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ON THE DISTANCE BETWEEN SMOOTHED EMPIRICAL
AND QUANTILE PROCESSES

By MikLGs Cs6RGS! AND Lajos HORVATH

Carleton University and University of Utah

We consider Bahadur—Kiefer representations for smoothed quantile
processes. We prove that the asymptotics of the distance between smoothed
empirical and quantile processes can be completely different from that of
the unsmoothed ones. We obtain a complete characterization of the possi-
ble limits.

1. Introduction. Let X, X,,..., X, be independent identically dis-
tributed random variables with continuous distribution function F. We define
the empirical distribution function

(1.1) F,(x) = % X, <«x}

1<i<n

and the empirical process a,(x) = n'/?(F,(x) — F(x)), —© < x < ». The in-
verses of F and F,, respectively, are Q(¢) = inflx: F(x) > ¢} and Q,(¢) =
inflx: F,(x) > t},0 < ¢t < 1. Assuming that the density function f = F" exists,
we define the quantile process p,(t) = n'/2AQ(NQ(¢) — Q,(¢), 0 <¢ < 1.If
f(Q(#)) exists and is bounded in a neighbourhood of ¢, €(0,1) and
f(Q(¢y)) > 0, then it follows from results of Kiefer (1967, 1970) that we have

(1.2) n'/4A,(20)| = oY,

where A (¢) = ,(Q(¢)) — p,(¢), and the distribution function of the limiting
random variable Y is

P{Y < x}

2
1/2

" (to(1— 1))

(1.3) .

Xf-wq)( Jul™ )"’( (to(1 — t))"” ) -t
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114 M. CSORGO AND L. HORVATH

with ® and ¢ standing for the standard normal distribution and density
functions, respectively. Kiefer also studied the asymptotics of A, (#) uniformly
in ¢. Assuming some regularity conditions on F, Kiefer (1970) showed that

1/2
(1.4) n4(logn)""? sup |A,(¢)] =4 ( sup IB(t)I) ’ ,
a<t<b a<t<b
where {B(¢), 0 < < 1} is a Brownian bridge and 0 <a < b < 1.

For a discussion of (1.4) under somewhat milder conditions on F than
those of Kiefer, we refer to Csorgé and Révész [(1978), Section 4] or to Csorgd
and Révész [(1981), Theorem 5.2.5] or to Csérgd [(1983), Chapter 6]. The finite
sample and asymptotic properties of F,, @, and «,, p, have been extensively
studied in mathematical statistics [cf. Shorack and Wellner (1986), Csorgd
and Horvath (1993) and references therein]. In case F has a density, it may
be more suitable to use a smooth estimator for F' rather than the step
function F,. For instance, Efron (1979) suggested that a smooth estimator of
F should be more appropriate for generating bootstrap samples.

In this paper we consider smoothing F, via kernels and inverses of the
thus smoothed empiricals. We define smoothed estimators F of F by

(1.5) F(t) = h[ ( )F(x)dx

where K is a kernel and A = h(n) is the smoothing parameter. Similarly to
(1.2), (1.4) and (1.5), we define

(1.6) a,(x) =nV?(F(x) — F(x)), —o<x<x,
(1.7) Q,.(t) = inf{x: F(x) > t},

(1.8) Bu(2) = n'2f(Q())(Q(2) — Qu(2)),

(1.9) A,(2) = @,(Q(t)) — Bu(t), 0<t<1.

In the next section we study the asymptotics of A (¢,), where t, € (0, 1).
We show that the limit distribution of A,(¢,) is not necessarily Y of (1.2).
Depending on the choice of the smoothing parameter i(n), we get different
limit theorems for A,(¢,). We study the behaviour of sup,_,_,|A,(#)l in
Section 3. The proofs are presented in Sections 4 and 5.

2. Asymptotics for A, (#,). We assume that 4 and K satisfy the follow-
ing regularity conditions:

Cl. h=hn)—-0,n - x

C.2. K is bounded and continuous on (—, »);
C.3. K(u)=0if u ¢ [—A, A] for some 0 < A < o,
C4. [?.K(uw)du =1,

C5. (2, uK(u)du = 0.

If K is a symmetric density function, having compact support, then condi-
tions C.3, C.4 and C.5 hold true.
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First we show that, if 2(n) is small, then (1.2) holds also for the smoothed
processes.

THEOREM 2.1. We assume that C.1-C.5 hold and that

(2.1) f(Q(%)) > 0,
(2.2) [ exists and is continuous in a neighbourhood of Q(t,),
(2.3) lim sup n'/2h(n) < .

Then, as n — », we have
(24) /4 8,(20)| = Y.

We note that Mack (1987) proved the Bahadur (1966) type result
(2.5) A (ty) = @(n"V4(logn)”*) as.,
under somewhat stronger conditions than those of Theorem 2.1.

Roughly speaking, (2.4) holds if F,(¢,) — EF,(¢,) dominates the bias term
EF,(t,) — F(t,). Condition (2.3) amounts to saying that, in this case, F, is
rightly smoothed in the sense that the bias becomes negligible. If (2.3) fails to
hold, then the bias term also plays a crucial role in the limit.

We will also make use of assumptions C.6 and C.7.

C.6. There is an integer r > 1 such that

. 0, ifl<i<r-—1,
@6 [uk@ae={7, Lo itils.

That is, in addition to C.5, the number u, is defined by this assumption; in
addition to C.2 and C.3, we have the following:

C.7. K' and K" exist and are continuous on [ —A, Al

As is usual, f© means f in the sequel.

THEOREM 2.2. We assume that C1-C.7 and (2.1) hold and that
(2.7 @) exists and is continuous in a neighbourhood of Q(t,),

(2.8) n'2h(n) » ©, n -,
If
(2.9) n'2h"(n) »c,, n - o,

where 0 < ¢y < . Then, as n — «, we have

(nh(n))"?|A,(%)|

{Nl(to(l - to))1/2 + Courf(rﬁl)(Q(to)»

9

(2.10)

1/2
><N2( K?%(u) du) ,

1 "
@t -
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where N, and N, are independent standard normal random variables and u,
is defined by condition C.6.

It is interesting to note that if we have a high-order kernel, then the
difference between the smoothed empirical and quantile processes is smaller
than in the unsmoothed case. Condition (2.8) means that (z) cannot be too
small, that is, we should not undersmooth.

The next result covers the case when the limit is determined by the bias
term.

THEOREM 2.3. We assume that C.1-C.7 and (2.1) hold,

(2.11)  f®" exists and is continuous in a neighbourhood of Q(ty)

and

(2.12) n'?h"(n) > », n - o,
0 If

(2.13) n2R™ 2 (n) s, n oo,

where 0 < ¢, < », then, as n — ©, we have
R 12 (n)|A ()]
fl/z(Q(to)) (to(l - to)f_mK (u) du)
(2.14) L S F Q)P (Q(%))
f(Q(%))
_1re@)
2 F3(Q(t)) °

where N is a standard normal random variable.

Gi) If

2

(u, FTD(Q(2y)))’

2

n'2h"(n)
1723 r+1/2 o L S o
(2.15) n/*h (n) and (log )72 , n ,
then, as n — », we have
nV2R (n)|A,(2) ]
| (@)

(2.16) F f(Q(%))
" 1 7(Q(1)
2 f3(Q(t))

(u, F7D(Q(2)))* |-
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If we take n™'/?" < h(n) < n~ V@D with r > 2, then A (¢,) in (2.14) is
smaller than A, (). However, if n~3/®" < h(n) < 1/log n, then (1.2) and
(2.16) imply that A, (¢,) is much larger than its unsmoothed version.

3. Asymptotics for sup,_,_,|A,(¢). Next we consider uniform ver-
sions of the results in Theorem 2.1-2.3. These uniform versions will require

uniform versions of the former conditions. Let 0 <c <a <b <d < 1.

THEOREM 3.1. We assume that C.1-C.5 hold, and the following:

(3.1) inf £(@(1)) > 0
(3.2) f'(Q(t)) exists and is continuous on [ c,d];
(3.3) thereisa v > 0 such thatn™" < h(n);
(3.4) n?h(n) >0, n— o,

Then, as n = «, we have

- 1/2
(35)  n'*(logn) /* sup IAnmlw{ S“P,,'B<t)l} ’

a<t<b a<t<

where {B(t), 0 < t < 1} is a Brownian bridge.

The next result shows that the limit distribution of the difference between
the smooth empirical and quantile processes is not necessarily like that of
their nonsmoothed originals.

THEOREM 3.2. We assume that C.1-C.7, (2.8) and (3.1) hold and that

(3.6) FE(Q(¢)) exists and is continuous on [ c,d].
If
(8.7) n'?h"(n) > c,, n o o,

where 0 < ¢, < ®, then, as n — %, we have

nh(n 1/2 -
(—————ZIOgl(/h)(n)) sup [4,(2)]

a<t<b

(3.8)

— 4 Ssup
a<t<b

B(t) + cou'f"1(Q(2)) “ 1/2
fl/Z(Q(t)) l(f_mK (u) du) )

where {B(¢), 0 < t < 1} is a Brownian bridge.

Our last theorem is on the case when the uniform limit is completely
determined by the bias term.
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THEOREM 38.3. We assume that C.1-C.7, (2.8) and (3.1) hold and that

(3.9) FC(Q(t)) exists and is continuous on [ c, d].

G If

nV2RTH/2 ()
(3.10) Tegih) % o
then, as n — «, we have
h=7*Y2%(n
(3.1) (2log1/h(n)))1/2 wxtns 14,0 1
1/2 1)
(] e T
G) If
nV/2h 172 () V2" (n)

(3.12) W — © and (log_n)l/z — oo, n — o,

then, as n - «, we have

nV2h72(n) sup [A,(2)]

a<t<b

IR i CIOVAaR C10)
(3.13) P, 7(Q(1))

1 F(Q(1)
2 F5(Q(1)

(u, F"(Q(2)))*

4. Proofs of Theorems 2.1-2.3. First we note that
(4.1) F(Q.(¢)) =t forallo<t<1
and

& (x) = [ K(u)a,(x + uh) du

(4.2) i
+ nl/zf_ K(u)(F(x + uh) — F(x)) du.

Let E,(t) = F(Q(t)), &,(t) = nY/%(E (¢) — t)and U,(t) = F(Q,(t),0< ¢t < 1.
It is easy to see that U is the inverse of E
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The following lemma helps us to study the last term in (4.2).

LEMMA 4.1. We assume that C.1-C.6 hold, inf <t<3f(Q(t)) >0 and
F9AQ(Y)) exists and is continuous on [y, 8], r < j. Then forally<y <8 <6
we have

sip |[ K(u){F(x + uk) - F(x)} du
Q(yN)=<x<Q(8") |~

(4.3) o
- 2wk (%)
r<i<j
= o(h%),
where
1 .«
u;, = — ‘K(u) du.

ProoF. Taylor expansion implies (4.3) immediately. O

ProoF oF THEOREM 2.1. The weak convergence of a,(¢) yields

(4.4) sup

—o<x<®

| E(u)e,(x + uh) du

— 00

- 7p(1).

By (4.2)-(4.4) we have
(4.5) sup |&,(x)| = @p(1),

x€A,

where A, =[x, — &, %, + &] for some &> 0 and x, = Q(¢,). Hence we can
find a neighbourhood A, of ¢, such that

(4.6) sup |U,(t) — t| = @p(n"1/2).

teAy

The mean value theorem, (2.2) and (4.6) yield

(4.7) R,(t,) = p,(2o) — nl/z(to - Ijn(tO)) = @P(l)nl/z(ﬁn(to) - to)z-
By (4.2) we get
A () =&(t) = n'/2(¢t - F(@,(1))) — R, (t)

=¢6,(¢) —,(U,(t)) — R, (2).

Komlés, Major and Tusnady (1975, 1976) constructed a sequence of Brown-
ian bridges {B,(¢), 0 < ¢t < 1} such that

(4.9) sup |a,(x) —B,(F(x))|=@(n"%logn) as.

—olx<®

(4.8)
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Putting together (4.2), (4.3) and (4.9), we obtain

sup | &,(x) — [:oK(u)Bn(F(x + uh)) du

x€A

4.10
(4.10) = Op(n"?log n) + @(h*n'/?)

= OP(n_1/4).

The modulus of continuity of a Brownian bridge [cf. Csorgé and Révész
(1981), page 42] gives

sup  sup |B,(F(x + uh)) - B,(F(x))]
(4.11) x€Ay —A<u<A

= &p((hlog1/h)"?),
and, therefore, we have

(4.12) sup |é,(t) — B,(¢)| = 0p(n™ /%) + &p((hlog 1/h)"?).
t€ Ay

By (2.1) we have
(4.13) n2(t = U,(t)) = €,(U,(2)).
Using (4.6) and (4.11)—(4.13), we get
nl/z(to - Ijn(tO)) = B,(¢) + ﬁp((h log 1/h)1/2)
+ &p(n~1*(log n)l/z).

Applying (4.12)-(4.14) and using again the modulus of continuity of a Brown-
ian bridge, we conclude

&(Un(t)) - fiK(u)Bn(F(Q(tO — n"1/2B,(t,)) + uh)) du

(4.14)

(4.15)  =op(n"*) + &p(n"**(log n)**)
+ &p(nV4(hlog1/k)"*(log n + log1/h)"*)
= op(n~1/%).

Since the distribution of B, does not depend on =, it is enough to prove
that

gn — n1/4

| K){B(F(Qt,) + uh))

(4.16)
‘ —B(F(Q(to — n"'/?B(ty)) + uk))} du



EMPIRICAL AND QUANTILE PROCESSES 121

where {B(¢), 0 < ¢ < 1} is a Brownian bridge. We can find a Wiener process
{W(#), 0 <t < 1} such that

(4.17) B(t) = W(t) —tW(1).
It is easy to verify that we have

& =n'/* f:K(u){W(F(Q(tO) + uh))
(4.18)
_W(F(Q(to — n—1/2B(tO)) + uh))} du |+ @p(n=1%).

Let
w(y) =/t [ K(u){W(F(Q(to) + uh))

~W(F(Q(ty —n "?y) + uh))} du,

—o <y < o, The joint distribution of 7,(y) and B(¢,) is bivariate normal.
Elementary calculations give

Er(y) =0, EB(t) =0, varB(t) =t(1—¢%),
(4.19) ,}E‘i var7,(y) =lyl and
lim cov(7,(y),B(ty)) =0 forall y.

Applying (4.19), we get
lim P{¢, < x)
n—o

llm[ {Im.(¥)] < xIB(ty) =}

(4.20) 1 ( y )
- to))” (to(1 = t5))"” dy

® x 1 y
/_w(ch( Iyl”z) B 1) (- t)”" ( (to(1 — )" ) “

which completes the proof of (2.4). O

PROOF OF THEOREM 2.2. First we note that (4.2), (4.3) and (4.9) yield

sup
x€A,

a,(x) - (f:K(u)Bn(F(x + uh)) du

(4.21) o
| T o)

r<i<2r

=p(n"1%logn) + o(K*'n'/?).
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Let
I(t) = [ K(u)B(F(Q(t) + uh)) du

1 = (Q(u) — Q%)
=Zf_wK( h

(4.22)
)B(u) du,

where {B(t), 0 <t < 1} is a Brownian bridge. Next we estimate the incre-
ments of I'(¢). By C.4, a two-term Taylor expansion gives

[(#) —T(s)
1 e Q(u) — Q(¢) Q(u) — Q(s)
4.23 s) — o
429) _ Mt—)j_wx’(u){B(F(Q(s) +uh)) — B(s)}du

1(Q(s) — Q1)
+§(—h—

where | £ — u| < |Q(s) — Q()I/h. It is easy to check that, for all 0 <s < 1, we
have

(4.24) sup |B(F(Q(s) + uk)) — B(s)| = &p(h"/?).
A

—A<ux<

) | K" (){B(F(Q(s) +uh)) —B(s)} du,

Thus, for all C > 0, we get

wr[ro) -1 - 20 Q%)

lt—tol<C/n1/2

(4.25) Xf:K:(u){B(F(Q(tO) + uh)) — B(t,)} du

= Gp(n"h"¥2) = 0p((nh) ).
By (4.8) and (4.21) we obtain
(nh)?A,(to) = (nh)"’L, 1(t,) + (nk)"*L, 5(to)

(4.26) o
—(rh)*R,(t) + 0p(1),

where
(421 Lyy(to) = [ K(){BL(F(QUty) + uh))

~B,F(Q(U,(ty)) + uh))} du
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and

(428) L, () =n"? ¥ uwh{fO Q%) — QU )).

r<i<2r

By (4.21) it is clear that the bias term is not necessarily small. Using (4.13)
and (4.21), we get

nl/z(to - Ijn(tO))
= [ K(u)B,(F(Q(UL(10)) + uh)) du

+ n2u, B FCD(Q(U,(2)))
+ Op(n"'?log n) + #(n'/?H"*1),
and, therefore, (4.6) holds. The continuity of B, and f"~ " imply
(4.30) 12ty — U(ts)) = Bulto) + n¥/2h"u, £~ D(Q(¢,)) + 0p(1).
Since |U,(t,) — t,)| = @p(n~1/2), (4.25) yields
L, (%)
~ Q(U.(%)) ~ Q(2%0)
(4.31) — h

X (fj’ K'(u){B,(F(Q(to) + uh)) — B,(t,)} du + op(nh)~'/?].
Similarly, the mean value theorem gives

e FOR()
(4.32) Lnalto) =m0 b =5000)

+|to — U, (o) lop(n'/2h7).
By condition (2.9), and by (4.6) and (4.32), we get
(4.33) (nh)"* L, 5(to) = 0p(1).
Putting together (4.31), (4.24) and (4.30), we obtain
(nh)"*L, 1(%o)
_ B,(%) +n'?h7u, fO(Q(1))
(434) f(Q(t0))

1 e
x5z | K'(w){B,(F(Q(to) + uh)) = B,(to)} du + 0p(1).

(4.29)

(tO - ljn(tO))

- Let

(435)  m, =k [ (By(F(Q(t) + uh)) - B(to)) dK(u).
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The joint distribution of (v,, B,(t,)) is bivariate normal for each n. Elemen-
tary calculations yield

Eqn, =0, EB,(t,) =0, var B, (t,) = to(1 — t,),
(4.36)

lim varn, =f(Q(t0))fwwK2(u) du and lim En,B,(#) 0.

Theorem 2.2 now follows immediately from (4.26) and (4.33)~(4.36). O
ProOOF OF THEOREM 2.3. By (2.11) it follows from (4.9), (4.13) and (4.3) that

(4.37) to — Un(to) = u, A F"V(Q(2y)) + 0p(h").

Now (4.7) gives

n'/? f,(Q(to))
2 13(Q(t))

Then, similarly to (4.21), we have

(4.38)  R,(t,) = (ty = U(to))" + @p(n1/2R7).

sup
x€A,

&(x) - {/_m K(u)B,(F(x +uh)) du + n¥/? ¥ uihif“—b(x)}l

r<i<3r

=p(n"'?log n) + o(n'/2h%").

Thus, we obtain

An = Ln,l(tO) + Ln,3(t0) - = f,(Q(tO)) nl/Z(tO - ljn(tO))z

(4.39) 2 F3(Q(%))
+ @p(n1%log n) + @p(n'/2n%),

where

Ly s(te) =n/* T whi{F9D(Q(4)) - £ (Q(Up(t))))-

r<i<8r
Applying (4.23) and (4.37), we get
u b V2FCTD(Q(t))
f(Q(%))
where 7, is defined in (4.35). The mean value theorem and (4.37) yield
FO(Q(2)) " D(Q(2))
f(Q())

Since 7, is normal for each n, Theorem 2.3 follows from (4.?;6) and
(4.39)-(4.41). O

(4.40) L, 1(ty) = M, + op(h"TV2),

+ op(n'/2R%).

(4.41) L, 5(t,) = n'/%h?u?
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5. Proofs of Theorems 3.1-3.3. Let A =[c/,d'], where ¢ <c¢' <a <
b<d <d.

ProOOF OF THEOREM 3.1. A two-term Taylor expansion gives

@)

o) 52 |B(8) = 7" iy (4~ )
= &p()n sup |t - T,(0)[',

where -

(5.2) R,(t) = p(t) — n'2(t — Uy(t)).

By (4.2) and (4.3) we have

(5.3) tsgflén(Q(t))I = Fp(1).

Hence we get

(5.4) fﬁh—&ﬁﬂ=%w*ﬂ.

Applying (4.9), we obtain

(6:5)  sup|é n(t)—f_w K(u)B,(F(Q(t) + uh)) du| = op(n"1/*).

The modulus of continuity of a Brownian bridge [cf. Csorgé and Révész
(1981), page 42] yields

(5.6) sup Islup | B,(F(Q(t) + uh)) — B,(¢)| = &p((hlog1/h)"?),
te ul<A

and, therefore, (5.5) gives
(5.7) sup |&,() — B,(t)| = op(n~V*) + &p((hlog1/k)"?).
teA

Using again the modulus of continuity of B,,, we get

(5.8) sup |n!/%(¢ — U,(2)) — B,(t)| = 0p(n'/*) + &p((hlog1/h)""*)
telA

and

sup [6,(U,(t)) - B, (¢t — n"/2B,(1))|

teA
(5.9) = op(n~ /%) + Gp((h1og1/m)"?)
n ﬂp( ~1/4( 1 log 1/h)1/2(log n + log l/h)l/z)
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Now (4.8), (5.2), (5.4), (5.7) and (5.9) yield

n'*(log n) */* sup |&,(2)]
a<t<b
(5.10)
=n"*(logn) "% sup |B,(t) = B,(t — n7/2B,(¢))| + 0p(1).

a<t<bd

We now show that, for any Brownian bridge {B(¢), 0 < ¢t < 1}, we have

n/4(log n) V% sup |B(t) — B(t — n"/2B(t))| -, (sup |B(t)|)

a<t<b a<t<b

which, via (5.10), will also complete the proof of (3.5).
It is well known [cf,, e.g., Cs6rgé and Horvath (1993), page 164] that

sup | e, (Q(2)) — n'/?*(¢ — F(Q.(2)))|

0<t<l1

= sup |a,(Q,(1)) — a,(Q(1))| +a(n71%).

0<t<1

A two-term Taylor expansion gives

sup [A,(0)[ = sup |a,(Q()) —n'/3(t — F(Qu())| + Gp(n1/%).

a<t<b

Consequently, by (4.9) combined with these two statements, we obtain

sup [|A,(2)]

a<t<b

sup | B,(F(Qu(1))) = Bu(£)] + &p(n ™'/ log n)

T, (Q(1)) + n” M, (Q())

sup
a<t<b

~(t = F(Qu(1)) = Bo(t) | + Gp(n "/ 1og ).

This, in turn, via (4.9), Theorem 2 of Kiefer (1970) and the modulus of
continuity of a Brownian bridge yields

sup |A,(¢)|= sup |B,(t—n"1/?B (2)) = B,(8)]

a<t<b a<t<b
+ &p(n~ %5 (loglog n)"*(log n)"*).
Using now the result (1.4) of Kiefer (1970) in combination with the last
statement and (5.10), we obtain (3.5). O

The proofs of Theorems 3.2 and 3.3 are based on the following lemma, in
which {B(¢), 0 < ¢t < 1} denotes & Brownian bridge.
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LEMMA 5.1. We assume that C.1-C.7, (3.1) and (3.2) hold and that
(5.11) lim sup |l,(¢) —I(¢)|=0,

n—o% ect<d
where I(t) is a continuous function on [c, d]. Then we have
vB(t) +1,(¢t) 1
fl/2(Q(t)) (hf(Q(t)))l/2

1 1/2
—_— sup
(210g1/h) a<t<b

x " K'(u){B(F(Q(t) + uh)) — B(t)) du

1/
~o o, [ty | 2w a)
for all —o < v < o,
Proor. First we show that
1 /2 1
() 2, ey
(5.12) ><|f:K’(u){B(F(Q(t) +uh)) — B(¢)} du

- 1/2
- p (] K?%(u) du) ,
for all ¢ < @ < B < d. By (4.17) we have

sup
a<t<pB

fZK’(U){B(F(Q(t) +uh)) — B(t)} du

- [ K @){W(e + F(QUe))uh) = W(2)) du | = op((hlog 1/m)"”).

Let C > 0 and define G(¢) = [ K'(u)W( + u) — W)} du. It is easy to
check that G(t) is a stationary Gaussian process with EG(¢) = 0, EG(¢)G(s)
= [ KWw)K(t + u) du and

sup
a'<t<p’
=5CV? sup |G(2)]
a’'/(Ch)<t<B’'/(Ch)
=QCI/2 sup |G(t)|,
0<t<(B'-a")/(Ch)

7z | K'(){W(t + Cuh) — W(t)) du
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for all @ < o’ < B’ < B. Since EG(t)G(0) = 0 if |¢| > 2A and

EG(t)G(0) = [_°° K*(u) du — |2i|(K2(A) + K?(-A))

t2 * " 2
+Ef_wK(u)K (w) du + o(?)

as t = 0, we can use Pickands [(1969), Theorem 2.1] and get

1 1/2 " 1/2
—_ sup |G(t)] - ( Kz(u)du) .
(210% l/h) 0<t<(B'~a’)/(Ch) ( i f-‘”

For any £ > 0 we can find an integer M such that with a =¢, <t, < -+ <
ty = B we have

max  sup |f(Q(t)) - f(Q(%))| < &/(24).

1<i<M ti—IStSti
The modulus of continuity of a Wiener process [cf. Csorgé and Révész (1981),
page 28] gives

lim sup

n—ow

1 1/2
2h log 1/h)

fwwK’(u){W(t + F(Q(t))uh)

X maX sup
1<i<M t,_1<t<t;

~W(t + f(Q(t;))uh)} du

<e'? sup |K'(u)| as.
—ooly<®

Since ¢ can be taken arbitrarily small, we have established (5.12).

Let q,(¢) = {(vB(@¢) + 1,(t)}/f/2(Q(¢)). By the almost-sure continuity of B
and (3.11), for each ¢ >0 and §> 0 wecan find a =s; <s, < =+ <sp=2b
such that

(5.13) lim sup P{ jmax  sup |g,(8) —q.(s)] = 3} < 8.
<i

n—w =i 5, _;<s<s;

Applying (5.12) with a =s; ;, B=s;, 1 <i <R, by (5.13) we immediately
get Lemma 5.1. O

ProoOF OF THEOREM 3.2. Lemma 4.1 and (4.9) imply

sup
teA

&.(2) - {[:K(u)Bn(F(Q(t) + uh)) du

(5.14) -
~ +nt/2 ¥ uih‘f(‘_l)(Q(t))}‘

r<i<2r

= Gp(n"'/?log n) + o(n'/2n%").
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Thus we get
sup |€,(¢)| = @p(1) + p(n'/?h"),
teA
which yields
(5.15) sup |t — Uy (¢)| = @p(n"1/2) + Gp(h7).
teA

We write again

; f(Q(2))
- _plr2l A0
(516) An(t) Ln,l(t) +Ln,2(t) fZ(Q(t))

+ @p(n"12log n) + @p(n'/?h*"),

(t - Un(t))z

where L, ; and L, , are defined in (4.27) and (4.28). Using (5.6) and (4.23),
we obtain

sup |L, ((¢) — Q(Un(t)z —0
teA
(5.17) xf_‘” K'(u){B,(F(Q(t) + uk)) — B(t)) du

- @’p(h‘lﬂ(log R)'? sup |t — ﬁn(t)lz).
teA

We note that (4.30) is true uniformly in ¢, that is, we have

1y X |n172(t — Uy(8)) — (Bu(¢) + n2h7u, O (Q(1)))]

=o0p(1).

Putting together (5.17) and (5.18), we get

sup
teA

nh 172
(log 1/h) Lai®)
B,(t) + n'?u, k" fCD(Q(1)) 1

f(Q(?)) (hlog1/h)"?

(5.19)

x [~ K'(w){B.(F(Q(t) + uh)) = B,()} du | = op(1).
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The mean value theorem and (5.18) yield

nh 172
2 — = .

Now Theorem 3.2 follows immediately from (5.16), (5.17), (5.19), (5.20) and
Lemma 5.1. O

PrOOF OF THEOREM 3.3. We follow the proof of Theorem 2.3. Similarly to
(4.39), it is enough to determine the limit distribution of

urh"1/2f"‘1)(Q(t))( 1 )‘/“’
aity ZECIO)] hF(Q(E))

Xf:K'(”){Bn(F(Q(t) +uh)) — B,(t)} du
PRV CIQ) A CI0))

f(Q(%))
1 1/2 er’(Q(t)) u Fir=1 2
R TTr A

Applying Lemma 5.1, we get (3.11) and (3.13) immediately. O
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