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Let X have a multivariate, p-dimensional normal distribution (p > 2)
with unknown mean p and known, nonsingular covariance 3. Consider
testing Hy: b;pn < 0, for some i =1,...,%, versus H;: bjp > 0, for all
i=1,...,k, where by,...,b,, & > 2, are known vectors that define the
hypotheses. For any 0 < a < 1/2, we construct a size-a test that is
uniformly more powerful than the size-a likelihood ratio test (LRT). The
proposed test is an intersection—union test. Other authors have presented
uniformly more powerful tests under restrictions on the covariance matrix
and on the hypothesis being tested. Our new test is uniformly more
powerful than the LRT for all known nonsingular covariance matrices and
all hypotheses. So our results show that, in a very general class of
problems, the LRT can be uniformly dominated.

1. Introduction. Let X =(X,,...,X,), p > 2, be a p-variate normal
random variable with mean vector p = (p,,..., u,) and known, nonsingular
covariance matrix X. We consider the problem of testing

Hy:bp<0 forsomei=1,...,k
(1.1 versus
Hi:b;p>0 foralli=1,...,k.

Here by,...,b,, £ > 2, are specified p-dimensional vectors that define the
hypotheses. Berger (1989) gives several examples of hypotheses that can be
expressed in this way. We assume H; is nonempty, so the testing problem is
meaningful. (We use the symbol H; to denote the set of p vectors specified by
the hypothesis, as well as the statement of the hypothesis.) We also assume
that the set {b;,...,b,} has no redundant vectors in it, that is, there is no b,
such that {p: bijp >0, i=1,...,k}={p: Du>0, i=1,...,k, i+j}
Sasabuchi (1980) discusses conditions that are equivalent to our two assump-
tions.

In this paper, for any testing problem of the form (1.1) and any 0 < a < 1/2,
we propose a new size-a test that is uniformly more powerful than the size-a
likelihood ratio test (LRT). First we consider hypotheses that have only two
linear restrictions (k = 2). Two new tests, ¢, and ¢,, are proposed for the
cases b 2b, > 0 and b,3b, < 0, respectively. In both cases, the rejection
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56 H. LIU AND R. L. BERGER

region of the new test is like Berger’s (1989) in that it contains the rejection
region of the LRT and an additional set, but the size of the new test is still a.
So the new test is uniformly more powerful than the LRT. Berger (1989)
proposed a more powerful test for the b;Zb, < 0 case. The test ¢, we
propose is different than Berger’s test and, in some cases, appears to be more
powerful. Then, recognizing that, for £ > 2, H, can be written as the inter-
section of sets each defined by two inequalities, we use the intersection—union
method to combine tests of the form ¢, and ¢, to obtain a test ¢, that is
uniformly more powerful for the general problem (1.1).

The initial work on testing problems where both null and alternative
hypotheses are determined by £ linear inequalities was by Sasabuchi (1980).
Sasabuchi (1980) treats the problem where the null hypothesis corresponds to
the boundary of a convex polyhedral cone determined by linear inequalities
and the alternative corresponds to its interior. His problem is to test

Hys:b,m >0 foralli =1,...,k%, where equality holds for

(1.2) at least one value of ¢
’ versus

Hig:bp>0 foralli=1,2,...,k.

Sasabuchi (1980) showed that the size-a likelihood ratio test (LRT) of prob-
lem (1.2) is the test that rejects Hg if

b,X

Zi= W =2z, for all ; = 1,...,k,

where z, is the upper 100a percentile of the standard normal distribution.
Berger (1989) shows that, although H;q3 € H, and H,, is a much bigger set
than H,g, the size-a LRT in problem (1.1) is the same as in Sasabuchi (1980).
The LRT has some optimal properties. Lehmann (1952), Cohen, Gatsonis and
Marden (1983) and Sierra-Cavazos (1992) prove under various conditions
that the LRT is uniformly most powerful among all monotone, size-a tests.
Cohen, Gatsonis and Marden (1983) also show that, in a bivariate problem,
the LRT is admissible. However, the LRT is a biased test. Berger (1989)
points out that the power will be approximately a? when p is close to 0 in
the sign testing problem. Lehmann (1952) showed that in some problems of
this type, no unbiased, nonrandomized test exists. Iwasa (1991) also points
out the LRT is d-admissible but not a-admissible in a bivariate problem. The
a-admissibility would guarantee the nonexistence of a uniformly more power-
ful test of size a, but the d-admissibility does not. So it is possible that we
can find a nonmonotone test which is uniformly more powerful than the LRT,
and several researchers have worked on finding such tests. We believe the
increased power of these tests outweighs their lack of monotonicity, even in
practical situations. However, if monotonicity is the primary criterion, then
the LRT is the most powerful test.

Gutmann (1987) constructs two tests, when Xj,..., X, are independent,
that are uniformly more powerful than the uniformly most powerful mono-
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tone test in the sign testing problem. Nomakuchi and Sakata (1987) also give
a uniformly more powerful test in the bivariate normal case, which is a
special case of Sasabuchi’s (1980) problem. Berger (1989) gives a class of tests
which are more powerful than the LRT if b, 2b, < 0. If X is a normal random
vector, then Gutmann’s (1987) problem is a special case of Berger’s (1989),
and Berger’s test is more powerful than Gutmann’s test. Iwasa (1991) gener-
alized the Nomakuchi-Sakata test to an exponential family. In the same
paper, he also generalized Berger’s test to an exponential family in the sign
testing problem when %k = 2. Shirley (1992) proposes a test that is more
powerful than Gutmann’s when & = 3.

To simplify computation we consider the transformed version of the origi-
nal problem that is similar to the one used by Sasabuchi (1980) and Berger
(1989). Let " be a p X p nonsingular matrix such that IXI" =1, the p X p
identity matrix. So ' '(I'"!) = 3. Make the transformation Y = I'X. Then
Y ~ N,(8,1,), where 6 = I'p.. Let [la]l = (a’a)/2? denote the norm of a vector.
Define h; = b,I'"!/|[b,I'"!|. Then b)p = h,08|/b,I'"!|. Therefore, problem
(1.1) is equivalent to observing Y and testing

H,:h06 <0 forsomei=1,...,k

(1.3) versus
H:h0>0 foralli=1,...,k.

We will use Y, h; and 6 throughout the rest of the paper. Note that || h;|| = 1.
This will simplify some expressions. For example, in terms of these variables,
the size-at LRT of (1.1) or (1.3) is the test that rejects H, if h;Y > z_, for all
i=1,...,k

In Section 2 we propose a new test ¢, for the case £ = 2 and h'h, >0
(b 2b, > 0). To our knowledge, this is the first more powerful test described
for these problems except that Berger considered the h'/h, = 0 case. We
compare the power of ¢, and the LRT in an example. We also discuss a
restriction on size-a tests that shows why some types of construction will not
give uniformly more powerful, size-a tests in this case. In Section 3 we
consider the £ = 2 and h',h, < 0 case, which was also considered by Berger
(1989). We imitate the strategy used in Section 2 to propose another test ¢,,
which is more powerful than the LRT. We compare the power functions of ¢,,
Berger’s test and the LRT in an example. In Section 4, we construct a
uniformly more powerful, intersection—union test based on ¢, and ¢,, for the
general, £ > 2, problem (1.1). Section 5 contains some general comments on
intersection—union tests.

2. Uniformly more powerful test when the cone is obtuse. In this
section, we will consider the testing problem (1.3) when £ = 2 and h'h, > 0.
Let 7 be the angle between the vectors h; and h,. Since cos(t) = h'}h, > 0, 7
is acute. However, the angle in the cone £ = {0: W0 > 0,h’,0 > O} is £ = 7 —
7, which is obtuse. So we say H; is an obtuse cone when h' h, > 0. Figure 1
illustrates this. Berger (1989) describes a test in the opposite case, h’}/h, < 0.
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(@) (b)
Fic. 1. (a) obtuse cone, hh, > 0; (b) acute cone, h'}h, < 0.

His method of test construction does not yield a size-a test when h’h, > 0.
We discuss this in Section 2.2.

2.1. A test that is uniformly more powerful than the LRT. In this section
we will describe a new test that is uniformly more powerful than the LRT
when the alternative hypothesis is an obtuse cone. We start by defining the
test ¢,. Then we show that ¢, is a size-a test and is uniformly more powerful

than the LRT.
Before describing the test ¢,, we will define the functions and set which

will be used to construct the rejection region for the test ¢,.

DEFINITION 2.1. For any s, —© <s <, let ¢, = (V1 + 52 — s)z, and let
L, be the two-dimensional set defined by

u + sv
Ls= (u,v):—l—\/+——s22za,vzza .

The set L, is an obtuse cone if s >0, and L, is acute cone if s < 0.
Examples of each are shown in Figure 2 and in Figure 6. The vertex of the
cone is (c,, z,). We will eventually express the LRT in terms of L,. Through-
out the rest of the paper, ¢(v) and ®(v) denote the standard normal pdf and
cdf, respectively.

DEFINITION 2.2. For any u, —» < u < », define

P(u) = a—]L( () dv,

where L (u) = {v: (u,v) € L}. Specifically, for s > 0,
e Vi+s?z, —u
P(u) ={"" |7~ s ’

0, u > c;.

u <c,,
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v 1+s’+s)u =v

—C
F16.2. Theset A, = L, U B, and functions l{(u) and 13(w).
s s
For s = 0,
P(u) = ’ s e
? O’ = vs = a
For s <0,
- a, u<ecg,
P(u) = Vi+s?z,—u
1-¢|—————], uz=c,.
s

59

The specific formulas for P, (u) are easily verified by using the definition of
L; 0<P(u) <a for all u; Py(u) is the limit of P(u) as s — 0, and, if

(U,V) ~Ny(u,0),1,), P(U,V)e L) = [(a« — P(u)¢(u — pn) du. The line
between the origin and (c,, z,), the vertex of L, has the equation v = z,u/c,
= (V1 + s% + s)u. We now define a set that contains this line, for s > 0.

"DEFINITION 2.3. For s >0,0<d <1and 0 <a<1/2,let B, be the set

defined by
B, = {(u,v): —¢, <u<ec,,l3(u) <v<ii(u)}
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where
19(u) = Min{d)‘l(d)(( 1+s2 + s)u) + dPs(u)), su —sc, + za},
I5(u) = Max{®~!(®(I3(u)) — P,(u)),0}.

An example of the set B, is shown in Figure 2; B, is a set that touches L,
at the vertex of L, and extends down toward the origin. Note, the restrlctlon
a < 1/2 ensures that the vertex (c,, 2,) is in the first orthant and that B, is
a nonempty set above the v = 0 axis. Ignoring the Max and Min, the constant
d is the proportion of the probability P,(x) that is placed above the line v =

(V1 +s® + s)u. Increasing d moves the lines /9(x) and 19(w) upward. If
[7(w) = 0, then 13(u) < I9(u), but if I9(u) < 0, then 19(u) > l"(u) The set B,

does not contain any (u, v) for which [3(x) > I(u). In Figure 2, I5(u) = 0 >

1{(u) for most negative values of u. The followmg lemma is the key fact that
will ensure that the size of ¢, is a.

LemMMA 2.1. Let (U,V) ~ N,((u, v),I,) where v<0. Let s >0, 0 < a <
1/2 and A, = L, U B,. Then P, ,(U,V) € A)) < a.

ProOF. For every (u,v) € A,, v >0. Since v <0, by Theorem 2.2 of
Berger (1989),

Pon((U,V) € A)) <P, (U, V) €A,)

= f_;w(/; (u)go(v) dv + /;?(u)qo(v) dv)go(u — u) du

(2.1) = f( a=P(u) + [ #() dv)¢(u — ) du,

where L (u) is defined in Definition 2.2 and
, u< -—csoru>cg,

B,(u) = {v (u,v) €B,} = {{v: 13(u) <v <19(u)), —c,<u<c,.

The expression in parentheses in (2.1) is clearly bounded above by o if
u< —cyoru>c, For —c; <u <c,, B,(u) = and the integral over B (u)
is zero, if [{(u) < I3(u). Otherwise,

[, e (v) do = (1) = @(i5(w))

< ®(L3(w)) = (7N (D(1 () — Py(u))) = Py(u).

So again the expression in parentheses is bounded above by «, and, hence,
P, (UV)eA)<a O

Our new tests will be defined in terms of variables U;, V,, U, and V,,
which we now define.
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DEFINITION 2.4. Let h; and h, be noncollinear vectors (| h,| < ||h,] -
lhyll=1-1=1). Let g, = h, — (W hy)h; and g, = h; — (h}h,)h, (g; and
g, are vectors spanned by h; and h, that are orthogonal to h; and h,;
gih;, =0,g)h, = 0). Define hy = v; and g,y/Ilg;ll = u;, i = 1,2. Also define
the corresponding random vectors h’;Y =V, and gY/llg,l=U,, i = 1,2.

Note that ||g;ll = llg,l = /1 — (W;h,)?. Since g/h; = 0, we know that U,
and V; are independent.

Now we define the test ¢,. In fact, we define a whole family of tests,
indexed by the constant d, 0 < d < 1, that appears in Definition 2.3.

DEFINITION 2.5. Consider the testing problem (1.3) for vectors h; and h,
that satisfy h,h, > 0. Fix d, 0 <d < 1. Let s = hjhy(1 — (h;h,)?) /%
For any o that satisfies 0 < « < 1/2, define ¢, as the test that rejects
H, ifY € S§f n S}, where S§ = {y: (u;,v,) € A}, S§ = {y: (uy,v,) € A} and
A,=L,UB,.

The following lemma will show that the rejection region for the LRT is a
subset of that for ¢,.

LEMMA 2.2. Consider the testing problem (1.3) when k=2 and 0 < a <
1/2. The rejection region for the size-a LRT is R; ={y: hy >z, and
bW,y >z,}. Let L\ ={y: (u;,v;) €L} CS¥ i=1,2, where s=hjh,(1—
(W hy)*)"Y2 Then L. = R, for i = 1,2. Hence, the rejection region for ¢,,
namely, ST N S, contains R;.

Proor. Fori =1,
g1y b,y — (hih,)h}y

and " v, = h}y.

ul = = —_———
gl \/1 - (h'1h2)2
Since s/ V1 + s2 = hh,, then ||g,ll = {1 — (h}h,)* = 1/V1 + s2. Hence,
u, + sv,; ,
where
h', — (h}h,)k’
= { 2 Ilglll 2 IHgIH + (hihy)hy ) = hj.
1

Therefore, L = R;. For i = 2, similar algebra yields (u, + sv,)/ V1 + s? =
hy and v, = h,y. So L? = R, also. O

Note that Lemma 2.2 is true for any h; and h,, not just obtuse cones with
h'ih, > 0. Another way to state Lemma 2.2 is to say that the three events,
{YeR,}, {(U,V,)eLy} and {(U,,V,) € L}, are all the same event. The
following theorem shows ¢, is a size-a test and uniformly more powerful
than the LRT.
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THEOREM 2.1. For the testing problem (1.3) when k = 2, suppose that
h'h, > 0. If 0 < a <1/2, then ¢, has size exactly a, and ¢, is uniformly
more powerful than the size-a LRT.

ProoF. From Lemma 2.2 we know the rejection region of the size-a LRT,
R;, is a subset of the rejection region of ¢,. Hence, ¢, is uniformly more
powerful than the size-a LRT. Also,

(2.2) the size of ¢, > size of LRT = «a.
For any 6 € H,, h'’,0 < 0 for either i = 1 or i = 2. For this i,
(23)  Py(Y €SI NSY) <Py(Y€S}) =Py((U,V;) €A,) < a.

The last inequality is from Lemma 2.1 since U, and V, are independent
normal random variables, each with variance 1, and EV; = h;0 < 0. Since,
(2.3) is true for any 0 € H, the size of ¢, is less than or equal to . With
(2.2) this implies ¢, has size exactly . O

Figure 3 shows two examples (different s and d, a = 0.1) of the rejection
region of ¢,. Consider p = 2, b}, = (0,1) and b, = (1/V1 + s%,s/ V1 + s2)

n

O U
o* C. 1
T .

(@
F1c. 3(a). Rejection region of ¢, whens = 0.1,d = 1/2 and a = 0.1.
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vy

Cs

(b)
Fic. 3(b). Rejection region of ¢, whens = 0.5,d = 4/9 and a = 0.1.

so that (y,, y,) = (¥4, v,). In Figure 3a and 3b, the solid line above the line
from (0, 0) to the vertex of R; is [{(u,) and that below the line is /3(«,). The
lower dotted line is [§(u,) and the upper dotted line is [3(u,). These are the
same functions, [{ and [, but these are graphed in the (u,,v,) axes. The
intersection of the region between the solid lines and the region between the
dotted lines is the additional set which is added to the rejection region of the
LRT. Specifically, this is C = {y: (u4,v;) € B} N {y: (u,,v,) € B;}. The re-
gion R; U C is the rejection region of ¢,. When s increases as in Figure 3b,
the added area decreases. The constant d that will produce the biggest
intersection, and hence the highest power, depends on s. We discuss this
more in Section 3.

ExaMpLE 2.1. Suppose Y; and Y, are independent and Y; ~ N(6;, D).
Consider h) = (0,1), b, = (1/V1 + s2,s/V1 +s2), s >0, so that we are
testing H,: 6, < 0 or 0; + s, < 0 against H;: 6, > 0 and 6, + sf, > 0. Here
we selected @ = 0.1, s = 0.1 and d = 1/2 (as in Figure 3a) to compute the
power of ¢, and LRT. Let 8,(0) and g, (8) be the power functions of the LRT
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TaBLE 1
Power of LRT and ¢, fors =0.1,d = 1/2 and a = 0.1

0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
B:(6,0) 0.013  0.027 0.046 0.065 0.081 0.092 0.097 0.099 0.100
By (6,0) 0.048 0.066 0.081 0.091 0.096 0.099 0.100 0.100 0.100
B:(0.9050, 6) 0.013 0.059 0.181 0390 0.633 0.827 0936 0981 0.996

B4(0.9056, 6) 0048 0.106 0224 0416 0.643 0829 0936 0.982 0.996

B1(0.45056, 6) 0.013 0.043 0.108 0.219 0.367 0526 0.668 0.781 0.863
B4(0.45056, 0) 0.048 0.087 0.153 0255 0389 0536 0672 0.782 0.863

and ¢,, respectively. Values of these two functions for certain 0 values are in
Table 1. These values are calculated by two steps. First, we calculate the
cross-sectional probability [,,,¢(v — 6,) dv = f(u, 6,), which is a function of
u and 6,. Second, we calculate [, f(u, 6,)¢(u — 0,) du using the trapezoidal
rule with 300 points. The first part of the tables are for values of ' = (6, 0),
6 > 0. These values are on the boundary of H,,, so the powers are less than
a = 0.1. If a test is unbiased, then the power is equal to a for the values of 0
which are on the boundary of H,,. Here we can see that the LRT and ¢, are
biased, but the difference between a and the power of ¢, is considerably
smaller than that between « and the power of the LRT. The second part of
the table is for values of 8 = (V1 + s? — s)8, 6) which are on the line from
the origin to the vertex (c,, z,). For example, B,(0.4525,0.5) / 3,(0.4525, 0.5)
~ 1.80 and B,(0.4525,0.5) > a > B;(0.4525,0.5). B, (0) is clearly bigger than
B.(0) for 6 < 1.5. The largest difference is 0.047. The bottom of the table is for
values of 0 = (0.5(V1 + s2 — s)#, 9); Bs(0) is clearly larger than B,(0) for
6 < 2.5. As s increases, there is less space to add to the rejection region of the
LRT. Figure 3b shows this fact. So we cannot improve the power as much
when s is large.

2.2 Restriction on the construction of a size-a test. The set that is added
to the rejection region of the LRT to construct ¢, touches the LRT rejection
region R; at only a single point (see Figure 3). One might ask, if we can add
a set along the boundary of R; to obtain a more powerful test. Gutmann
(1987) constructed such a set for a nonnormal problem. The following theo-
rem will show that a test with a rejection region like this will have size
greater than « in a normal problem. It will also show that a construction like
Berger (1989) used for acute cone problems will not work for obtuse cone
problems. Liu (1992) also showed this.

THEOREM 2.2. Let (U,V) ~ N,((0,0),L,). For a constant c, let

R={(u,v):uzc,v>2,}) and @ ={(u,v):u=c,v<z,).
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If cQ, and P,(U,V)€ Q) >0, then P(U,V)ERURQ)>a for all
large 6.

Proor. Suppose U ~ N(6,1) and #(u) is a nonnegative function such
that Py(U > ¢ and ¢(U) > 0) > 0. Then, as in an argument in Stein (1956),

E,y(U) f_wwlﬂ(u)eXP(O(u —¢))o(u) du

(2.4) = c
Fy(U<c) /_ exp(0(u —c))p(u) du

—> 0o as f > o

because the numerator goes to « and the denominator goes to 0. Now define
y(u) = P(QIU = uw)and R, = {(u,v): u <c,v >2,}. Then R, C {(u,v): u <c}
and

a=Py (R, UR) <P(U<c)+ Py qlR)
<E,;p(U) + Py 0(R) =Py,0(Q UR),

for large enough 6, where the second inequality is from (2.4). O

Now consider a test ¢* whose rejection region R* contains R;. In Section
2.1, we saw that R; = {(u;,v,): (uq,v;) € L.} and this set contains {(z,, v,):
u; >c,, vy =2, So, by Theorem 2.2, if ¢* has size «, then R* cannot
contain any part of @, = {(u,,v,): u; > ¢,, v; <z,} (except for a set with
probability zero). Similarly, we can also write R; D {(uy,v5): uy > c,, vy > 2,}
and R* cannot contain any part of @, = {(u,,v,): u, > ¢,, v, < 2z,}. These
sets are shown in Figure 4. The set added to R; to form a more powerful,
sizera test cannot be in the shaded region @; U @,. It must lie in the
triangular region labeled @, which is where the set that defines ¢, lies.

Berger (1989) constructed tests that were uniformly more powerful than
the LRT for problems in which h’h, < 0. Theorem 2.2 can be used to show
that Berger’s method of construction will not give a size-a test if h';h, > 0.
Figure 4 illustrates this. The region R; is the rejection region of the LRT.
The diamond shapes R, U R, U - U R; would be the rejection region of
Berger’s test. This rejection region contains some area in the shaded region
which causes the size of the test to be greater than «. Berger’s method cannot
be applied to obtuse cone alternative hypotheses when p = 2.

3. Uniformly more powerful test when the cone is acute. In this
section, we describe a size-a test that is uniformly more powerful than the
size-a LRT for problems in which h' h, < 0. In these problems, the cone
defined by the alternative hypothesis is acute. Berger (1989) described a
size-a test ¢, that is more powerful than the LRT for these problems. Here
we describe a new test ¢, that has smoother boundaries and sometimes
appears more powerful than ¢,. The method we use to construct ¢, is very
similar to the method we used to construct ¢,. So we will omit the formal
proofs that ¢, has the described properties. One difference in this acute case
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v

R,

/ "’\/\Ri //
NE\[,
/ 2

Fic. 4. Constraints on a size-a rejection region and rejection region of 4),, for an obtuse cone
hypothesis.

is that, unlike in Section 2.2, the rejection region for ¢, completely surrounds
and enlarges upon the rejection region of the LRT.

Our description of ¢, will be similar to our description of ¢, in Section 2.1.
The set L, constant c,, function P,(x) and variables (u,, v,) and (u,, v,) are
as defined in Section 2.1. Lemma 2.2 remains valid, and the LRT’s rejection
regl’on can be expressed in any of the following ways:

={y:h)y > 2, andh,y > z,} = {y: (uy,v;) €L,} = {y: (uy,v,) €L},
where s = hih,(1 — (h;h,)?)"1/2 The test ¢, is defined in terms of a set A,
that we now define.
DEFINITION 3.1. For s <0,0<a<1/2and 0 <d <1, let A, be the set
defined by
={(u,v):u>0,1(u) <v<if{(uw)}

where
15(u) CI)_I{(I)(( 1+ s? +s)u) +dPs(u)}, O<uc<ec,,

1\u) = .
& Y1 - (1-d)P,(u)}, u>cy,
and

13(u) = Max{® *(®(I{(u)) — «),0}, u=0.
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P " é. u= ul
Fic. 5. Rejection region of ¢,.

Examples of the sets L, and A, and the lines [{(x) and l3(«) are shown in
Figure 5. In this figure, s = —2, d = 1/2 and a = 0.1. The solid lines are
1$(uw) and 1§(u). For u > c, the line [$(u) lies above the upper boundary of L.,
which is given by the line v = (V1 + s2z_ — u)/s. This is true since 1 — (1 —
d)P(u) = ®(V1 + 5%z, — uw)/s) + dP(u) > ®((V1 + s®z, — u)/s). For u >
¢, 13(u) is below the lower boundary of L, because the lower boundary is
z, = ® (1 — a) > 1%(u). Therefore, L, C A, and, for i = 1 or 2, we have

(3.1) R, ={y: (u;,v;) € L} c{y: (u;,v;) €A,}.

If (U, V)~ Ny,((u, ), 1), with » <0, then P, (U, V)€ A)) < a. This
follows as in the proof of Lemma 2.1. In this case we have

P(M,V)((U’V) EAS) < P(AL,O)((U’V) EAS)

= fow{[llf(u)<p(v) dv}¢(u — ) du

5(u)
(32) = [Tl w) - (5(w))e(x ~ w) du,
< [[@01(w) - 2@ (@1 (w) ~ a))Je(u — ) du
- [:mp(u — @) du < a.
Thus, we can define a size-a test, just as we did in Section 2.1.

DEFINITION 3.2. Consider the testing problem (1.3) for vectors h; and h,
that satisfy h}h, < 0. Fix d, 0 <d < 1. Let s = h}h,(1 — (h;h,)?)"'/2 For
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any a that satisfies 0 < @ < 1/2, define ¢, as the test that rejects H, if
Y € Sf n Sk, where S¥ = {y: (u;,v;,) € A,} (A, is defined in Definition 3.1).

Because (3.1) and (3.2) are true, as in Theorem 2.1, we can show that ¢, is
a size-a test that is uniformly more powerful than the size-a LRT.

Consider the testing problem with h, = (0,1) and h}, = (1/V5, —2/V5),
so that (y, ;) = (¢4,v,) and s = —2. Let d = 1/2 and a = 0.1. Then in
Figure 5, the solid lines are {{(u,) and [$(x,) and the region between them is
S3. The dotted lines are [{(u,) (lower line) and [J(u,) (upper line), and the
region between them is S§. The rejection region is S¥ N S¥, and it contains
L, = R;, the LRT’s rejection region. In Figure 6, the union of the diamond
shaped regions, R; U Ry U -+ U R;, is the rejection region for Berger’s (1989)
test ¢, for this problem. Note that the rejection region for ¢, is almost
completely contained in the rejection region for ¢,. In fact, ¢, may be
uniformly more powerful that ¢,. In general, as s decreases, the containment
of ¢, in ¢, comes closer and closer to reality.

For this same problem, the power functions of the LRT, ¢, and ¢, are
compared in Table 2. Denote these power function by 3,(0), 8,(8) and B, (0),
respectively. These values are calculated in the same way as in Example 2.2.
The first part of the table is for values of 8 = (6,0), 6 > 0. These values are
on the boundary of H,,, so the powers are less than a = 0.1. Again here we
can see that the LRT, ¢, and ¢, are biased, but the bias of ¢, is consider-
ably smaller than the bias of the LRT. The power of the LRT is much smaller
than those of ¢, and ¢, when 0 is close to 0; S, (0,0) > B,(0,0). Both tests
improve greatly on the LRT; pB,(2,0) = 0.052 ‘and Bs(2,0) = 0.091, but
Br(2,0) = 0.0. The largest difference between g, (6, 0) and B.(6,0) is 0.095.
The largest difference between 8, (0, 0) and B,(6,0) is 0.042. The second part
of the table is for values of 8 = (V1 + s? — s)0, #), values on the line from
(0,0) to (c,, 2,); ,Bd, (4.236,1)/3,(4.236,1) = 15.3. The largest difference is
0.143; B,(0) is significantly bigger than ,BL(B) for 6 < 3;
By, (4. 236 1)/ B,(4.236,1) =~ 1.75. The largest difference is 0.066; B,(0) is

F1G. 6. Rejection regions of ¢, and ¢.
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TABLE 2
Power of LRT, ¢, and ¢, fors = —2.0,d =1/2 and a = 0.1

0
0 1 2 3 4 5 6 7 8
B(6,0) 0.000 0.000 0.000 0.000 0.002 0014 0.040 0.071 0.089
B,(6,0) 0.026 0045 0.052 0.053 0.0563 0.050 0.054 0.073 0.090
By (6,0) 0.029 0069 0091 0.095 0.092 0.090 0.090 0.092 0.096

B1(4.2366, 6) 0.000 0010 0528 0914 0993 1.000 1.000 1.000 1.000
B,(4.2360, 6) 0.026 0.087 0528 0914 0.003 1.000 1.000 1.000 1.000
B,(42366,6) 0.029 0153 0536 0914 0993 1000 1000 1000 1.000

B1(2.1186, 6) 0.000 0000 0135 0481 0691 0830 0920 0.968 0.989
B,(2.1189, 0) 0.026 0.067 0.151 0481 0.691 0830 0920 0.068 0.989
B,(2.1180,0) 0029 0119 0222 0484 0691 0830 0920 0968 0.989

clearly bigger than B,(8) for # < 2. The bottom of the table is for 6 =
(0.5(V1 + s? —s)0, 0). Again ¢, improves on ¢, for these parameter values;
By (2.118,1)/6,(2.118,1) > 100. The largest difference is 0.119; B, (0) is sig-
nificantly bigger than £,(8) and B,(0) for 6 < 2; B,(2.118,1)/,(2.118,1) =
1.8. The largest different is 0.071. The power of ¢, may be greater than that
of ¢, for all @, at s = —2.

A size-a test that is a good deal more powerful than ¢, (or ¢, in Section 2)
could be constructed by allowing the set A, (or B,) to extend into the third
orthant, in a construction similar to the one in Berger [(1989), Section 4].
Such tests reject H, for sample points at which the estimate of 6 does not
satisfy the inequalities in H,. Because of this, such tests do not have much
practical value. We have not considered them in this article, but from a power
standpoint they do exhibit a further improvement that is possible.

For given values of s and 0, we can numerically find the constant d that
gives the test with highest power at 0. This we have done and the results are
given in Table 3, for several values of s and two values of 6. For 6 =
(¢,/2, z,/2), the optimal d is slightly less than 1/2, but, for 8 = (c,, z,) and
very acute cones (small s), the optimal d is somewhat smaller than 1/2. The
reason for this can be seen in Figure 5, where d = 1/2. Near u = c,, [{(u)
and [$(u) do not coincide. When d is reduced, these boundaries are closer

TaBLE 3
Optimal d for ¢, and ¢, and a = 0.1

sl

0 - 241 -1.00 -0.41 0.00 0.41 1.00 2.41
(cs/2, 2,/2) 0.477 0.480 0.488 0.500 0.491 0.479 0.493
(cy, 24) 0.430 0.455 0.480 0.500 0.484 0.477 0.492

!These s-values correspond to & = iw/8,i = 1,...,7, in Figure 1.
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together, and the rejection region S§ N S§ is larger in the neighborhood of
(¢4, 2,). Hence, the power is increased.

4. A more powerful test in the general problem. We will now de-
scribe a size-a test that is uniformly more powerful than the size-a LRT for
the general problem (1.3) when 2 > 2 and 0 < a < 1/2. We will denote this
test by ¢,. The intersection-union method will be used to construct ¢,. A
summary of this method may be found in Casella and Berger [(1990),
Sections 8.2.4 and 8.3.5] or in Berger (1982).

To use the intersection—union method, H,: h’;0 < 0, for some i = 1,..., %,
must be written as a union. Let D denote any division of the indices {1, ..., &}
into the minimal number of subsets of size two such that each value 1,...,%

appears at least once. Elements of D are just pairs of indices (i, j). If & is
even, D has k* = k/2 elements and each index appears once. If £ is odd, D
has &* = (k + 1)/2 elements. All indices appears once except one appears
twice. To construct a more powerful test, any such division of {1,..., £} will
work, but different divisions will lead to different tests.

For each (i, j) € D, consider testing H,,;: h;0 < 0 or h’,0 < 0 versus H;;:
h;6 > 0and h’0 > 0. If h}h; > 0, let C;; denote the size-a rejection region of
¢, (for some ds from Section 2. If h}h; < 0, let C;; denote the size-a rejection
region of ¢, (for some d) from Section 3. Since H, = U, j < pHy;;, We can
define an intersection—union test based on the C;;.

DEFINITION 4.1. For the testing problem (1.3) with 2 > 2and 0 < a < 1/2,
let ¢, be the test that rejects H, if Y € N(; ;e pCij-

THEOREM 4.1. For 0 < @ < 1/2, the test ¢, is a size-a test of H, versus
H,, and ¢, is uniformly more powerful than the size-a. LRT.

PRrOOF. Since each of C;; is a size-a rejection region for testing H,,;;, by
Berger [(1982), Theorem 1], ¢, has size less than or equal to a. However, the
size-a LRT’s rejection region is

R,={y:Wy=>z,,i=1,..,k} c{y:hy>z,and by > 2,} c C;;,

for every (i, j) € D. Hence R is contained in the rejection region of ¢,, the
size of ¢, is greater than or equal to the size of the LRT = a, and ¢, is
uniformly more powerful than the LRT. O

The test ¢, is, in fact, strictly more powerful than the LRT because ¢,’s
rejection region contains an open set that is not in R;. Let y denote a point
satisfying W,y = z,,i = 1,..., k. (If £ > p, there is only one such y. If £ < p,
there are many such y’s.) Every C;; contains an open set that contains the
line from y to the origin. So the intersection of the C, s, ¢,’s rejection region,
contains an open set containing this line, and this open set is not in R;.

As mentioned earlier, different choices of D will lead to different tests.
More work needs to be done to determine which D’s yield generally more
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powerful tests, but one principle seems reasonable. In Tables 1 and 2, we see
that the improvement in power over the LRT is much greater for small s
(acute cones) than for large s (obtuse cones). So it seems that we will get
more improvement from ¢, if D is chosen so that the values s;; = h’h (1=
(h’ihj)z)_l/z, (i, j) € D, are small rather than large.

ExamPLE 4.1. Consider the hypothesis testing problem defined by the
three vectors h; = (1/v2,1/v2,0), h, = (1/ V3,Y2 /V3,0) and h; =
(1/V3, - V2 /V3,0). Then s;, ~ 5.83, s;3 = —0.17 and s,3 = —0.35. So we
conjecture that D = {(1, 3), (2, 3)} will give a generally more powerful ¢, than
will D ={(1,2),(1, 3)}. However, we would not expect the first test to be
uniformly more powerful than the second.

5. Further comments on intersection-union tests. In Section 4, ¢,
was explicitly constructed as an intersection—union test (IUT). In fact, most
of the tests considered in this paper are naturally thought of as IUT’s.

For i=1,...,k, R, ={y: h;y > 2,} is the size-a LRT of H,;: h;6 <0
versus H,;: h;0 > 0. Since Hy = U%_,H,;, the test with rejection region
R, =Nt R 1, is a level-a IUT of H, versus H;. This test is just the size-a
LRT. Berger [(1982), Theorem 1] shows that this test is level-a. A more
specific analysis, such as in Berger (1989), is required to show the test is
size-a.

The tests ¢, and ¢, are also constructed as IUTs for their £ = 2 problems.
For example, consider an obtuse cone problem. By Lemma 2.1 and Definition
2.5, for i = 1 or 2 the test with rejection region S} = {y: (u;,v;) €A} is a
size-a test of H,;: h,;0 < 0 versus H,;: h;0 > 0. So the test with rejection
region S} N S¥, that is, ¢,, is a level-a IUT of H, versus H;. Since
R, c 8¥ NS} and we know R, is size-a, ¢, must in fact have size equal
to a.

For the % = 2 case, both the LRT and ¢, (or ¢,) are IUT’s constructed
starting from the same individual hypotheses, Hy, and H,,. This illustrates
that some foresight in choosing the rejection region for the individual hy-
potheses, foresight concerning how the rejection regions will intersect, might
result in increased power in the resulting IUT. Starting with the more
complicated regions S} and S}, rather than the simpler R; and R, , yields
a more powerful test. Also, although the R; ’s have certain optimality proper-
ties, for example, R; is an unbiased test of H,;,, whereas S} is not, this
optimality does not carry over to the IUT’s.

The test ¢, could also be described as an IUT in terms of the variables
(u;,v,),i =1,...,k, but it was not described in this way in Berger (1989).
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