTag ( 7BO)

B

is an even continuous function. Furthermore, it is not difficult to see that the
Fourier coefficients of n(A)g(A, B,) satisfy the conditions of Lemma 6.3. An
application of this lemma implies that

T . > Y,
[ L x(Dn(N) dA >y 4mV () ¥ 1
- k=170

where f, are the Fourier coefficients of n(A)g(A, B,); that is,

1 98~ (X, Bo)
fi = wa e e T““T g( A, Bo) dA.

Since f; = c7b,, this implies (6.8) and so the theorem. O



INFINITE VARIANCE ARMA 325

Acknowledgments. CK and TM take pleasure in thanking Professor
H.-R. Kiinsch for his everyday readiness to discuss the topic of this paper. All
four authors thank both the Associate Editor and a referee for a number of
useful comments.

REFERENCES

AN, H. Z. and CHEN, Z. G. (1982). On convergence of LAD estimates in autoregression with
infinite variance. J. Multivariate Anal. 12 335-345.

BHANsALL R. J. (1984). Order determination for processes with infinite variance. In Robust and
Nonlinear Time Series Analysis (J. Franke, W. Hirdle and D. Martin, eds.) 17-25.
Springer, New York.

BHANSALL R. J. (1988). Consistent order determination for processes with infinite variance. oJ.
Roy. Statist. Soc. Ser. B 50 46-60.

BingHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L. (1987). Regular Variation. Cambridge Univ.
Press.

BROCKWELL, P. J. and Davrs, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer,
Berlin.

CHAMBERS, J. M., MaLLows, C. L. and Stuck, B. W. (1976). A method for simulating stable
random variables. J. Amer. Statist. Assoc. 71 340—344.

DaHLHAUS, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17
1749-1766.

Davis, R. A., KnigHT, K. and Liu, J. (1992). M-estimation for autoregressions with infinite
variance. Stochastic Process. Appl. 40 145-180.

Davis, R. A. and RESNICK, S. I. (1986). Limit theory for the sample covariance and correlation
functions of moving averages. Ann. Statist. 14 533-558.

FeiGIN, P. and REsNICK, S. I. (1992). Estimation for autoregressive processes with positive
innovations. Comm. Statist. Stochastic Models 8 479-498.

FEIGIN, P. and RESNICK, S. (1994). Limit distributions for linear programming time series
estimators. Stochastic Process. Appl. 51 135-166.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications, 2 2nd ed. Wiley,
New York.

Fox, R. and TaqQqQu, M. S. (1986). Large sample properties of parameter estimates for strongly
dependent stationary Gaussian time series. Ann. Statist. 14 517-532.

GaDRICH, T. (1993). Parameter estimation for ARMA processes with symmetric stable innova-
tions. D.Sc. Thesis, Technion, Haifa (in Hebrew).

HanN, M. G. and WEINER, D. C. (1991). On joint estimation of an exponent of regular variation
and an asymmetry parameter for tail distributions. In Sums, Trimmed Sums and
Extremes (M. G. Hahn, D. M. Mason and D. C. Weiner, eds.). Progress in Probability
23. Birkhauser, Boston.

HANNAN, E. J. (1973). The asymptotic theory of linear time-series models. J. Appl. Probab. 10
130-145.

HANNAN, E. J. and KANTER, M. (1977). Autoregressive processes with infinite variance. J. Appl.
Probab. 14 411-415.

Hsing, T. (1991). On tail index estimation using dependent data. Ann. Statist. 19 1547-1569.

HsiNg, T. (1993). On some estimates based on sample behavior near high level excursions.
Probab. Theory Related Fields 95 331-356.

KLUPPELBERG, C. and MikoscH, T. (1993). Spectral estimates and stable processes. Stochastic
Process. Appl. 47 323-344.

KLUPPELBERG, C. and MikoscH, T. (1994). Some limit theory for the self-normalised periodogram
of p-stable processes. Scand. J. Statist. 21 485-491.

KnigHT, K. (1989). Consistency of Akaike’s information criterion for infinite autoregressive
processes. Ann. Statist. 17 824-840.



326 T. MIKOSCH, T. GADRICH, C. KLUPPELBERG AND R. J. ADLER

KouTROUVELIS, I. A. (1980). Regression-type estimation of the parameters of stable laws. oJ.
Amer. Statist. Assoc. 75 918-928.

LE PAGE, R. (1980). Multidimensional infinitely divisible variables and processes. Part I: Stable
case. Probability Theory on Vector Spaces IV. Lecture Notes in Math. 1391 153-163.
Springer, Berlin.

McCuLLocH, J. H. (1986). Simple consistent estimators of stable distribution parameters. Comm.
Statist. Simulation Comput. 15 1109-1136.

RosinNskl, J. and Woyczynski, W. A. (1987). Multilinear forms in Pareto-like random variables
and product random measures. Collog. Math. 51 303-313.

WHITTLE, P. (1953). Estimation and information in stationary time series. Ark. Mat. 2 423-434.

THOMAS MIKOSCH
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GRONINGEN

TAMAR GADRICH
ROBERT J. ADLER

NL-9700 AV GRONINGEN FAcuLTY OF INDUSTRIAL ENGINEERING
THE NETHERLANDS AND MANAGEMENT
TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY
Harira, 32000
ISRAEL
CLaUDIA KLUPPELBERG
DEPARTMENT OF MATHEMATICS
ETH ZuricH
CH-8092 ZURICH

SWITZERLAND



