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ESTIMATION OF INTEGRAL FUNCTIONALS
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Let ¢ be a smooth function of & + 2 variables. We shall investigate in
this paper the rates of convergence of estimators of T(f) =
Jo(f(x), f(x),..., F*)(x), x) dx when f belongs to some class of densi-
ties of smoothness s. We prove that, when s > 2k + %, one can define an
estimator T of T(f), based on n ii.d. observations of density f on the
real line, which converges at the semlparametnc rate 1/ yn Vn . On the other
hand, when s < 2k + %, T(f) cannot be estimated at a rate faster than
n~Y with y = 4(s — k)/[4s + 1]. We shall also provide some extensions to
the multidimensional case. Those results extend previous works of Levit,
of Bickel and Ritov and of Donoho and Nussbaum on estimation of
quadratic functionals.

1. Introduction. Let T be a real functional defined on the nonparamet-
ric set of densities 0. It is known from Donoho and Liu (1991) that, when T is
linear, the rates of convergence are determined by the modulus of continuity
of the functional with respect to Hellinger distance. The problem becomes
somewhat more complicated for nonlinear functionals. Some approaches to
estimation of nonlinear functionals can be found in Ibragimov and
Khas’minskii (1978), Levit (1978), Hall and Marron (1987) and Bickel and
Ritov (1988) or Ritov and Bickel (1990). Related work concerning the white
noise model is to be found in Ibragimov, Nemirovskii and Khas’minskii (1986)
and in Donoho and Nussbaum (1990). The statistical motivation for estimat-
ing functionals such as [o(f(x), f'(x),..., f®(x), x) dx arises, for instance,
from bandwith selection in density estimation [see Bretagnolle and Huber
(1979) and Hall and Marron (1987), Remark 4.6]. Further motivations (espe-
cially for the Shannon entropy and Fisher information) are given in Donoho
(1988). In particular, Shannon entropy estimation can be used to test uni-
formity [see Dudewicz and Van der Meulen (1981)]. Considering estimation of
/f2(s) dx, Bickel and Ritov (1988) have pointed out the following strange
phenomenon. As long as ® is included in a compact set of smooth functions of
order s > 1/4, the n~1/2 rate of convergence is obtained. On the other hand,
when s < 1/4, the best possible rate becomes n~" with y = 4s/[4s + 1],
which is smaller than
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12 L. BIRGE AND P. MASSART

Considering the more general problem of estimation of [(f*)(x))? dx,
where f® is the k£th derivative of f, they find that the n~1/2 rate is obtained
when s > 2k + § and that for £ < s < 2k + ; one gets n~4(s~F)/ s+ 1),

Our purpose, in this paper, will be to extend part of their results to more
general functionals, namely, [o(f(x), f'(x),..., f*(x), x) dx, where f is a
smooth density on the line and [o(f(xq,..., x5), xq,..., xz) dx; -~ dxg,
where f is a smooth density at R%. Our conclusion is that the same type of
phenomenon occurs, namely, that the n~1/2 rate is obtained up to the critical
index of smoothness s, = 2k + d/4 (with 2 = 0 for d > 1). If s is smaller,
then one cannot estimate at a better rate than n~", y=4(s — k)/(4s + d).

Dealing with the simplest case of T(f) = [¢(f) du, where u is some fixed
positive measure, let us first explain how to get lower bounds for the rate of
convergence. Since u is fixed, T' may be considered as a functional acting on
probability measures as well. A general method to get lower bounds for
functional estimation is based on classical results by Le Cam [see Le Cam
(1973) and (1985)] which say that if & and € are two sets of probability
measures such that the Hellinger distance between their convex hulls is
bounded away from 1, there is no perfect test between & and &. Conse-
quently, if the functional T' takes values larger than ¢ on & and smaller
than b on @, then one cannot expect to estimate 7' with a risk essentially
smaller than a — 4. This last argument has been developed with & = {P}
and € = {Q} by Donoho and Liu (1991). In particular they build a universal
lower bound of the minimax risk for the estimation of 7' which is determined
by the modulus of continuity of T' with respect to Hellinger distance. They
also prove that this bound turns out to be optimal in the case of bounded
linear functionals. For nonlinear functionals the situation is more intricate.
For example, T(f) = [f? is a Lipschitz functional over bounded sets of [3(R,
dx) but is not always Vn -convergent. This means that the two-points argu-
ment used by Donoho and Liu does not provide the optimal lower bound.
More sophisticated constructions involving bigger sets are provided in Donoho
and Nussbaum (1990) for estimation of quadratic functionals in the situation
of Gaussian regression. Our method has a similar flavour.

We shall use the following notations: { -, ) denotes the scalar product in
%2 and |||, the norm in L? for 1 < p < +c. The Hellinger affinity p(f, ) =
JVTT is related to Hellinger distance A(f, 1) by h2(f,1) = 3 [(Jf —VI)* =1 -
p(f, 1). Our lower bound argument is as follows for f(x) =1, ,,(x), {f,1) =0
and T(f) = [$¢(f(x)) dx. For small values of [|/|l, if ¢ is smooth enough, one
can write

T(f+1)=T(f) + 5¢" (DI + o(l2113).
Assuming that ¢”(1) > 0 we see that, when ||/||; is small enough,
T(f+1) = T(f) = 3¢" (DIlz.

Let P; denote the joint distribution of n i.i.d. variables of density g. If the
Hellinger distance between P/ and the convex envelope of all the Py such
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that g = f+  with ||I|l3 = @, is smaller than 1, say, then it is impossible to
test perfectly between the sets

{gIT(g) <T(f)} and {gIT(g) = i¢"(Va, + T(f)},

which implies by classical arguments [see, e.g., Donoho and Liu (1991)] that
T(f) cannot be estimated at a rate faster than a,. The crucial point of the
argument is our Theorem 1, which gives an upper bound for the rele-
vant Hellinger distance when g belongs to some particular family of 27 per-
turbations. The set of (f + [)’s can be viewed as the set of vertices of a p-
dimensional cube centered at f [see Assouad’s lemma, Assouad (1983)
or Birgé (1985), for a related construction]. The construction implies that the
larger O, the larger a,,.

As to upper bounds, a Taylor expansion shows that, when g is close to f,

one can write

T(f) - T(g) = —<g,¢'(g) + (g% ¢" (&) +{f,¢'(8g) —28¢" (&)
+2(f2, ¢"(g)) + O(If — gl3).

If we plug in the formula g = ﬁ where f is a preliminary estimator based on
one half of the sample and converging to f at the optimal rate n=5/@s*1, the
remainder term will be O(n~'/%) as soon as s > ;. It remains to estimate the
linear and quadratic terms at the rate n~1/2, conditionally on f, using the
second half of the sample. For the linear term, an empirical estimator will do
the job. The quadratic term can be estimated at the right rate, provided that
s > 1, by simple modifications of Bickel and Ritov (1988).

After these heuristic developments, let us come back to the more general
situation mentioned at the beginning. Our methods allow us to derive lower
bounds in all situations, and the optimal upper bound n~'/2 when s is not
smaller than the critical index s, defined above.

The other case (s < s,) is studied in Laurent (1992, 1993) as well as a
refinement of the Bickel-Ritov original estimators for [(f*))2, which allow
efficient estimation of [o(f, f',..., f*), x) dx in the range of s > s, by the
same method. We do not know what is the optimal rate of convergence for [f*
when s < 1 apart from the fact that it ranges between n~*/®s*1 and
n~3/@s+D [Since the writing of this paper, it has been proven by Kerky-
acharian and Picard (1992) that the optimal rate of convergence for [ f3
when s < 7 is n~4¢/4s* D] In the next two sections we shall derive our lower
and upper bounds, respectively, but to make our framework more precise we
shall have to set up first some notation. Without loss of generality, we shall
restrict ourselves to functions supported by [0, 1]. We shall denote by % the
space of m times continuously differentiable functions on [0, 1], by %1,
1 <j < m, the subset of €2 of those functions such that f(0) = f*X(1) for
0 <i<jand by & the subset of . of those functions with a compact
support included in (0, 1). Next if K} < K; for 0 <i < m, we define K =
(Ky,...,K,,, Kgy,..., K,), then we define

Zi(K) = {fe €K, <fO(x) <K;,¥Vx€[0,1],0 <i <m],
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and, finally, for 0 < v < 1 and ¢, A € R, we define

Zi. (K, A) = {fe gB)IF™(y) - f™(x)l < Aly — «l”,Vx, y € [0,1]},

jm+ v(t’ A) = fegmw+v(t‘U’ A)

folf(x) dx = o}

withU=(-1,,,,1,.,,), where 1,,,, has all components equal to 1in R™**.

2. Lower bounds for functional estimation. In this section, we shall
derive lower bounds for the rate of convergence of some functionals 7' defined
in [}(w). For this purpose we shall begin with an abstract lower bound
theorem. In what follows P is a probability with density f with respect to u.

AssuMPTION A(f, u). There exist disjoint sets A,,..., A, and functions g;
satisfying the following relations for 1 <i < p:

@ llglle < 1;
(i) IlﬂAggilll =0;
(i) [g,(x)f(x)du(x) = 0;
G(v) [g2(x)f(x)du(x) = a; > 0.

It follows from A that, for any A ={A..., Ap} e A ={-1,+1}?, the
function

p p
&\(x) = f(x) 1_11[1 +08(x)] =f(x)|1+ X )‘igi(x)]
i= i=1
is a density with respect to u corresponding to the distribution @, =g, - u.

THEOREM 1. Let us define @, = 27P¥, ., Qr and, assuming A(f, u) is
satisfied,

a= sup lgll., s=na® sup P(A;), c=n sup a,.
1<i<p 1<i<p 1<i<p
Then
_ P
(2.1) R*(P",@n) < C(a,s,c)n® ) af,
j=1

with C < (arg cosh3)™2 < 1; C is continuous and nondecreasing with respect
to each argument with C(0,0,0) = & and C(3, ,1) < 0.11.

The proof will be divided into several steps.

LEMMA 1. Let Y be a random variable such that 1 + Y > > 0,EKY) = 0,
E(Y?) < +. Then

1
EVi+Y]|-1> —-——KY?) > -
[Vi+7] 27 (Y?)

®| =

(1+3(1—yn))EY?).
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Proor. We have

b

1 2 1 Y?
[E[V1+Y]=1—-2—|E[(1—V1+Y)]=1—§|El:m

which proves the first inequality. For the second, let us notice that the
assumptions imply that n < 1 and therefore (1 + /)2 < 24 - 3y/9). O

LEMMA 2. Let R be given together with g(x) and |g(x) < a <1,
/g(x)dR(x) = 0; [g%(x)dR(x) =b; and define @,= (1 +g)R and Q_=
(1 — g)R. For any positive integer m,

1 1
p(Rm’E(QT+ QT)) >1- Jec(a,m)y(b,m),
with

c(a,m)y=1+3[1-(1-a®)™], w(b,m)=(1+5)"+(1-b)" -2

PrOOF. We can write

S dQT +dQm\'*
o[r ’§(Q++Q->)=ER”[(W) ]

Jj=1

. EH%( [T +a(%) + 101 ‘g("j)))]w]’

where the X;’s are i.i.d. with distribution R. We expand the products and see
that all terms with an odd number of factors cancel. The inner bracketed
term then becomes

1+ Y X g(X)e(X,)
kk?fnn J1< o <J
and therefore
p(R™,3(QT+ QM) =EVI+Y]; Y= ¥ ¥ (X, &(X,).

k even j;< - <J,
k<m

In order to apply Lemma 1, we need the following elementary result.
Camm 1. If lal<a<1, forl<i<m,then

m/2

1 fll(l + @) + i]i(l— )| = (1 - a?)
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ProOF. The left-hand side of the inequality can be written as

%[exp( ’zn: log(1 - ai)) + exp( i log(1 + ai))],

i=1 i=1
which, by convexity of the exponential is larger than exp[3X™ ; log(1 — a?)],
and the conclusion follows by monotonicity. O

We can now apply Lemma 1 with n = (1 — «2)™/2, which leads to

EVi+Y]=1- ————C(aém)

If we expand Y2 we get

Y X &iX,)g'(X,)
keven j < - <j,
k<m

E(Y2).

plus the sum of all cross-terms. However, in any such term, there always
appears an index j such that the contribution of X; to the product is g(X)),
which is centered. By independence, after integration we get

EY*) = Y X b

keven ji< - <j,
k<m

m m
=3 [T+ + TT(1-8) -2/ =3[ +b)"+(1-8)" - 2],
j=1 j=1
which concludes the proof of Lemma 2. O

ProOF OF THEOREM 1. For any multiinteger m = {m,..., mp} with m; >
0,j=1,...,p,wesetT={j,1 <j <plm; > 0}. We assume that for j €7 we
have some distributions R; and functions g; satisfying the assumptions of
Lemma 2 and define A = {—, +}7, Qj,aj =1+ §;-g)R; with & = {5,,..., 5,}
€A, b; = [g}(x)dR (%),

Qr = ®yQ}7§j, Q=27 Y Q" R= QRM".
JjE

seA JeT
Denoting dQJ'.fng /AR by JP we get

W @
dR JET /
and
dQ R dQm™ + dQ™
9Q _ Z(®in)= ®(J__J_)= ®_@Ji_mQ_»
dR seA \ jeT jeg 2 jeg  2dR}

as can easily be seen by induction on j, which implies that

p(@.R) = L o(RP 4@ Q)
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Then using Lemma 2 we get, since (x,0) =
c(a m;)

p@R)= - 2o (mﬂ
>1- i6 g c(a,m;)y(b;, m;).

We actually want to compute

(2.2)

— . 1/2
(@, P") = x| [ 57
1/2
w%pzn (ﬂ)}
reA i=1

where the X’s are a sample from the distribution P. Let N be the multinomi-
nal vector N = (N, Nl, ., N,) counting the number of observations which
fall in the sets A;, j=0,1,..., p. We shall first compute the expectation
conditional on N. Condltlonally on N, II’"! (d@,/dPXX,) has the same
distribution as

]_[[1+/\gj( k)], J={jl<j<p,N;>0},
JET k=

where the Y,’s are all independent and the Y},’s, 1 < £ < N;, have distribu-
tion R;, Wh1ch is the conditional distribution of the X;’s whlch fall in A and
therefore

o2

AEAN

when @ and R are defined as above with m = N and 6, is the sign of A;. In

this framework we get b, = [g7(x) dR(x) = a;/r;, where r; = P(A)).
We can then deduce from (2 2) that

1 P
@9 [ 5 150 0]||n[21- & Eewmpnen),
AEA L =
Each term in the sum has the following form:
a\VN a\N
(4-3(1-0)") (1+ —) + (1— —) —2] =B,
r r

where all indices have been omitted, 1 — 6 = (1 — «?)'/* and N is binomial
B(n,r). Since E(s") = (rs + (1 — r))" we get

[o(2.8)] - viam,

IE[(l - e)”:p(%,zv)] —(1-ro) tp((—_’z)n)
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and, finally,

E[B] = 4¢(a,n) — 3(1 — re)nl//(i(—l_—e),n)

1-r6
<4¢(a,n) — 3(1 —ro)"¢(a(l — 6),n).
It is easy to show, using power series expansions, that (x, n) <

2[cosh(nx) — 1] and that the difference cosh(nx) — 1 — $¢(x, n) is increasing
with respect to x, which implies

E[ B] < 8[cosh(na) — 1] — 6(1 — r8)"[cosh( na(1 — 0)) — 1]
since 0 < 6 < 1. One can check that the ratio
[cosh(x(1 — 0)) — 1] /[cosh(x) — 1]
is decreasing with respect to x and therefore, for na < c,
cosh(c(1-6)) -1
coshe — 1 ]

E[ B] < 2[cosh(na) — 1] [4 -3(1-ro)"

After integration with respect to N, (2.3) becomes, when na; <c and r; <r
for all Jj’s,

ncosh(e(1-6)) -1 2
(e ) Y [cosh(na;) - 1],
j=1

_ 1
r(Q,, P )21—5[4—3(1—;@) P

and since x — x 2(cosh x — 1) is increasing we get
cosh(c¢(1 - 0)) — 1] coshe—1 2 o2

2
n(Q,,P") < %[4 -3(1-ro)"

2 J

coshe — 1 c o1

P
=n?C' ) o}
j=1
with
coshe — 1

8¢?

= 4 — 3(1 - sa2(1 -(1- a2)1/4))+

cosh(c(l - a2)1/4) -1
coshe — 1 ’

Actually, since C’ < [cosh ¢ — 1]/2¢2, it is bounded by (arg cosh3)~% when
¢ < arg cosh 3.
However, in the other case we get

p
(arg cosh3) “n? Y a? > (argcosh3) “c? > 1,
j=1

which can clearly serve as an upper bound for Hellinger distance. Thus (2.1)
holds with C(a, s, c) = min(C’,(arg cosh3)~%). The previous monotonicity
arguments and the fact that the function x — (1 — (1 — x)¥/*)/x is increas-
ing for 0 < x < 1 imply that C is continuous and nondecreasing with respect
to each argument. Numerical computations give the bound and the
asymptotics. O
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We can now use Theorem 1 and classical relations between testing and
estimation developed by Le Cam (1973).

COROLLARY 1. Let us assume that T is a functional defined on some subset
0 of (), which contains f together with some set of densities g ANEA,
derived from g;s which satisfy A(f, u) with parameters a, s, c as defined in
Theorem 1. If (i) C(a, s,c)n*LE_ ja’ < y < 1 and (i) VA € A, T(g,) — T(f)
> 2B > 0, then, for any estimator T, of T derived from n ii.d. observations,
we have, for P, = g- u,

sup PrIT(8) - T1> B] = 3[1 - (v(2 - ).
ge

PrOOF. Assuming for simplicity that T(f) = 0, we define subsets ®, and
0, of O as

0, ={g<=0IT(g) <0}, 0,={gec0IT(g) =28}
and the convex sets 6, by
(:)i = Convex hull of {P;Ig S @i}, 1=0,1.

Theorem 1 shows by classical inequalities [see Le Cam (1985), page 47] that
any test between ®, and ®; will have at least one of its errors as large as
(1/2)M1 - (y(2 — y)'/?]. If we consider the particular test which accepts @,
when T, < 8, we get

max sup P7[IT, - 7(g)l > 8] = 1[1-v2 - "],

i=0,1 ge

hence the result. O

REMARK. Choosing y = £ for simplicity, we get
sup P7[|T, - T(f)| > B] = L.
g€

Then it is clear that, in order to get lower bounds for the estimation of
functionals, we need to maximize B for a given value of vy. In this paper we
shall concentrate on some simple classes of functions, which are analogous to
those considered by Bickel and Ritov (1988).

If f is some given density in ® (set of densities on the line), we shall
denote by B, the set {f + l|l €%, , (¢, A)}, where m, v, A are fixed constants.
Our result is as follows.

THEOREM 2. Let f be such that B, C ® when t is small enough and log fis
bounded on [0,1]. Let us assume also that for | €%, (¢, A) the following
decomposition holds for the functional T defined in ©:

k k
T(f+1) = T(f) + LTI +§ T (T7,,199) + 1@l 0 (1),
1=0

i,j=0
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where k <m, T and T;; 0 < i, j < k are bounded functions inf, ., I]Tk p(x)

> 0 and o(l) isa functzon of t only. Then if T denotes an arbitrary estimator

of T(g) based on n i.i.d. observations of dzstrzbutzon P, with density g in O,
liminf liminf inf sup [FD"“T T(g)| >en” ] >0,

20 no+o f geB .

for some £ >0 and 6§ = 4(m + v — k)/[4(m + v) + 1].

REMARK 1. This is a local result which relies on two assumptions: (i) © is
rich enough around f; (ii) T has a nice differentiability property around f. It
will typically apply to functionals of the form [¢(x, f(x), f'(x),..., F®(x)
dx, where ¢ has continuous second derivatives on the relevant subset of
R**2 [vicinity of the image of the mapping x — (x, f(x),..., f®(x))].

REMARK 2. Our lower bound agrees with those of Bickel and Ritov (1988)
if we consider T'(f) = [(f*(x))? dx and shows that the 1/Vn rate of
convergence cannot be reached as soon as 2k + > m + ».

REMARK 3. The assumptions that T}, ,(x) > 0 and that we work on [0, 1]
have just been chosen for convenience since it is always possible to reduce the
problem to this case by using a suitable affine transform on the line and
changing T to —T. It is enough to check the assumptions of this theorem on
some arbitrary nondegenerate interval. The proof of the theorem relies on the
following elementary lemma, which we prove in the Appendix.

LEMMA 3.  Let us consider an orthonormal system ¢,,..., ¢, in 120, 1], dx)
which has the following properties:

(@) ¢, =1and ¢(x) =0 forj=2, x ¢ [s,1— &)] for some &> 0;
(ii) the linear space V generated by the ¢/s is stable by differentiation.

There exists a positive constant ¢ such that for any set {w,,w,,...,w,} of
functions in 11(0,1]), dx), k < q — 3, one can find v in V such that
sup lv®[- < 1, inf v@|2 > ¢,
0<i<q O<i<q

(v,0;)=0, <(WDw)>=0 for0<i<k.

ProoF oF THEOREM 2. Let p be a fixed integer and let A;=
((j—D/p,j/p) for 1 <j < p. Using an affine one-to-one mapping of A; to
(0,1) and applying Lemma 3 with fixed vectors ¢;,1 <i <m + 3 = g, we can
show the existence of functions /; on A;, with support on some compact
subset of A; and such that

[ li(x)de=0, [ T{(x)l{(x)dx=0 for0=<i<k,
A.I A.I

pta [ Ry dez et |19, <p frosizms
A.
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These properties imply that, for any A € A = {—1, +1}?, the function
p
L(x)=Ap™™ " ) )‘jlj(x)"A,(x)
j=1

belongs to _?m +,(Ap~7, A). For p large enough, f + 1, belongs to ® for any A
in A and our assumptions on T show that, for some constant C; and large p,

T(f+1,)=T(f) + Cyp 2™**~® uniformly for A € A.
Since f + [, can also be written

A=) 11 [1+ X407 (%) /f(2)la(%)]

and f is bounded away from zero on [0, 1], we are in the situation to apply
Corollary 1 to the set of f+ I,’s with £?_ja? < Cyp~*""*"~ 1, The choice
p = Cyn/@m+4+1D Jeads to the result. O

Multidimensional case. It is not essentially different and will be only
sketched, assuming that the functional T'(f) does not involve derivatives.
Without loss of generality, we shall work on the cube H = [0,1]¢ and
consider functions in %, , ,(¢,A), where m, A, v are d-dimensional analogues
of m, A, v. Denoting by D; the derivation operator with respect to the jth
variable, we shall say that ! belongs to %, , if D[ exist for j=1,...,d
and

fl(x)dx=0, I(x) =0 ifx¢[e,1— &]° for some & > 0,
H

|ID™1(x) — D™I(y)l

sup sup [D/lll. <t, sup 7 <A; forl<j=<d.
1sj<d O<i<m, x,yeH Ix — yll
x-y#0

THEOREM 3. Let log f be bounded on H, let B, = {f + lll €%, ,(t,A)}
and assume that B, C © for t small enough and that, when f + | € B,
T(f+1) =T(f) + [ T'(x)(x) dx + 3T (x)1%(x) dx +lEI30(1),
H H

where o(1) is a function of t and inf, . zT"(x) > 0. Then

liminf liminf inf sup P;[If‘n -T(g)l > en"] >0
t>0 no+® P geB,

for some £ >0 and y=4s/(4s +d), d/s = Z;Ll [1/(m; + a))].
The proof is sketched in the Appendix.

8. /n - Consistent estimation of integral functionals of a density.
Our purpose in this section is to construct Vn -consistent estimators of
integral functionals of a density of the type

(3.1) T(f) = [e(F(%), ['(%),.... fP(x), x) dx.
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We shall show, under mild smoothness assumptions on ¢, allowing Taylor
expansions and integration by parts, that such a construction is possible as
soon as f is known to lie in a compact set of functions with smoothness
s> 2k + 1.

Our construction is based on corrections, up to the second order of a
preliminary estimator 7'( ﬂ, where f is an adequate nonparametric estimator
of f. These corrections involve estimators of quadratic integral functionals of
f, such as [(f®)%, where ¢ is a known function. If s > 2k + %, Vn-
consistent estimators of such functionals are available. Bickel and Ritov
(1988) have proposed efficient estimators when ¢ = 1. Laurent (1992) has
given an alternative simpler construction which covers the case of an arbi-
trary . We can therefore conclude, in view of the lower bound results of the
preceding section, that the order of smoothness 2k + § appears to be a
critical index for this problem. If s > 2k + ; the problem is truly semipara-
metric with the existence of efficient Vn -consistent estimates [see Laurent
(1992)]; and if s < 2k + 1, it is a purely nonparametric problem. In the case
s=2k + %, Vn -rate occurs but no efficiency result is available presently.

THEOREM 4. Let k be some nonnegative integer, q = max(3,k + 2) and
¢: R**1 > R be a q times continuously differentiable function defined on
Q % [0, 1], where Q is some compact vicinity of 11%, [ K}, K;]. Let X;,..., X,
be a sample of real-valued random variables with common density f with
respect to Lebesgue measure belonging to L2, (K, A) with m > 2k. Let T(f)
be the functional defined by (3.1). Then, for m + v > 2k + 1 one can con-
struct an estimator T,, based on the X;’s such that uniformly over the set of

densities in Z2* (K, A), for n > n,,

E/[IT, - T(F)I] <Cn 2.

"

ProoF. Let us denote by ¢; and ¢];, respectively, the first and second
derivatives of ¢(y,, ¥i,...,¥,, %) with respect to y, and y,, and when
g € &Y let us set g(x) = (g(x), g'(x),..., g™ (x), x) and say that g € #2(Q)
when the range of g is included in Q X [0, 1].

For any pair of functions £, g in #2(Q), Taylor’s formula implies that

k
T(f) = |T(g) - L{¢i(g), &) + 1 X{ ¢l (g), gVgY)
i=0 i,J
(3.2) +[ Y <f“), ol(g) — X soé’,j(g)g(“ﬂ
i=0 Jj=0

+ +R(f,g),

3 X (P9, (@) + L{FOFD, ¢l ()

i=0 i<j
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where the remainder term satisfies
(33) |R(f,g) <C; Y f|f<z) — gD||fD — gD | FO — g0,
O<i<j<l<k

C, depending only on ¢ since all third derivatives of ¢ are bounded on ().
In order to rewrite in a more convenient way the last bracketed terms of

(3.2), we shall use the following elementary formula, which is derived by

successive integration by parts:

(3.4) (fFORY = (=1)(f, kDY for fe &}, h € &Y.

We shall then define, when g € @5, N (),

@)

k , k '
uws§hw@®—§ﬁ@wﬁ
i= Jj=

From now on, we assume that f is the true unknown density. It always
belongs to ZZF since 2k < m. When g € &5, N Z2(Q), (3.2) becomes, using
(3.4),

T(g) - Z (i(g), 87 +3 Z (¢ ,(2),878Y)

i,j=0

T(f) =

(3.5)
+(f, L(g)) + Z(ﬂW“w@@D+Rﬁg%

i,j=0
Let a,b be fixed positive constants with a < b < 1 and let r, be integers
such that an <r, <bn for n > n,. If ¢ is a fixed continuous function on

[0,1] and B > ||¢lls, {f, ¢> may be estimated by ¢ =I[1/(n — r,)]
XL, +1¥(X;). Then

Ely-3l) <B*(n -1,

B? .
(]

If, moreover, ¢ belongs to 0 with B > |||, for any integer [ such that
0 <! <k, it is also possible [see Laurent (1992)] to build estimators @, ;(¢)
of(f(‘)f(f) ) such that

[E (IQ‘ J(llf) _<f(i)f(j)’ ‘/j>|2) < Ci,jn_la

where C; ; depends on m, v, K, B, b.

Let ¢ be some fixed positive number such that IT*_[K] — &, K, + €] € Q
and define, for any integer i such that 0 <i < 2k, KS K, + ¢ and (Kf) =
K| — &. Next, we set K¢ = ((Kg)',...,(ng)',Kg,...,K;k). If g belongs to
@5,(K®), since all first and second derivatives of ¢ are uniformly bounded on
Q, we can find some constant B, such that, uniformly with respect to
&,IIL(&ll. < B and ll¢} (@l < B for all i, j. Therefore, introducing the suit-
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able estimators L(g) and @, (¢ ;@) that we just mentioned, based on the
sample X, ,,,..., X, we get

— 2 B*
(36) BIE@ (1, 1) ] = g5

[Ef[lQi,j(¢§/,j(g)) - < fOr9, ‘P;l,j(g» |2]

<Cn', 0<i<k,0<j<k.

(3.7)

We shall choose for g for some ad hoc preliminary estimator f of f based on
the sample X, ..., X, .

CLAIM 2. One can build an estimator f of f based on r i.i.d. variables of
density f such that, for r > r, not depending on f, the following hold:
() fe &l Ee);
() for 2<qg< +wand 0 <i <k,
A 119
&I 79 - rolg) < ciqyrovs,
for some constants Cj(q) independent of f.

The proof of an actually stronger result will be given in the Appendix.
We can now define our estimator T, of T(f):

k k
1= T(f) = Lol F) +3 5 (ot B, /)
i=0

i,j=0
k
() +3 L Qufeti(h)
i,j=

If we plug g = £ into (3.5), we get
T(f) = T, = £, L(F)> - L(f)

k
+3 X [(FOro, er,(B) - @ (ot ;(D)] + B(£, ),

i,j=0
which implies by convexity

IT(F) ~ 1, < (k2 + 3)[!( LU - T +|R(£,5)f

1,j=0
Conditionally on X|,..., X, , by (3.6) and (3.7) we get

[E[|T(f) _7 |2|X1,...,X,n]

k
;X Kf(f)f(i), ol (H) - Qi,j((pg',j(f'))‘z].

a2 B? k
s<k2+3>[|R(f,f)l +[ fg X c”
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Since, by Claim 2, f € &¢ 9. (K*), we only need to control the remainder, all
other terms being independent of f and £. If &, = | f®) — f@|, Claim 2 implies
that E.(/5¢) < Ci(6)r, . Hence, using Holder’s inequality twice, we get

[Ef“fs,.ajalﬂ < uzf[fsi%fsf]
< (el fw])

’ ' 1/ 3 -
< [CiB)Ci(8)Ci(B)] it
Combining all those inequalities, we finally get, by (3.3),

Ef[|R , f)|2] <C'nt

where C” depends only on all the previous constants involved but neither on
f, nor on f, which completes the proof of the theorem. O

APPENDIX

Proor oF LEMMA 3. We can assume, without loss of generality, that the
w;’s belong to V. Using matrix notation and assuming that D is the matrix
operator for derivation in V, our problem amounts to finding V = (vy,.. 0,
such that v, = 0, (D'V)'W, = 0 for 0 < i < k. We can always choose V as an
element of the orthogonal i 1n \/ to the space generated by ¢, and the (D*)'W;’s,
which is of dimension not larger than ..+ 2, and assume that the correspond-
ing 0 is of norm 1. Now, by assumption, supg_ ;s sup0<,<m+1||goj N = K
< 4+, which implies that sup0<,<m+1||v( N < K(E + 3)!/2, leading to v =

K Yk +3) 1% and ¢2 = K 2(k + 3)L. Of course [[v®||y > |lv]ls = ¢, which
completes the proof of the lemma. O

Proor oF THEOREM 3. We shall only sketch the proof since it is essentially
similar to the one of Theorem 2. We shall divide [0,1]¢ into p = I ; p;
hyperrectangles with side lengths p; ! chosen in such a way that, for some K
to be chosen later, K < A; p; ™**J) < 2K, 1 < i < d. On each hyperrectangle
R;,1 <j < p, we can build a perturbation /; with compact support included
in the interior of R; and such that, for a fixed constant c,

J L(x) dx =0, [ T'(®)(x) dx = 0, [ B(x) dx > f,

r;’ R, R, p
ID™il jIIoo < p™ for 1 < i < d. This follows from an analogue of Lemma 3. For
A € A{—1; 1}?, setting

L(x) = K ¥ AL(2)lg (%),
j=1

we see that for p large enough f + [, belongs to ® for all A and that
T(f+1,) =T(f) + C,K*
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We can once again apply Corollary 1 with )y 1a < C,K*/p. Since p is, by
definition of K, of order K~%¢/%, the choice K- C n‘2/ @+d/9 leads to the
result. O

PrOOF OF CLAIM 2. We shall define the estimator £ in the following way.
We first consider a kernel estimator fh with window-width A and defining

kernel A to be specified later. We set f = fh when
K —e<fPx)<K,+¢& for0<i<mandall x in[0,1]

and f= fo, where £ is a fixed function belonging to #;,(K) otherwise, which
clearly implies (i). We shall impose on A the following requirements:

1. A(x) has a compact support included in (-1, 1);
2. [A(x)dx =1 and [x'A(x)dx =0for 1 <i<m;
3. A has a continuous (m + 1)th derivative.

Let F, be the empirical distribution function based on X,..., X,, and let F
be the true distribution function. Then fh may be written as

o) = 5 [3(5 Jam o,

with expectation f,(x) given by

o) = 5 357 arco

From inequality (4.13) in Bretagnolle and Huber (1979) it follows that,
whenever rh > 1,

(A1) lE(IIf,Y) - f}ﬁi)“g) <Cy(q,K,, A)("hz”l)—q/z'

On the other hand, when i < m — 1 the bias may be expressed with the help
of Taylor’s formula with integral remainder as

(%) = FO(x)
m-i-1

{ x+ht ht —u
] e

m-i-1

[ x+ht(x+ht—u)

K& (m —1)!

since [t™ 'A(t) = 0 by assumption. By our Hélderian condition of order » on
™ we get

(F™(u) = f™(x)) du |dt

1
- f_lAm

hm+V_if|A(t)tm+v_i|dt.

N . A
(A2)  |f(x) - FO(x)] < TN
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A direct calculation when i = m leads to the same bound. Collecting those
bounds and choosing A = r~1/[2m*+1+1l we get

P - 19 .
(A3) IEf[" f}gl) — }El) |q] < Czr—Q(m+u—l)/[2(m+u)+ 1]’ O0<i<m,

where C, does not depend on f or r.

It only remains to show that we can replace f by f without loss in the
rates of convergence. In order to do this we have to control ||f® — f@|,
simultaneously for 0 <i < m. Relation (A.2) shows that, for r > r,, not
depending on £, [If) — f Wll, < £/2, since v > 0. Therefore when
supg . ; < Wl fP = f9ll < /2, f, = f. We have to bound IJ* Pf[“f(’) = |
> e/2].

Integrating by parts we get, since [}, A“*D(¢) dt = 0

fiP(x) = fi(x)
= thf A(z+1)( )[F(x —t) —F(x—1t)]dt

~ [ 8 L) IE e - )~ B (o)~ F(a - 0) + R de

and, therefore,

175D = £l < R HIAY DNy sup |F(x) — F(x) — (F.(y) = F(9))l.
x,y
[x—yl<h

Consequently, by the Mason—Shorack—Wellner inequality [see Shorack and
Wellner (1986), page 545], since

sup |F(x) — F(y)l < hllfll. < Koh,
Ix—xﬁsh
we get
&€ 03 r82h2i+2||A(i+1)||%
> Y < - K .
0 = 2) = _Koh exp anoh + 8h1+1”A(L+1)”1 »

Pf(” iD= FP

where C; and 7, are positive absolute constants. This implies

C
—) < -—4exp[—n2rh2’”+1]

4; (" fo — f(z)l -



28 L. BIRGE AND P. MASSART
uniformly over f and r. Finally,

A 119

[l 7 - £og]
iy _ r? @ _ 2|7 D) _ ) ‘
<€l 70 - rol] +1ro - 70l X e (170 - ol = 5
j=0
< Czr—q(m+v—i)/[2(m+v)+ 1]
+(Ki _ K;)qC4r1/[2(m+")+ l]exp[_anZV/[2(m+V)+ 1]]
< C5r—q(m+ v—=1i)/[2(m+ v)+ 1]’

for r large enough. This achieves the proof of part (ii) of the claim since, for
i<kand m+v>2k+ 5,

m+v—i 4k +1 1
> —.
2m+ ) +1- 166166
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