The Annals of Statistics
1995, Vol. 23, No. 5, 1823-1847

M-ESTIMATES OF RIGID BODY MOTION ON THE
SPHERE AND IN EUCLIDEAN SPACE!

By TED CHANG AND Da1giN Ko

University of Virginia and Virginia Commonwealth University

This paper calculates the influence functions and asymptotic distribu-
tions of M-estimators of the rotation A in a spherical regression model on
the unit sphere in p dimensions with isotropic errors. The problem arises
in the reconstruction of the motion of a rigid body on the surface of the
sphere.

The comparable model for p-dimensional Euclidean space data is that
(vy,...,v,) are independent with v; symmetrically distributed around
YA -u; + b, u; known, where the real constant y > 0, p X p rotation
matrix A and p-vector b are the parameters to be estimated. This paper
also calculates the influence functions and asymptotic distributions of
M-estimators for y, A and b. Besides rigid body motion, this problem
arises in image registration from landmark data.

Particular attention is paid to how the geometry of the rigid body or
landmarks affects the statistical properties of the estimators.

1. Introduction. If a rigid body moves on the surface of a unit sphere
), in Euclidean p-dimensional space, the position of a point x on the rigid
body is given, as a function of time, by A(¢) - x for some curve A(¢) in SO(p),
where SO(p) is the group of p X p matrices A such that AA’ =1 and
det A = 1. Thus if one is trying to reconstruct the movement of the rigid body
between two fixed points in time, a natural model to consider is the spherical
regression model: the data consists of n pairs of unit vectors (u;,v,), i =
1,..., n, such that, for fixed u;, the density of v, with respect to uniform
measure on (), is of the form f(v/Au;) for some unknown A in SO(p).

If a rigid body moves in Euclidean space R”, and if x and y are the
positions of a point on the body at two specific times, we have y = A -x + b,
where A is in SO(p) and b in RP. We will also consider scaled Euclidean
motions yA -x + b, where y > 0 is a real number. This paper deals with
robust estimation of the rotation matrix A of the spherical regression model
or the triple (A, b, y) in the Euclidean motion model. The problems consid-
ered are the asymptotic distribution of the estimators and the detection of
influential observations.
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One of the most important applications of the spherical regression model is
the determination of the errors in the fitted reconstruction of the position of
one tectonic plate relative to another. A survey of some of the statistical
issues in that problem can be found in Chang (1993). In the tectonic context,
outliers are not uncommon. Rivest (1989) noticed more outliers in a Gulf of
Aden data set than a Fisher error model would predict. Shaw and Cande
(1990) noticed that the distribution of fracture zone and magnetic anomaly
data for the South Atlantic is extremely heavy tailed. However, techniques
for finding such outliers and influential observations have not been fully
studied in the spherical regression context.

The Euclidean motion model arises in many contexts. One context is in the
problem of “image registration.” In this problem, one is trying to correlate
two images of the same two- or three-dimensional object from landmarks on
the object. Since any nonrigidity in the object is modelled in the statistical
error term, long-tailed error distributions and outliers are not uncommon.
Depending upon the factual situation, the difference between the two images
is often expressible as a scaled Euclidean motion. Although (A, b, y) is
usually not of direct interest, it must be estimated, and one should use an
estimator with good statistical properties. Furthermore, if the registration is
not satisfactory, an analysis of influential landmarks would indicate which
landmarks should be reexamined for better registration.

The same problem arises in shape theory. For example, motivated by
applications in biology, Siegel and Benson (1982) propose a repeated median-
type method for the reconciliation of two shapes in the plane. Residual
analysis is of specific interest in that paper.

We summarize below some of the qualitative conclusions of this paper.

For spherical regression, the shape of an asymptotic confidence region for
A depends only upon the geometry of the points u;; its size depends only upon
the objective function minimized and upon the underlying density f. Further-
more, the efficiency of an M-estimator of A on , is the same as the
efficiency of the corresponding M-estimator of a location on (. In particular,
for p =3, the efficiency of a median-type estimator of A, at a von
Mises—Fisher distribution with concentration parameter k, is a decreasing
function of x and approaches 7/4 as k > o,

For Euclidean motions, similar behavior is observed. Thus, an L,-estima-
tor will have the same efficiency as the spatial median. This efficiency is 7/4
and 8/(37) for p = 2 and 3, respectively, at an isotropic normal distribution.
For p = 3, the use of an L,-estimator will guard against outliers and long
tails at a cost of only (837/8)!/2 — 1 = 8% in standard error when, in fact, a
least squares estimator would have been optimal.

In the spherical regression case, Rivest (1989) used a version of Cook’s D
to diagnose outliers; but it is well known that this approach suffers from a
masking effect for multiple outliers and/or influential points. In contrast to
Rivest’s approach, we use a robust spherical regression and then use the fit to
discover the influential data points. We use a standardized influence function
to identify leverage points as well as outliers. Despite the assumed symmetry
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in the errors hypothesized by the spherical regression model, the influence of
a data point depends not only on the length of the residual and the leverage
of the design point, but also on the direction of the residual vector relative to
the design point and the overall geometry of the u;. Similar behavior is
observed for the rotation A in Euclidean motions. In addition, for a given
design point and residual length, an observation which is influential for A
will tend to be unimportant for ¥ and vice versa.

In some applications, such as that given by Chapman, Chen and Kim
(1995), the location of the u; can be controlled. In this case, placing u;
uniformly on ()5 will minimize the influence of any observation. Similarly, for
Euclidean motions, it is optimal to place the landmarks uniformly on the
surface of the largest feasible sphere.

2. M-estimators for spherical regression and their standardized
influence functions. Under the assumption that the v; are independently
distributed with a density of the form f(v/Au;), the most natural family of
M-estimators of A are those which minimize an expression of the form

1
(2.1) -~ Y p(viAu,).

To get a differential expression which is implied by (2.1), one needs to
recall that if L(O(p)) is the collection of skew-symmetric matrices H (.e.,
matrices which satisfy H + H! = 0), then the map ®: L(O(p)) —» O(p) de-
fined by ®(H) = X,,,H'/i! is a 1-1 nonsingular differentiable map of a
neighborhood 0 in LO(p) onto a neighborhood of I in O(p). For obvious
reasons, ® is usually called the exponential map. Since O(p) has two
connected components, one of which is SO(p), ® also parameterizes a neigh-
borhood of I in SO(p).

Thus if A = A minimizes (2.1), either over O(p) or over SO(p), for any
skew-symmetric H, we have

d

dt |-

1 A
=Tr[(—2p’(v{Au uvlA H]
n

1 N 1 N A
o Y p(viA®(tH)u;) = — Zp’(v{A u;)viA Hu,

This is equivalent to the matrix (1/n)L p (vtA uu,; vtA being symmetric. We
are lead to the family of M-estimators, each member of which satisfies an
equation of the form

1 o o A
(2.2) 0= ~ Y u(viA ui)(uiva - Atviuﬁ),

where (¢) = —p'(¢). We will always assume that (¢) > 0 for all ¢ in [0, 1]
and (¢) > 0 for some ¢ in (0, 1).

The derivation of (2.2) from (2.1) can be described as “performing calculus
in the tangent plane to O(p) [or SO(p)] at A.” Mathematically, similar
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reasoning was used in Ko and Chang (1993). That paper studied M-estima-
tors of a modal vector u of a distribution on the unit sphere 0, of R? using
calculus in the tangent plane to (), at ji. Most of the proofs here are similar
to the proofs given there, and we will content ourselves here with giving some
representative calculations. We trust that once the mathematics of our
approach becomes clear, the reader will be able to modify the proofs of Ko and
Chang (1993) to the present situation.

Again, since asymptotics is essentially local, there is no difference in the
theory of estimating a matrix A in O(p) from estimating such a matrix in
SO(p). Below we will state theorems in terms of estimation of a matrix in
SO(p); however, these theorems hold without change if in fact one is inter-
ested in estimation of a matrix in O(p). .

For a specific ¢ and distribution F, write A,(F) for the matrix in SO(p)
which satisfies

(2.3) 0 = Eg[y(vA,(F)u)(ww'd,(F) - 4,(F)'vut)],

or, equivalently, Eg[ 1//(vtA¢(F)u)uv tA,,(F)] is symmetric. When the context is
clear, we will often suppress the subscript ¢ or the argument F. We recall
that if F represents an empirical distribution, (2.2) becomes a special case of
(2.3).

Equation (2.3) arises as a necessary condition for Al,,(F) to minimize
Eg[ p(v'Auw)], for p such that p'(¢) = —y(¢). Thus we expect (2.3) to have
multiple solutions corresponding to the other critical points. Indeed, because
SO(p) is compact, Ex( p) has at least two critical points, corresponding to its
maximum and minimum. This is not an uncommon problem with M-estima-
tors, and the choice of the correct solution will usually be clear either by
evaluating the original function p or, unless the error distribution F is
unusually diffuse, by visually inspecting the fit. )

From the names of the corresponding location estimators, we call A, the
mean rotation (LS-mean rotation), the R-median rotation (median with
respect to spherical distance on (1,) and the L,-median rotation (median
with respect to the L, metric) for ¢(¢) = 1, ¢(¢t) = (1 — t2)"1/2 and ¢(¢) =
(1 — ¢)"1/2, respectively.

The influence function at an observation x = (u*, v*) is defined to be

IF(x: A, F) = lim A[(1-&e)F + e8] —A(F) ’

e—>0" ‘ &

where 6, denotes a point mass at x. It is a tangent vector to SO(p) at A(F).
In other words, A(F) IF(x; A, F) is a p X p skew- -symmetric matrix.

Letting I(A(F)) denote the information matrix at the observed model, the
squared norm of the standardized influence function (SIF) is defined to be
Vect(IF)' - I(A(F)) - Vect(IF). The SIF is more informative than the influence
function because, as Hampel, Ronchetti, Rousseeuw and Stahel [(1986, page
229] noted, it “compares the bias (as measured by the IF) with the scatter of
the maximum likelihood estimator at the estimated model distribution.”
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We will assume that the u; are ii.d. with 3 = E(uu’) a positive semidefi-
nite symmetric matrix with at most one zero eigenvalue. Let A; > --- > A, be
the eigenvalues of % with corresponding eigenvectors e, ..., e,. We further
assume that, conditionally on (u,...,%,), (vy,...,v,) are independent with
the conditional density of v; of the form f(v/Au;) for some A in SO(p). All
densities are with respect to the usual surface measure on (),. Let g(¢) =
log f(¢). Write v = tAu + V1 — t2w, where t = v’Au and w is a unit vector
perpendicular to Au. Since the distribution of v, conditionally on u, is
rotationally symmetric around Au, ¢ and w are independent and w is
uniformly distributed on the unit sphere in the (p — 1)-dimensional hyper-
plane (Au)* . Thus there exist constants c;, ¢y, kg, k1, ky, k5 and k, such
that, conditionally on the u’s,

E[g’(vtAu)zvvtlu] =c¢,;I + ¢y Auu'Al,

2.4) E[y(v'Au)vlu] = ko Au,
' E[y'(vAu)vv'lu] = kI + by Auu'Al,
E[w(v‘Au)zvv‘Iu] =kyl + k,Auu'A’.
Note that if H is a skew-symmetric matrix,

Vect(A (F)H,) -1(A (F)) - Vect( A (F)H,)

dlog f(v'A (F)®(tH,)u)
—E dt

t=0

d log f(v'A (F)®(sH,)u
25 y og f( fis) (sHy)u)

s=0

= E|g'(v'A (F)u) wH{ A (F)'o'd (F)Hyul

E[u'H{A (F)(cid + c, A (F)uu'd (F)')A (F)H,u]
¢, Tr[ H{SH,|.

Therefore |[SIF||®> = ¢, Trl( A(F)'IF) - 3, - (A(F)'IF)].
Before calculating IF, we first prove two technical lemmas.

LEMMA 1. Under the above assumptions, E[ y(v'"Au)uv'A — Alvu?)|u] = 0.
ProoF. This is an immediate consequence of E[¢(v'Au)vl|u] = kyAu. O

LEMMA 2. Suppose g is differentiable and let t = v'Au. Then ky, — k, =
Ely@)1 — ¢t®)g'(®]/(p — 1). Thus if f is strictly increasing, ky — ky > 0.
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Proor. Define constants k5 and k4 by E[¢(¢)g'(H)vv'] = ksI + kg Auu'A’
Write v = (1 — t2)Y/% + tAu. Then, conditionally on ¢ and u, E[ £¢¢] = (I —
Auu'A")/(p — 1) and it follows that k; = E[¢(t)X1 — t2)g'(t)]/(p — D). For
convenience, and without loss of generality, assume A = I.

Let dv denote surface measure on (1,. Using Lemma 1, we have that, for
all skew-symmetric E and H, and u € Q) o

Od
Cdt

[E- Ju (vt @(tH) u) f(v B(tH u)uv' ®(¢H) dv

=TrE- f[¢ (v'u)(viHu) f(viu)uv' + ¢(vie) f(v'u)uv'H
+y(viu) f (viu)(v'Hu)uvt] dv
= Tr E[—uu'H(kyI + kyuut) + kquu'H — uu'H (kI + kguu'))
ThuS k5 = ko - kl' O
PROPOSITION 1.
(a) Let H be the unique p X p skew-symmetric matrix for which
(2.6) (ko — ky)SH + y(v*'A(F)u* )u*v*'A(F)

is symmetric. Then IF(x; A, F) = A(F)H.
(b) By change of basis, assume without loss of generality that 2 is diago-

nal, and write H = (h;), u* = (u',...,uP), Alv* = (v',...,vP), t;; = u'v/ —
u'vt. Then
ISIF|I? = — Fo*Au*) ¥ (M + A
(k1 = ko)* )
(¢) The standardized gross error sensitivity (SGES) of A is
c 2(¢)(1 —¢2
SGES? = _____1___5 sup ﬁu

(ky — ko))" -—1<t<1 Ap-1t Ay

ProoF. Let F(x,¢) = (1 — &)F + &6,. The standard calculation is to sub-
stitute F(x, &) for F in equation (2.3) and to differentiate, thus calculating
IF(x; A, F) by implicit differentiation. We will follow this basic outline.

Assuming for the moment that IF(x; A, F) exists, we can write H =
A(F YIF(x; A, F). Then H will be skew symmetric and A(F(x,¢)) =
A(F)®(eH + o(&)). If G is skew symmetric,

0= Tr[Gftp(vtA(F(x, e))u)uv'A(F(x,¢)) dF (x,¢)|.
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Differentiating,
0="Tr G[[zlf’(vtA(F)u)(vtA(F)Hu)uv‘A(F) dF
+ [y (vA(F)u)uo'A(F)HdF
+ [9(vA(F)u)uwA(F)(~dF + dax)]
=Tr G[—f:/f’(vtA(F)u)uu‘HA(F)tvv‘A(F) dF
+ [kouu'HdF + ¢(v*54(F)u*)u*v*aci(F)]
= TrG[—fuutH(kII + kyuu')dF + ko3 H + zlf(v*tA(F)u*)u* v*'A(F)
= Tr G[(ko — k) SH + y(v*'A(F)u*)u*v*A (F)].
Here we have use that u’Hu = 0. Since the above equality is true for all
skew-symmetric G, (2.6) must be symmetric.

In the basis of eigenvectors of 3, the condition that (2.6) be symmetric
becomes

(ko — ky)(A + Ak + g(vA(F)u* ) (uv; — up,) =0

By Lemma 2 and the assumption that 2 is positive semidefinite with at most
one zero eigenvalue, we have (k, — £, )(A; + A;) > 0. Thus, by the implicit
function theorem, the derivative IF(x, A, F ) ex1sts H is unique and

c; Tre(H'SH) =c; Y, (A + AR

i<j

——-—————(kl — ko)qu (v*Au*)lgj(/\ + /\)

This establishes (a) and (b). Let t = v*'Au*. Then %,
easily yields part (c). O

=1 —¢t2. This

l<j lJ

For p = 3, the usual case of practical interest, (b) can be geometrically
interpreted as follows: Suppose the length of the residual vector, or, equiva-
lently, ¢ = v'A u, is fixed. Then A(F)'v = tu + (1 — ¢t2)/2w with |w| = 1 and
w L u. Let the vector cross product u X w =[x, x5, x3]". Then

(2.7) IISIFII2=-——C————w (£)(1—1¢?) = + %2 + % .
(ky — ko)® A+ Ay A Ay A A
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Note that |[u X w| =0 if |[t| = 1 and is 1 otherwise. Thus we conclude the
following:

1. The standardized influence of an observation is not only determined by the
length of the residual but also by the relative location of the design point «
with respect to eigenvectors of 3 and the direction of w. For a given ¢,

max [SIFI® = ———— 2 (1)(1 = £)(hs + &)
viAu=t (kl 0)

which occurs if and only if u is perpendicular to the dominant eigenvector
e; of 3 and w = +(u X e;). Furthermore,

2 41 2 2 -1
min [SIF|* = ————5y2()(1 ~ 19)(A +4) ",

which occurs if and only if L eg and w = +(u X ey).

Notice that if u = e,, then, depending upon the direction of w, [ISIF||* can
achieve both its maximum and minimum values. Thus even at a point u of
high leverage, namely, when « L e,, the actual influence could be very small,
depending on the direction of w and the conditioning of the matrix 3.

We comment that because v is constrained to lie on the sphere (5, v — Au
is constrained to a two-dimensional surface. We believe that the projection
1 —t)V2Aw=v - (vtAu)Au of v onto the two-dimensional hyperplane of
tangent vectors to (5 at Au is a more appropriate notion of residual vector
in this situation than the simple difference v — A u.

2. The maximum influence of an observation is minimized when A; = A, = A4
= 1. In this case the influence of an observation depends only upon ¢. We
also conclude that the choice of design points (the u;) which makes the
influence of any single point as small as possible is a uniform dispersion of
the u;. Thus, when the location of the points u; can be controlled, they
should be spread uniformly on Q,.

3. The standardized gross error sensitivity SGES of A at a von Mises
distribution on Q,

A,(x) sup y(s)(1 — 5?)
E2(4(0)(1 - 7))

which is identical to the corresponding result [equation (3.12) of Ko and
Chang (1993)] for an M-estimator in the spherical location problem. Thus
the R-median rotation and the L;-median rotation are SB-robust at the
family of von Mises—Fisher distributions, that is sup, SGES is bounded.
On the other hand, the mean (MLE) rotation is not SB-robust at the von
Mises—Fisher family. Theorem 3.4 of Ko and Chang (1993), which gives
necessary and sufficient conditions for an M-estimator of a spherical
location to be SB-robust, also generalizes to M-estimated rotations without
change.

SGES? = (p — 1)
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3. Asymptotics and optimality. We now give results on the asymptotic
distribution of the A, which satisfies (2.2). The proof of Proposition 2 will not
be given as it is quite similar to the proof of its cousin in Ko and Chang
(1993). We continue with the same assumptions on the underlying distribu-
tion of the v;. We also continue to assume that (¢) > 0 for all ¢ in [0, 1] and
(¢) > 0 for some ¢ in (0, 1).

PROPOSITION 2. Suppose p satisfies the following:

(A1) p is differentiable and p'(tX1 — t)1/2 is bounded for t in [—1,1];
(A2) Ep(v'Bu) has a unique minimum at B = A.

Then if A, minimizes (2.1), A, > A a.s. as n — «.

We remark that (A2) will hold whenever p(-) is monotonically decreasing
and f() is a strictly increasing function. In particular, the examples in the
previous section are all consistent under the assumption of strong unimodal-
ity of the underlying density f(v'Auw).

PROPOSITION 3. Suppose { satisfies the following:

(ANO) Ey(v'Au)uv'A — Alvu?) = 0;

(AN1) (t) is continuous;

(AN2) (t) is differentiable except at a finite number of points t = t,,...,t,;
(AN3) |’ < M for t + ty,...,t,;

(AN4) ky —k, # 0.

Suppose A, satisfying (2.2) is consistent. Write A, = A®(H,). Then H, has an
asymptotic multivariate normal distribution with density proportional to

expl —n(k, — k)2 T(H'SH)/(2k,)].

If H, = (h;;) when reexpressed in terms of a basis of eigenvectors of 2,
Proposition 3 asserts that the n'/2h,;, for i < j, are asymptotically indepen-
dent and normally distributed with the variance of n'/?h,; equal to k3(A; +

A My — k)72

ProOF OF PROPOSITION 3. Using a proof similar to that given in Ko and
Chang (1993), it can be shown that (AN0)-(AN4) imply the hypotheses of the
corollary to Theorem 3 in Huber (1967) are satisfied. By replacing v, with
A'v;, we can further assume that A = I. With this simplification, for H skew
symmetric, let A(H) be the skew-symmetric matrix defined by

MH) = E[¢(v'@(H)u)(uv'®(H) — ®(H)'vu')].

The derivative of A at 0 [corresponding to ®(0) =1 =A] is a linear
transformation from the skew-symmetric matrices into themselves which
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satisfies
X(0)-H = %LOE[t//(vttb(tH)u)(uvttb(tH) - <I>(tH)tvu‘)]

= E[¢'(viu)(v'Hu)(uv' — vu') + ¢(viu)(uo'H + Hou')]
= E[—¢'(viu)(uu'Hov' + vo'Huu') + ¢(viu)(uv'H + Hou')]
= E[—uu'H(k,I + kyuu') — (koI + kyuu')Huu!
+ko(uu'H + Huu')]
= (ky—k)(ZH + HY).

[We note that the lemma preceding Theorem 4.2 in Ko and Chang (1993)
justifies the above interchange of the derivative and expectation.]
Thus

(8.1) n71/2 th(vfui)(uiv,-‘ —vul) +n'?(ky — k) (3H, + H,3) > 0

in probability. If E and H are skew symmetric T{(SHE) = Tr(EXH) =
Tr(H'3E") = Tr(H3E). Thus (3.1) implies that

(3.2) n=t2 Y g (viu;)viEu; + n'/*(ky — ky)Tr(H,SE) - 0
in probability for all skew-symmetric E. Now
Var[ ¢ (vu)v'Eul =E[¢(vtu)2u”E”vv”E’u]

(3.3)
= E[-u'E(kyI + kyuu')Eu] = —k, Tr(ESE).

We establish below that %2; > 0. When (3.2) is reexpressed using a basis of
eigenvectors of 3, we get

(84) n™'2 Y y(viu;)(vipuy — vyuy) — n'%(kg — k1) (A, + X)) Ry > 0,
;

for all k& <1I, where u; =[u;,...,u;,]’ and similarly for v,. Equation (3.3)
implies that when such a basis is used the first terms of (3.4) for different
k < are independent with variances k4(A, + A;). This implies the desired
form for the asymptotic distribution of H,. [Alternatively, the basis-free
argument given in Chang (1986), page 913, can be used.] O

LEMMA 3. Let t = v'Au. Then ky = E[y(t)*(1 — ¢t?)]/(p — 1) > 0.
Proor. The proof is similar to part of the proof of Lemma 2. O

LEMMA 4. Assume that the following hold:

(a) there is no hyperplane H (through the origin) so that u € H with
probability 1;
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(b) p is decreasing;

(¢) fis strictly increasing.
Then condition (A2) is satisfied.

ProOOF. Temporarily fix u. Let u = Au and suppose w # u. We will first
show that E[ p(viu)lu] < E[ p(v)lul]. Once this claim is established, if B +
A, it follows from (a) that E[ p(v'Au)] < E[ p(v'Bu)]. Thus (A2) would be
established.

To demonstrate the claim, let n = (u — w)/lluw — ||, and let R(v) = v —

2(v'n)n be reflection through n. Then we have viuw = R(v)W and, whenever
v'n > 0, viu > R(v)u. Now using dv to denote surface measure on (1,

E[ p(viw)lu] - E[ p(vi)lu]
- [, FER)(p(ek) = p(vh)) dv
+f, FER(p(eR) - p(vi) dv

= [, [few(e@) - p(vn))
vin>0
+f(R(v) w)( p(R(v)'1) — p(R(v)'w))| dv
- ft - ,[f(vt"‘) _f(R(v)tlJ«)][P(vtM') - p(vtp.)] dv > 0. O
viu>ovi
The following proposition is the robust spherical regression analog of
Hampel’s Lemma 5.

PROPOSITION 4. Suppose f is strictly increasing. Let
_ | &'(s), ifg'(s)Vl—s® <b,
b/V1—s%, ifg'(s)Vl —s? >b.

Let d = E[g'(1)y(t)X1 — t2)]/(p — 1). Writing, for any ¥, Al,, = AD(H)), ¢
minimizes —lim, . nE[Tr(H,3H,)] over all y which satisfy E[g'(£)y(¢X1
—t2)] > 0 and SGES(y) < bel/2/(d(A,_; + A,)/2).

(3.5) ¥(s)

When A = A®(H), H is a deviation vector of A from A. Using equation
(2.5), the length of H, standardized using Fisher information, is proportional
to T H'3H). If f is strictly increasing, ¢(¢) > 0 for all ¢ in [0,1] and
%(¢) > 0 for some ¢ in (0,1), Lemma 2 gives that E[g'(6)y(tX1 — ¢*)] > 0.
Since d depends upon b, SGES(¢) is a function of b. This proposition shows
that, for a given limit on SGES(¢), the optimal choice of objective function
has the form (3.5).
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In principle, for a given bound on SGES we can solve for the appropriate b
and hence choose the optimal . For the Fisher distribution on the sphere Q,
in R3,

¢; = kcothk — 1,

K2 b? 562 b? kb b?
d ?1— I_F +—6— 1—7 +—4—arcs1n 1—7.

Presumably, solving for b in terms of a bound on SGES would be done
numerically.

ProOOF OF PROPOSITION 4. Using Propositions 1 and 3 and Lemmas 2 and
3,

~1 k,
— lim nE[Tr(H,2H,)] = p(pz g (ko — k1)’
_ pE[4(2)*(1 - )]
2E[y(¢)(1 - 2)g'(t)/(p - V]’
1/2 _ SZ 1/2
SGES(s) - cV/ sup|y(s)I(1 )

(A1 + )72 E[p() A - D) g'(6)/(p - D]

By rescaling ¢, we can assume E[¢(¢t)(1 — ¢t®)g'(¢)/(p — 1] = d. Thus we
need to minimize E[(¢)*(1 — ¢2)] subject to | (s)(1 — s2)*/2 < b for all s.
Since

Elg (1)1 - )" = y()(1 -
=E[g'(t)’(1 - t%)] - 2d(p — 1) + E[¢()*(1 — %],

it suffices to minimize the left-hand side. This is done by choosing, for each s,
¢ (s) to minimize (g'(s) — ¢(s))*. Since g'(s) > 0 and [¢(s)(1 — s*)*/% < b,
the optimal choice is ¥(s) = ¥(s). O

1/2

Using Lemma 2, for the von Mises—Fisher distribution VF,(u, ),
ko —ky = kE[y(¢)(1 - t*)/(p - 1)]

and the distribution of ¢ depends only on «; and ky— k, and kg are
functions of « and ¢. In particular, for the R-median rotation,

ks=1/(p—1)
and

(36) ky—ky=kE

(1_t2)1/2 _ V2 ) I'(p/2) ‘Ip/2—1/2(K)
(p-1) p-1 T((p—1)/2) I, 4(x)
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Let

kg _ p—-1 . Fz((l’ -1)/2) ) 13/2—1(")
(ko — ky)° 2k I'*(p/2) I} s 10(k) "
For large «, I,(k) = 2m)~ 1% /2e*{1 — O(x~1)} so that

CM=

4
p-1 I((p-1)/2) |7< " frp=3

cMz 2 T
2k T(p/2) —Z‘K_l, for p = 2.

For small «,

32
— k2, for p = 3,
o
CM = - 2
(E) k™%, forp=2.
For the mean rotation,
1 k=%,  forlarge k,
cC= ——— =
kA, (k) pk~ 2, for small k.

The efficiency of the y-rotation Aw (relative to the mean rotation) may be
defined as c/c,. With this definition, the efficiency of the median rotation is,
as Kk = o,

R V-22))
p-1 T*(p-1)/2)’

or 2/m for p = 2 and 7/4 for p = 3. As k — 0, the efficiencies are 8 /72 for
p =2 and 372/32 for p = 3. Fisher (1985) showed that the efficiency of the
spherical median relative to the directional mean (MLE) has the same
limiting values as k — 0,% at p = 3. Brown (1983) showed that

2 T(p/2)
p—-1 T*(p-1)/2)

is, for general p, the asymptotic relative efficiency of the spatial median
relative to the mean at an isotropic (p — 1)-variate normal distribution. The
efficiency of the R-median rotation for p = 3 is very high (0.7854 for large «
and 0.9253 for small ). (See Figure 1.)

_ Notice that the shape of the confidence region based on any M-estimator
A, is determined by 3; its size depends only upon the underlying error
distribution and on . We conclude that H, is least constrained if the axis of
®(H,) lies in the direction of the largest eigenvector of 3. Notice also that, for
any ¢ and any density f(¢), the efficiency of A, relative to the mean rotation
agrees with that found by Ko and Chang (1993) for the corresponding
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Fic. 1. Efficiency of R-median rotation relative to mean rotation at a Fisher—von Mises distribu-
tion on (3 as a function of the concentration parameter k.

M-estimator of 0 from ii.d. x; which have a density of the form f(¢,), where
t; = x!0. Proposition 4 also mirrors its counterpart for the spherical location
problem

4. An example. MacKenzie (1957) gave an algorithm to calculate an
estimate A which maximizes (2.1) over O( p) when p(t) =t. H1s algorithm
uses the singular-value decomposition as follows: Write Yu,v} = O,A0},
where O, and O, are in O(p) and A is diagonal with entries A, > -+ > P

> 0.Then A = 0,01. This solution is unique if A, > 0.

Stephens (1979) modified the MacKenzie algonthm to find an A which
maximizes (2.1) over SO(p) when p(¢) =t¢. Instead, one uses a modified
singular-value decomposition: Yu;v/ = O;AO0%, where O, and O, are in
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SO(p) and A is diagonal with entries A; > -+ > Ap—1 2 1A, Then again
A = 0,0:!. This solution is unique if Ap_1> — A,

When ¢(¢) > 0 is even and nondecreasmg on [0,1] (but not necessarily
strictly so), we propose the following iterative algorithm to solve (2. 2): Sup-
pose A, is a guess for A. We pick A,,, so that Sy(vth uuvlA,, | is
symmetric. There are at least 27! choices for Ak +1, but the ch01ces are
exactly the critical points of the function f(A) = Z¢(v} Aku Jv!Au,. Since
is even and positive nondecreasing on [0, 1], we pick the Ak +1 wh1ch maxi-
mizes f(A). Then A,,, =0 201, where O, and O, are deﬁned using the
standard singular-value decomposition of Li(v} Aku Ju,v} if a solution in
O(p) is desired and a modified singular decomposition if the solution is to be
restricted to SO(p). For an initial guess AO, we suggest the R-median
rotation, which may be estimated via a Nelder—-Mead—type algorithm from
(2.1).

The asymptotic distribution of n'/2H, depends upon the parameters ko —
k, and k4. Motivated by equations (2.4), possible estimates are

by —ko= L9 (t)(1 —1)"/(np —n) — Lu(t,)t;/n
and
= Lo(t)(1 - t7)/(np — n),
where ¢; = vit/i',,ui.

Alternatively, we can assume a Fisher-von Mises error distribution and
use an estimate of the concentration parameter « to estimate k; — k£, and k&,
using equations (3.6).

Nonrobustness of the MLE of « is well known. Ko (1992) suggested that
we use an estimate Kk, based upon median absolute deviation. In the
spherical regression context it is defined as

Ryc = C_l(medu’?Af,,v»)

where A is the R-median rotation and C,(«) is the median of u‘X when X
is VF (/.L, k) distributed. For p = 3 and « > 0,

In2
1 - med, utAlp;’

We refer the reader to Ko (1992) for further details.

We use an updated version of the Central Atlantic data set compiled by
Klitgord and Schouten (1986) to illustrate these methods. The data consists of
identifications of fracture zone and magnetic anomalies and cannot be ana-
lyzed using a spherical regression model [see Chang (1993) for a discussion of
the statistical analysis of this type of data]. To construct data suitable for
spherical regression modelling, we have replaced each segment by its mid-
point. A sequel will discuss influence diagnostics applicable to the data as it is
originally collected. A map of the data is shown in Figure 2.

The errors in this data set are so concentrated that the approximation for a
large concentration parameter is quite appropriate in estimating the concen-
tration parameter. The estimated mean rotation is a rotation of —5.39°

Kuc =
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around an axis through 79.59°N latitude and 24.22°E longitude and k = 1.56
X 108, We obtained the R-median rotation as a rotation of —5.28° around an
axis through 80.29°N and 40.08°E and &, = 3.35 X 10°. The two estimates
of the rotation axes are, in fact, only 2.85° apart.

We calculated the 95% confidence regions for the rotation matrix based on
mean rotation and m.l.e. K and R-median rotation and &K, .. Figure 3 shows
the projection of the resulting 95% confidence regions onto the axis latitude-
longitude space. Under the Fisher error model, for any large «, the confidence
region based on the mean rotation should have each linear dimension
(m/4)"/% = 89% of the corresponding dimension of a confidence region based
on the R-median rotation. However, the region based on the mean rotation
and m.le. K is 130% in each lineal dimension of the size of the region based
upon the R-median rotation and k.. This indicates that some data points do
not follow the Fisher error model.

Although the regions are centered at different rotations, the shape of the
confidence region is the same for both the mean and median estimators.

Influence diagnostics for the least squares procedure were performed using
the standardized influence function for each point. Since c¢,/(k, — k,)? = 2«
for large «,

where ¢ = v'Au and x,, x, and x, are as in equation (2.7). Under von
Mises—Fisher errors, 2k(1 — ¢), which is «|lv — A ul|?, is asymptotically dis-
tributed as )(22 for large « [Watson (1984)]. So ISIF||? may be separated into
two parts, namely, the residual part 2x(1 — ¢) and the leverage—direction
part

+ +
Ao+ A Ay A A,

ISIF|® = {2k (1 — ¢)} - {2

2 2 2
xf x5 x3

+ +
Ayt A3 A+ Ay A+ A

2

Note that the leverage—direction part measures both the leverage of the
design point z and the influence of the direction of the residual vector.

For this data set we used the R-median rotation and k. in estimating
the residual part. In estimating the leverage—direction part, we used the

~79N , 8IN ° -

10E . 30E . T "'50E

B —— leastsquares azequidistant projecti
S — masian quidistant projection

F1c. 3. Projection of 95% confidence region for the reconstruction of Africa to North America at
anomaly 6'.
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eigenvector decomposition of 3 _;, the matrix defined analogously to 3 but
without using the ith point u,. Note that (u;,v;) should be expressed in a
coordinate system which diagonalizes 3._;. (See Table 1.)

Comparing the |SIF||® with y,;°, we may identify points with high influ-
ence on least squares estimate of the rotation matrix. Outlying data points
are identified by comparing residual part with a y,’ distribution. The points
i = B, J, K, P have high influence due to the large residuals at the 0.01 level
and i = H at the 0.05 level. The point A, whose standardized influence
function has a large component due to leverage and direction of residual
vector, does not have a large residual. Thus this point has low influence. To a
lesser degree, the same behavior is exhibited by points L, @ and R. Cook’s
delete-one procedures, as adapted by Rivest (1989) (the ¢? and D; columns in
Table 1) identify only one point i = K at the 0.01 level and another point
i = J at the 0.05 level.

5. Euclidean space models. For Euclidean space models, a rigid trans-
formation is of the form x — Ax + b, where A € O(p) [or SO(p) if the
transformation is orientation preserving] and b € R?. The corresponding
M-estimators are obtained by minimizing an expression of the form
(1/n)X p(lv; — Ay, — @) — BII*), where B = b + Au. However, in many ap-
plications, especially in shape analysis and problems of image registration,
transformations of the form x — yAx + b are preferred. The additional
parameter y € R! is interpreted as a scale change.

) TABLE 1
Influence statistics for Central Atlantic 6 data set

Residual Leverage

t? D; part direction (ISTF|?
A 0.03 0.00 0.00 6.01 0.00
B 2.65 0.10 9.63 2.63 25.38
c 0.48 0.02 151 2.01 3.03
D 0.48 0.02 3.02 2.00 6.06
E 0.32 0.01 0.84 2.03 171
F 0.04 0.00 0.51 2.04 1.03
G 0.19 0.01 1.67 2.02 3.37
H 1.38 0.05 7.88 2.06 16.23
I 0.18 0.01 0.43 2.03 0.88
J 4.35 0.13 19.52 2.08 40.62
K 8.87 0.22 25.50 2.01 51.37
L 0.04 0.00 1.26 3.25 4.09
M 0.06 ,0.00 1.26 2.88 3.62
N 0.41 0.02 3.45 2.49 8.57
o) 0.24 0.02 0.05 2.81 0.14
P 2.52 0.09 11.52 2.00 23.05
Q 0.24 0.01 0.62 3.46 2.15
R 0.02 0.00 0.98 3.13 3.05
S 0.09 0.00 1.19 2.87 341
T 0.57 0.02 1.68 2.20 3.70
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Letting ¢(s) = p'(s), we get
0 = (8) [ 4 - 9w - ) - B)(ws )’

(5.1) ) o
~(u; @) (v; ~ ¥A(w; ~w) - B)'A |,

(5.2) 0=Ly(5)(v; — ¥A(u; — @) - B),

(5.3) 0=Z¢(§i)(vi“ ”)\'A(ui_u) _ﬁ)t/i(ui - u),

where §; = |lv; — ?A(ui — @) — B2 If scale changes are not allowed, we get
equations (5.1) and (5.2) with ¥ = 1.

Let 7 = E(w), S, = El(u — u)Xu —©)'] and s = |lv — yA(u — @) — B|I%. We
assume that the distribution of v, conditional on u, is of the form f(s), and
we let g(s) =log f(s). Define positive constants d; and d, as d; =
El4g'(s)?s/p] and d, = —E[(s)g’'(s)s]. Analogously to Lemma 2, it can be
shown that d, = E[¢'(s)s + (p/2)¥(s)]. Proceeding as in (2.5), the informa-
tion matrix I[ A (F), B(F), 8(F)] satisfies

Vect| A(F)H,, hy, g,
(5.4) A[A(F), B(F),%(F)] - Vect| A(F)Hy, by, &, ]
= 4,[%(F)* Te(H{SH,) + hihy + g8, Tr(3)].

Here H; and H, are skew p X p matrices; h; and Ak, are vectors in R?; and
g; and g, are real numbers.

Because of (5.4), the SIF of A, B and ¥ can be considered separately. In
light of Lemma 2, the following proposition is easily seen to be the Euclidean
space analog of Proposition 1.

PROPOSITION 5. Let H = A(F)'IF(x; A, F). Then H is the unique p X p
skew-symmetric matrix for which

dy
29(F)—3-H + ¢(s*)[u* — u]
(5.5) p
x[v* = $(F)A(F)(w* - 7) - ()] A(F)
is symmetric;
P

53 (s v* — Y(FA(F)u* — 1) — B(F)],
2

(5.6) IF(x;B,F)=

p *
24, To(3) /()

x[v* =3P AP (w* ~7) - B(D)] A (F)(w* - 1),

IF(x;9,F) =
(5.7

In a model without scale change parameter vy, equations (5.5) and (5.6) hold
when %(F) = 1.
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The proof uses the same ideas as that of Proposition 1 and is omitted.

As in the spherical regression case, suppose p = 3, and let A; > A, > A3 be
the eigenvalues of 3. For A, we have (for models with or without scale
change vy)

A2 P2 2 2 x% xg
58) [SIF(A - + *
(58) ISIF(A)I* = 2 - 92 (s)sllu - al VR VL VD VL W

where w = A'(v — yA(u — @) — B)/s'/? with s = |lv — yA(u — @) — B|I* and,
in a coordinate system of eigenvectors of 3,
u—1u .
e =i Xw="[xq,2x,,23].
Thus, as before, we conclude the following:

1. The standardized influence of an observation is not only determined by the
length of the residual and the length of the centered design point u — %,
but also by the relative location of u — & with respect to eigenvectors of 3,
and the direction of the residual. The maximum influence for given lengths
of residual and u — % occurs if and only if u — % is perpendicular to the
dominant eigenvector e; of % and w = +((v — %) X e;)/llu — %|. The min-
imum influence for any u is 0 and occurs if and only if w = +(u — %)/llu
—ull.

2. Notice that the maximum influence is minimized for fixed Tr(2) by A, = A,
= A3. Thus the choice of design which would make the influence of any
single point small is a spherical symmetric distribution of the u,; about %
concentrated on a sphere of large radius._

3. The standardized influence of (u;, v;) on B depends only upon the length of
the residual vector. Indeed (for models with or without scale change),

2

(5.9) ISIF( B)II* = 2az ~y2(s)s.
4. Finally,

F 2 p2d 2 — 2
(5.10) ISIF(¥)II" = m (s)s((u —u) - w)

Thus, when p = 3, for a given length of residual, the influence of an
observation on ¥ will be maximized when the residual, after back-trans-
formation by A’, is parallel to u — %. In this event, its influence on A will
be zero. Similarly, for any fixed u, an observation with maximal influence
on A will have zero influence on y.

For rigid body motion in the plane, so that p = 2, equation (5.8) becomes

(5.11)  |ISIF(A )| = %.p?(s)s(Al +29) M (u - ) X wl®.
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Thus a point z; has high leverage on A if it is far from . However, even if u;
has high leverage and the length of the residual is large, the pair (u;, v;) W111
have little influence on A if the back-transformed residual A*(v — vA(u — 1)
— B) is close to parallel to u — %. In models with scale change v, equations

(5.10) and (5.11) yield

ISIF(A )II* + ISIF(9)II? = y2(s)sllu — a@ll®.

1
dZ-Tr(3)

Thus there is a direct trade-off between the influence of an observation on A
and its influence on ¥.

The asymptotic covariance of A, B and % ¥ is derived in much the same way
as in Proposition 3. Let A, = A(F,), A = A (F) and write A, =A®(H,) for a
skew-symmetric matrix H The proofs in Propositions 2 and 3 of consistency
and asymptotic normality do not apply as compactness arguments were used
there. However, it is easy to show, assuming the consistency of An, Bn
B(F ), %, = %(F,) and the joint asymptotic normality of H,, 8, and ¥,, that
the asymptotlc distribution of H, has a dens1ty proportlonal to
expl —2nd3y? Tr(H'SH)/(pd,)], where d, = E[y2(s)s]. Similarly, B, i
asymptotlcally multivariate N(B, pd;I,/(4nd3)), where I,isapXp 1den-
tity matrix and %, will be asymptotlcally N(y, pd,/{4nd? Tr(E)}) Asymptoti-
cally, H Bn and %, will be independent.

Thus the efficiency of the median estimator of A, 8 and y relative to the
mean estimator at a p-variate isotropic normal d1str1but10n is 2-T((p +
1)/2%/{p-T(p/2)?, or 2/m = 0.6366, 7w/4 = 0.7854 and 8/(3w) = 0.8488
for p =1,2,3. Brown (1983) has shown that these are the same as the
efﬁciencies of the spatial median to the mean vector. As p — o, this efficiency
increases to 1.

More generally, if x; are iid. with a density of the form f(s,), where

=|lx; — 6|12, and if 0 is estimated by an equatlon of the form Xy (§;X(x; —

0) = 0, then the asymptotic distribution of @ is multivariate normal with
mean 6 and covariance matrix pd,I /(ndz) It follows that the efficiency
relative to the mean estimators of any M-estlmator of A, B and ¥ satisfying
equations of the form (5.1)-(5.3) will be the same as the corresponding
M-estimator in the location problem. Also, the shape of a confidence region of
A, B and y will depend only upon 3; its size will depend upon ¢ and the
underlying error distribution. Similar phenomena occur in univariate multi-
ple linear regression, as can be seen in Huber [(1981), equation (5.2)].

6. An example in three dimensions. Table 2 contains the digitized
locations of 12 points on the left and right hands (with fingers fully spread
apart) of one of the authors. We consider the problem of bringing them into
coincidence using a transformation of the form x — yAX + b. In this case,
the matrix A must be orthogonal with determinant — 1, that is, it represents
both a rotation and a reflection. The parameter y allows for the possibility of
slightly different-sized hands or different spread.
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TABLE 2
Digitized locations on hand

Left hand Right hand

517 11.30 16.18 591 11.16 16.55 Top oflittle finger

740 1236 175 8.63 10.62 18.33 Top of ring finger

8.56 1259 17.87 10.09 10.60 18.64 Top of middle finger

9.75 13.62 17.01 10.89 10.95 17.90 Top of forefinger
1146 14.55 1296 1297 10.13 13.88 Top of thumb

7.10 13.12 1256 879 11.21 13.17 Gap between thumb and forefinger

8.85 13.82 12.60 10.70 11.10 13.42 Center of palm

6.77 13.07 10.32 847 11.09 11.35 Base of palm

6.26 11.62 13.34 7.28 12.52 14.04 Little finger knuckle

6.83 12.00 13.83 8.05 12.42 14.56 Ring finger knuckle

794 1229 1384 9.07 12.39 14.86 Middle finger knuckle

8.68 12.71 13.67 10.15 12.17 14.44 Forefinger knuckle

MRAU~DQEESQD >

The least squares solution [with (s) = 1] to equations (5.1)-(5.3) has a
closed form. Writing O;AO} for the singular-value decomposition of the
matrix Y(u; — uXv; — v)‘ it is well known that [see Goodall (1991)] A=
0,04, ¥y = Z(v - v)‘A(u -u)/X(u; — w)'(u; — w) and B =7.

To solve equations (5. 1) —(5.3) for the L, (medlan) solution [with ¢(s) =
s~ 1/2], the following iterative scheme was selected. The least squares solution
was chosen as initial guess. Using the values of §; obtained from a given
iterate, equations (5.2) and (5.3) were used to calculate the next iterates for 8
and 7, respectively. Equation (5.1) is equivalent to the condition that
T8 u; — v, — B)‘A be symmetric. If the singular values of the matrix
Ly(8)u; — uXv; — B)! are distinct, there are eight solutions, for fixed $;, in
0O(3) for the next iterate of A. The correct solution is obtained by ﬁndlng the
singular-value decomposition O;AO% of Ly(8,u; — @)(v; — B)! and choosing
the next iterative to be 0,0%.

The influence of an observatlon on f is proportional to s for the least
squares solution and constant for the L, solution. Using equations (5.8) and
(5.10), the influence on A and % of each observation (for each of the two
solutions, L, and least squares) was calculated. To control the effect of
individual observations, the L, solutions for the population values of A, B
and y were used to estimate s and, when the effect of the ith observation
was calculated, u; was not used in the calculation of 3. We consider here the
question of Wh1ch observations are most influential on A and 4, without
considering whether the observations are unreasonably influential. Thus the
values of |[SIF||> were renormalized to make the sum of the influences of the
12 observations of ¥ and A equal to 1. The results are plotted in Figure 4
together with the lengths s!/2? of the residuals.

Point E (top of thumb) has both the longest residual and the largest value
of |lu — zl. It is the most influential observation for both the least squares
and L, estimates of A, but its influence can be greatly tamed by using an L,
estimator. Note that for the L, estimator, /%(s)s = 1 and hence the length of
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residual length
Aa 0.478
Bb 0.383
Cc 0.642
Dd 0.436
H Ee 1.086
Ff 0.029
Gg 0.072
Hh 0.716
1i 0.363
Jj0.514
Kk 0.457
— L10.363

0.6

0.4

influence on gamma
=

0.2

1 9D

I
g—&ﬁ - a

I | | I
0.0 0.2 04 0.6

influence on Ahat

FiG. 4. Relative influence on mean (upper case) and median (lower case) estimates of A and vy
for the hands data of Table 2.

the residual is not a factor in the influence of E on an L, estimator. Thus the
influence of E on an L, estimator A, must be due to the direction of u; — u
and w. If the point E is not used in the calculation of 2, u; — % forms an
angle of 13° with e,, and the residual forms an angle of 12° with e;. Note that
if u — U = e, and w = ey, the observation will have maximum influence for a
given length |lu — ull.

The most striking point is H (base of the palm): H is by far the most
influential point on the scale estimate; H has a substantially shorter residual
than E and the L, estimator is less effective in ameliorating its influence.
Points H and G (center of palm) are the least well defined points, but H
defines the length of the hand. Thus H’s influence on the scale parameter ¥ is
not surprising.
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An interesting comparison is between observation H and C (top of the
middle finger). The least squares estimate of y is 0.9925 and the L, estimate
1.0086. If C is deleted, these estimates become 0.9895 and 1.0047. If H is
deleted, these estimates are changed more dramatically: to 1.0110 and 1.0262,
respectively. Notice that H is far more influential than C.

After centering by #, and in a coordinate system consisting of the eigenvec-
tors of 3, the coordinates of H are [ —3.98,1.15,0.33]. The coordinates of C
are [3.55, —0.77, —0.03]. Notice that the coordinates of C are close to minus
the coordinates of H. Since equation (5.10) for the SIF on % remains un-
changed if u — ¥ is replaced by its negative, location of the design point u
cannot account for the difference in the effect of H and C on %. Also, the
lengths of the residual at C and H are fairly close, so this also cannot account
for the difference in the influence of the two points on %. However, the
residual at C forms an angle of 88° with u; — % and hence the influence of C
on ¥ is almost negligible. The residual at H forms an angle of 124° with
ug — u, accounting for the greater influence of H on %.

Thus if the registration is unsatisfactory, the point E should be reexam-
ined when A or, if least squares is used, 3 is suspect and the point H should
be reexamined when % is suspect. Because of the normalization to make the
sum of the influences equal to 1, this analysis does not depend upon the
underlying probability density f.
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