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TESTS FOLLOWING TRANSFORMATIONS!

By HANFENG CHEN

Bowling Green State University

Chen and Loh showed that the Box—Cox transformed two-sample
t-test is more powerful than the ordinary ¢-test under Pitman alternatives
where the location shifts appear in the untransformed scale. In this
article, we prove that Chen and Loh’s result also holds for a general
family of transformations. An upper bound on the asymptotic relative
efficiency (ARE) is obtained. In addition, we investigate bounds on the
ARE under Pitman location shift alternatives in the transformed scale.
We find that when the estimate for A is consistent, a lower bound on the
ARE is the reciprocal of Fisher information of the standard transformed
distribution. This lower bound is close to 1 for commonly used symmetric
distributions.

1. Introduction. It has been common practice to transform or reexpress
data so that the transformed data are more appropriate and convenient for
statistical analysis. Considering a two-sample problem, Chen and Loh (1992)
recently investigated the asymptotic testing power properties of the Box—Cox
transformed ¢-test. They showed that the transformed ¢-test is asymptotically
more powerful than the ordinary ¢-test under Pitman alternatives where the
location shifts appear in the original scale. The present article continues to
study the problem in the following two aspects: (1) A general family of
transformations A(x; A), A € A, is considered, where % is a specific function
and A is a subset (usually an interval) of the real line; (2) the same problem
is restudied under Pitman location shift alternatives in the transformed
scale.

In analysis of the transformed data, one may report and interpret inferen-
tial results either in the original scale on which variables are measured or in
the transformed scale, or in both scales (why not?), depending on goals of
investigation and popularity or scientific implications of the scales. Therefore,
theoretical justifications in the context of either scale for a statistical test
based on the transformed data are desirable and meaningful.

Necessity of study for a general family of transformation is clear, since it
has been evident that in practice the Box—Cox power transformation family is
merely one of many popular transformation families [e.g., the modulus trans-
formations proposed by John and Draper (1980), sinh transformations by
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Johnson (1949), the folded power transformations by Mosteller and Tukey
(1977), ete.].

Section 2 sets up the framework of the study and introduces some notation.
Section 3 discusses bounds on the asymptotic relative efficiency (ARE) of the
t-test following a general transformation against the ordinary #-test under
Pitman alternatives in the original scale. It will be shown that Chen and
Loh’s (1992) result also holds for a rather general family of transformations.
In addition, an upper bound is obtained and a necessary and sufficient
condition to reach the lower bound 1 is established. Section 4 deals with
Pitman location shift alternatives in the transformed scale. A lower bound on
the asymptotic relative efficiency (ARE) of the transformed ¢-test is found to
be the reciprocal of Fisher information of the standardized transformed
distribution.

2. Model description and notation. Suppose (X;,...,X,) and
(Yy,...,Y, ) are two independent samples observed on the variables X and
Y, respectively. Let n = n, + n, be the combined sample size with n,/n —
7€ (0,1) as n; and n, — . Suppose h(x; A), A € A, is a general family of
increasing transformations of x chosen to make the distributions of A(X; A)
and A(Y; A) (nearly) normal or symmetric. The function 4 here is assumed
specific, but the A € A is an unknown transformation parameter, where A is
a subset (usually an interval) of the real line. This general framework for the
analysis of transformed data was first suggested by Bickel and Doksum
(1981) while they addressed some concerns with analysis of the transformed
data.

Suppose that the null hypothesis to be tested is

(1) H,:Y and X have the same distribution,
or equivalently, for some A, € A,
(2) H,: h(Y; A,) and k(X; A,) have the same distribution.

Two expressions (1) and (2) of H, are presented here to motivate different
setups of alternatives. To study the asymptotic power properties of tests for
H,, we consider two different sequences of Pitman-type local alternatives
corresponding to the null hypotheses (1) and (2), respectively, as follows:

H,:Y and X + cn~'/? have the same distribution
and

H,: h(Y;A,) and A(X; A,) + cn™!/? have the same distribution.

The alternative H; means that the two populations follow a location-shift
model in the original scale. The alternative H, describes the situation in
which a transformation is successful in establishing a location-shift model in
the transformed scale.

Suppose that the test statistic for H,, is the transformed ¢-statistic, that is,
Student ¢-test based on the transformed data,

t(R) = (nyny/n)*[Y(R) — X(X)]/s(R),
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where A is an estimate of the transformation parameter A, YO =

1E"2h(Y ), similarly, X(X) is the sample mean of the transformed X-
sample and s2(A) is the pooled sample variance of the two transformed
samples.

Throughout the paper, we assume the following conditions: (1) The index
set A is compact. (2) Under H,, n'/2(A — Ay) = Op(1) for some constant
Ay € A. (3) Let A(x; A) have derivatives with respect to (wrt) both variables x
and A. The derivative wrt x is denoted by A'(x; A) and that wrt A denoted by
g(x; A). Furthermore, the functions A and g are assumed to be equicontinu-
ous in A for x € S;, where S; are a sequence of measurable sets such that
P(X € U?_1S;) = 1 under the null hypothesis. (4) There is a function W(x)
such that (i) EW(X) < « and (i) A%(x; A) < W(x) and |g(x; M) < W(x) for all
A € A. All the transformation families mentioned in Section 1 satisfy the
assumptions above.

3. ARE under H,. The following theorem provides a formula for the
limiting mean of ¢(A) under H,.

THEOREM 1. Suppose that under H, X has the pdf f(x) with [f'(x)dx =
0 and Fisher information I(f) = E{f'(X)/f(X )2 being finite and positive.
Then under Hy, t() has an asymptotic normal distribution N(u,, 1), where
the limiting mean is given by
1/2
w = c[m(1 = m)VPE[h(X; )] /{Var[A(X; 20)]} 7%,
ProoF. First, using a similar idea to Doksum and Wong (1983) and
Rubin’s (1956) theorem, we prove that under the null hypothesis,

(3) t(A) = t(Ao) = 0p(1).
Write n1/2[Y(A) - XN = n2[Y(Ag) — X(Ap)] + nY2(X — AIY(E) —
X (&)1, where X'(M) = n;1Tg(X;; M), Y W\ = n2‘1}:g( : A) and f is between
A and _A¢. Applying Rubin’s (1956) theorem to the 1ndependent sums Y'(A)
and X'()), we get that with H,-probability 1, Y'(A) — X'(A) » 0, uni-
formly in A € A. So Y(¢) — X(¢) —> 0 as. and since n'/2(} — Ay) = Op(D),
n2[Y(A) — X(D)] = n%[Y(A,) — X(A)] + 0p(1). Applying Rubin’s theorem
again, we have that with H,-probability 1, s?(A) converges uniformly in
A€ Atoo?()) = Var[ 2(X; V)] and that the limiting function 0-2(/\) is contin-
uous in A. Since A — Ay = 0p(1), it follows that s2(A) = o2(X) + 0p(1) =
a2()y) + 0p(1). Thus

t(R) —t(X) =nV2[T(A) =X (20)]{1/[0(Xo) +0p(1)] —1/5(Xg)} =0p(1),

and then (3) follows from n'/2[¥(A,) —X(X,)]=0,(1) and s(A)) =0 () +
0p(1) under the null hypothesis.

Now the theorem can be proved by using Le Cam’s third lemma [Le Cam
and Yang (1990)]. Let I, = Xlogl (Y; — cn™'/?)/f(Y))]. It suffices to prove
that under the null hypothes1s (t(/\) l,) is asymptotlcally jointly bivariate
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normal (6, 6y, 0, 05, 015) With 0, = —07/2, 6, + 015 = p; and o = 1. By
3), (t(W),!1 ») and (#(,),1,) are equivalent. The theorem then follows by
verifying in a standard argument that (¢(. 0,1 ») has the asymptotic bivariate
normal distribution [see, e.g., Hajek and Sldak (1967)]. O

From Theorem 1, the ARE of the transformed test #(1) against the
ordinary ¢-test under H, is given by

e{t(R), tIH,} = {ER'(X; Ap))* Var(X) /Var[h(X; A,)].

The ARE has Pitman’s interpretation of asymptotic efficiency, that is,
e{t(A), t| H,} can be regarded as the ratio of ¢ and ¢(A)’s sample sizes at which
the two tests achieve the same asymptotic power. Consequently, if
e{t(X), t|H .} > 1, then for n large, (1) has greater power than ¢.

In order to transform to normality, following Box and Cox’s (1964) idea,
one may select a A from A by the method of maximum likelihood estimation
(MLE). The desired likelihood function is

L(Vl, vy, o?, /\)
= const. 07" exp{—A(vy, vy, A)/(20%) 1A' (X;; MITR'(Y}; A),

where A(vy, vy, ) = Z[A(X; D) — v, 12 + Z[h(Y AN — v,]% For fixed A, L is
maximized when v, = X(A), v, = Y(A) and o2 = s2()). Then the MLE of A is
defined as the maximizer of L(X(A),Y(A), s2()), A), that is,

L(X(A),Y(A),s*(A), A) = const. s "TTh'(X;; M)TTR'(Y;; A)
= const.{J, (1)} %,

where J,(0) = s?(Mexp{—2z(A)} with 2(A) = n~ X log A'(X;; A) +

Ylog h'(Y}; M. Note that the MLE of A appears to be the minimizer of o, (A).

Under the null hypothesis, J,(A) = J,(A), where

(4) Jo(A) = Var[h(X; A)] exp{ —2E log h'(X; A)}.

Then the MLE of A converges a.s. to the minimizer of J,(A) under certain
regularity conditions. When 4 is the Box—Cox power transformation, Chen
and Loh (1992) prove that if A is the MLE, then e{t(/\) ¢|H;} > 1. The
following theorem confirms that this result holds in general. Moreover, an
upper bound for the ARE is obtained and a necessary and sufficient condition
to attain the lower bound 1 is established.

THEOREM 2. Suppose that there exists A, € A such that h(x; A,) is a linear
transformation of x. If Elog h'(X; A) is ﬁmte and the limit )\0 of Aisa
minimizer of J,()), then

1 <e{t(X),tlH,} <I(f,),

where fo(x) is the pdf of (X — EX)/{Var(X)}*/? under the null hypothesis.
The equality in the lower bound side is attained if and only if h(x; Ay) is a
linear transformation of x.
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ProOF. Since A, is the minimizer of J,()) defined in (4) and since A, € A
is such that A(x;A,) is linear in x, we see that Jy(1,) < Jy(1,) = Var(X).
Thus we have

(5) e(t(R),t1H,} = {ER'(X; Xo) /exp{E log h'( X; A,)})".

Noting that e* is strictly convex, using Jensen’s inequality yields that the
right-hand side of (5) is at least 1 and equal to 1 if and only if A'(X; A,) is
constant, completing the proof for the lower bound 1.

To verify the upper bound, by integration by parts, we see that

[ER'(X;20)]" = (B[A(X; 0o) £/(X) /F(X)]Y.
Applying the Schwarz inequality gives

(E[R(X;20) F(X)/A(X)]) < Var[h(X; 1) I(£).
Thus, the upper bound follows by I(f) Var(X) = I(f,). O

Noting the fact ¢(A,) = t, the requirement for the existence of A, seems to
be natural and reasonable, as we desire to compare ¢(A) with ¢.

4. ARE under H,. Now we consider the alternative H,. Express
h(X; A,) = u + oe, where ¢ is a random variable with mean 0 and variance
1. Then under H,, A(Y;A,) = pu + cn~1/? + ge, in distribution. Assume &
has the pdf ¢.

THEOREM 3. Suppose that [¢'(x)dx =0 and I(¢) = E[¢"(X)/e(X)]? is
positive and finite. Then under H,, t(A) and t have the normal limiting
distributions N(m,1) and N(m, 1), respectively, where the limiting means
m, and m, are given by

h'(X; )
1/2 5 Ao 1/2
- - E{——2"0 DA
= eln(1 = )] E{ S | Ve (X))
and
my = c[m(1 - m)]*E[1/h'(X; )] /[Var(X)]",

provided that E[h'(X; Ay)/h'(X; A)] and E[1/h'(X; A,)] are finite.

The proof of the theorem is similar to that of Theorem 1. For details, see
Chen (1992). By Theorem 3, the ARE of the transformed ¢-test ¢(A) against
the ordinary ¢-test under H, is

. Var(X E[R'(X; M) /R (X;0,)] )°
e{t()\),t[H2}= ( ) [ ( 0,) ( )] .
Varl (X a)] | T EIL/A (X5 4,)]
When ¢ is symmetric, Hinkley (1975) and Taylor’s (1985) estimators for A

are consistent, that is, A, = A,. In this case, E[A'(X; Ay)/h'(X; A,)] = 1 and
e{t(X), t|H,} is simplified.
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THEOREM 4. In addition to the conditions in Theorem 3, assume that
Ay = A,. Then

e{t(/i),tIH2} >7=1/I(¢p).
ProoF. When A, = A,, we have
e{t(R), t|H,) = {Var(X) /Var[h( X; A)]{E[1/2'(X; A0)]} .
By integration by parts and the Schwarz inequality, we have
(E[1/h'(X;00)])
2
{—oE{Xe [(A(X;20) — w)/a]/e[(R(X; 1) = 1)/ ]}}
o2 Var(X)I(¢).
The theorem follows by noting that ¢ ? = Var[ A(X; APl O

IA

COROLLARY 1. If Ay = A, and h(X; A,) is normally distributed, then
(6) eft(A),tIH,) > 1,

and the equality is attained if and only if h(x; A,) is a linear transformation
of x.

ProoF. When ¢ is the pdf of standard normal, I(¢) = 1 and (6) follows.
The equality holds if and only if ¢'[(A(X; Ay) — w)/o1/¢l(R(X; A)) — p)/o ]
is linear in X, and the condition reduces to that A(X; Ay) is linear in X. O

Chen (1992) presents some tables containing the lower bound 7 for com-
monly used symmetric ¢ such as the Student ¢, and contaminated normal. It
appears that the lower bound 7 is close to 1 for the commonly used symmetric
distributions.
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