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KERNEL ESTIMATION IN A NONPARAMETRIC MARKER
DEPENDENT HAZARD MODEL!

By JENS P. NIELSEN AND OLIVER B. LINTON
PFA Pension and Yale University

We introduce a new kernel hazard estimator in a nonparametric
model where the stochastic hazard depends on the current value of time
and on the current value of a time dependent covariate or marker. We
establish the pointwise and global convergence of our estimator.

1. Introduction. Let Z(¢) be a d-dimensional time dependent covariate
or marker process, and let A(z) be the stochastic hazard for an individual
with history {Z(s); s < t}. Jewell and Nielsen (1993) discuss the distinction
between covariate and marker. For our purposes this distinction is unimpor-
tant. We examine the following model:

(1) Mt) = ofZ(2), t}Y(2),

where Y(#) is an indicator of survival at time #. Submodels of (1) have a long
tradition in survival analysis, for example: the Cox regression model [see Cox
(1972) and Andersen and Gill (1982)]; the multiplicative model proposed by
Thomas (1983) and studied by O’Sullivan (1993); and Aalen’s additive risk
model [see Aalen (1989) and McKeague and Utikal (1991)]. An important
special case is where the intensity depends only on the marker process, that
is,

(2) Mt) = a{Z(£))¥(2).

We call (2) the marker-only model. This occurs in medical applications where
the exposure time is not known precisely [see Fusaro, Nielsen and Scheike
(1993) for an example]. The special case of (1) where there are no covariates,

(3) A(t) = h(2)Y(2),

has been well treated [see Ramlau-Hansen (1983), for results on pointwise
and global convergence of nonparametric kernel estimation, and Nielsen
(1990) for an analysis of the plug-in and the cross-validation method of
bandwidth selection in this setting].

Beran (1981) provided the first results on nonparametric inference in (1):
he suggested a class of estimators for the cumulative hazard function (condi-
tional on Z) in the special case where Z is independent of time. Dabrowska
(1987) established weak convergence results for Beran’s estimators employ-
ing a conditional version of the classical approach by Breslow and Crowley
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(1974). McKeague and Utikal (1990) (henceforth MU) analyze the more
general situation in which the covariate Z is allowed to be time dependent.
They also introduce two estimators of the underlying hazard « based on
smoothing of the conditional cumulative hazard estimator. Sufficient condi-
tions for global convergence for one estimator are presented.

We make several contributions. First, we introduce an alternative kernel
estimator of « in (1) within the general counting process framework of MU.
Our procedure is analogous to the Nadaraya—Watson regression estimator in
construction. It also works in the special case (2) where time is not observed.
Second, we obtain expressions for the asymptotic bias of our estimator which
MU did not do; thus we obtain the optimal rate of convergence. Third, our
conditions for establishing global convergence are strictly weaker than MU’s.
This is a consequence of the difference in proof technique, rather than
estimator. McKeague and Utikal (1990) use the technique developed by
Ramlau-Hansen (1983): the upper bound for the global error obtained using
this technique is rather crude and increases rapidly with d; MU only con-
sider the case d = 1, so the effect of the crude approximation is not too
serious in their case. We consider general d and establish global convergence
by verifying the conditions of Bickel and Wichura (1971). To do this we
introduce a simple sufficient condition for tightness that can be of use
elsewhere. Finally, our estimator is well motivated: when a uniform kernel is
used, it reduces to occurrence over exposure. It is easy to compute and was
employed by Fusaro, Nielsen and Scheike (1993) to estimate the risk of AIDS
given current marker status based on the San Francisco Men’s Health Study.

We recognize that the performance of nonparametric estimators is poor in
high dimensions due to the slow rate of convergence; nevertheless these
procedures can be used as inputs to some more general modelling process, for
example, structured nonparametric models [see Hastie and Tibshirani (1990)]
and semiparametric models [see Andersen, Borgan, Gill and Keiding (1992)],
for which faster convergence rates are possible. For these reasons it is
important to have a general theory.

In Section 2 we formulate the sampling scheme, while in Section 3 we
define our estimator. Section 4.1 contains the pointwise properties, and
Section 4.2 has the global convergence result.

We use |- | to denote the Euclidean norm of a vector; we use —, to denote
convergence in probability; and we use = to signify weak convergence. For a
square integrable martingale M, let (M) denote its quadratic variation
process. Throughout, I, denotes the ‘indicator function of the event A.
Inference will be conducted on the unit cube and, unless otherwise stated, all
integrations are over this set and are omitted in the sequel along with
surplus superscripts.

2. A counting process formulation of the model. We observe n
individuals i = 1,..., n. Let N™ count observed failures for the ith individ-
ual in the time interval [0, 1]. We assume that N = (N{™,..., N{™) is an
n-dimensional counting process with respect to an increasing, right continu-
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ous, complete filtration 7™, ¢t € [0, 1], that is, one that obeys les conditions
habituelles [see Andersen, Borgen, Gill and Keiding (1992), page 60]. We

model the random intensity process A = (A{?, ..., A{) of N as depending
on marker values:
(4) XP(8) = o{Z{M(t), t}Y(2),

but do not restrict the functional form of «(-). Here, Y; is a predictable
process taking values in {0, 1}, indicating (by the value 1) when the ith
individual is under risk, while Z; = (Z,,,...,Z;;) is a d-dimensional, pre-
dictable, CADLAG, covariate or marker process. Let F(z,s) = Pr(Z,(s)
<z |Y(s) = 1) be the conditional distribution function of the covariate pro-
cess at time s and f(z, s) the corresponding density with respect to the d-
dimensional Lebesgue measure. We will assume that the covariate process is
supported on the unit cube and that E{Y;(s)} = y(s), where y(-) is continuous.
The marker Z,(s) is only observed for those s such that Y;(s) = 1. Let

Z(s), whenY(s)=1,

* =
Zi(s) —oo, when Y;(s) = 0.

We call Z} the observed marker process. We assume that the stochastic
processes (N, Z¥,Y,),...,(N,, Z¥,Y,) are iid for the n individuals, and take
F, = o(N(s), Z(s), Y(s); s <t), where Y=(Y,, Y,,...,Y,) and Z = (Z,,
Zy,...,Z,). In the sequel, all martingales and predictable processes are
defined with respect to this filtration. With these definitions, A is predictable
and the processes M;(t) = N,(t) — A,¢t), i =1,...,n, with compensators
A;(®) = [¢ A, (s) ds, are square integrable local martingales on the time inter-
val [0, 1].

3. Definition of the estimators. In this section we define estimators
for a in (4); a corresponding estimator in the marker-only model (2) follows
by analogy. We relate our estimator to the competing kernel estimators for 2
in the model (3) suggested by Ramlau-Hansen (1983) and Hjort (1994).

Let & be a one-dimensional probability density function, and, for & # 0, let
k() = b7 'k(-/b). Ramlau-Hansen (1983) estimated A(¢) in model (3) by

- i 1
5 = - ;
(5) h(t) = L [Ro(t =) 35 dNi(s),
where Y(s) = L7 ; Y,(s). In fact, (5)lresults from kernel smoothing of Aalen’s

estimator for the cumulative hazard [see Aalen (1978)]. Working from the
local likelihood principle applied to a constant hazard function, Hjort (1994)
suggested the following estimator for A:

TR [kt — 5) dANK(s)
©) MO = S TRt s)Yi(s) ds

When a uniform kernel is used, Hjort’s estimator reduces to number of
failures divided by exposure time in a neighborhood of the considered time
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value. We note here the analogy with regression. Estimator (5) is an internal
estimator in the language of Jones, Davies and Park (1994), while (6) is an
external estimator.

Return now to the general model (4). We use, for simplicity, product
kernels and a single bandwidth throughout, although in practice one should
take account of the differences in scale for each direction. Let K(u) =
IT%, k(u)), where u = (uy,...,u,), and write K,(-) = I, ky(). We esti-
mate a by the external estimator

. Loy [ Kz = Zi(s)}k,(t — 5) dN(s)
(7 a(z,t) = .
L1 [K{z = Zi(s)}ky(t — 5)Y(5) ds
We believe that &(z, ¢) is the natural extension of Hjort’s estimator to model
(4). An alternative is the internal estimator
o Kfz = Z(s)}ky (2 — 5)

®) M0 =L [ 5 o 2w e

which appears to be the natural extension of (5). In fact, both Keiding, Holst
and Green (1989) and MU’s estimators are of this form, except that MU’s &,
for example, uses different bandwidths in numerator and denominator and
also only a uniform kernel in the denominator. We do not present any theory
for a(z, t).

Finally, in (2) we would estimate « by

X _ Loy JKy{z — Z,(s)} dN,(s)
®) YB) T T TR e — 2\ Vi) ds

It is important to note here that (9) can be defined even when exposure time
itself is not observed.

dN;(s),

4. Asymptotic properties of the estimators. We first state two useful
results. Let g{™,..., g™ be predictable stochastic processes. The following
version of the central limit theorem for martingales follows as an immediate
extension of Proposition 4.2.1 of Ramlau-Hansen (1983).

PROPOSITION 1. Suppose that, as n — «, the following hold:

PD I, [{g™(sN2d{M;Xs) >, o2
(P2) V8 > 0, Zi=1 f{gfn)(s)}zl(lgfn)(s)l> E) d<Ml>(8) —-)g O.

Then .
n
Y [ & (s) dM(s) = N(0, a2).
i=1
In the proof of Theorem 1 we also use the following fact. Let g,(x) be a

sequence of real-valued functions, where x € R%*!, and let X,;, = [g.{Z,(s),
s}Y;(s) ds. Then

(10) Var[n-l f X,,,.] <n! [[g(w, s)f(w, s)y(s) dwds.

i=1
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Forie({l,...,n},

2
[[ad2(), svo) ds| < [e2iz(s). s)¥i(s) as

by the Cauchy—Schwarz inequality. Furthermore,

B[ [ £2(2i(5), s)¥.(s) ds | = [[ 2w, 5) (w, 9)3(s) dwds,
by Tonelli’s theorem, and (10) follows.

4.1. Pointwise theory for & at interior points. Let x = (z, ¢) be an interior
point of [0,1]9"!, that is, there is a neighborhood /=[x — &, x + ] C
(0, 1)?* 1, where ¢ is a (d + 1)-vector with each component positive. Let

Tio1 Kz = Zi(9)}ky(t — 5) a{Zi(s), s}Yi(s) ds

) S T TR~ Z( et - 9Yi(s) ds

and write
v, +a,
(6 - a)(x) = (& a*)(x) + (a — a)(x) = =,

x

where

g, =n1 Y [Kyfz — Z(s)ky(t - 5)Yi(s) ds
i=1
7= ¥ [Klz  Zio) k(e —5) dM(s)

Z=n § [Kfz - Zio)ha(t o) alZ(s), 5) = (2, O]¥(5) ds.

We call (& — a*)(x) the variable and (a* — a)(x) the stable terms. We now
show that the variable part behaves asymptotically like the variance term in
d + 1-dimensional kernel density or regression estimation, and that the
stable part behaves asymptotically like the bias term in d + 1-dimensional
kernel density or regression estimation.

THEOREM 1 (Pointwise convergence). Let ¢(x) = f(z, t)y(¢t), and assume
that ¢(x) > 0 on .#. We assume (S): a is twice and ¢ is once continuously
differentiable on .#. We also assume (K): the kernel k has support [—1,1], is
symmetric about zero and is continuous. Define the kernel moments k; =
/1, v2k(v)dv and k, = (1, k(v)?dv. Finally, we suppose (B): nb?*! — o
and b — 0. Then the following hold:

)

(a) nl/2p@+D/2{ 4 (x) — a*(x)} =>N[O, kg™t z——gz) ];
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(b) b7*{a*(x) — a(x)}

. dil [(9a(x)/9x;)(d¢(x)/dx;) = da(x)/dx} )
9K1j§1 ¢(x) + 2 ’

@ 6F=g b T [KY e - Zi(5) () AN (o)

a(x)
- 2 = d+1
2 Oy Kg (P(x)

REMARK 1. The theory for the marker-only estimator (9) under the
marker-only model (2) is essentially the same. In this case, one must replace
o(z, t) by ®(z) = [¢(z, s)ds (and only sum from 1 to d) in (a) and (b).

REMARK 2. The asymptotic variance is as given in MU’s Theorem 3, apart
from the kernel constants. Theorem 1 allows the construction of pointwise
confidence bands for a*(x) that have asymptotically correct coverage. When
either the estimator is undersmoothed, that is, bn/@+% — 0, or

arl [(9a(x)/9x;)(9¢(x)/0x;) = d%a(x)/dx}|
j§1 o(x) ’ 2 o

then the bias is negligible, and these intervals are in fact centered on a(x).

PrOOF OF THEOREM 1. First we prove (a). We first show that &, -, o(x).
By changing variables to u = (z — w)/b and r = (¢t — s)/b, we have

E(&,) = [Ky(z — w)ky(¢ = 5)f(w, 5)y(s) dwds

= [amon e ’)/”K( w)k(r)e(x — bq) dudr,
t/b -2/b

where q¢ = (u, r). Since x is an interior point, the range of integration in the
second integral eventually contains the support of the product kernel. In the
sequel we will ignore this boundary issue. Now, [_; e+t K(wk(r)e(x —
bq) dudr — ¢(x) by continuity and Lebesgue’s dominated convergence theo-
rem. Furthermore,

Var(&,) <n”' [ [K}(z - w)ki(t - s)f(w, s)y(s) dwds,

by (10). Changing variables and employing dominated convergence, we get
Var(&,) < O(n~'b~@* D). It therefore remains to show that n'/2p@*b/297
=N [O kg (x)(x)]. To apply Proposition 1, it suffices to show (i) and (11)

(1) Z;l':l anzi(Z, t, S)CY{Zi(S), S}Y;(S) ds —2 K d+1 (X)(P(X)
) Ve > 0: 20 [HA(Z, £ Myg oopon €Zi(), S (s) ds = 0,

where H,(z, t, s) = n~1/2p@* V2K {7z — Z.(s)}k,(t — s). (i) By (10), we can
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replace the left-hand side of (i) by its expected value
(11) b+l ffo(z —w)ki(t —s)a(w, s)f(w, s)y(s) dwds.
By a change of variables, (11) is approximately

f[_l 1]d+11r<2(u)/re2(r)a(x — bq) o(x — bq) dudr,

which converges to kJ"la(x)¢(x) by dominated convergence. (ii) We have

Ve > 0,3 n, such that, Vn > n,,

I(n“l/zb('“'1)/2Kb[z—Zi(s)]kb(t—s)>e) =0,

for all s and for i = 1,..., n. Therefore, (ii) follows and (a) is proven.
Now we prove (b). First, note that
E(#,) = '[[—1 1]dHK(u)k(r){oz(x —bq) — a(x)}e(x — bg) dudr,

after a change of variables. By Taylor’s theorem,

d+1 aa(x) d+1d+1 (92a(x*) q;q,
a(x+bg) —a(x)=b 2 g+ Y Y ——,
o1 9x; J jo11-1 9x;9x, 2
d+1 ﬁrp(x**)q~
e(x +bq) =¢@(x) +b ) —_—

=1 9%
where |x} — xl, Ix;?‘* —x;l <blgl, for je{1,...,d + 1}. However, since
/1, k(v)vdv = 0, we have
d+1 [ ga(x) de(x) d%a(x)/dx?
E(#,) =b%, ) + o(x) ———= {1+ o(1)},

Jx; ox; 2

Jj=1 J

by continuity and dominated convergence. Now we verify that %, can be
approximated by its expected value. This follows because

Var(#,) <n ! [[KE(z - w)ki(t - s){a(w, s) — a(x)}*
X f(w, 5)y(s) dwds
=nTT @[ KR {a(x —bg) — a(x))
X @(x — bq) dudr,

by (10) and a change of variables. This is O(b2n =16~ (¢*D) by Taylor expan-

sion and symmetry of %, by the continuity of @ and ¢ and by dominated

convergence. Finally, recall that &, —, ¢(x), and on division we get (b).
Part (c) follows from

(12) &7 1001 T [K2(z - Z,(s)}Ed(¢ - 5) dAM)(s) = 62 >, o

x
i=1
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and
62— 52 =87 b1 Y [K{z — Zy(s)}RE(t — 5) dM(s) = 0p(1).
i=1

By Lenglart’s inequality [see Shorack and Wellner (1986), page 892], it
suffices to bound the quadratic variation

& 'n720 72 ¥ [Kifz — Z,(s)}ki(t — s) d(M,)(s),
i=1
which is 0p(1) by (10), since &, = 0,(1) and nb?*! - . O

The rate b ~ n=1/(@*® jg optimal as far as pointwise convergence is
concerned; this agrees with the optimal rate of convergence in (d + 1)-
dimensional kernel density estimation. Of course in high dimensions the rate
is very slow. Furthermore, it is hard to visualize the effects when more than
one covariate is included. For these reasons, it may be desirable to impose
some additional structure on «. For example, the multiplicative [ a(x) =
ap(Daz)) - ay(z,)] or additive [a(x) = ay(t) + a,(z;) + - +ay(zy)]
structures discussed in Andersen, Borgan, Gill and Keiding (1992). The
components «,,..., a; can be estimated by backfitting [see Hastie and
Tibshirani (1990)] or by marginal integration [see Linton and Nielsen (1995)].
The marginal integration method requires as input an initial (d + 1)-
dimensional smoother, which is provided by our method. Semiparametric
models may also be useful, such as a partial Cox model a(x) = a(z,,t) X
exp( Bz,), where z = (z,, z,) and B is a finite dimensional parameter vector.
In this case, a(z,,t) can be estimated by our procedure once we have
estimates of B. See Bickel, Nielsen and Linton (1993) for further discussion of
estimation inside these models.

The explicit formula given in (b) can be used to examine the magnitude of
bias in some canonical models. Suppose that

(13) a(z,t) = B, exp( Byz),

where z is uniform on [0, 1] for all ¢. Then our estimator is always positively
biased: relative to a(z,t) the bias is k;82b2/2 at all interior points, regard-
less of the censoring amount. McKeague and Utikal (1991) simulated the
special case of this where B8, = 1/2 and B, = 2, in which case the relative
bias would be 252, when a Gaussian kernel is used. Our theorem does not
deal with estimation near the boundary at which points the bias is typically
the larger O(b); in this region, the asymmetric kernel approach described in
Andersen, Borgan, Gill and Keiding (1992) can be used to ensure boundary
bias of O(b2). Standard bias reduction techniques can also be accommodated
by our theorem under additional smoothness: if a kernel is chosen that
satisfies [u/k(u)du =0, j=1,2,...,r — 1, and [u"k(u)du < =, then the
stable part of @(x) is O(d7), provided a(x) is r-times continuously differen-
tiable.
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Theorem 1 can also be used to develop a plug-in method of bandwidth
choice, based either on nonparametric estimates of the mean square error
(MSE) or integrated mean square error (IMSE), or on parametric estimates of
the same quantities derived from a reference model as in Silverman (1978).
For (13), the IMSE optimal bandwidth is

2K2 1/12 9 9 -1/6 _1/6
b=|—| [B2BZ(exp(B,) +1)] *n-1/5.

This can be used as a rule of thumb on substituting consistent estimates Bl
and B2 for B; and B,. In the McKeague and Utikal (1991) special case, the
optimal bandwidth is 0.58n~1/8 for the Gaussian kernel.

We investigate our procedure using the San Francisco Men’s Health Study
data [see Fusaro, Nielsen and Scheike (1993)]. This was obtained from a
prospective study of 1034 single men living in the 19 San Francisco census
tracts with the highest cumulative AIDS incidence as of 1983. We examine
the risk of developing AIDS for HIV positive subjects. This is to be explained
by the serological markers: CD4" T lymphocyte cell count and CD8" T
lymphocyte cell count. The time since the subject became HIV positive was
frequently not observed, and so the marker-only procedure (9) is used. We
used the kernel k(u) = I, _,[cos(7u) + 1]/2. Figure 1 shows the estimated
hazard function (with only one marker, the CD4 count, included) for three
different bandwidths. A steep increase in risk is apparent for individuals with
CD4 count less than 200.

In Figure 2 we plot the estimated hazard from the bivariate procedure
with both CD4 and CD8 markers. The peak in the hazard for subjects with

w ] i
............. b=50
£ 2.
I
&
3
T 2 -
< -4
o
L] T T A T
0 200 400 600 800
CD4 Cell Counts

Fic. 1. Hazard function estimate against CD4™ T lymphocyte cell count for bandwidths b = 50,
100 and 200.
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2

25
| I

1.5

1
|

Hazard Rate (Annual)

05
|

0
1

Fic. 2. Hazard function estimate against CD4* and CD8* T lymphocyte cell count for
bandwidths (200, 650).

less than 200 CD4 and more than 1750 CDS8 is quite dramatic and is
consistent with the theory that elevated CD8 counts reflects immune activa-
tion in the face of advancing HIV. There is also some evidence of high risk for
low CDS8 count.

We also investigated a method of bandwidth choice based on cross-
validation for the single marker example. By analogy with the popular
integrated squared error (ISE) measure from density and, perhaps more
pertinently, regression estimation [see Rudemo (1982) and Hardle (1990),
Chapter 5], we chose b to minimize

Q) = L [a (A ds =2 ¥ [a [Z(s))an(s),

where a_;{Z,(s)} is a leave-one-out version of our estimator (9). This is
asymptotically equivalent to minimizing the ISE performance measure
iy fla_{Z(s)} — edZ,(s)})?Y,(s) ds. In an unpublished report in Danish,
Ramlau-Hansen (1981) introduced a version of this method for the no-
covariate special case (3). This procedure is further discussed in Nielsen
(1990) and Andersen, Borgan, Gill and Keiding [(1992), page 246]. Figure 3
shows the cross-validation curve against the bandwidth. The optimal band-
width here, b = 65, is quite close, in terms of the estimated hazard function
(not reported), to the b = 100 chosen by eyeball in Fusaro, Nielsen and
Schieke (1993).
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Fic. 3. Cross-validation curve versus bandwidth.

4.2. Global convergence of @& Our result on global convergence is estab-
lished by verifying the conditions of the following lemma. This is a special
case of a result by Bickel and Wichura (1971) that generalizes the tightness
criterion by Billingsley [(1968), 12.11] to stochastic processes with multidi-
mensional index set. We do not explicitly state the convergence rate; see
Silverman (1978) and Nielsen (1990) for rates in, respectively, density esti-
mation and intensity estimation inside Aalen’s multiplicative intensity model.

LEMMA 1. Let X(t) be a stochastic process with t = (¢,...,t;) € [0, 1]%.
For any t €0, 1]¢ and v € [0, 1], let tiy =, ti 1, U gy, tg). If for
some C > 0O:

(LD X(t) >, 0 forall t €0, 1]%;

(L2) E{X(¢) - X(¢; W <Clt; —ul® forall t €10, 1%, u €0, 1] and j €
{1,....,d}% ,
then

sup |X(t)l -, 0.
tefo0,11¢

ProOF. We take our notation from Bickel and Wichura (1971). Let B =
(s, t] be a block, where s, t € [0, 1]¢, and let

X(B)= Y - Y (—1)‘1_2”5”){{31 +e(ty = 81),--05 8, + &,(t, — sq)}

£,=0,1 sq=0,1

be the increment of X around B. It is easy to verify that the moment
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condition (3) in Bickel and Wichura (1971) is fulfilled if
E{X(B)®} < u(B)?,

for some finite nonnegative measure w on [0, 1]%. However, it follows from
assumption (L.2) and the triangle inequality that, for some C > 0,

E{(X(B)’}<C > (t; —s:)" < Cu(B)?,
i=1

where u is the Euclidean measure. The result therefore follows from Theo-
rem 3 in Bickel and Wichura (1971). O

THEOREM 2 (Global convergence). Let =27 X -+ XZ,;,,; be a (d + 1)-
dimensional subset of [0, 1]°*, where each Z, is a compact interval. Assume
that inf, _, ¢(x) > 0. We make assumption (K) from Theorem 1, but in
addition assume that k is Lipschitz continuous, that is, there exists C > 0,
such that

lk(u) — k(v)l < Clu — vl
for all u, v. We assume only that both a and ¢ are continuous on Z. Finally
assume (B'): b — 0 and nb?"3 — »,. Then
sup (& — a)(x)| =, 0.
xeZ

ProOF. We use the notation from Theorem 1. It suffices to show the

following:

(a) sup, 417, = 0p(1);

(b) sup, c o 1%, — E(B,)| = 0p(1);
(0) sup, o |E(#,)| = o(1);

(@ sup, o1& = 0.

Pointwise convergence has already been established so we concentrate on
(L2). For any vector (z,, 2,,..., 24, t) = x €2, let x* = (2}, z,,..., 24, t) and
let z* = (2}, 2,,...,24) denote the corresponding subvector. The following
equality holds because the stochastic processes representing the n individu-
als are assumed to be iid:

E[7, - 7]

=n? _‘;Ef[Kb{z* —Z,(s)}) = Ky{z — Z,(s)}]"2(t — s) d{M,)(s)

=n? .éEf[Kb{Z* —Z(s)} - Kyfz - Zi(s)}]2

X kE(t —s)a{Z,(s), s}Y;(s) ds.
Then, changing variables we obtain, approximately,

n~lp=@+h Klu + ik - K(u) :
[_1’1]d+1 b

X k2(r)a(x — bg) ¢(x — bq) dudr.
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However, {K(u + (2* —2)/b) — K(u)}*> < Cb~2(z} — z;)®> by the Lipschitz
continuity of k. Therefore,

E[7, - 7:x]" < Cn~ b~ (2F — 21)® > 0,
for any 2§, z,. Similarly,
2
E( B+ — E(Bx) — (%, — E(2,))]

2¥ — 2z

) —K(u)}zkz(r)

X{a(x — bg) — a(x)}*¢(x — bq) dudr

<n 1p=@*+D {K(u +
[_1’1]d+1

and the result (b) follows from the Lipschitz continuity and boundedness of k.

In (c¢) the expression derived in Theorem 1 for E(%,) can be employed
directly. Since by assumption inf, ., ¢(x) > 0, it suffices in (d) to show that
sup, c &, — ¢(x)| -, 0, but this follows by the same arguments given
above. O

Note that our bandwidth condition for d = 1 is strictly weaker than the
corresponding condition from Theorem 4 in MU, which is as follows, on
imposing b = b: b > 0, nw,b* > © and w, = o(b*), where w, is a third
smoothing parameter they needed. McKeague and Utikal (1990) did not treat
general d.
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