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We consider a semiparametric estimation method for general regres-
sion models when some of the predictors are measured with error. The
technique relies on a kernel regression of the “true” covariate on all the
observed covariates and surrogates. This requires a nonparametric regres-
sion in as many dimensions as there are covariates and surrogates. The
usual theory copes with such higher-dimensional problems by using
higher-order kernels, but this is unrealistic for most problems. We show
that the usual theory is essentially as good as one can do with this
technique. Instead of regression with higher-order kernels, we propose the
use of dimension reduction techniques. We assume that the “true” covari-
ate depends only on a linear combination of the observed covariates and
surrogates. If this linear combination were known, we could apply the
one-dimensional versions of the semiparametric problem, for which stan-
dard kernels are applicable. We show that if one can estimate the linear
directions at the root-n rate, then asymptotically the resulting estimator
of the parameters in the main regression model behaves as if the linear
combination were known. Simulations lend some credence to the asymp-
totic results.

1. Introduction.

1.1. Logistic regression. We consider semiparametric estimation when
the true predictors are measured with error, discussing in detail the logistic
regression model in which a binary response Y is related to a scalar predictor
X via logistic regression:

(1) Pr(Y=1X)=H(Bw + BnX); H(v) ={Ll+exp(-v)} "

As in all measurement error models [Fuller (1987)], the problem is that X is
difficult or expensive to observe, but instead one can observe a proxy W for X.
As is typical in the nonlinear measurement error model literature, we will
assume that W is a surrogate for X, that is, Y and W are independent given
X. Intuitively, this means that if X could be observed, W would provide no
additional information about Y. Under the assumption that W is a surrogate,
the conditional distribution of Y given W is the binary regression model

(2) Pr(Y = 1lW) = E{H( By + B X)IW}.
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Parametric inference can be obtained via a model for the distribution of X
given W. We are interested in the case that such a distribution is unknown.

The assumption that W is a surrogate might appear to be a strong limiting
factor, but this is in fact far from the case. The most common measurement
error model is the classical additive error model W = X + U, where the
measurement error U is a mean-zero random variable independent of Y and
X. In this model, W is a surrogate. The classical additive error model occurs
throughout Fuller (1987), as well as in many other applications [Rosner,
Willett and Spiegelman (1989), Rosner, Spiegelman and Willett (1990) and
Carroll and Stefanski (1994)]. Surrogates occur far more generally; for exam-
ple, W is a surrogate whenever it follows the model W = (X, U), where U is
independent of (Y, X) and £ (') is an arbitrary function. This includes stan-
dard multiplicative models.

The available data are described as follows. In a sample of size n, (Y;, W,)
is observed for i = 1,..., n. In a random subset of the data, we set A, = 1 and
also observe X; with probability = = Pr(A; = 1) = Pr(A; = 1Y}, W,, X,); oth-
erwise A; = 0 and X, is not observed. The random subset with X, observed is
called a validation study. Under this sampling scheme, Carroll and Wand
(1991) employ a pseudolikelihood estimation technique. The regression func-
tion (2) as a function of (W, B,, B;) is estimated via kernel regression in the
validation data, by regressing H( B, + B;X) on W. This yields an estimated
binary regression model and hence an estimated or pseudolikelihood for the
primary data. The likelihood for the validation data and the primary data
pseudolikelihood are then jointly maximized to yield estimates of ( By, Bo1),
which are asymptotically normally; Pepe and Fleming (1991) derived this
method independently.

1.2. The curse of dimensionality and the new method. The semiparamet-
ric method described above is subject to the curse of dimensionality. Suppose
that W is of dimension d and let the order of the kernel be «, with k = 2
being the usual nonnegative second-order kernel. Then, in order to achieve
asymptotic normality at the rate n'/%, Carroll and Wand (1991) require that
nh?? - © and nh2?< — 0. Clearly, if d = 2, these conditions exclude the use of
a second-order kernel. Larger values of d require progressively higher-order
kernels. Carroll and Wand (1991) call this “hardly practical.”

In Section 2, we sketch an argument in linear regression which shows why
the conditions of Carroll and Wand are almost necessary. Our approach to the
problem is to exploit the possibility that the distribution of X given W
depends only on lower-dimensional linear combinations of W, in particular a
single linear combination.

The standard parametric solution to this dilemma is to assume that X
given W is normally distributed with mean W7y, and variance oy [see
Carroll, Spiegelman, Lan, Bailey and Abbott (1984), Rosner, Willett and
Spielgelman (1989) and Crouch and Spiegelman (1990)]. The nonparametric
generalization is to assume merely that the distribution of X given W
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depends, in an unspecified way, only on W7y, for some y, with [ly,ll = 1. If
Yo were known, then one would run the various algorithms on the surrogate
WTy,, and since the dimension of this surrogate is 1, standard second-order
kernels could be used. In practice, y, is unknown, but there exist methods for
estimating at the rate n'/2, such as average derivative estimation [Hardle
and Stoker (1989)], projection pursuit regression [Friedman and Stuetzle
(1981) and Hall (1989)] and sliced inverse regression [Li (1991) and Duan and
Li (1991)].

Given any n'/?-consistent estimate ¥ of y,, the obvious algorithm is to
employ the Carroll-Wand methodology using W’9 as the estimated surro-
gate. In this paper, we show that the resulting estimates ( By, By;) have the
same limit distribution as if y, were known. In other words, one can use
one’s favorite dimension reduction device, without any asymptotic effect on
the resulting parameter estimates.

This paper is organized as follows. In Section 2, we sketch the result for
linear regression which shows the necessity of using higher-order kernels for
surrogate dimensions greater than 1. In Section 3, we describe the algorithm
in detail for the case of logistic regression, stating our result in Section 4. In
Section 5, we describe some numerical experience we have had with the
method, which indicates that the lack of any asymptotic effect due to estimat-
ing the directions can hold for fairly small sample sizes.

In Section 6 we describe extensions to our results which include general
likelihood problems, quasilikelihood and variance function models including
generalized linear models [Carroll and Ruppert (1988), Chapters 2 and 3] and
semiparametric corrections for attenuation.

2. Bandwidth rates. Remember that « is the order of the kernel, and d
is the dimension of W. The results in Carroll and Wand (1991) assume that
the bandwidths satisfy nh%? — « and that nh%< — 0. In this section, we will
indicate why these rates are about as good as one can do with the methodol-
ogy. The calculations are easiest in the linear regression model Y = By, +
By X + &, where ¢ is a mean-zero random variable independent of (X, w).
Let m(W) = E(X|W). In this case, the regression of ¥ on W is By, +
Byym(W), so that the correction for attenuation technique of Sepanski,
Knickerbocker and Carroll (1994) is first to construct an estimate of m(W) in
the validation data and then perform a linear regression of Y on (W) in the
primary data. We restrict calculation to a subset of the primary data interior
to the support of W, and we accomplish this by defining a function ¢(-) which
is supported on such a set. Define

Ay=nt T (1- Ai)¢(wi)(m(1vvi))(m(lvv,~)) !

i=1

1N 1A N 1 :
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Then the semiparametric correction for attenuation estimate of %, =
(Boo, Bor)" is & = A;'B,. Define & =Y, — By — Boym(W,), which given W,
has mean zero. Simple algebra shows that

Annl/z(gé; _*@0) =n-1/2 i (1- A,)d’(m)(m(%vl) )'fl

i=1

N +n L-Z:l(l AL)(i)(WL)(m(Wl)_m(WL) &
—n~1/2 ;(1 _Ai)ﬁmﬁb(wi)(m(kvi) ){’h’(Wz) —m(W;)}

. 0
12 ';(1 - Ai)B01¢(Wi)({,;L(WA) - m(W)}2).

The rate of convergence for a kernel regression estimate is of the order
@’p{h“ + (nh?)~1}. The first term on the right-hand side of (3) is clearly a,(D).
Because E(¢;|W,) = 0, the second term can easily be shown to be of order
& (h* + (nh®)~'/%). Long, detailed and tedious calculations can be used to
show that the third term is of the order #,(1) + @,{nh** + (nh?)~'}!/2. The
fourth term, however, is essentially the average mean squared error of a
kernel regression estimate times n'/2, and hence it is of order

n'/2g,{h? + (nh?) "'},

so for it to converge in probability to zero, we require that nkh2?¢ — o~ and
nh*< — 0. Combining the results, we see that it is required that nh%¢ —
(from the fourth term) and nA2* — 0 (from the third term).

3. Details of the method. Let %, = (B, By;)’ and write arbitrary
ZF = (B, B,)". We observe (Y;, W) for i = 1,..., n, and on a random subset of
the data set have A; = 1 and observe X; as well. We assume that measure-
ments of X occur for a nonvanishing fraction of the data, so that if 7= =
Pr(A =1),then0 < 7 < 1. A

We assume the existence of a n'/%-consistent estimate %, of %,, for
example, coming from the validation data, which are those observations with

; = 1. While the validation data provide one estimate of %,, such data
usually will form only a small subset of all the available observations, and we
wish to use the remaining data with A; = 0 to improve the estimate of %,

We will also assume that there is a surrogate W for X and a vector vy, such
that

(4) - the distribution of X given W depends only on W 7y,.

In other words X depends on W only through W 7y,. Without loss of general-
ity we assume that [ly,ll = 1.
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Define G(wTy, &, y) = E{H(B, + B, X)IWTy = wTy}. Also define
G(w,&,7) = G(w", Z,v){1 - G(w, Z,v)},
H(v) = H(v){1 - H(v)}.

If v, and G(-) were known, by (1) and (2) a one-step likelihood-based scoring
estimate of % is

A

% =By + B3} (%,)B1, (%),
where
PR 1
By (%) =n"" Z Ai(Xi){Yi — H(B, + B X))}

Y, - G(Wi,, 2,7}

13

+ 1 Y (1 - A)Gy(Wihyo, B,y :
i=1( a ° o) G(W. o, B, 7o)

roo(1)(1)" .,

By (#)=n"' ¥ Ai(X_)(X,) H( B, + B X))

i=1 g g

ent 3 (1= ay B0 2 %0) G (Wive, 2. 7o)

i=1 ' G(Wo, %, 7v0)

with subscripts denoting derivatives. However, we generally do not know v,

or G, so as in Carroll and Wand (1991) we will estimate G(W Ty,, &, y,) with

the nonparametric regression of H( 8, + 8,X) on W’} in a fixed compact set

% interior to the support of W7’y. This restriction to the set & decreases the

efficiency, but increases the robustness of the estimator. We estimate G with
the Nadaraya—Watson estimator

C.(wh,%,7) _ 7 AH( By + B X)) K{y" (W, — w))
Dn(wT% 7) Z?=1AiKh{YT(Wi - w)} ’

where K(-) is a symmetric density function with bounded support and

K,(-) = h"'K(- /h). Replacing G(WW Ty, &, y) by G, (w", #,v), Gs(w"y, &, v)

by G, B(wTy,ﬁ, v) and y, by its estimator y, we propose the following

estimator of %

(5) é(i’) ='$?0 +BZn1(‘@?0’ {}\’)BSn(‘g?O’ i’)’

where

b

G, (v, B,v) =

By (#,y) =n"" .gn‘«lAi()%i){Yi — H( B, + B X))}

{sz - Gn(‘VLT » B, '}’)}
G.(Wry,®,v)

(6). +n7t i (1-48)G, 5 (W', 2, v)
i=1

X ¢(Wly)
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and
n T
Bo(#,7) =nt ¥, A(;})(;}) H( By + B X))
i=1 L ¢
M % (1-4)
G5 (W', B,7)Gi (W, B,7) ;
(W, 7, 7) d(Wiy).

4. Statement of main result. For technical purposes, instead of work-
ing directly with n'/?-consistent estimate of %, and y, we work with dis-
cretized versions of them, as follows. Let ¢ be an arbitrary (small) constant,
and let & be the set {0, + ¢/n'/?, + 2¢/n'/2,...}.

By definition, an estimator 6 is a dlscretlzed version of an estimator 0* if
each component of 6 takes on that value in & closest to the corresponding
component of 6,,.

Note that our use of the term “discretize” is completely different from the
idea of binning in nonparametric regression. Our meaning is that all the
components of %, and ¥ are constrained to take values in .

The use of discretization is a technical tool which leads to great simplifica-
tion of proofs, because it enables use of the following trick due to Le Cam. Let
0, be a discretized n'/2-consistent estimate of a parameter 6,, and consider a
random variable A (8). To show that A,(6,) — A,(6,) = 0,(1), it suffices to
show that A,(6,) — ‘A (00) = 0,(D), where 6, =0+t /nl/g is a determinis-
tic sequence with ¢, — ¢, Where ty is a ﬁmte constant. We will discretize
both ¥ and the startlng value fé’o

THEOREM. Under the conditions stated in the Appendix,
nVH B (%) =B (7)) = 0,(1).

The implication of this result is that one can estimate %, asymptotically
just as well as if y, were known. The proof of the theorem is in the Appendix.
Applying the main result of Carroll and Wand (1991), we see that
nt/ 2{§é’('y0) B,} is asymptotically normally distributed. The asymptotic co-
variance of n'/ 2{.9&(3/ ) —%,} has three terms: (i) the Fisher information for
% from the validation data; (ii) the Fisher information from the primary
data set if fyyr, were known; and (iii) the cost for not knowing fyr,,.
None of these terms involves the choice of K(-) or A. Thus, it follows that
n'/%{%(%) — B,} will be asymptotically normal with the same variance as
when v, is known.

5. Simulations. A small simulation study was undertaken to compare
the estimates of the regression parameters using the Carroll-Wand proce-
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dure using both W”y, and W79 as the surrogate. The main point of the
simulation is to investigate the main result, namely, that there is little effect
to the dimension reduction proposed in this paper.

The logistic regression model used was Pr(Y = 1|X) = H(—1 + 0.693X),
with H(v) = {1 + exp(—v)} 1, the logistic distribution function. The surro-
gates W were generated as five-dimensional standard normal random vari-
ables, while X given W was normally distributed with mean WZ%y and
variance 82, We let 8 take on the values (0.25,0.5,1.0), these representing
instances of small, moderate and very large measurement error. We let
v = (0.894,0.447,0,0,0)7, and we estimate y using sliced inverse regression
with 10 observations per slice. The sample sizes generated were 150 and 600,
and in each case exactly 7 = 5 of the observations were validation data in
which X was observed. This is slightly different from selecting items into the
validation study randomly with probability = = 1, but the main theoretical
result that there is no asymptotic cost to dimension reduction holds in this
case as well. We used the ad hoc bandwidth selection procedure described by
Carroll and Wand and let the bandwidth be 2 = 6(n/3)"!/3, where & is the
sample standard deviation from the validation data (of size n/3) for W7y,
and W7} for the two respective estimators. For the two estimators, the set &
was from A plus the minimum to A minus the maximum value of y;W and
¥*W. We simulated 1000 data sets and report the mean, standard deviation,
mean squared error, median absolute error and the 95th percentile of the
absolute error for each of the estimates of the slope. The results are tabulated
in Tables 1-3.

The estimators in our simulation were based on fully iterating (5), starting
from the (undiscretized) validation data estimate. The sliced inverse regres-
sion estimate we used assumed that the distribution of X is described by a
one-dimensional linear combination of W.

The simulations indicate that the two estimators are very close both in
terms of mean square error and in the percentiles of the absolute errors even
for the smallest sample sizes. For example, consider the case § = 1.0 and

= 150. In Figure 1 we plot kernel density estimates of the estimated slopes
when vy is known or estimated. While there is some right skewness, the two
plots are similar.

TABLE 1
1000 simulated estimates of slope using the logistic model with 8 = 0.25 and 7w = 3

Estimator Mean Std. Dev. MSE MAE 95% AE
n = 150

7o known 0.7498 0.2483 0.0649 0.1643 0.5267

v, estimated 0.7427 0.2490 0.0644 0.1580 0.5017
n = 600

Yo known 0.7122 0.1113 0.0127 0.0736 0.2248

v, estimated 0.7112 0.1115 0.0127 0.0729 0.2243
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TABLE 2
1000 simulated estimates of slope using the logistic model with 8 = 0.5 and 7 = 3

Estimator Mean Std. Dev. MSE MAE 95% AE
n = 150
7o known 0.7567 0.2573 0.0702 0.1549 0.5519
vo estimated 0.7450 0.2620 0.0713 0.1616 0.5433
n = 600
v known 0.7137 0.1134 0.0133 0.0754 0.2306
v, estimated 0.7106 0.1128 0.0130 0.0743 0.2242

We have simulated other models such as X given W distributed normally
with mean (W%y)? and variance §2. The results for this model are similar to
those reported above for the larger sample sizes, namely, that there is little
cost due to dimension reduction. Other bandwidths such as C6(n/3)"1/3 for
C = (0.5,0.75,1.5,2) produced similar results, with 2 = 6(n/3)"1/3 gener-
ally performing better than the other bandwidths in terms of mean square
error.

The results indicate that for large enough sample sizes, there is little effect
due to dimension reduction. We have not addressed directly the question of
whether dimension reduction itself leads to an improvement over doing
brute-force multidimensional kernel regression. Our only evidence on this
point is indirect. We attempted to make such a comparison in a Monte Carlo
study, but ran into numerical difficulties. The brute force method was numer-
ically unstable in the sense that there were convergence difficulties with the
algorithm. Even when convergence occurred, the computation took many
times longer than the dimension reduction method. Finally, we have no idea
how one would select a multidimensional bandwidth in this context.

6. Extensions. We have deliberately phrased this problem in the con-
text of logistic regression, because it is one of the most important nonlinear
measurement error models and also has some of the simplest notation. Our
purpose in working with this special case is that it makes the theoretical

TABLE 3
1000 simulated estimates of slope using the logistic model with 8 = 1.0 and 7= %

Estimator Mean Std. Dev. MSE MAE 95% AE
n = 150

Yo known *0.7340 0.2655 0.0721 0.1573 0.5266

Yo estimated 0.7027 0.2541 0.0646 0.1563 0.4883
n = 600

vo known 0.7000 0.1161 0.0135 0.0779 0.2214

v, estimated 0.6915 0.1148 0.0131 0.0749 0.2269
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Directions Known
------------- Directions Estimated

T ! { 1 |

0.0 0.5 1.0 15 20

F16. 1. Kernel density estimates for known and estimated directions when 8 = 1.0, n = 150 and

=1
T=3.

calculations and the basic idea of dimension reduction transparent. However,
the methods we have described can be greatly generalized.

»For instance, the results hold (under regularity conditions) not just for
logistic regression but for any likelihood problem. In the general likelihood
case, if I(Y|X, %) is the underlying conditional likelihood for & = (B, B,)’,
then the conditional likelihood for an observed data pair (Y, W) = (y,w) is
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E{l(y| X, &)W = w}. This likelihood can be estimated by kernel regression
techniques, and the result maximized to obtain an estimate of . The
resulting limit distribution requires only a notational change from the logistic
model. If W is discrete, a similar technique has been proposed by Pepe and
Fleming (1991). :

The results are not restricted to likelihood problems, but also apply to
general quasilikelihood and variance function models. If the conditional mean
and variance of Y given X are f(X, %) and g%(X, %, 0), say, then the
conditional mean and variance of Y given W can be estimated using formulae
similar to (2). For example, the conditional mean of Y given W is
E{f(X, #)|W}. Sepanski and Carroll (1993) estimate such regressions non-
parametrically and then apply quasilikelihood and variance function estimat-
ing equations for (%, 6). They run into the same curse of dimension-
ality problems that concern us, and the same methods we have proposed
apply here as well, that is, dimension reduction can alleviate the curse of
dimensionality.

In generalized linear models especially, it is well known that a remarkably
accurate approximation to the likelihood of Y given W can be achieved by
replacing X where it is not observed by E(X|W) [see Rosner, Willett and
Spiegelman (1989), Rosner, Spiegelman and Willett (1990), Carroll and
Stefanski (1990), Gleser (1990) and Pierce, Stram, Vaeth and Schafer (1992),
among others]. For example, this replacement strategy, closely related to the
“correction for attenuation” in linear regression, would suggest that in the
logistic regression model (1), pr(Y = 1|W) = H{ By, + By E(X|W)}. This is
not exactly true, but it very nearly is in many practical problems. If we are
willing to pretend this approximation is exact, then one strategy is to
estimate the function E(X|W) via nonparametric regression using that part
of the data for which (X, W) is observed. This method is trivial to compute: a
single nonparametric regression to estimate E(X|W ), followed by generalized
linear model program. We actually prefer the resulting estimators to the
Carroll-Wand method because of this ease of computation, as well as the
good performance of the method in simulation studies not reported here. One
can show that the curse of dimensionality described in Section 1.2 holds here
as well. Under regularity conditions, it again may be shown that our results
concerning dimension reduction still apply.

If we are willing to treat the replacement model as exact, there is no need
to observe X at all. Instead, in many problems one can observe a variable
X, =X + U, where U is uncorrelated with (Y, W). For instance, as described
by Carroll and Stefanski (1994), in the Framingham Heart Study W would be
observed blood pressure at baseline, while X, would be observed blood
pressure four years earlier. It follows that E(X,|W) = E(X|W) and the
results of the previous paragraph apply when one regresses X, on W. The
use of such “replication” data greatly expands the possible applications of our
results.

In the simulations (Section 5), we did not discuss the gains to be made by
our estimators over using the validation data alone (i.e., %), but they are
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considerable. In these and many other simulations we have done with 7 =
of the data being validation, the Carroll-Wand estimator is typically at least
50% more efficient than using validation data only, while the semiparametric
replacement algorithms are typically at least twice as efficient as using only
the validation data. .

In principle, it is possible to extend the results to the case that there are
two independent data sets, a primary one in which only (Y, W) is observed
(A = 0) and an independent external data set in which (X, W) is observed
(A = 1). Use of such external data requires that the distribution of (X, W) be
the same as in the primary data with A = 0. The algorithm (5) changes here
by deleting the first terms in (6) and (7). While it is clear that our dimension
reduction result holds in this case, the technical problem with pushing the
theoretical results through lies in constructing a n'/2-consistent preliminary
estimate of %,. The outline of what to do is standard. Consistent estimation
of %, is possible because the external data allow consistent estimation of the
distribution of X given W. Once consistency is proved, n!/2-consistency then
needs to be checked.

We have not considered here the important case that there are some
covariates Z measured without error, so that the logistic regression model (1)
has mean H( By, + By X + BLZ). In this problem, the expectation (2) must
be conditioned on (Z, W), while replacement algorithms require estimating
E(X|Z,W). Hence the previously published methods almost automatically
lead to higher-order kernels. If in this problem we assume that X given
(Z,W) depends only on W2y, + Z%y,, and if (y,, y,) can be estimated at the
rate n'/2, then it can be shown that there is a (usually small) asymptotic
effect due to estimating (y,, y,), but second-order kernels may be employed.

Robins, Hsieh and Newey (1994) generalize the Carroll-Wand and
Pepe-Fleming techniques by computing an optimal semiparametric score
function for likelihood problems. Their methods do not apply directly to
quasilikelihood models and corrections for attenuation, although their nonop-
timal estimating equations can be extended to the former. For likelihood
problems, when W is multidimensional the optimal score becomes difficult to
compute. The use of dimension reduction should improve their method by
increasing large-sample efficiency as well as by making computation far
easier. We are currently studying ways to implement dimension reduction
ideas in this context, as well as whether there is any asymptotic effect to
estimating the direction of the reduced variable.

APPENDIX
Proof of the Theorem.

A.l. Preliminaries and assumptions. All results are proved for the case
that W is a bivariate random variable, the general case being only notation-
ally more complex. As described in Section 4, both % and %, are discretized
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n'/?-consistent estimators. Remember that A ; = 1 means that X; is observed,
and that this occurs with probability 7 independent of Y;, W, X)).

Define &, =%, + s,n™'/?, and vy, = y, + t,n" /2, where (s,, ¢,) - (s, ¢,)
for fixed, finite s, #,. Also define f(-) as the joint density of W = (W, W,)T.

We will use the notation outlined in Section 3, with the following addi-
tions:

m=pr(Ad; =1) =pr(A, = 1Y, X,W,), 0<w<]1;
D(a, ) is the density of W7y at a;

C(a,#,v) = D(a,y)E{H(B, + B, X)IWTy = a};

{D(a,v0)H( By + Borx) — C(a, By, v,)})

Fle = D(a, ) ;
R(a) = CC?((aa’TW and Q(a,x) =R(a)P(a,x);
>0 70
M(a,b) = E{Q(a, X)IWTy = b}, M,(a) =ﬂgz,—a) b’

M;(a,b,c) = E{Q(a, X)Q" (b, X)Wy, =c)}.

Also define
EL 1AiK{(WiT7’ - a)/h}
Dn(a’ 7) - Z?=1Ai )
X AH + B X)) K{(W, Ty — h
Cu(a, 2, y) = =2 Po ’;Li{( Y= a)/m)
i=18

Make the following assumptions:

AssUMPTION 1. In (a,y), D(a,y) is thrice continuously and bounded
differentiable and bounded away from zero in a neighborhood of v, and on an
open set in a containing #, the support of ¢(-).

ASSUMPTION 2. nh?*® — o and nh* ¢ - 0 for some & > 0.

ASSUMPTION 8. n'/2(§ — y,) = &,(1).

AssSUMPTION 4. The function K(-) is a thrice continuously differentiable
symmetric density function with bounded support.

AsSSUMPTION 5. M(a, b) and its first two partial derivatives are continuous
and uniformly bounded.

ASSUMPTION 6. X has finite fourth moment.
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AssuMPTION 7. f(-,+) and its first two partial derivatives are uniformly
bounded.

ASSUMPTION 8. Mjg(a, b, ¢) has an uniformly bounded continuous deriva-
tive in (a, b) for each fixed c.

AsSUMPTION 9. Uniformly on a € &, there exists £ > 0 such that
|D,(a,v,) —D(a,v,)| = @’p{h2-s + (nh1+8)—1/2>,
|Du(@,%0) = D(a, vo)| = 8, {h*~* + (nh+4) 77},
|Cu(a, Bo,m) — C(a, By, )| = &,{h** + (nh1*) %)
and
|C.(a, By, 7o) — C(a, By, v)| = @’p{hZ—s 4 (nh1+e)_1/2}‘

Additionally, uniformly for @ € € and b € &, such that (a, b) = (wTy,, wy,)
for some w, we have that there exists £ > 0 such that

|Dn(a, ’)’,,) —D(b,'yo)l = ﬁp{hz—s + (nh1+6)—1/2>
and
- ey —1/2
|Cn(a’$0’ Yn) - C(b,,@o,'yo)l =ﬁp{h2 + (nh1+ ) / }

We note that by adapting the results of Mack and Silverman (1982) or
Marron and Hardle (1986), a set of sufficient conditions that imply Assump-
tion 9 can be found.

AssumpTION 10. [af(a, b) da < = for every b.
AssuMPTION 11.  ¢(-) has bounded support and two bounded derivatives.
A.2. The proof.

THEOREM. Under the model outlined in Section 3 and Assumptions 1-11,
we have

n'*(%(%) —B(70)} ~» O,
where %(v) is defined in (5), (6), and (7).

PROOF. Due to the discretization of ¥ and %, it suffices to show that

V2 B(,) ~F(v0)) = 0,(1),

for starting values &, =%, + s,n*/? and vy, = vy, + t,n" /2
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We prove the result in two steps:

A T,=n"3*a(1-m))"

x T (1= 404,{Q(W0, X)#(Wx)
X [Ea{vi(W; = W)} = KilvE (W, = W)))]} = 0;

(ii) T, —p 0 implies that nl/z{ﬁA’('yn) —93’(70)} -, 0.

We will show that 7, = 0,(1) by showing its mean and covariance converge
to 0. Note that

M(a,a) = E{R(a)P(a, X)WT = a}

D(a, ’YO)E{H( Boo + Bor X)W Ty, = a} —C(a,%,,7)
D?(a,v,)

(8) = R(a)
=0.
Define vy, = (v, ')’oz)T, Y = Yo, YnZ)T’ W, = (W, W12)T and W, =

(WZI’ W22)T' Condltlomng on ¥ = {W,L'TYO’ WfiT’Yn’ WGT'YO’ W’jT'Yn}’ i, J = 1, RN (2} it
follows that

E(T,) = n'/? [M(Wiy,, Wiy,)

) X[ Eu{n (Wy — W)} = Ku{yZ (W, — Wy))]
X (Wi, ) F(Wy) F(Wy) dW, dW,.

Next make the substitutions a; = Wy, a, = yI W, b, = W,, and b, = YEwW,,
and note that (9) simplifies to

nl/2
—— | M(a,,b
S [M(a,b,)

X

Kh{%(az —by) +u,n"?(a, - b1)} - K,(a, — bz)}
02

Y ay — Yo1@
X ¢(—n-za2 + unaln'l/z)f(al, 2 o 1)
Yoz Yoz

(10)

by, - Y0101

) da, da, db, db,,
Yoz

X f(bb
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where u, = (v,; — Va2 Yo1/Yo2)n/2. Note that u, = #(1). Next make the
substitution a, = b, + zh and note that (10) is

f K{zYnz _ u,(a, _b1)} —K(z)]

Yo2 n'’?h

nl/2

2
Yoz

X ¢{ "2 by + 2h) + unaln‘l/z}
Yo2

(11)

b, +zh — a
><M(b2+zh,b2)f(a1, 2 You 1)

Yoz

by — Y101

X f1b1, —————) dzda, db, db,.

Yoz

Now expand M(b, + zh, b,) in a Taylor series about b, + zh = b, and note
that (11) is equivalent to

V2h 2 (a1 — by
: f[K{zy" -2 "“z)]

2
Yo2 Yoz

Xd){ 2 (by +2zh) + unaln‘l/z}
(12) Yoz

b, +zh — 'ymal)

><zM2(b2)f(a1,
Yoz

b, — ’)’01b1

xf(bl, "
02

) dzda,; db, db, + o(1),

using the fact that M(a,, a;) = 0 and Assumptions 2, 4, 5, 7 and 11. Next
expand ¢(-) and f(-) in Taylor’s series expansions and note that (12) simpli-
fies to

n'/2h

zM,(b
" [2My(by)

2 u,(a; — b,
(13) X[K{Zr:m - —’(m‘l} —K(Z)]¢(bz)

) dzda, db, db, +o(1),

b, — a b, — b
Xf(al, 2~ Yo1 l)f(bl, 2 ~ Y0191

Yo2 Yoz
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again using Assumptions 2, 4, 5, 7 and 11. For the symmetric density
function K(-), [zK(z — b)dz = b and [z2K(z) dz = 0. Thus (13) is
Un by — Yo101
'Fsz(b2)¢(b2)(a1 - bl)f(ah —01)
n2

Yoz
by — Y010
% f( by, 2 — Y0101
Yoz
=0(1).
Thus E(T,) — 0 as was to be shown.
Next we show Var(T),) = o(1). First note that

ETIN =n? Y T ¥ 5 (1-A)1 - A)AA,

i=lk=1j=11=1
X E(Q(W o, X;) @7 (Wiyo, X,)

(14) X (W) Kl w! (W; = W,))

~K{yf (W, = W)l

x¢(WkT‘Yn)[Kh{‘YnT(Wl - Wk)}

~K{yf (W, = W,))]).
To show Var(T),) — 0, first note that the terms where i # £ and j # [ are
negated asymptotically by the term E(T,)E(TT). Hence it suffices to study
the terms where (i =k, j=1),(i =k, j#1)and (i # &, j = 1), which we will

denote T,,, T,, and T}, respectively.
Let “~ ” denote proportionality. As before, condition on £ and note that

_ Yo
E(T,,) ~ (n‘Yo22) lfM3(a2:02’b2)¢2( i

Yoz

) da, db, db, + o(1)

a, + unaln_l/z)

X

2
Yn _
Kh{ 5 : (ay — by) +u,n"?(a, - bl)} - K,(ay - bz)]

02

Xf

a, — a b, — b
a, 2—7011),0((,1, _2.#) da, da, db, db,
Yoz Yoz

= (nh) Y32 [My(ay, ay, ay + zh) P2 ﬂa2+una1n_l/2
oz [ M3(az,az,ay

Yoz
2
Y2 u,(a; —by)
X|K{z 4+ ——— ) - K(z
a, — a a, + zh — b
xf(al,—ﬁ—l“—‘—‘) (bl, 2 Yo l)dzdaldazdbl
Yoz Yo2

=o0(1).
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Next study the terms for which (i = &, j # 1):

_ Yn
B(T) ~ 768 [M (a5, M7 (a5,c0) 62 22

a, + unaln_l/z)

X

Kh{‘&lz(az —by) +u,n"?*(a; - b1)} - Ky(ay - bz)]
Yoz

x [Kh{ ;’"2 (ay — cy) + u,n"*(a, - cl)} ~K,(ay - c2)]

02
Qs — Y01Q1 by — Y0104
s [l
02 02
Cy — Yo01€1

Yo2

X f(cl, ) da, da, db, db, dc, dc,

Yn2

Yo2

a, + unaln“l/z)

(15) = y523fM(a2,a2 +2z,h)MT(ay, ay + zzh)d)z(

X

K{ z"zzl +u,(n2h) Y(a, — bl)} - K(zl)]

02

X

K{—::iozzz + (unn1/2h)‘1(a1 — cl)} - K(zz)}

a3 — Y0191 )f(bp a, +2z,h - Yolbl)

Xf(al’ Y
02

Yoz

ay + 2,h — vy,
x (cl, 2T %t Yah ) dz, dz, da, da, db, de,
Yoz
=o(1)
by dominated convergence.
Finally, study the terms for which (i # &, j = I):

_ Yn2 _ Yn2 _
E(Ts,) ~ 'Yozngs(az,cz, bz)‘f’(““yn ay, tu,an 1/2)¢( ,yn Cy tu,cin 1/2)
02 02

X [Kh{ Z';z (by —ay) +u,n"12(b; - ar)} — K, (b, - ‘12)]

Y
Kh{ n2
Yo2

a, — a b, — b
Xf(al, 2 yY01 l)f(bl, 2 7701 1)
02 02

X

(by —cg) +u,n"?(b; - 01)} — K, (b; — 02)]

C2 — Y01€1

Yo2

X f(cl, ) da, da, db, db, dc, dc,
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Yn2

= Yoo fM3(b2 + 21k, by + 2,3k, b2)¢( (by +2z,h) + u,a n"1/2)

Y2

Xd)( (by + 25h) + u,ain 1/2)

X[K{ Z’;z + un(nl/2h)_l(b1 - al)} - K(zl)}

x[K{y + (upn/h)” (cl—al)} K(zz)]

Yo2
b +2z.h - Yo1@ b, — Y b
2 1 01 l)f(b 2 01 1)

1
Yoz

by + 25h c
(cl, 2777 " Yuh ) dz, dz, da, db, db, dc,

=o(1)
by dominated convergence.
So we have shown that Var(7},) — 0, hence 7, -»p 0. We now must show
that T, —, 0 implies that the theorem holds.
Referring to Sepanski and Carroll (1993), we see that the difficult step is to
show that

(16) nl/z{B?m(gn’ Yn) - B3n(‘@0’ 70)} = p(l)’

where Bj,,(-,-) is defined in (6). Taking a Taylor series expansion, it follows
that

G.(a,%,,v) = G,(a,%By,v) + (B, —%By)Gyp(a, %y, 7) + T, (n"")
= Gn(a"'go’ 7) + é’p(n_l/2)’

since B, — B, = s,n" /% Similarly, G,,(a, &,,v) = G,z(a, By, y) +
&,(n” 1/2) and G ' (a, Q ,v) = G, (a, B,,y) + " (n‘1/2) Thus, (16) holds if

(17) n1/2{B3n(‘@0’ Yn) - B3n(‘%,0’ YO)} = p(]‘)

The terms in B,,(%,, v,) and B;,(%,, v,) from the validation data (A; = 1)
are the same, so (17) holds if

(18) {Su(%) — Sa(v0)} = 0,(1),
where

S(y)—n‘l/ZZ(l—A) s(Wy, B,,v)

{)7; - Gn(wfl 7:$0, 7)}
G‘n(wfiTy,‘@O’ Y)

d(WTy).
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Next note that
n
S.(70) — n-1/? Z (1- Ai)Gnﬂ(VViTYO’V@O"Yo)
i=1
{Y; = G,(Wryo, %y, 7))}
G.(W, B, 7o)

d(W.',)

19 S v
( ) =n 1/2 Z(I—Ai)GnB(mTYO:QO"YO)
i=1
(¥, = Gu(Wo, B0, 7o)}
Gn(WiTYO ) '@0 ) 70)
=0,(1).

Hence a sufficient condition for (18) to hold is that

{(WTy,) — 6(W )}

Su(%) —n % X (1= A;)Gy s (W%, B0 v0)

i=1
Yi - Gn(mTyo: ,@0, Yo
6.1 Dy w ) = 0,1,
Gn(wfl Yo *@0: ‘YO)
Applying Assumption 9 on uniform convergence, it follows that
G.z(a, By, v,
__H_(__O_Yl ~R(a) =&,(n""/?) and
Gn(a’ ‘@0’ yn)
G,;(a,%B,,
2(8 201 piay g (n),
Gn(a’ﬂ@O’ 'Y())

uniformly over a € #. Therefore it is sufficient to show that
n
n~1/? Z (1- Ai)R(WiTYo)¢(WiTYn)
(20) i=1
X {Gn(WiT')’m %y, ')’n) - Gn(WiTYm &, Yo)} = Op(l)'

Consider the term G, (W,Ty,, &, v,) — G.(W,"yo, %y, vo)- Uniformly over wTy,
e # and wly, € € we have

Gn(wT'yn,ﬁ’O,yn) - Gn(wTYOv@o,Yo)
Cn(wT‘Yn"gO"Yn) _ Cn(wT’YO"@O’ 70)

(21) - Dn(wT7n7 Yn) Dn(wT'YO’ ‘Yo)

_ Dn(wT'YO’ YO)Cn(wT'yn’ (@0, Yn) - Cn(wT707 ‘@0’ YO)Dn(wTyn’ yn)
Dn(wT')’n, Yn)Dn(wTYO3 YO) .
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Assumption 9 and straightforward algebra show that (21) is
[D(w'0s Yo {Cow™s Bo, ) = Co(w"0, B, 7o)
+C(wT70’ By 70){Dn(wT‘Yn» ’Yn) - Dn(wT’Yo, 70)}]
X {D(wT,, 'yo)}_2 +0,(n"1?)

_ Zf=1AjP(wT70, XJ)[Kh{YnT(WJ - w)} - K;.{vg(W,- - w)}]
Zj-14;

(22)

+o,(n"17%).

Now use the fact that n™1L?_;A; — . Thus, we substitute (22) in (20) to get
the sufficient condition

w32 Y Y (1 8,),@(Whve, X) (W)

X [Kh{'ynT(W} - W,)} - Kh{'yg‘(Wj - W,)}]
= p(l)’

or, equivalently,
T, =n"**x(1-m)}"

g g -4 )A Q( 70’ )¢(WILT n)

<[ Bofw! (W, = W)} = Kn{vE (W, = W)}
=0,(1),

which we have already shown. This completes the proof. O
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