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PENALIZED DISCRIMINANT ANALYSIS

By TREVOR HASTIE, ANDREAS BUJA AND ROBERT TIBSHIRANI!

Stanford University, AT & T Bell Laboratories
and University of Toronto

Fisher’s linear discriminant analysis (LDA) is a popular data-analytic
tool for studying the relationship between a set of predictors and a
categorical response. In this paper we describe a penalized version of LDA.
It is designed for situations in which there are many highly correlated
predictors, such as those obtained by discretizing a function, or the
grey-scale values of the pixels in a series of images. In cases such as these
it is natural, efficient and sometimes essential to impose a spatial smooth-
ness constraint on the coefficients, both for improved prediction perfor-
mance and interpretability. We cast the classification problem into a
regression framework via optimal scoring. Using this, our proposal facili-
tates the use of any penalized regression technique in the classification
setting. The technique is illustrated with examples in speech recognition
and handwritten character recognition.

1. Introduction. Linear discriminant analysis (LDA) is a standard tool
both for classification and dimension reduction. Here is roughly how LDA
works:

1. Classification is based on the Mahalanobis distances (x — m/)Ly'(x — m’)
to class centroids m;, where Ly is the pooled within-class covariance of
the predictors x.

2. Data reduction entails a sequence of unit-variance, linear- discriminant
variables B[x, chosen to maximize successively 8/ Lg., B;, with X, the
between-class covariance matrix. These discriminant variables represent a
subspace for which the class centroids are spread out as much as possible.

Linear discriminant analysis enjoys a number of favorable properties, such as
reasonable robustness to nonnormality and even to mildly different class
covariances [see the many references in Seber (1984), Chapter 6]. On the
down side, there are two deficiencies which apply under opposite circum-
stances:

1. LDA is too flexible in situations with large numbers (e.g., hundreds) of
highly correlated predictor variables;

2. it is too rigid in situations where the class boundaries in predictor space
are complex and nonlinear.

In the first case, LDA overfits, in the second case, LDA underfits the data.
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We show that both problems can be overcome by modifications of LDA that
effectively regularize a large, nearly or fully degenerate within-class covari-
ance matrix Xy. This paper focuses on the first situation where LDA has
problems: large numbers of correlated predictor variables. In a companion
paper [Hastie, Tibshirani and Buja (1994)], we address the other problem,
interestingly by using results of this paper.

We call the technique discussed here penalized discriminant analysis, or
PDA for short. We rely on the relationship between linear discriminant
analysis and canonical correlation analysis, or more precisely its asymmetric
cousin, here called optimal scoring. If viewed appropriately, optimal scoring
contains linear regression as a building block. This building block lends itself
to generalization by replacing linear least squares regression with other
types of regression. In the present paper, we use penalized least squares
regression to overcome the problems of high-dimensional (e.g., more than 200)
correlated predictors, while in the companion paper we use nonparametric
adaptive regression methods to solve the problem of complex class boundaries
when the predictors are relatively low-dimensional (probably no more than
30).

Along with the transfer of regression methods to discriminant analysis
goes the transfer of related notions. For example, we can now use degrees of
freedom in classification problems; these arise naturally when selecting or
comparing smoothing parameters in fixed-bandwidth nonadaptive regression
methods for optimal scoring.

In this paper we study two examples with large numbers of correlated
predictor variables:

1. In speech recognition, one is interested in classifying short speech frames
into one of several phoneme classes, based on the log-periodogram of the
frame (for example); a typical log-periodogram estimate forms a predictor
vector of dimension 256.

2. In handwritten character recognition, one wishes to classify small images
of characters and digits into the obvious classes; a typical size-normalized
image might be represented by 16-by-16 gray-scale pixels, and again form
a predictor of dimension 256.

The data in both of these examples arise from the discretization of analog
signals. It is obvious that an empirical (within-class) covariance matrix Ly, of
size 256 by 256 will have unfavorable statistical properties for almost any
realistic size of the training sample, and straightforward Mahalanobis dis-
tances calculated in LDA will suffer or become useless as a result. Although
we used a discretization resolution of 256 in both cases, one could use a
higher resolution and the problems would be worse. Some form of “borrowing
strength” or regularization appears to be needed and can be formally moti-
vated in the context of a population model [see Section 4 as well as Leugrans,
Moyeed and Silverman (1993)].

Even if we have sufficient data, the estimates are likely to be spatially
rough. To see this, consider the usual linear discriminant functions with
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coefficient vectors Ly'm/, where m/ is the mean vector for the jth class. If
adjacent predictor (log-spectral or gray-scale) values have strong positive
correlations due to locally smooth behavior, then the spectral decomposition
of Ly will favor low-frequency functions (large eigenvalues for smooth eigen-
vectors, small eigenvalues for rough eigenvectors); ;! will have the inverse
structure, and hence Y;'m/ will emphasize the rough components of m/.
This phenomenon has two undesirable consequences: (1) rough coefficient
contours that lack smoothness on the index domain are not interpretable; (2)
misclassification rates deteriorate since jagged coefficient contours indicate
reliance on irrelevant local contrasts that are easily thrown off if the behavior
of a test predictor vector deviates slightly from those found in the training
sample.

Similar problems have been recognized by several authors [Di Pillo (1976,
1979), Campbell (1980) and Friedman (1989)] who introduce ridge-type regu-
larizations of LDA. The obvious idea is to stabilize the (within-class) covari-
ance matrix by adding a diagonal matrix, often a small multiple of the
identity. The relation of this approach to ridge regression goes beyond a
formal analogy due to the above-mentioned relation between LDA and opti-
mal scoring: subjecting the regression building block of optimal scoring to a
ridge-type modification gives essentially the regularized version of LDA
proposed by these authors. Also equivalent is Vinod’s (1976) ridge-regulariza-
tion of canonical correlation analysis when applied to a discriminant context
[see also Vinod and Ullah (1981)]. Vinod’s aim was to counter the detrimental
effects of collinear sets of variables on canonical correlation analysis.

It appears, though, that the examples of speech and character recognition
call for a different type of regularization. We often wish to interpret the
coefficient arrays of discriminant variables, in particular in the two cases
above. These coefficient arrays can be interpreted as discretized curves and
images since they, too, are indexed by frequency and pixel location, respec-
tively. In order to achieve spatially smooth behavior, the usual ridge method
does not seem entirely appropriate since its bias toward an overall mean
ignores the spatial structure of the index domain. It may therefore be more
plausible to bias the discriminant coefficients toward smoothness as a func-
tion of the frequency or the pixel location, for example, through regulariza-
tion along the lines of smoothing spline models. Smoothing splines enforce
smoothness by penalizing local contrasts such as second-order differences,
that is, the coefficient array of a discriminant variable pays a price for locally
rough behavior as a function of frequency or pixel location.

To summarize, two distinct motivations for regularization have emerged:

1. When the number-of-variables to sample-size ratio is too high, we cannot
reliably estimate a covariance matrix. Since the large number of variables
arise from discretizing an analog signal, natural methods of regularization
can be found.

2. Even if the sample size were sufficient to estimate the structured covari-
ance matrix, coefficients of spatially smooth variables tend to be spatially
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rough. Since we hope to interpret these coefficients, we would prefer
smoother versions, especially if they do not compromise the fit.

Our proposal replaces Ly, by a regularized version L + AQ), where ( is a
“roughness”-type penalty matrix; the LDA analysis then proceeds as usual.
Figures 1 and 2 show the results for the two examples. In each we see the
raw LDA coefficients displayed as curves and images, respectively, as well as
the corresponding regularized versions. In both cases the regularized versions
improved classification performance on test data significantly. Both these
examples are treated in detail in Sections 5 and 6.

The possibility of using other than ridge-type penalties was mentioned in
passing by Friedman [(1989), end of Section 8]. He proposes to penalize local
averages to enforce smoothness, which is distinct from our proposal since the
splines we use penalize local differences. We do not know whether Friedman’s
proposal achieves what it sets out to do. The thrust of his paper is to combine

order 1 order 2
o J o
o S
;-
§ 5
w w
131 !
g
5 -
o~
<
T T T T T
[} 50 100 150 200 250
Frequency
order 3
N N
o o
S 1 S
§ §
g o g =3
3 o o
:
o
] ~
9-- T T T T T LI Q
] 50 100 150 200 250
Frequency

Fic. 1. The jagged functions are the four discriminant coefficient functions for separating the five
phonemes in the sampled utterances in the example of Section 5. The superimposed smooth
functions are the regularized discriminant coefficient functions, using 30 df worth of smoothing.
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LDA: Coefficient 1 PDA: Coefficient 1 LDA: Coefficient2 ~ PDA: Coefficient 2 LDA: Coefficient3  PDA: Coefficient 3

LDA: Coefficient4  PDA: Coefficient 4 LDA: Coefficient5  PDA: Coefficient 5 LDA: Coefficient6  PDA: Coefficient 6

LDA: Coefficient7  PDA: Coefficient 7 LDA: Coefficient8  PDA: Coefficient 8 LDA: Coefficient9  PDA: Coefficient 9
Fic. 2. The images appear in pairs and represent the nine discriminant coefficient functions for
the digit recognition problem. The left member of each pair is the LDA coefficient, while the right
member is the PDA coefficient, regularized to enforce spatial smoothness.

ridge-shrinkage, LDA and quadratic discriminant analysis (QDA) in a single
framework; that is, he considers problems of lower dimensionality than we do
since QDA estimates within-class covariances individually for each class,
thus further compounding the problem caused by high dimensionality.

A different and quite complex approach is taken by Kiiveri (1992), whose
motivation also arose from the analysis of high-dimensional spectral data. He
assumes a factor-analysis—growth-curve model for the within-class covari-
ance: Ly = A®AT + ¥, where the first term is structural and of low rank,
and ¥ is typically diagonal, stemming from uncorrelated errors. Based on
normal assumptions, the components are estimated with an EM algorithm.
As an aside, Kiiveri [(1992), end of Section 2.2] mentions the possibility of
using a stationary rather than diagonal form for ¥. His V¥ is reminiscent of a
penalty, but its actual role is that of a factor analytic “uniqueness.” He seems
exclusively interested in interpretability of canonical variates since he does
not mention misclassification rates.

Related to the present work is Leurgans, Moyeed and Silverman (1993),
who study canonical-correlation analysis of pairs of discretized analog sig-
nals. They also use a penalty approach and they provide some asymptotic
theory. More details are given in Section 4.

We should also mention an approach that seems obvious but does not
work: motivated by the fact that log-spectra are often smoothed before
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further processing, one might argue that LDA should be applied to smoothed
log-spectra and, by generalization, to smoothed images. The problem with
this approach is that smoothing adds to already existing correlations among
neighboring log-spectral and gray-scale values, thus causing the canonical
variate arrays to be even more jagged. The within-class covariance of
smoothed data will be even more degenerate than that of the raw data, thus
calling for even more regularization. Thus we see that regularization at the
level of the within-class covariance is indispensable. Presmoothing then turns
out to be superfluous, adding to the computational cost of PDA with zero
benefit in classification performance.

Another approach to regularization is filtering, popular in the signal and
speech processing literature. Here the spatial structure of the predictors is
acknowledge by approximating the data by its projection onto a low-dimen-
sional, spatially smooth basis. The predictors are thus replaced by their basis
coefficients. A drawback of this approach is that one has to supply a suitable
basis, which tends to involve more subjectivity than choosing a smoothing
penalty. In our examples the filtering approach produced results similar but
slightly inferior to those achieved by regularization.

2. Notation and conventions. Consider a discrimination problem with
J classes and N training samples. The training samples consist of observed
predictor vectors and their known class memberships. These memberships
will be represented by a categorical response variable G with J levels; the
individual responses, by g,. It is sometimes convenient to code the N re-
sponses in terms of an indicator matrix Y of size N X ¢/, with columns that
correspond to the dummy-variable codings of the J classes. We denote by #4;
the m-vector of predictor values (input features) for the ith training sample.
In the digit-recognition example, 4, is a 256-vector of gray-scale pixel mea-
surements for the ith training image. In the context of flexible discriminant
analysis [Hastie, Tibshirani and Buja (1994)], the %; will be expanded bases
(splines, polynomials, etc.) of observed predictor variables x;, that is, A; =
h(x;). The vectors A, for all the training observations will be stored as rows of
the N X m matrix H, which we call the predictor matrix. We will assume
that the columns of H are centered (i.e., orthogonal to the constant 1-vector).
If this assumption is not satisfied, the constant 1-vector should be an element
of the column space of H, in which case the eigenproblems encountered below
will exhibit a trivial eigenvalue which is easily weeded out.

We assume that some penalty matrix ) of size m X m is given, for
penalizing the coefficients of A. It should be symmetric and nonnegative
definite. If a smoothing parameter A is part of the penalty, we assume that it
is absorbed in (). These penalty matrices arise naturally in the context of the
examples. If the data are log-spectra or images, we define () in such a way as
to force nearby components of B, to be similar. If 2, = h(x;) represent a basis
expansion of the actual input vectors x;, a penalty matrix may be chosen so
that the compositions A(x;)’B, are smooth as functions of x. See Sections 5, 6
and 7.
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3. The equivalence of penalized linear discriminant analysis,
canonical correlation analysis and optimal scoring. It is known that
discriminant variates are up to scale factors the same as the so-called
canonical variates which result from an associated canonical correlation
analysis (CCA), and often the latter term is used interchangeably with
discriminant variates. Somewhat lesser known is that an asymmetric version
of canonical correlation analysis, here called optimal scoring and abbreviated
0S8, also yields a set of dimensions which coincide up to scalars with those of
LDA and CCA.

In the following sections we introduce OS, CCA and LDA with penalization
built in. We then show that the three are equivalent just as they are without
penalization. This has the important consequence that we can simply use our
tools for penalized and nonparametric regression to perform penalized and
nonparametric disecriminant analysis.

We also discuss the dimension reduction aspect of linear discriminant
analysis. Dimension reduction means reexpressing the data in fewer vari-
ables while minimizing the loss of essential information for the problem at
hand. Such reduction can actually be beneficial when the “lost dimensions”
show only spurious or weak structure. The reduced dimensions resulting from
LDA are variously called discriminant variates, discriminant coordinates or
sometimes crimcoords for short.

Each of the three problems (OS, CCA and LDA) to be defined below has an
associated criterion and constraints under which the criterion is to be opti-
mized or made stationary.

3.1. Penalized optimal scoring. The point of optimal scoring is to turn
categorical variables into quantitative ones by assigning scores to classes
(groups, categories). In our notation above, 6(G) assigns a real number (say,
0,) to the jth level of G. Given a J-vector of such scores 0 for the J classes,
the N-vector Y@ represents a vector of scored training data which one may
try to regress onto the predictor matrix H. (With a slight abuse of notation,
we use 0 to represent both the function or the vector of JJ real numbers that
represent the function.) The simultaneous estimation of scores and regres-
sions constitutes the optimal scoring problem:

DEFINITION 1. The penalized optimal scoring problem is defined by the
criterion

. N 2
(1) ASR(0,B) =N ¥ [0(g:) - a(x)"B] + BTOB
i=1
(2) = N~1(llye — HBII* + B"QB),

which is to be minimized (made stationary) under the constraint
N-ye|® = 1.

Although Definition 1 is stated in terms of a single solution (6, 8), implicit
is a sequence of solutions (6,, B,) with orthogonality defined by the implied
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inner product N~'{(Y9,,Y0,) = §,,. We use this compact notation in the
subsequent definitions as well, and thus we avoid a more cumbersome
notation involving traces of matrices.

Optimal scoring (or scaling) is common in correspondence analysis [e.g.,
Lebart, Morineau and Warwick (1984); see Chapter 3 for a comparison with
discriminant analysis] and the psychometric literature [e.g., Gifi (1981, 1990),
in particular Chapter 7.2 for discriminant analysis; and the series of papers
by de Leeuw, Takane, Young, in various permutations (1976, 1978, 1979)].

It is useful to interpret criterion (2) as a quadratic form in the ccmbined
6-3 vector:

(3) ASR(69,B) = 072,60 — 2073, B+ BT 24, B,
where the obvious definitions are as follows:

1. 3,;, = N"'YTY is a diagonal matrix with the class proportions p; = N,/N
in the diagonal;
2. 3, = N"YHTH + Q) is the penalized covariance matrix of the predictors;
3. %,=N1'YTH; 3, =3T,.
If we assume that all classes are nonempty (N; > 0), 2, is invertible. As far
as 3,, is concerned, we must assume that the penalty () is chosen intelli-
gently so as to prevent exact or near collinearities among the predictors, that
is, %y, should be invertible, too.
For a given score vector 6, the minimizing B for the OS problem is the
penalized least squares estimate:

(4) By = (HTH + Q) "HTY0 = 353,
and the partially minimized criterion becomes:
(5) mﬂin ASR(6,8) =1-N"9TYTS(Q)Yo=1—- 073,,3,13,,0,

where S(Q) = H(HTH + Q)" 1HT denotes the “hat” or “smoother” matrix of
H regularized by (). This form of the OS problem is computationally useful
because it shows that one can run a penalized multiresponse regression Y
onto H once: Y = S(Q)Y, and then eigenanalyze Y'Y (with respect to the
metric 3;) to obtain the stationary 6 vectors. In Section 7 we discuss various
forms for S(Q). The intent of the following sections is to translate the results
of OS analysis into a LDA form.

3.2. Penalized canonical correlation analysis.

DEFINITION 2. The penalized canonical correlation problem is defined by
the criterion

COR(6,B) = 0734, B,
which is to be maximized (made stationary) under the constraints

OTEIIO = 1 and BT222 B = 1.
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Formally, this looks like the usual canonical correlation problem as applied
to linear discrimination, except for the penalization built into Z99-

The criteria of optimal scoring and canonical correlation analysis are
related to each other by (3): under the CCA constraints, ASR = 2 — COR,
which shows that the two problems differ only in the additional constraint on
B which is missing in OS. For a given set of scores 6, the maximizing B for
the CCA problem is, up to a scalar, the same as the minimizing B (4) for the
OS problem:

(6) Bcca = Bos/ V Bgszzz Bos >

which entails

(7 max COR(6, B) = (073,,35,'5,,0)".
B3 B=1 E

A comparison with (5) shows that the OS and CCA problems produce identi-

cal stationary score vectors 6.

3.3. Penalized linear discriminant analysis. Linear discriminant analysis
finds linear combinations of the predictors that maximize the between-class
variance (of the class means), relative to the within-class variance. To intro-
duce the penalized linear discriminant problem, we need the customary
decomposition of the total covariance 3.,, into between-class covariance and
within-class covariance (or respective cross-products, if the columns of the
expanded predictor matrix H are not centered). The between-class covariance
is the covariance of H regressed onto Y, or, equivalently, the class-weighted
covariance of the class means. The within-class covariance is what is left, and
is a pooled estimate of the common covariance matrix for the o classes. Let
Py =Y(Y"Y) 'Y" be the projector onto Y-column space:

1. M =3'S,, is a J X m matrix whose rows are the class means m’ —
ave{h;; i € Class j}: M = (m',..., m?)7,

2. Spy = N (PyH)"(PyH) = 301201 g = MTS,, M;

3. Sy =N (I - Py)H)'(I - Py)H + Q] = 3,, — Sp.,.

Accordingly, penalization affects only the within-class covariance.

DEFINITION 3. The criterion of the penalized linear discriminant problem
is the (unpenalized) between-class variance,

BVAR(B) = B" Zp., B,
which is to be maximized (made stationary) under a constraint on the
penalized within-class variance,
WVAR(B) = B"SyB = 1.

The equivalence of the CCA and the LDA problem is standard [e.g., 11.5.4
of Mardia, Kent and Bibby (1979)], but it will follow from the following
section as well. The interpretation of this particular form of penalization is
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more easily made in the context of a particular example. Highly correlated
predictors, such as in the case of discretized spectra, can meet the (unpenal-
ized) normalization constraint by using negatively correlated coefficients,
since the constraint is in terms of the variance of the derived variable.
Viewed as a function, the negatively correlated coefficients will appear wig-
gly; the appropriate penalty in this case would limit the spatial roughness of
these coefficients.

3.4. Translation of optimal scoring dimensions into discriminant coordi-
nates. It is convenient to use CCA as a link between OS and LDA; CCA is a
generalized singular value problem for %;, with regard to the metrics given
by 3,; and X,,. The associated singular value decomposition, essentially a
collection of stationary solutions of the CCA problem, takes on this form:

(8) 21_1121222_21 = ®DaBT3
(9) ®T211® = IL’
(10) BTE22B =1,

where L = min(J, m), ® is a J X L matrix whose columns 6, are left-sta-
tionary vectors, B is an m X L matrix whose columns B, are right-stationary
vectors and D, is a diagonal matrix of size L X L with nonnegative diagonal
elements «, sorted in descending order.

The usual proof of (8) is by coordinate transformations § = 2;;'/%0' and
B = 2,5, /?8’, which bring (9) and (10) to a Euclidean form, so the simple
(nongeneralized) SVD can be applied to 3;;}/%3,,35,'/% (i.e., 3, expressed in
the new coordinates). A simple SVD of the form A = UDV” entails the trivial
consequences AV = UD, ATU = VD, UTAV = D, VTATAV = D?, UTAATU =
D?; these are translated to the generalized SVD as follows:

(11) 352, B=0D,
(12) 352,80 =BD,,
(13) e’s,B=D,,
(14) 07315355 %90 = D,e,
(15) B3, 31!3,B = D,:.

In particular, (13) implies COR(6,, B;) = «,. [Here D, denotes a diagonal
matrix with elements «a,, D,: with diagonal elements a?].

According to (5) and (7) the stationary 6 vectors of OS and CCA are the
same, while the B vectors of OS and CCA are related according to (4) and
(12) by

(16) Bos = BD,,

Bg being a matrix of OS-stationary column vectors Bog, ;. From (5) and (7) it
follows that ASR(6,, B,) = 1 — af.
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To link CCA and LDA, we translate (15) directly into

(17) B'S,,B =D,
(18) B'SyB=1I,—-D,:>=D,_,.

This shows that B diagonalizes both 35, and X,. If we define
(19) Bipa = BDg 212,

we get a matrix whose columns By, , are stationary solutions of the LDA
problem:

(20) BITDAEWBLDA =1, BEDAEBetBLDA = Daz/(l—az)‘
Finally, the relation between the LDA and OS solutions is
(21) Bipa = BosDjo2 - o212+

3.5. Graphical projections. The strongest discriminant coordinates are
useful for graphical examination of both training and test data, the former
visually to assess overlap of groups in predictor space, the latter to judge the
strength of evidence for assigning test data to specific classes. The elements
that need to be plotted are projections of the following:

1. the class centers m/;

2. the predictor vectors 4; of the training data with an indication of their
class memberships;

3. the predictor vectors & of test data, if any.

We assume that the analysis has been performed by regression and
eigenanalysis, that is, we are given sets of scores ® and sets of fits

(22) n = Bish

for a given predictor vector A. It is convenient to translate these directly into
the required projections. For example, n might have been produced by a
complicated nonparametric regression model (for which we have a software
algorithm) with many hidden basis functions; we prefer to avoid these and
the innards of the software by simply asking for the fits, or predictions of 7 at
new points.

Starting with the class means, we rewrite (11) using the definition of M
and apply (19),

(23) ®D, = MB = MBy;,, Dy _ 02,
and, denoting with 6/ the scores of class j: ® = (61,..., 07)7, we get
(24) Bipam’ = a;/(1 - a12)1/20j‘

For actual plotting, one peels off the first two or three dimensions, that is, one
uses the first two or three scores for each class; see Figures 4 and 9 for an
example.
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To map sets of fits 7 to projected predictors B}, /4, we only need to apply
(21):

(25) B{DAh = D[az(l_az)]—uz Bgsh = D[az(l_az)]—uz'r].

Again, for plotting, one picks the first two or three dimensions, that is, the
first two or three elements from the set of fits.

In Figure 6 we plotted the penalized class discriminant functions 3! m’.
From (19) and (36) in the Appendix, we see that 3'm’ = B, Bf,m’. Here
we need B;p, or, equivalently, Byg.

3.6. Distance calculation and classification. Like many other statistical
procedures, LDA can be derived from suitable normal assumptions. In the
present paper, these assumptions are not made, but the derivations from
them are used as heuristic guides. The usual assumptions for LDA are that
the predictor vectors follow multivariate normal distributions with different
mean vectors but common covariance matrices among the classes. Assuming
(unrealistically) that the parameters in this model are known, classification
according to maximum posterior class probability results in a nearest class
mean rule, where “nearest” is measured in terms of the shared within-class
Mahalanobis distance. In practice, the rule is applied with parameters esti-
mated from training data (m’/ and the penalized 3, being our choices) and
adjustments for unequal class sizes: classify a test predictor A as class j if

(26) (h —m?) 33 (h — m’) — 2log p;

is minimized over j = 1,...,J. The last term is the class size adjustment
(p; = N;/N), while the crucial first term is the (penalized) squared Mahal-
anobis distance d(h, m’). Sometimes the sample priors p; do not reflect the
population priors 7; (e.g., a stratified sample); in this case some external
estimate of the 7; should be used. _
In order to appreciate the effect of penalization on the metric in d(k, m’),
write 3t as (W+ Q)~!, where W is the unpenalized within covariance.
Consider the deviations of two different observations from a centroid: O,
being close in a “smooth” coordinate, far in a “rough”, and O, being the
opposite. We would prefer to say that O, is closer. However, W~! will have
large eigenvalues for rough directions and will favor O,; the penalty Q will
typically have the reverse eigenstructure to W and so cancels out this effect.
In the Appendix, we first reconstruct the fact that classification can be
done based on Euclidean distance in the full space of discriminant variates
BT, AR of h. Second, we show that the results of optimal scoring, the scores ®
and the fits Bgsh, are all that is needed for classification, a fact which
we learned from Breiman and Thaka (1984). This is very useful when we
want the regression procedure to select the amount of smoothing, for it shows
that the residual sum-of-squares in the regression problem is intimately
related to the classification distance [Hastie, Tibshirani and Buja (1994)].
Our proofs are shorter and cover the case of penalized within-class covari-
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ances. Third, one can perform classification using distances in the K < J — 1
reduced-dimensional discriminant subspace by using the corresponding re-
duced set of regression fits and scores.

These results establish that the original class-adjusted Mahalanobis dis-
tance (26) is equivalent to each of the following distance measures (when
used in a relative sense for classification):

. d(h, m’) — 2log p;;

NIBIpa(h — m)|? — 210g pj;

MDZE uope(n — B — 21og pj;

. ||D(1_a2)~1/2(0j - 77)“2 —lle7l? - 2log pj;
D ay-12(67 = I = 1/p; — 21og p;.

QU i W N =

Among these, only the last cannot be used in a dimension-reduction mode
since it relies on the presence of  — 1 discriminant coordinates. In the third
expression, 73/ = BTm/ = D2¢/.

4. Model considerations. Both the examples in this paper arise from
discretized analog signals: cases where the data can be viewed as functions,
sampled for computer representation. In the first example, the spectrum for
an utterance is a function of frequency; in the second, the picture of the
handwritten digit is a function of two spatial coordinates. As such the data
for the ith sample can be interpreted as a discretized realization &; , = h,(s;)
of a stochastic predictor process h(s) evaluated at discrete values s, of a
(continuous) index domain. We assume (a) that the jth class is observed with
relative frequency 7; = P[G =j] and that (b) its predictor process h(s) has a
class-specific mean function u/(s) = E[h(s)IG = j] and (c) a covariance func-
tion 3(s,t) = E[{h(s) — u,(s){A(¢) — u (|G = j] that is shared among the
classes.

This provides us with a model underlying the methods described in this
paper. It is natural to think of a functional version of LDA [Kiiveri (1992),
Section 1.2] in terms of this model. Ramsay and Dalzell (1991) coined the
name functional data analysis for this kind of problem.

The functional canonical variate problem in discriminant analysis consists
of finding normalized functions B,(s) such that the associated functionals
M, = [Br(s)h(s) ds have means that are optimally separated among the
classes, that is, ©7_,7;E(n,|G = j)* is maximized. The normalization has the
form [[B,(s)X(s, ) B,(t) dsdt = §,,.

For the functional classification problem in discriminant analysis, one
assumes that the predictor processes are Gaussian. The Bayes optimal classi-
fies assigns a predictor function 4(s) to the class j that minimizes d(k, u;) —
2log ;, where the Mahalanobis distance d is defined as

d(h, ) = [ [[R(s) = mi()]2 (s, ) [A(2) — w;(t)] dsdt.
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For this to be meaningful, one has to assume that an inverse 3! of the
covariance operator B(-) — [3(-,¢)B(¢)dt exists, but even if it exists, it
generally cannot be represented by a kernel 3!(s, ¢). The double integral in
the definition of D(h, ;) therefore has to be taken with a grain of salt.

For estimation in the functional model, we have to consider two levels of
asymptotics:

1. we obtain N realizations h; of the predictor process (sample size N);
2. we observe the realizations at m discrete locations s, (resolution m).

Leurgans, Moyeed and Silverman (1993), in the context of canonical correla-
tion analysis, focus on the first case and essentially view the second as a
computational approximation of integrals by sums. For infinite-dimensional
predictors h(s) (m = «), they show that in order to obtain consistent esti-
mates of B(s) it is essential to regularize the sample estimate of the covari-
ance function (see their Propositions 1 and 2). This is intuitively obvious, for,
with infinite resolution m and finite sample size N, we have always more
variables than observations, and well-known degeneracies occur. They then
derive the rates at which the amount of regularization should decrease to
zero as N grows large in order to achieve consistent estimates of canonical
variates. These results carry over to discriminant analysis with minor modi-
fications: in their functional canonical variates problem, specialize the second
process to a stochastic indicator vector indicating class membership, and
remove penalization for this J/-dimensional “class membership process.”

Estimation of the Bayes optimal classification criterion poses an equally
obvious problem: any estimate (s, ¢) of the covariance function (s, ¢) will
have rank no greater than the sample size N. It is therefore impossible to
invert the estimated covariance operator in order to calculate the Maha-
lanobis distance, unless it is regularized with a suitable penalty. There is no
necessity, however, to develop asymptotic theory for this form of the classifi-
cation criterion since other equivalent forms of the criterion are based on
canonical variates (Section 3.6) and hence require inversion of the covariance
operator only on a finite-dimensional subspace.

As a final remark, one might argue that asymptotic theory of estimation in
a functional framework is not realistic since for all practical purposes a finite
resolution has to be chosen. The argument could continue along the lines that
the resolution should be selected commensurate with the sample size, and a
realistic asymptotic theory should determine at what rate the resolution m
can be increased as a function of the sample size N in order to achieve
consistency. Such an approach would essentially use resolution as a regular-
ization parameter. The problem with this approach is that the choice of
resolution is and should be guided by computational feasibility rather than
sample size: if we face a very small N, it might be feasible to choose a rather
large m without running into problems of computer time and memory
exhaustion. Low resolution amounts to throwing away data—a rather crude
regularization method. It is more informative to make use of as much data as
possible and derive regularization from substantive arguments, such as
smoothness considerations on the index domain.
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5. Example: smooth canonical functions for classifying log-peri-
odograms. The following analysis is taken from joint work of Andreas
Buja, Werner Stuetzle and Martin Maechler. The data in this example were
extracted from the TIMIT database (TIMIT Acoustic—Phonetic Continuous
Speech Corpus, NTIS, U.S. Department of Commerce), which is a widely used
resource for research in speech recognition. We formed a small test problem
by selecting five phonemes for classification based on digitized speech from
this database. The phonemes are transcribed as follows: “sh” as in “she”; “dcl”
as in “dark”; “iy” as the vowel in “she”; “aa” as the vowel in “dark”; and “ao”
as the first vowel in “water.” From continuous speech of 50 male speakers, we
selected 1000 speech frames of 32 ms duration, approximately 2 examples of
each phoneme from each speaker. Each speech frame is represented by 512
samples at a 16 kHz sampling rate, and each frame represents one of the
above five phonemes. The breakdown of the 1000 speech frames into phoneme
frequencies is as follows:

sh del iy aa ao
191 167 269 147 467

From each speech frame, we computed a log-periodogram, which is one of
several widely used methods for casting speech data in a form suitable for
speech recognition. Thus the data used in what follows consist of 1000
log-periodograms of length 256, with known class (phoneme) memberships.

Figure 3 shows a sample of 10 log-periodograms in each phoneme class. It
is known that periodograms have rather erratic statistical properties; the
figure supports this. In order to turn them into reasonable estimates of an
underlying spectral density function, a certain amount of smoothing is re-
quired. However, the interest in speech recognition is not faithful estimation
of spectral densities but discrimination among speech units such as phonemes.
We therefore envision a role for smoothing at the level of linear functionals
on log-periodograms rather than smoothing the periodograms themselves.

If we think of log-periodogram vectors as functions A(f) evaluated at
finitely many frequencies f, we have the task of estimating linear functionals
n(h) = [ B(f)h(f) df, approximated by Y h(f;))B;, that best discriminate
between the phonemes. The representers B(f) and their discretized versions
(the sets of linear coefficients) should be estimated in such a way that they
depend smoothly on the frequency f, for reasons presented in Sections 1 and
4. This can be achieved in an obvious way, for example, with a second
derivative penalty on the coefficients B(f): Af[ B"(f)I?df [Wahba (1990)].
The penalty that we actually used for the present speech problem has the
form Af[ B"(FIPw(f)df, where w(f) was chosen to penalize the higher
frequencies more. This is suggested by the experimental observation that the
capability of the human ear to discern acoustic detail decreases rapidly for
the frequencies above 1 kHz. In speech recognition, it is standard to use
techniques with higher resolution in lower frequencies. Our weight function
w(f) is constant for values of f up to 1 kHz, and decreases linearly there-
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periodograms consist of a smooth trend plus high-frequency oscillations.

after. We refer to this as an improper spline penalty; further details are given
in Section 7.

In Figure 1 in Section 1 we show the four canonical LDA coefficients B(f)
plotted as functions of a frequency scale (the plotting range 0-256 maps to
0-8 kHz). The jagged curves represent the raw LDA coefficients, while the
smooth curves show penalized coefficients.

The overwhelming impression from these plots is of course the extremely
wild behavior of the unpenalized LDA coefficients as compared to the penal-
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ized ones. Except for the very lowest frequencies, there is barely any struc-
ture that could be discerned by eye in the unpenalized curves. Although not
visually evident in Figure 3, there are positive correlations among log-peri-
odogram values over large neighborhoods on the frequency scale. In fact,
among more than 32,000 (256 choose 2, to be exact) pairwise within-class
correlations of log-periodogram values, fewer than 5% were negative. For the
reasons given in Section 1, this leads to negatively correlated coefficients.

The penalized curves shown in Figure 1 are easily recognized by their
smoothness. In terms of fitted degrees of freedom, the reduction in the
penalized coefficients is dramatic: while the unpenalized coefficients have 256
df, the penalized coefficients have only 30 df. (We computed df as the trace of
the smoother matrix in the equivalent optimal scoring problem; further
details in Section 7.) The smoothness of the penalized curves allows interpre-
tation of the coefficients as contrasts that set various frequency ranges
against each other. The action is mostly in the low frequencies, as expected.
Figure 4 shows that the first penalized discriminant coordinate function sets
the phonemes aa and ao apart from the phonemes dcl, iy and sh. According
to Figures 1 and 3, this coordinate relies on a peak (so-called formant)
between 500 and 1000 Hz (roughly frequencies 16 to 32) in the log-periodo-
grams for aa and ao. According to Figure 4, the second penalized discrimi-
nant coordinate sets the phoneme s’ against the phonemes dcl and iy. A look
at Figures 1 and 3 shows that this contrast picks up a peak near zero
frequency in the log-periodograms for dcl and iy which is absent for sh.

So far, we discussed only qualitative features of penalized discriminant
analysis for this data example, but the bottom-line numbers, namely, mis-
classification rates, are favorable for penalization as well.

In order to assess test sample performance, we conducted a simulation
study using an additional 387 speakers. From the combined set we randomly
selected 50 speakers, fitted both the LDA model and a variety of PDA models
at different levels of regularization and used them to classify the remaining
examples. This was repeated 50 times, and the results are shown in Figure 5.
In the lower left panel we see boxplots of the test error for the improper
spline as a function of df, with the rightmost entry corresponding to the
unpenalized LDA. The minimum median of 0.073 is achieved around 30 df,
and all are lower than that for unpenalized LDA (median 0.086). The amount
of regularization needed depends on the size of the training set, as well as the
purpose of the model (we might favor smoother coefficient functions for
interpretability). The figure suggests that the test error rates of PDA are
relatively insensitive to the amount of smoothing: any reasonable amount
between 20 and 80 df does considerably better than no smoothing. By
comparison, the top let panel shows the corresponding error rates on the
training data. As expected, LDA overfits and does the best, while PDA
achieves a median value slightly lower than the 0.073 it achieved on the test
data.

Included in Figure 5 are the results of some other approaches to PDA. The
second column of figures was based on a hand-crafted filtering approach



90 T. HASTIE, A. BUJA AND R. TIBSHIRANI

Canonical Variate Plot - Phoneme Training Data
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FiG. 4. The first two penalized canonical variates, évaluated for the phoneme training data. The
true class identities are indicated. As might be expected, the two vowel sounds “ao” and “aa” are
confused. The circles indicate the class centroids.

popular in speech research, which uses piecewise linear basis functions. The
knot spacings are chosen to be uniform up to 1 kHz, and then increasing
logarithmically. Our piecewise linear weighting function w(f) used with the
improper spline penalty was chosen to correspond empirically with this
choice of knots. These filter bases are used to create linear combinations of
the original predictors and, are then used in place of them. The misclassifica-
tion results are comparable to those for the improper spline.

The third column was obtained by using an unstructured ridge penalty to
regularize, which amounts to shrinking the within covariance matrix toward
a scalar covariance matrix. Again the misclassification results are only
slightly worse than for the first two columns. All three approaches can be
viewed as versions of PDA, enforcing spatial smoothness of the coefficient
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F16. 5. Training and test errors as a function of df for three versions of PDA, compared with the
unrestricted LDA (df = 256). The three versions are (left) regularized using a weighted smoothing
penalty, (middle) asymmetric filters and (right) simple ridging. All three show comparable
classification performance at their optimum df.

functions. The filter approach explicitly uses piecewise smooth bases to
represent the coefficients. Although ridging appears to treat all coefficients
equally, one can show that those contrasts corresponding to small eigenval-
ues of the total covariance are shrunk more than those corresponding to the
large eigenvalues. Since the positive autocovariances lead to longer-trend
dominant eigenfunctions, to some extent the ridging shrinks toward similarly
behaved coefficient functions [Hastie and Mallows (1993)]. The improper-
spline approach, on the other hand, explicitly biases toward smooth coeffi-
cient functions.

Figure 6 shows the class discriminant functions for the five classes,
comparing LDA, our improper-spline PDA and ridge PDA, each at their
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Fic. 6. Class discriminant functions for the five phonemes: these are analogs of the functions
Sytmé for linear discriminant analysis, except the within covariance here is penalized. The thick
solid curve represents PDA using the improper spline penalty and 30 df. The raw LDA coefficients
are in the background. The wiggly curve is the ridge version of PDA, using 70 df.

optimal df according to Figure 5. These are the equivalent versions of 3'm/
for linear discriminant analysis (see the last paragraph in Section 3.5). These
are distinguishing contrast coefficients for each phoneme. As expected the two
“a” vowels are very similar. The ridge curve is very wiggly, but still manages
to portray the main features. Since ridge shrinks toward the origin, far less
shrinking was asked for (70 df) in order to allow the main features to appear;
the improper spline, on the other hand, shrinks toward smoothness and could
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afford smoother functions. For space reasons we do not display the curves for
the filter method, which look similar to those for the improper spline, albeit
piecewise linear.

6. Example: image analysis and character recognition. A current
“hot” topic in the field of pattern recognition is the automatic reading of
handwritten addresses and zip-codes from envelopes. Le Cun, Boser, Denker,
Henderson, Howard, Hubbard and Jackel (1990) implemented a successful
procedure which included as a primitive the classification of isolated hand-
written digits. We used a subset of their data for training and testing, a
sample of which is shown in Figure 7.

Le Cun et al. normalized the binary images for size and orientation,
resulting in 8-bit, 16 X 16 gray-scale images. They used the 256 pixel values
as the inputs to a multilayer-neural-network model, which is trained to
classify the images. They report overall misclassification rates on test data of
under 5%. The goal in this section is not to compete with their highly tuned
procedure, but to show that a traditional statistical method, LDA, can be
improved by spatial regularization. One could expect that any classification
procedure that relies on coefficients at a pixel level (including neural net-
works) would similarly benefit from regularization.

Our approach here was to use the same normalized data as Le Cun and
coworkers (kindly supplied by J. Bromley), but to use simpler and more
classical approaches to discrimination. We used the first 2000 images as
training data, and the following 2000 as a preliminary validation set.

} 4567 8
48678
S IEZIEN:
Y5678
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Fic. 7. A random selection of digitized handwritten digits: each image is an 8-bit, gray-scale
version of the original binary image, size and orientation normalized to 16 X 16 pixels.
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As a first step we fitted a standard LDA model to the training data. The
misclassification rate was 3.1% on the training data, but 11% on the valida-
tion set. The training error is less than a third of the test error and suggests
we may be in an overfit situation, despite the simplicity of the technique.
Indeed, the nine discriminant functions each have 256 coefficients, and
despite the normalization constraints, resulted in over 2000 independent
parameters!

Apart from the initial normalization, our procedure did not take advantage
of the spatial correlation in the data. Even though we have 256 pixels per
image—ostensibly 256 independent pieces of information—this spatial corre-
lation suggests the real number is far less.

Figure 2 in Section 1 consists of nine pairs of images; the left member of
each pair represents the LDA coefficients as images, with the hope of gaining
some insight into the important contrasts found. These salt-and-pepper im-
ages reveal no structure and once again reflect the correlation between
neighboring pixels, resulting in a strong negative correlation between coeffi-
cients.

We fit a PDA model using a Laplacian penalty J(8) to constrain the
coefficients to be spatially smooth. Denote the coefficients as functions B(x, y),
where x and y refer to horizontal and vertical coordinates in the two-dimen-
sional image. Then

a2B a2B 2
(27) J(B) =[M[m + 57 dxdy,

where the term within square braces is the Laplacian. Further details are
given in Section 7.

The right member of each pair in Figure 2 represents the PDA fit, where
we chose the smoothing parameter to achieve 40 df for each coordinate. The
misclassification rates are now 6.1% for the training data, and 8.2% for the
test data; a 25% reduction in validaticn error using 85% fewer parameters!

In order to validate these results, we conducted a simulation study similar
to that used in the previous example. We randomly sampled 2000 images
from the combined set of 4000 as training images and used the remainder as
test images. This was repeated 50 times, and the results for several methods
are summarized in Figure 8. We have used about 40 df for all the examples.
We tried different amounts of smoothing and found that for less df, the test
results uniformly got worse quite rapidly, and for more df they remained the
same or got worse very slowly. From these results it seems our initial division
into training and test set yielded slightly pessimistic results.

The smoothness not only gives us improved misclassification rates, but
offers interpretability as well. The first PDA coefficient in Figure 2 looks like
a white 0 with a vertical center darker than the remainder of the image. This
contrast image can be expected to yield positive scores for 1’s and negative
scores for 0’s. Figure 9 confirms this, and as we might expect 7’s and 9’s are
on the same side as 1’s, while 6’s look more like 0’s. The second PDA
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Fic. 8. Each boxplot shows the misclassification results for 50 resampling trials, the left panel
showing training or resubstitution error, the right panel showing test error. All methods use
about 40 degrees of freedom. The method labelled “smooth LDA” was obtained by smoothing the
LDA coefficients as a function of spatial coordinates, using the same Laplacian penalty as the
PDA fits. The method labelled “filtered LDA” corresponds to LDA on a 44-dimensional set of filter
coefficients, described in the text.

coefficient in Figure 2 gives a positive score to images dark in the bottom left
corner, and a negative score to images dark in the bottom middle and top left;
6’s fall into the first category and 7’s and 9’s into the second, and both are
confirmed in Figure 9. The interpretation of the coefficients becomes more
difficult for the lower-order coefficients.

For the filtering approach we used a tensor-product basis of polynomials in
each of the spatial coordinates, with total degree restricted to 8 and thus
m = 44 basis functions. The images derived for this and the other methods
were not visually informative so we have omitted them.

7. Penalized regression methods. In this section we give more details
on the different forms of penalized regression outlined in Section 1, used in
the examples and appearing in equations (5) and (4). The response is a scored
version of G, thus a scalar, numeric variable, which for simplicity we refer to
as Y, with realizations y;.

Ridge regression is the oldest and simplest method for regularizing linear
regression problems with nearly collinear predictors. It is trivially a penal-
ized least squares method since the ridge estimator 8 = (HTH + AI)"'HTy
minimizes the criterion

ly — HBIIY + Al B,

where N is the sample size and m the number of predictor variables. The
matrix Al and its associated penalization All 8 |2 are adequate when neither
prior knowledge nor purpose of investigation dictate a more adapted kind of
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Canonical Variate Plot — Digit Test Data

PDA: Coordinate 2

PDA: Coordinate 1
F1G. 9. The first two penalized canonical variates, evaluatéd for the test data: the circles indicate
the class centroids. The first coordinate contrasts mainly 0’s and 1’s, while the second contrasts
6’s and 7/9’s.

regularization. More generally the estimator has the form 8= (HTH +
AQ)"1HTy, and it minimizes

(28) ly — HBI% + ABTQRB.

Here () is a more structured penalty matrix and imposes smoothness with
regard to an underlying space, time or frequency domain.

We also want to consider smoothness at the level of functions B(s) on this
domain, as in Section 4. The functional discriminant analysis model trans-
lates via optimal scoring into the functional regression model n = [B(s)h(s) ds
for the mean of Y, and an appropriate criterion might be

(29) Ey(Y — 1) + AJ(B)
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for some penalty functional ¢/, a seminorm of the space of functions being
considered. In discretizing the problem, we have a sample of responses y; and
functions %, measured at a set of m values of s, but we can leave B(s) as a
function, chosen to minimize

N m
(30) L (- Encosee

i=1
We now focus on three particular applications: the two examples given in
this paper, and the nonparametric regression approach used in FDA.

+ AJ(B).

7.1. Speech data: improper splines. Here the penalty has the form
(31) J(B) = [[B"(NI*w(f) df,

where w(f) allows the penalty to give more weight to the lower frequencies.
If w were missing, the solution to (31) would be a natural cubic-spline
[Wahba (1990)] with knots at the sampled frequencies f;. With w present, the
solution will not in general be a spline, and the character of the solution, if it
exists, will depend on w. We sidetrack these issues by adapting the spline
penalty to approximate (31), and refer to our solution as an improper spline.
With w absent, the m-dimensional spline solution can be parameterized by
the values B, = B(f,) themselves, and the penalty can be written as J( ) =
BTQB, with Q = ATC~'A [Green and Yandell (1985), for example]. Here A is
a second-difference operator for approximating second derivatives, and C~!
can be viewed as a kernel for approximating the integral. If D, is a diagonal
matrix with entries w(f)), we use Q, = ATDY?2C~'DL/2A as the penalty in
(28).

7.2. Image data: tensor product splines. Here our coefficients B(x, y) are
indexed by x and y: horizontal and vertical coordinates in the two-dimen-
sional image, and A(x,y) are gray-scale values. We used the Laplacian
penalty

(32) J(B) = [ [~—+—§ dx dy.

Since x and y each assume 16 unlformly spaced values on a lattice in R?2, for
computational simplicity we use the discretized version of J( 8) described in
O’Sullivan [(1991), page 635]. This uses the discrete approximation J( ) =
BTQ B, where the 256 X 256 penalty matrix = A’A is based on the discrete
approximation to the Laplacian: A=D, ® I, + I, ® D,. The 256-vector B
refers to the vectorized version of the 16 X 16 matrix of coefficients (in row
order). Here D, and D, are each 16 X 16 matrices that approximate a second
derivative by second differences. O’Sullivan (1991) gives an explicit Fourier
representation of the spectral decomposition ) = FD,,,I‘T. This simplifies the
solution of (28), since we can transform to new coordinates for which the

penalty is diagonal."
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7.3. Nonparametric regression. The regularized regressions we have seen
so far penalize the coefficients of the predictors for roughness (in some spatial
domain). In the form of nonparametric regression considered here, we first
expand the predictors into a large set of basis functions, and then restrict
their coefficients to be smooth as a function of the predictors themselves.

For the purposes of the discussion here, we focus on nonparametric addi-
tive models for the regression function: n(x) = Lf_, f,(x,) [Buja, Hastie and
Tibshirani (1989), Hastie, Tibshirani and Buja (1994)]; and an appropriate
penalized least-squares criterion

N
(33) L (3= (=) + I(mi d),
with

p
J(m;A) = kgxk[ 7 (w)]” du.

The solution can be represented in terms of a finite-dimensional basis A(x):
n(x) = h(x)’B. Here h(x) is a union of spline basis functions for each
coordinate function. Suppose A has m components, and let H be the N X m
basis matrix with ith row A(x;); J(n; A) can be expressed as a quadratic form
in B: J(n; M) = BTQB, where Q is a m X m block-diagonal, nonnegative
definite penalty matrix. This again has the form (28).

The number m of basis function can be quite large; for a univariate
smoothing spline there are as many basis functions as there are unique
values of x; (potentially N). The additive-spline model can have up to Np
basis functions! Fortunately there are efficient iterative algorithms for com-
puting the solutions, especially for additive spline models. More details on the
additive spline model (and several examples using them in this context) are
given in Hastie, Tibshirani and Buja (1994).

7.4. Degrees of Freedom. In the examples we have referred to the effec-
tive degrees of freedom of a smooth fit. This is a useful translation of the
smoothing parameter into a more meaningful parameter that can be used to
calibrate a variety of different linear methods. The vector of fitted values for n
in (28) is given by

(34) S(N)y =H(HTH + AQ) 'HTy,

where S(A) is an N X N linear operator matrix. The degrees of freedom are
defined to be df(A) = tr S(A) [Buja, Hastie and Tibshirani (1989), Wahba
(1990)]. The function df is monotone in A, and in practice we can fix df and
determine the appropriate value of A with minimal additional computational
cost. In the examples in this paper we avoided automatic selection of regular-
ization parameters. Instead we have favored an empirical approach of exam-
ining discriminant functions and misclassification performance for a few
values of df and selecting the most informative values.



PENALIZED DISCRIMINANT ANALYSIS 99

8. Summary. Penalized discriminant analysis appears to be a useful
tool for problems such as speech and image recognition, featuring a large
number of correlated inputs. An attractive feature of the method is the
potential to extract and interpret a small number of discriminant functions
and the resulting benefits for scientific understanding of the data. Potential
medical applications include the disease classification of pap smears and
mammograms.

APPENDIX
Details of the distance calculation.

A.1. Reduction of distances to discriminant coordinates. The decomposi-
tion in (8) is in terms of at most J — 1 eigenvectors of 3p,,; the Jth is trivial
with eigenvalue 0 if H is centered, or else equally trivial with eigenvalue 1 if
H is not centered but includes the constant column. Assuming that J < m, it
is useful to pad out the decomposition to the full m dimensions: (a) let
B* =(B:B)) be of size m X m, such that B*"3,,B* =1, and (b) D, =
D, .q), where B is now the full (J — 1)-dimensional nontrivial solution and
D,. is the corresponding nonzero eigenvalues. The following facts can be
easily verified:

(35) S5 = B*B*T
=BBT + B, BT ;
(36) 33! =B*(I1-D,) 'B*"

-=B(I-D?) 'B" +B, BT ;

(37) St = B* TD,B*" 1,

An implication is that, confined to the subspace spanned by M, the (penal-
ized) Mahalanobis distances differ using the metrics 35, and 3', but are
the same in the orthogonal subspace.

The following equation shows that classification can be based entirely on
discriminant coordinates:

(38) d(h,m?) =] Blpa(h = m)) | + IBL RIP.

The first term follows from (36) together with the relation between Bjp,
and B from (19). From (87) we see that B” 3, =0, but since 3, =
MT3,,M, it follows that BT MT = 0, and hence BT m/ = 0 Vj. Thus (38)
follows.

If the dimension m of the (expanded) predictors A is much larger than the
number of classes, oJ, the reduction to discriminant coordinates may give
considerable savings.

A.2. Reduction of distances to optimal scoring. In Section 3.5, we estab-
lished links between projections based on LDA and OS. In terms of distance
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calculations, they imply that classification can be based on scores 6’ and fits
n rather than class centers m’/ and predictors A. This can be convenient in
settings where the dimension m of & is very large; for example, when 7 is
modeled by an additive spline, m ~ Np, where p is the number of original
predictors in x. Algorithms for fitting additive spline models efficiently
compute the additive fit BI5A; it is therefore useful to express the classifica-
tion criterion in terms of this regression as well. To this end, we reformulate
(38) based on (24) and (25):

I Boa(h — m7) "2 = h"BipaBipah — 2R Byps Bipam’
+ m7' By paBlpam’
= TITDa-za—aZ)-l”l - 2"7TD(1—a2)-10j
(39) + 6’jTDa?(l—mZ)-loj
= 1D 1ya- oty + (67 = 1) Dy oy 1(67 = )
- ejTD(l—az)(l—az)_loj
Dl + | D ary- (07 = )| = 109112,

This result in itself proves the assertion. A closer look at the derivation
reveals that it is of greater generality than meets the eye. Assume one wishes
to perform dimension reduction and base the distance calculations for classi-
fication on the first K < J — 1 discriminant coordinates only. One would then
use the following:

1. Byp, reduced to the first K columns;
2. 60’ reduced to the first K scores;
3. m reduced to the first K fitted values.

It turns out that the derivations of (39) still hold. Thus, scores and fitted
values are a base for distance calculation at any level of dimension reduction.

Assuming that no dimension reduction is desired, one can continue and
express (39) in a variety of ways, for example, by rewriting the equation (38)
for the Mahalanobis distance with the help of (35):

(40) d(h, mi) = RISk + || Da_o1a(67 — )| — 67112,
A final touch concerns the term ||67]|%: Let ® denote ® augmented with
the trivial column 6, =1. Then @ is square and nonsingular with

073,08 = I,. Thus, since 3, = D, is diagonal with the class proportions as
diagonal elements, we have 00T = p'l, or 67]2 + 1= 1/p; Vj:

(41)  d(h,m?) = KTS5h +| Dy una(67 — m)|* = 1/p; + 1.

This is the form given by Breiman and Thaka (1984).
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If we neglect terms which are independent of the classes, such as A7 3, A,
the original class-adjusted Mahalanobis distance (26) is seen to be equivalent
to the distances labeled 1-5 in Section 3.6.
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LDA: Coeifickent 3 PDA: Coalficiant 3

LD Coaficent 1 PDA: Coafficiant 1

LiDa: Coaflicsant B PDA: Coafficient &
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