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COMPONENT SELECTION AND SMOOTHING IN MULTIVARIATE
NONPARAMETRIC REGRESSION

BY YI LIN1 AND HAO HELEN ZHANG2

University of Wisconsin–Madison and North Carolina State University

We propose a new method for model selection and model fitting in mul-
tivariate nonparametric regression models, in the framework of smoothing
spline ANOVA. The “COSSO” is a method of regularization with the penalty
functional being the sum of component norms, instead of the squared norm
employed in the traditional smoothing spline method. The COSSO provides
a unified framework for several recent proposals for model selection in linear
models and smoothing spline ANOVA models. Theoretical properties, such
as the existence and the rate of convergence of the COSSO estimator, are
studied. In the special case of a tensor product design with periodic functions,
a detailed analysis reveals that the COSSO does model selection by applying
a novel soft thresholding type operation to the function components. We give
an equivalent formulation of the COSSO estimator which leads naturally to an
iterative algorithm. We compare the COSSO with MARS, a popular method
that builds functional ANOVA models, in simulations and real examples. The
COSSO method can be extended to classification problems and we compare
its performance with those of a number of machine learning algorithms on
real datasets. The COSSO gives very competitive performance in these stud-
ies.

1. Introduction. Consider the multivariate nonparametric regression problem
yi = f (xi) + εi, i = 1, . . . , n, where f is the regression function to be estimated,
xi = (x

(1)
i , . . . , x

(d)
i ) are d-dimensional vectors of covariates and the ε are indepen-

dent noise variates with mean 0 and variance σ 2. The estimator is judged in terms
of prediction accuracy and interpretability. A popular model for high-dimensional
problems is the smoothing spline analysis of variance (SS-ANOVA) model [10,
19, 20]. In the SS-ANOVA we write

f (x) = b +
d∑

j=1

fj

(
x(j)) + ∑

j<k

fjk

(
x(j), x(k)) + · · · ,(1)

where b is a constant, the fj ’s are the main effects, the fjk’s are the two-way
interactions, and so on. The sequence is usually truncated somewhere to enhance
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interpretability. The identifiability of the terms in (1) is assured by side condi-
tions through averaging operators. The SS-ANOVA generalizes the popular addi-
tive model and provides a general framework for nonparametric multivariate func-
tion estimation.

The common approach to estimation in SS-ANOVA is penalized least squares,
with the penalty being a sum of squared norms of the terms in (1). One important
question in the application of SS-ANOVA is to determine which variables or which
ANOVA components should be included in the model. Gu [9] proposed using co-
sine diagnostics as model checking tools after model fitting in Gaussian regression.
Chen [3] studied interaction spline models via SS-ANOVA and developed a non-
standard test procedure for model selection. Yau, Kohn and Wood [21] presented
a Bayesian method for variable selection in a nonparametric manner. Gunn and
Kandola [11] proposed a sparse kernel approach in a closely related framework.
Zhang et al. [23] proposed a likelihood basis pursuit approach to model selection
and estimation in the SS-ANOVA for exponential families. They expanded each
nonparametric component function in (1) as a linear combination of a large num-
ber of basis functions and applied an L1 penalty to the coefficients of all the basis
functions. The L1 penalty gives a solution that is sparse in the coefficients. How-
ever, a separate model selection procedure has to be applied after model fitting,
since sparsity in coefficients helps but does not guarantee sparsity in SS-ANOVA
components.

In this paper we introduce a new approach for model selection and estimation in
SS-ANOVA. This is a penalized least squares method with the penalty functional
being the sum of component norms, rather than the sum of squared component
norms. Our method will be referred to as the COmponent Selection and Smoothing
Operator (COSSO). The general methodology is introduced in Section 2, where
we also prove the existence of the COSSO estimate and give some rate of con-
vergence results. A connection between the COSSO and the popular LASSO in
linear regression is shown. It turns out that when the COSSO formulation is used
in linear models, it reduces to the LASSO. On the other hand, the COSSO gives
an alternative interpretation of the penalty term in the LASSO to being the L1
norm of the coefficients: it is the sum of component norms. Thus the COSSO can
be seen as a nontrivial extension of the LASSO in linear models to multivariate
nonparametric models. In Section 3 we obtain an alternative formulation of the
COSSO that is more suitable for computation. In Section 4 we consider the special
case of a tensor product design with periodic functions. A detailed analysis in this
special case sheds light on the mechanism of the COSSO in terms of component
selection in SS-ANOVA. In particular, we show in this case that the COSSO does
model selection by applying a novel soft thresholding-type operation to the func-
tion components. In Section 5 we present a COSSO algorithm that is based on
iterating between the smoothing spline method and the nonnegative garrote [1]. In
Section 6 we consider the choice of the tuning parameter. Simulations are given
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in Section 7, where we compare the COSSO with the MARS procedure devel-
oped by Friedman [8], a popular algorithm that builds functional ANOVA models.
The COSSO can be naturally extended to perform classification tasks, and we also
compare the performance of the COSSO with that of many machine learning meth-
ods on some benchmark datasets. These real examples are given in Section 8, and
Section 9 contains a discussion. The proofs are given in the Appendix.

2. The COSSO in smoothing spline ANOVA.

2.1. The smoothing spline ANOVA. In the commonly used smoothing spline
ANOVA model over X = [0,1]d , it is assumed that f ∈ F , where F is a repro-
ducing kernel Hilbert space (RKHS) corresponding to the decomposition (1). Let
Hj be a function space of functions of x(j) over [0,1] such that Hj = {1} ⊕ H̄ j .
Then the tensor product space of the Hj ’s is

d⊗
j=1

Hj = {1} ⊕
d∑

j=1

H̄ j ⊕ ∑
j<k

[H̄ j ⊗ H̄ k] ⊕ · · · .(2)

Each functional component in the SS-ANOVA decomposition (1) lies in a sub-
space in the orthogonal decomposition (2) of

⊗d
j=1 Hj . Typically only low-order

interactions are considered in the SS-ANOVA model for interpretability and visu-
alization. The popular additive model is a special case in which f (x(1), . . . , x(d)) =
b + ∑d

j=1 fj (x
(j)), with fj ∈ H̄ j . In this case the selection of functional compo-

nents is equivalent to variable selection. In more complex SS-ANOVA models
model selection amounts to the selection of main effects and interaction terms in
the SS-ANOVA decomposition. The interaction terms reside in the tensor product
spaces of univariate function spaces. The reproducing kernel of a tensor product
space is simply the product of the reproducing kernels of the individual spaces.
This greatly facilitates the use of the smoothing spline-type method in such mod-
els.

A common example of the function space Hj of univariate functions is the
Sobolev Hilbert space. The �th-order Sobolev Hilbert space is: S� = {g :g,g′, . . . ,
g(�−1) are absolutely continuous, g(�) ∈ L2[0,1]}. Following [19], we define the
norm in S� by

‖g‖2 =
�−1∑
ν=0

{∫ 1

0
g(ν)(t) dt

}2

+
∫ 1

0

{
g(�)(t)

}2
dt.(3)

With this norm S� can be decomposed as the direct sum of two orthogonal sub-
spaces S� = {1} ⊕ S̄�. The spaces S� and S̄� are RKHS’s and their reproducing
kernels are given in [19]. The second-order Sobolev Hilbert space S2 is the most
commonly used in practice and will be used in our implementation of the COSSO.
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2.2. The COSSO. In general, the function space in the SS-ANOVA can be
written as

F = {1} ⊕ F1 with F1 =
p⊕

α=1

F α,(4)

where F 1, . . . ,F p are p orthogonal subspaces of F . In the additive model
p = d and the F α’s are the main effect spaces. In the two-way interaction model
there are d main effect spaces and d(d − 1)/2 two-way interaction spaces, thus
p = d(d + 1)/2. We may further decompose the functional components into para-
metric and nonparametric parts, as is commonly done with the smoothing spline
method. We do not pursue this in this paper as our emphasis is on the selection of
functional components in SS-ANOVA. However, the general idea of our procedure
can still be applied with this further decomposition, and it may be helpful to select
parametric and nonparametric components of the variables.

Denote the norm in the RKHS F by ‖ · ‖. A traditional smoothing spline type
method finds f ∈ F to minimize

1

n

n∑
i=1

{yi − f (xi)}2 + λ

p∑
α=1

θ−1
α ‖P αf ‖2,(5)

where P αf is the orthogonal projection of f onto F α and θα ≥ 0. If θα = 0, then
the minimizer is taken to satisfy ‖P αf ‖2 = 0. We use the convention 0/0 = 0
throughout this paper. The smoothing parameter λ is confounded with the θ ’s, but
is usually included in the setup for computational purposes.

We propose the COSSO procedure that finds f ∈ F to minimize

1

n

n∑
i=1

{yi − f (xi)}2 + τ 2
nJ (f ) with J (f ) =

p∑
α=1

‖P αf ‖,(6)

where τn is a smoothing parameter. We sometimes suppress the dependence of τ on
n in our notation. The penalty term J (f ) in the COSSO is a sum of RKHS norms,
instead of the squared RKHS norm penalty employed in the smoothing spline.
The penalty J (f ) is not a norm in F . However, it is a convex functional and is a
pseudonorm in the sense: for any f,g in F , J (f ) ≥ 0, J (cf ) = |c|J (f ), J (f +
g) ≤ J (f ) + J (g); for any nonconstant f in F , J (f ) > 0. And we have that

p∑
α=1

‖P αf ‖2 ≤ J 2(f ) ≤ p

p∑
α=1

‖P αf ‖2.(7)

The existence of the COSSO estimate is guaranteed due to the convexity of (6),
as stated in the following.

THEOREM 1. Let F be an RKHS of functions over an input space X. Assume
that F can be decomposed as in (4). Then there exists a minimizer of (6) in F .
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2.3. Connection to the LASSO in linear models. In linear models the regres-
sion function is assumed to be f (x) = β0 + ∑d

j=1 βjx
(j). Traditional approaches

to variable selection include best subset selection and forward/backward stepwise
selection. As pointed out by [1], these methods suffer from instability and relative
lack of accuracy. Several new and effective methods for variable selection in linear
models have been proposed in recent years [1, 5–7, 15]. Two methods, the non-
negative garrote [1] and the LASSO [15], are related to the method in our paper,
and are reviewed in the following.

Let β̂o = (β̂o
0 , . . . , β̂o

d ) be the ordinary least squares estimates. The nonnegative
garrote solution is (β̂o

0 , r1β̂
o
1 , . . . , rd β̂o

d ), where (r1, . . . , rd) is the solution to

min
r1,...,rd

n∑
i=1

{
yi − β̂o

0 −
d∑

j=1

rj β̂
o
j x

(j)
i

}2

subject to rj ≥ 0, j = 1, . . . , d and
d∑

j=1

rj ≤ t.

Here t ≥ 0 is a tuning parameter. The nonnegative garrote selects a subset and
shrinks the estimate at the same time. Breiman [1] showed that the nonnegative
garrote has consistently lower prediction error than subset selection with extensive
simulation studies.

The Least Absolute Shrinkage and Selection Operator (LASSO) estimate β̂ =
(β̂0, . . . , β̂d) is the minimizer of

1

n

n∑
i=1

{
yi − β0 −

d∑
j=1

βjx
(j)
i

}2

subject to
d∑

j=1

|βj | ≤ t,

or equivalently, the minimizer of

1

n

n∑
i=1

{
yi − β0 −

d∑
j=1

βjx
(j)
i

}2

+ λ

d∑
j=1

|βj |,

where t and λ are tuning parameters. The LASSO is a penalized least squares
method with the L1 penalty on the coefficients.

The LASSO can be seen as a special case of the COSSO. For the input space
X = [0,1]d , consider the linear function space F = {1} ⊕ {x(1) − 1/2} ⊕ · · · ⊕
{x(d) − 1/2}, with the usual L2 inner product on F : (f, g) = ∫

X fg. The penalty
term in the COSSO (6) becomes J (f ) = (12)−1/2 ∑d

j=1 |βj | for f (x) = β0 +∑d
j=1 βjx

(j). This is equivalent to the L1 norm on the linear coefficients, leading
to the LASSO estimator. Notice, however, in the COSSO interpretation the penalty
is the sum of the norms of the function components, rather than the L1 norm of the
coefficients.
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2.4. Asymptotic property of the COSSO. In this section we assume a fixed
design. Define y = (y1, . . . , yn)

T. With a little abuse of notation, let f stand for
both the regression function and its functional values at data points, that is, f =
(f (x1), . . . , f (xn))

T. Define the norm ‖ · ‖n and inner product 〈·, ·〉n in Rn as

‖f ‖2
n = 1

n

n∑
i=1

f 2(xi), 〈f,g〉n = 1

n

n∑
i=1

f (xi)g(xi);

then ‖y − f ‖2
n = 1/n

∑n
i=1{yi − f (xi)}2. The following theorem shows that the

COSSO estimator in the additive model has a rate of convergence n−�/(2�+1),
where � is the order of smoothness of the components.

THEOREM 2. Consider the regression model yi = f0(xi) + εi , i = 1, . . . , n,
where the xi ’s are given covariates in [0,1]d , and the εi ’s are independent
N(0, σ 2) noise. Assume f0 lies in F = {1} ⊕ F1, F1 = ⊕d

j=1 S̄j , with Sj =
{1} ⊕ S̄j being the �th-order Sobolev space with norm (3). Consider the COSSO
estimate f̂ as defined in (6). Then (i) if f0 is not a constant, and
τ−1
n = Op(n�/(2�+1))J (2�−1)/(4�+2)(f0), we have ‖f̂ − f0‖n = Op(τn)J

1/2(f0);

(ii) if f0 is a constant, we have ‖f̂ −f0‖n = Op(max{n−�/(2�−1)τ
−2/(2�−1)
n , n−1/2}).

3. An equivalent formulation. It can be shown that the solution to (6) is in
a finite-dimensional space, and therefore the COSSO estimate can be computed
directly from (6).

LEMMA 1. Let f̂ = b̂ + ∑p
α=1 f̂α be a minimizer of (6) in (4), with f̂α ∈ F α .

Then f̂α ∈ span{Rα(xi, ·), i = 1, . . . , n}, where Rα(·, ·) is the reproducing kernel
of F α .

However, it is possible to give an equivalent form of (6) that is easier to compute.
Consider the problem of finding θ = (θ1, . . . , θp)T and f ∈ F to minimize

1

n

n∑
i=1

{yi − f (xi)}2 + λ0

p∑
α=1

θ−1
α ‖P αf ‖2 + λ

p∑
α=1

θα subject to θα ≥ 0,

(8)
α = 1, . . . , p,

where λ0 is a constant and λ is a smoothing parameter. The constant λ0 can be fixed
at any positive value and is included here only for computational considerations.

LEMMA 2. Set λ = τ 4/(4λ0). (i) If f̂ minimizes (6), set θ̂α = λ
1/2
0 λ−1/2 ×

‖P αf̂ ‖; then the pair (θ̂ , f̂ ) minimizes (8). (ii) On the other hand, if a pair (θ̂ , f̂ )

minimizes (8), then f̂ minimizes (6).
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The form of (8) is very similar to the common smoothing spline (5) with mul-
tiple smoothing parameters, except that there is an additional penalty on the θ ’s.
Differently from [23] where the sparsity in coefficients does not assure the sparsity
in the functional components, for the COSSO procedure the sparsity of each com-
ponent fj is controlled by a single parameter θj . The additional penalty term on
the θ ’s,

∑p
j=1 θj , shrinks them toward zero and hence makes the θ ’s sparse, giving

rise to zero function components in the COSSO estimate.
We only need to tune λ in the implementation of the COSSO, and λ0 can be

fixed at any positive value. In Section 6 we will see that an appropriate choice of
λ0 helps to put the tuning parameter on a natural scale and facilitates the tuning of
the COSSO. In contrast, the common smoothing spline has two sets of smoothing
parameters λ and θ ’s that are confounded. The common way to search for smooth-
ing parameters iterates between λ and the log θ ’s, making it difficult to have zero
components in the solution.

4. A special case with the tensor product design. To illustrate the mech-
anism of the COSSO for model selection, in this section we give an instructive
analysis in the special case of a tensor product design with an SS-ANOVA model
built from the second-order Sobolev spaces of periodic functions. We assume the
ε’s in the regression model are independent with distribution N(0, σ 2). In a tensor
product design the design points are{(

xi1,1, xi2,2, . . . , xid ,d

)
: ik = 1, . . . , nk, k = 1, . . . , d

}
,

where xj,k = j/nk , j = 1, . . . , nk , k = 1, . . . , d . Without loss of generality, we fix
λ0 = 1 in the COSSO (8) and focus on the case d = 2 with the SS-ANOVA model
being f (s, t) = b + f1(s) + f2(t) + f12(s, t). We assume n1 = n2 = m is an even
integer. The sample size is then n = m2.

The second-order Sobolev space of periodic functions can be written as T =
{1} ⊕ T̄ , where

T̄ =
{
f :f (t) =

∞∑
ν=1

aν

√
2 cos 2πνt +

∞∑
ν=1

bν

√
2 sin 2πνt,

with
∞∑

ν=1

(a2
ν + b2

ν)(2πν)4 < ∞
}
.

The norm in T̄ is ‖g‖2 = ∫ 1
0 {g′′(t)}2 dt . When m is large, a good approximate

subspace of T is Tm = {1} ⊕ T̄m with

T̄m =
{
f :f (t) =

m/2−1∑
ν=1

aν

√
2 cos 2πνt +

m/2−1∑
ν=1

bν

√
2 sin 2πνt + am/2 cosπmt

}
.
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Wahba [19] used this subspace approximation to give a very instructive investi-
gation of the filtering properties of the smoothing spline. Here we consider mini-
mizing (8) in Fm = T 1

m ⊗ T 2
m = {1} ⊕ T̄ 1

m ⊕ T̄ 2
m ⊕ (T̄ 1

m ⊗ T̄ 2
m), as the argument is

instructive. The argument for the more general function space F = T 1 ⊗ T 2 is
similar but involves more technicality, and is deferred to the Appendix.

In this case (8) becomes

1

n

m∑
k=1

m∑
�=1

{ykl − f (xk,1, x�,2)}2

+ θ−1
1

∫ 1

0

{
∂2f1(s)

∂s2

}2

ds + θ−1
2

∫ 1

0

{
∂2f2(t)

∂t2

}2

dt

+ θ−1
12

∫ 1

0

∫ 1

0

{
∂4f12(s, t)

∂s2 ∂t2

}2

ds dt + λ(θ1 + θ2 + θ12),

θ1 ≥ 0, θ2 ≥ 0, θ12 ≥ 0.

Write γ1(t) = 1, γ2ν(t) = √
2 cos(2πνt), γ2ν+1(t) = √

2 sin(2πνt) for ν =
1, . . . ,m/2 − 1, and γm(t) = cos(πmt). Then any function in Tm can be written as
g(t) = ∑m

ν=1 aνγν(t), and any function in Fm can be written as

f (s, t) =
m∑

µ=1

m∑
ν=1

aµνγµ(s)γν(t).(9)

It is known that (see [19], page 23)

m−1
m∑

k=1

γµ(k/m)γν(k/m) =
{

1, if µ = ν = 1, . . . ,m,
0, if µ �= ν,µ, ν = 1, . . . ,m.

Recall the inner product 〈·, ·〉n of Rn defined in Section 2.4. Write γµν(s, t) =
γµ(s)γν(t), and γµν as the data vector corresponding to the function γµν(s, t).
From the above orthogonality relations and the tensor product design, we get

〈
γµ1ν1, γµ2ν2

〉
n =

{
1, if µ1 = µ2 = 1, . . . ,m;ν1 = ν2 = 1, . . . ,m,
0, if µ1 �= µ2 or ν1 �= ν2,µ1, ν1,µ2, ν2 = 1, . . . ,m.

Therefore {γµν,µ = 1, . . . ,m;ν = 1, . . . ,m} form an orthonormal basis in Rn

with respect to the norm ‖ · ‖n. We then get from (9) that aµν = 〈f,γµν〉n. Write
zµν = 〈y, γµν〉n. Then zµν = aµν +δµν , where δµν ∼ N(0, σ 2/n) are independent.
The COSSO problem can be written as

m∑
µ=1

m∑
ν=1

(zµν − aµν)
2 + θ−1

1

m∑
µ=2

qµ1a
2
µ1 + θ−1

2

m∑
ν=2

q1νa
2
1ν

(10)

+ θ−1
12

m∑
µ=2

m∑
ν=2

qµνa
2
µν + λ(θ1 + θ2 + θ12),
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with qµν ∼ µ4ν4 uniformly for µ �= 1 or ν �= 1, µ,ν = 1, . . . ,m. Here ∼ is
read as “has the same order as.” Therefore the minimizing aµν satisfies â11 =
z11; âµ1 = zµ1θ1(θ1 + qµ1)

−1, for µ ≥ 2; â1ν = z1νθ2(θ2 + q1ν)
−1, for ν ≥ 2;

âµν = zµνθ12(θ12 + qµν)
−1, for µ ≥ 2, ν ≥ 2; and (10) becomes{

m∑
µ=2

qµ1z
2
µ1(qµ1 + θ1)

−1 + λθ1

}
+

{
m∑

ν=2

q1νz
2
1ν(q1ν + θ2)

−1 + λθ2

}

+
{

m∑
µ=2

m∑
ν=2

qµνz
2
µν(qµν + θ12)

−1 + λθ12

}
.

We see that the three components can be minimized separately. Let us concentrate
on θ12, as θ1 and θ2 can be dealt with similarly. Let

A(θ12) =
m∑

µ=2

m∑
ν=2

qµνz
2
µν(qµν + θ12)

−1 + λθ12.

Then A′(θ12) = λ−∑m
µ=2

∑m
ν=2 qµνz

2
µν(qµν + θ12)

−2, which increases as θ12 ≥ 0

increases. Define U = ∑m
µ=2

∑m
ν=2 q−1

µν z2
µν . If U ≤ λ, then A′(0) ≥ 0, A′(θ12) > 0

for all θ12 > 0, and the minimizing θ̂12 of A is 0; otherwise the minimizing θ̂12
is larger than 0. Therefore we can see that the COSSO estimator selects compo-
nents through a soft thresholding-type operation according to the magnitude of U .
Notice θ̂12 = 0 implies f̂12 = 0.

With the analysis above, we can now show that, when λ → 0 and nλ → ∞, the
COSSO selects the correct model with probability tending to 1. Without loss of
generality, let us concentrate on f12.

If f12 = 0, then aµν = 0 for any pair (µ, ν) such that µ ≥ 2 and ν ≥ 2.
So E(U) ∼ σ 2/n

∑m
µ=2

∑m
ν=2 µ−4ν−4 ∼ n−1σ 2,var(U) = ∑m

µ=2
∑m

ν=2 2n−2 ×
σ 4q−2

µν ∼ n−2σ 4. Therefore when nλ → ∞, by Chebyshev’s inequality,

pr(U > λ) ≤ pr
(|U − E(U)| > λ − E(U)

) ≤ var(U)/{λ − E(U)}2 → 0.

Therefore with probability tending to unity, U ≤ λ, and thus f̂12 = 0.
On the other hand, if f12 �= 0, then aµ0,ν0 �= 0 for some µ0 ≥ 2 and ν0 ≥ 2, and

E(U) ≥ E
(
q−1
µ0,ν0

z2
µ0,ν0

) ≥ q−1
µ0,ν0

a2
µ0,ν0

,

var(U) =
m∑

µ=2

m∑
ν=2

q−2
µν var(z2

µν) =
m∑

µ=2

m∑
ν=2

q−2
µν (4n−1a2

µνσ
2 + 2n−2σ 4)

≤
{

4n−1σ 2
m∑

µ=2

m∑
ν=2

a2
µν

}
+ 2n−2σ 4

= 4n−1σ 2‖f12‖2
L2

+ 2n−2σ 4 = O(n−1).



COMPONENT SELECTION AND SMOOTHING 2281

Therefore when λ → 0, by Chebyshev’s inequality, we get

pr(U < λ) ≤ pr
(|U − E(U)| > E(U) − λ

) ≤ var(U)/{E(U) − λ}2 → 0.

Therefore with probability tending to unity, U > λ, and thus f̂12 �= 0.

5. Algorithm. For any fixed θ , the COSSO (8) is equivalent to the smooth-
ing spline (5). Therefore from the smoothing spline literature (e.g., [19]) it is
well known the solution f has the form f (x) = ∑n

i=1 ciRθ (xi, x) + b, where
c = (c1, . . . , cn)

T ∈ Rn, b ∈ R, and Rθ = ∑p
α=1 θαRα , with Rα being the repro-

ducing kernel of F α . With some abuse of notation, let Rα also stand for the n × n

matrix {Rα(xi, xj )}, i = 1, . . . , n, j = 1, . . . , n, let Rθ also stand for the matrix∑p
α=1 θαRα , and let 1r be the column vector consisting of r 1’s. Then we can

write f = Rθc + b1n, and (8) can be expressed as

1

n

(
y −

p∑
α=1

θαRαc − b1n

)T(
y −

p∑
α=1

θαRαc − b1n

)

(11)

+ λ0

p∑
α=1

θαcTRαc + λ

p∑
α=1

θα,

where θα ≥ 0, α = 1, . . . , p.
If the θ ’s are fixed, then (11) can be written as

min
c,b

(y − Rθc − b1n)
T(y − Rθc − b1n) + nλ0c

TRθc.(12)

The solution to this smoothing spline problem is given in [19].
On the other hand, if c and b are fixed, denote gα = Rαc and let G be the

n × p matrix with the αth column being gα . Simple calculation shows that the
θ = (θ1, . . . , θp)T that minimizes (11) is the solution to

min
θ

(z − Gθ)T(z − Gθ) + nλ

p∑
α=1

θα subject to θα ≥ 0, α = 1, . . . , p,(13)

where z = y − (1/2)nλ0c − b1n.
Therefore a reasonable scheme would be to iterate between (12) and (13). In

each iteration (11) is decreased. Notice that (13) is equivalent to

min
θ

(z − Gθ)T(z − Gθ) subject to θα ≥ 0, α = 1, . . . , p;
p∑

α=1

θα ≤ M,(14)

for some M ≥ 0. We prefer to iterate between (12) and (14) for computational
considerations.

Notice that the formulation (14) is exactly the problem in calculating the non-
negative garrote estimate. Therefore our algorithm iterates between the smoothing
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spline and the nonnegative garrote. The algorithm starts with a natural initial solu-
tion given by the smoothing spline, which is already a good estimate. By applying
later iterations of our algorithm, we get what we view as an iterative improvement
on the smoothing spline. A limited number of iterations is usually sufficient to
achieve good performance in practical applications. This is in spirit similar to the
basis pursuit algorithm in [2]. We observe empirically that the COSSO objective
function decreases quickly in the first iteration, and the objective function after
the first iteration is already very close to the objective function at convergence,
as the magnitude of the decrease in the first iteration dominates the decreases in
subsequent iterations. This motivates us to consider the following one-step update
procedure:

1. Initialization: Fix θα = 1, α = 1, . . . , p.
2. Solve for c and b with (12).
3. For c and b obtained in step 2, solve for θ with the nonnegative garrote (14).
4. With the new θ , solve for c and b with the smoothing spline (12).

This one-step update procedure has the flavor of the one-step maximum like-
lihood procedure in which a one-step Newton–Raphson algorithm is applied to a
good initial estimator and which is as efficient as fully iterated maximum likeli-
hood. A discussion of the one-step procedure and the fully iterated procedure (in
a different algorithm) can be found in [6]. In our experience, the one-step update
procedure and the fully iterated procedure have comparable estimation accuracy.

6. Choosing the tuning parameter. The generalized cross-validation pro-
posed by Craven and Wahba [4] is one of the most popular methods for choosing
smoothing parameters in the smoothing spline method. Let A be the smoothing
matrix of the smoothing spline. That is, ŷ = Ay. The generalized cross-validation
estimate of the risk is

GCV = ‖ŷ − y‖2
n

{n−1 tr(I − A)}2 .

Tibshirani [15] proposed a GCV-type criterion for choosing the tuning parame-
ter for the LASSO through a ridge estimate approximation. This approximation
is particularly easy to understand in light of the form (8) for the linear model
f (x) = β0 + ∑d

j=1 βjx
(j): fix the θj at their estimated values θ̂j , and calculate

GCV for the corresponding ridge regression. This approximation ignores some
variability in the estimation process. However, the simulation study in [15] sug-
gests that it is a useful approximation. This motivates our GCV-type criterion: We
use the GCV score for the smoothing spline in (8) when the θ ’s are fixed at the
solution.

Another popular technique for choosing tuning parameters is fivefold or tenfold
cross-validation. The computation load of GCV is smaller. We compare the per-
formance of these two criteria in the COSSO with simulations. It is also possible
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to use the Cp criterion based on the concept of generalized degrees of freedom
[13, 22]. We do not consider this possibility since in our problem there is no ex-
plicit formula for the degrees of freedom and numerical evaluations tend to be
computationally intensive.

The following is the complete algorithm for the COSSO with adaptive tuning:

1. Fix θα = 1, α = 1, . . . , p. Solve the smoothing spline problem, and tune λ0
according to CV or GCV. Fix λ0 at the chosen value in all later steps.

2. For each fixed M in a reasonable range, apply the one-step COSSO algorithm
with M . Choose the best M according to CV or GCV. The solution correspond-
ing to this chosen M is the final solution.

In our simulations it is noticed that once λ0 is fixed according to step 1, the
optimal M seems to be close to the number of important components. This helps
to determine the range of tuning for M .

7. Simulations. In this section we study the empirical performance of the
COSSO estimate in terms of estimation accuracy and model selection. We com-
pare the COSSO with GCV, with fivefold cross-validation, and with MARS,
which is a popular stepwise forward–backward procedure for building func-
tional ANOVA models. The measure of accuracy is the integrated squared er-
ror ISE = EX{f̂ (X) − f (X)}2, which is estimated by Monte Carlo integration
using 10,000 test points from the same distribution as the training points. We
run each simulation example 100 times and average. The matlab code for the
COSSO is available from webpages of the authors (www.stat.wisc.edu/~yilin or
www4.stat.ncsu.edu/~hzhang). The MARS simulations are done in R, with the
function “mars” in the “mda” library contributed by Trevor Hastie and Robert Tib-
shirani.

The following four functions on [0,1] are used as building blocks of re-
gression functions in some of the simulations: g1(t) = t ; g2(t) = (2t − 1)2;
g3(t) = sin(2πt)

2−sin(2πt)
; and g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) +

0.4 cos3(2πt)+0.5 sin3(2πt). Consider two covariance structures of the input vec-
tor X, with varying correlation:

Compound symmetry. Let X(j) = (Wj + tU)/(1 + t), j = 1, . . . , d ,
where W1, . . . ,Wd and U are i.i.d. from Uniform(0, 1). Therefore corr(X(j),

X(k)) = t2/(1 + t2) for j �= k. The uniform design corresponds to the case
t = 0.

(Trimmed) AR(1). Let W1, . . . , Wd be i.i.d. N(0,1), and X(1) = W1, X(j) =
ρX(j−1) + (1 − ρ2)1/2Wj , j = 2, . . . , d . Trim X(j) in [−2.5, 2.5] and scale
to [0, 1].

EXAMPLE 1. Consider a simple additive model in R10, with the underlying
regression function f (x) = 5g1(x

(1)) + 3g2(x
(2)) + 4g3(x

(3)) + 6g4(x
(4)). There-

www.stat.wisc.edu/~yilin
www4.stat.ncsu.edu/~hzhang


2284 Y. LIN AND H. H. ZHANG

fore X(5), . . . ,X(10) are uninformative. We consider the sample size n = 100. Gen-
erate y = f (x) + ε, where ε is distributed as N(0,1.74). The standard deviation
of the noise was chosen to give a signal-to-noise ratio 3:1 in the uniform case. For
comparison, the variances of the component functions are var{5g1(X

(1))} = 2.08,
var{3g2(X

(2))} = 0.80, var{4g3(X
(3))} = 3.30 and var{6g4(X

(4))} = 9.45.

We apply the COSSO with additive models (the additive COSSO) to the simu-
lated data. Therefore there are ten functional components in the model. Figure 1
shows how the magnitudes of the estimated components change with the tuning pa-
rameter M in one run. The magnitudes of the functional components are measured
by their empirical L1 norms, defined as 1/n

∑n
i=1 |f̂j (x

(j)
i )| for j = 1, . . . , d . The

λ0 in this run is fixed at 9.7656 × 10−6. Both GCV and fivefold cross-validation
choose M = 3.5, giving a model of five terms in this run. The estimated func-
tion components are plotted along with the true function components in Figure 2.
Notice the components are centered according to the ANOVA decomposition.

For each setting of covariance structure, we run the simulation 100 times and
average. The resulting average integrated squared error and its associated stan-

FIG. 1. The empirical L1 norm of the estimated components as plotted against the tuning parame-
ter M in one run of Example 1.
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FIG. 2. The estimated component (dashed line) and true component (solid line) functions in one
run of Example 1. Shown are the components for variables 1,2,3,4 and 7. For the other variables,
both true and estimated components are zero.

dard error (in parentheses) are given in Table 1. Also included in the table is the
average integrated squared error of MARS for additive models. We can see the
two COSSO procedures perform better than MARS in all the settings studied. To
study the performance of the COSSO in terms of model selection, we determine
in the uniform case the number of times each variable appears in the 100 chosen

TABLE 1
Comparison of average integrated squared errors for Example 1

Comp. symm. AR(1)

t = 0 t = 1 t = 3 ρ = −0.5 ρ = 0 ρ = 0.5

COSSO(GCV) 0.93 (0.05) 0.92 (0.04) 0.97 (0.07) 0.94 (0.05) 1.04 (0.07) 0.98 (0.07)
COSSO(5CV) 0.80 (0.03) 0.97 (0.05) 1.07 (0.06) 1.03 (0.06) 1.03 (0.06) 0.98 (0.05)
MARS 1.57 (0.07) 1.24 (0.06) 1.30 (0.06) 1.32 (0.07) 1.34 (0.07) 1.36 (0.08)
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TABLE 2
Appearance frequency of the variables in the models

in the uniform setting

Variable

1 2 3 4 5 6 7 8 9 10

COSSO(GCV) 100 100 100 100 14 11 18 15 11 13
COSSO(5CV) 100 94 100 100 1 1 3 2 4 2
MARS 100 100 100 100 35 35 34 39 28 35

models (Table 2), and the number of terms in the 100 chosen models (Table 3). In
our calculation we take θ to be zero if it is smaller than 10−6. The COSSO with
fivefold cross-validation misses the second variable six times, but chooses the cor-
rect four-variable model 84 times. The COSSO with GCV and MARS do not miss
any important variable, but tend to include uninformative variables in the chosen
models. The COSSO with GCV chooses the correct four-variable model 57 times,
while MARS does so only four times.

Table 4 gives the mean and standard deviation of the model sizes chosen by
the methods in various settings. The settings considered are compound symmetry
with t = 1 and 3 and trimmed AR(1) with ρ = −0.5, 0 and 0.5. The average model
size chosen by the COSSO with fivefold cross-validation is close to 4, the size of
the true model. The COSSO with GCV selects slightly larger models. The models
chosen by MARS are even larger.

EXAMPLE 2. Consider a larger model with d = 60 and the regression function

f (x) = g1
(
x(1)) + g2

(
x(2)) + g3

(
x(3)) + g4

(
x(4))

+ 1.5g1
(
x(5)) + 1.5g2

(
x(6)) + 1.5g3

(
x(7)) + 1.5g4

(
x(8))

+ 2g1
(
x(9)) + 2g2

(
x(10)) + 2g3

(
x(11)) + 2g4

(
x(12)).

Therefore there are 48 uninformative variables. Let n = 500. The variance of the

TABLE 3
Frequency of the size of the models in the uniform setting

Model size

3 4 5 6 7 8 9 10 Mean

COSSO(GCV) 0 57 17 18 5 2 0 1 4.82
COSSO(5CV) 6 84 7 3 0 0 0 0 4.07
MARS 0 4 24 40 26 6 0 0 6.06



COMPONENT SELECTION AND SMOOTHING 2287

TABLE 4
Mean and standard deviation of the model sizes

Comp. symm. AR(1)

t = 1 t = 3 ρ = −0.5 ρ = 0 ρ = 0.5

COSSO(GCV) 4.8 (1.2) 4.8 (1.5) 4.7 (1.2) 4.8 (1.3) 4.6 (1.2)
COSSO(5CV) 4.1 (1.2) 4.4 (1.9) 4.1 (1.2) 4.0 (1.0) 3.8 (0.9)
MARS 6.3 (0.9) 6.2 (0.9) 6.1 (1.0) 6.1 (0.8) 5.9 (0.8)

normal noise is 0.5184, to give a signal-to-noise ratio of 3:1 in the uniform case.
For comparison, in the uniform setting var{g1(X

(1))} = 0.08, var{g2(X
(2))} =

0.09, var{g3(X
(3))} = 0.21 and var{g4(X

(4))} = 0.26. Both COSSO and MARS
are run 100 times with additive models. The results are summarized in Table 5.
We see that the two COSSO procedures outperform MARS, with the COSSO with
fivefold cross-validation doing slightly better than the COSSO with GCV.

EXAMPLE 3. We consider a 10-dimensional regression problem with several
two-way interactions:

f (x) = g1
(
x(1)) + g2

(
x(2)) + g3

(
x(3)) + g4

(
x(4))

+ g1
(
x(3)x(4)) + g2

(
x(1) + x(3)

2

)
+ g3

(
x(1)x(2)).

We consider the uniform setting and set the noise to be normal with standard
deviation 0.2546, to give a signal-to-noise ratio of 3:1. The average integrated
squared errors are given in Table 6 for sample sizes n = 100,200,400. Both
the COSSO and MARS are run with the two-way interaction model. We follow
the advice in [8] to set the cost for each basis function optimization to be 3 in the
MARS for two-way interaction models.

TABLE 5
Average ISE (unit 10−3) and model sizes with their standard errors

Comp. symm. AR(1)

t = 0 t = 1 ρ = 0.5 ρ = −0.5

ISE COSSO(GCV) 201 (4) 178 (5) 199 (6) 183 (5)
COSSO(5CV) 144 (4) 162 (5) 153 (4) 149 (5)

MARS 353 (7) 302 (7) 286 (6) 280 (5)
Model sizes COSSO(GCV) 18.0 (4.1) 18.0 (4.1) 19.0 (5.1) 18.0 (4.3)

COSSO(5CV) 12.0 (0.2) 11.7 (1.4) 12.1 (1.4) 11.9 (1.0)
MARS 35.2 (2.3) 36.1 (2.1) 35.2 (2.5) 35.9 (2.4)
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TABLE 6
Average integrated squared errors for Example 3

n = 100 n = 200 n = 400

COSSO(GCV) 0.358 (0.009) 0.100 (0.003) 0.045 (0.001)
COSSO(5CV) 0.378 (0.005) 0.094 (0.004) 0.043 (0.001)
MARS 0.239 (0.008) 0.109 (0.003) 0.084 (0.001)

There are 55 function components in the COSSO. The COSSO does not do
well when n = 100. It seems that there are too many function components for
the COSSO to select from with 100 data points. MARS does not suffer from a
small sample size so much as the COSSO. Part of the reason is that the MARS
algorithm introduces a certain hierarchical order of the terms being searched from:
only after a univariate basis function is included in the model will the product of
other terms with it become a candidate for inclusion in later steps. In contrast, the
COSSO selects from all the function components and does not distinguish between
main effects and interaction terms. Therefore the COSSO does not assume any
hierarchical structure, and may not be efficient when the true model is hierarchical
and the sample size is small. However, as the sample size increases, the COSSO
procedures catch up quickly. Their performance is comparable to MARS when
n = 200 and better than MARS when n = 400.

In the above examples we see that in general the COSSO with fivefold cross-
validation tends to do better than the COSSO with GCV. We therefore recommend
the use of fivefold cross-validation with the COSSO unless the computation time
is a crucial factor. In the following examples the COSSO is tuned with fivefold
cross-validation.

EXAMPLE 4 (The circuit example). This is an example from [8]. Of interest is
the dependence of the impedance Z of a circuit and phase shift φ on components
in the circuit. The true dependence is described by

Z = [R2 + {ωL − 1/(ωC)}2]1/2,

φ = tan−1
{
ωL − 1/(ωC)

R

}
.

The input variables are uniform in the range 0 ≤ R ≤ 100, 40π ≤ ω ≤ 560π , 0 ≤
L ≤ 1, 1 ≤ C ≤ 11, and the noise is normal with the standard deviation set to give
a signal-to-noise level 3:1.

This is a relatively small problem with d = 4. All orders of interactions are
present. Friedman [8] applied MARS with the additive model, the two-way inter-
action model and the saturated model to this example, and found that the perfor-
mance of the two-way interaction model was the best. We scale the input region
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TABLE 7
Average integrated squared error for estimating the impedance Z (in

units of 103) and the phase shift φ (in units of 10−3)

n = 100 n = 200 n = 400

for Z COSSO 1.91 (0.12) 0.85 (0.05) 0.51 (0.03)
MARS 5.57 (0.41) 2.47 (0.16) 1.37 (0.08)

for φ COSSO 12.98 (0.36) 7.96 (0.20) 5.36 (0.10)
MARS 20.59 (0.96) 12.60 (0.71) 8.19 (0.14)

to [0,1]4 and apply the COSSO with fivefold cross-validation. With the small di-
mension, it is possible to apply the COSSO with the saturated model, which has
24 − 1 = 15 function components. However, it turns out that the two-way interac-
tion COSSO does slightly better than the saturated model. We compare the inte-
grated squared error of the two-way interaction COSSO and that of the two-way
interaction MARS in Table 7. It turns out that the COSSO performs much bet-
ter than MARS. We note that in Table 7 the numbers reported for MARS when
n = 200 are calculated after excluding one large extreme outlier in ISE, and those
for MARS when n = 400 are calculated after excluding three large extreme out-
liers in ISE.

8. Real examples. We now apply the COSSO to three real datasets: Ozone
data, Boston housing data and Tecator data. The first two datasets are available
from the R library “mlbench.” In the Ozone data, the daily maximum one-hour-
average ozone reading and eight meteorological variables were recorded in the
Los Angeles basin for 330 days in 1976. The Boston housing data concerns hous-
ing values in the suburbs of Boston. There are 12 input variables. The sample
size is 506. The Tecator data is available from the datasets archive of StatLib at
lib.stat.cmu.edu/datasets/. The data was recorded on a Tecator Infratec Food and
Feed Analyzer working in the wavelength range 850–1050 nm by the Near In-
frared Transmission (NIT) principle. Each sample contains finely chopped pure
meat with different moisture, fat and protein content. The input vector consists of
a 100-channel spectrum of absorbances. The absorbance is − log10 of the transmit-
tance measured by the spectrometer. As suggested in the document, we use the first
13 principal components to predict the fat content. The total sample size is 215.

We apply the COSSO and MARS on these datasets, and estimate the prediction
squared errors E[{Y − f̂ (X)}2] by tenfold cross-validation. We select the tuning
parameter by fivefold CV within the training set. The estimate obtained is then
evaluated on the test set. We do this tenfold cross-validation five times and then
average. For all three datasets, both the COSSO and MARS find the two-way in-
teraction model has better prediction accuracy than the additive model. Therefore

http://lib.stat.cmu.edu/datasets/
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TABLE 8
Estimated prediction squared errors and their standard errors

Ozone Boston Tecator

COSSO 16.04 (0.06) 9.89 (0.08) 0.92 (0.02)
MARS 18.24 (0.45) 14.31 (0.34) 4.99 (1.07)

we choose to apply the two-way interaction model and the results are given in
Table 8. We can see the COSSO does considerably better than MARS.

The COSSO algorithm can be naturally extended to tackle the nonparametric
classification problem where the response y is either 0 or 1. In this case we re-
place the square loss in (6) by the logistic regression loss function. The first term
in (6) is then replaced by �(f ) = 1/n

∑n
i=1[−yif (xi) + log(1 + ef (xi))], where f

is the logit function. We can then solve the optimization problem by applying the
quadratic approximation to �(f ) iteratively. This leads to the iteratively reweighted
least squares (IRLS) procedure, which is equivalent to a Newton–Raphson algo-
rithm. Using this approach, we can solve our optimization problem by iterative
application of the COSSO algorithm, within an IRLS loop. We illustrate the per-
formance of this procedure by comparing it with a number of machine learning
algorithms on several high-dimensional real datasets.

van Gestel et al. [18] conducted a benchmark study comparing a number of
commonly used machine learning techniques including the support vector ma-
chine (SVM), least squares SVM (LS-SVM), linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), logistic regression (Logit), the decision
tree algorithm C4.5, Holte’s one-rule classifier (oneR), instance-based learners
(IB) and the Naive Bayes method. There are five binary classification datasets
with continuous predictors, and we test the performance of the COSSO on these
datasets. The datasets are the BUPA Liver Disorder data, the Johns Hopkins Uni-
versity Ionosphere data, the PIMA Indian Diabetes data, the Sonar, Mines vs.
Rocks data and the Wisconsin Breast Cancer data. The basic features of the
datasets and the performance of different algorithms are summarized in Table 9.
Due to the high dimension of these problems, we only consider the COSSO addi-
tive model.

Following [18], for each dataset we randomly select 2/3 of the data for training
and tuning, and test on the remaining 1/3 of the data. We do this randomization ten
times and report the average test set performance and sample standard deviation
for the COSSO. The results for the other algorithms are taken from [18]. van Gestel
et al. [18] included six types of LS-SVM’s and found that the LS-SVM with the
radial basis function (RBF) kernel performs best overall. To save space we only
include the LS-SVM with RBF kernel and linear kernel in Table 9. van Gestel et
al. [18] included two instance-based learners (IB1 and IB10 in [18]). We combine
them and report the better performance of the two. The same is done for the two
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TABLE 9
Comparison of the test set performance of the COSSO with the performance of SVM, LS-SVM, LDA,

QDA, Logit, C4.5, oneR, IB, Naive Bayes and Majority Rule

BUPA Ionosphere Pima Indian Sonar MR Wisc. BC

n 345 351 768 208 683
d 6 33 8 60 9

COSSO 71.1 (3.5) 91.1 (3.7) 77.3 (2.2) 79.0 (4.5) 97.0 (0.8)
SVM (linear) 67.7 (2.6) 87.1 (3.4) 77.0 (2.4) 74.1 (4.2) 96.3 (1.0)
SVM (RBF) 70.4 (3.2) 95.4 (1.7) 77.3 (2.2) 75.0 (6.6) 96.4 (1.0)
LS-SVM (linear) 65.6 (3.2) 87.9 (2.0) 76.8 (1.8) 72.6 (3.7) 95.8 (1.0)
LS-SVM (RBF) 70.2 (4.1) 96.0 (2.1) 76.8 (1.7) 73.1 (4.2) 96.4 (1.0)
LDA 65.4 (3.2) 87.1 (2.3) 76.7 (2.0) 67.9 (4.9) 95.6 (1.1)
QDA 62.2 (3.6) 90.6 (2.2) 74.2 (3.3) 53.6 (7.4) 94.5 (0.6)
Logit 66.3 (3.1) 86.2 (3.5) 77.2 (1.8) 68.4 (5.2) 96.1 (1.0)
C4.5 63.1 (3.8) 90.6 (2.2) 73.5 (3.0) 72.1 (2.5) 94.7 (1.0)
oneR 56.3 (4.4) 83.6 (4.8) 71.3 (2.7) 62.6 (5.5) 91.8 (1.4)
IB 61.3 (6.2) 87.2 (2.8) 73.6 (2.4) 77.7 (4.4) 96.4 (1.2)
Naive Bayes 63.7 (4.5) 92.1 (2.5) 75.5 (1.7) 71.6 (3.5) 97.1 (0.9)
Majority Rule 56.5 (3.1) 64.4 (2.9) 66.8 (2.1) 54.4 (4.7) 66.2 (2.4)

Naive Bayes methods considered in [18]. The best average test set performance is
denoted in boldface for each dataset in Table 9. We can see the COSSO gives very
competitive performance on these benchmark datasets.

9. Discussion. The difference between the COSSO and the common smooth-
ing spline in smoothing spline ANOVA mirrors that between the LASSO and
ridge regression in linear models. Compared with other model selection algorithms
based on greedy search, the COSSO optimizes a global criterion and provides a
shrinkage estimate. We have shown that the COSSO has attractive properties for
model selection and estimation.

One future research topic is statistical inference based on the COSSO. Tradi-
tionally inference after model selection is based on the selected models, resulting
in biased inference. Shen, Huang and Ye [12] proposed a method to make approx-
imately unbiased inference. It is of interest to see if their method can be adapted
to our problem to give unbiased inference.

APPENDIX

Proofs.

PROOF OF THEOREM 1. Denote the functional to be minimized in (6) by
A(f ); then A(f ) is convex and continuous. Without loss of generality, we assume
τ = 1.



2292 Y. LIN AND H. H. ZHANG

By (7) we have that J (f ) ≥ ‖f ‖, for any f ∈ F1. Let RF1 be the repro-
ducing kernel of F1 and let 〈·, ·〉F1 be the inner product in F1. Denote a =
maxn

i=1 R
1/2
F1

(xi, xi). By the definition of a reproducing kernel, we have for any
f ∈ F1 and i = 1, . . . , n,

|f (xi)| = ∣∣〈f (·),RF1(xi, ·)〉F1

∣∣ ≤ ‖f ‖〈
RF1(xi, ·),RF1(xi, ·)〉1/2

F1(A.1)
= ‖f ‖R1/2

F1
(xi, xi) ≤ a‖f ‖ ≤ aJ (f ).

Denote ρ = maxn
i=1(y

2
i + |yi | + 1). Consider the set

D = {
f ∈ F :f = b + f1,

with b ∈ {1}, f1 ∈ F1, J (f ) ≤ ρ, |b| ≤ ρ1/2 + (a + 1)ρ
}
.

Then D is a closed, convex and bounded set. Therefore by Theorem 4 of [14],
page 162, there exists a minimizer of (6) in D. Denote the minimizer by f̄ . Then
A(f̄ ) ≤ A(0) < ρ.

On the other hand, for any f ∈ F with J (f ) > ρ, clearly A(f ) ≥ J (f ) > ρ; for
any f ∈ F with J (f ) ≤ ρ, f = b+f1, b ∈ {1}, f1 ∈ F and |b| > ρ1/2 + (a +1)ρ,
we use (A.1) to get that, for any i = 1, . . . , n,

|b + f1(xi) − yi | > [ρ1/2 + (a + 1)ρ] − aρ − ρ = ρ1/2.

Therefore A(f ) > ρ. For any f /∈ D, A(f ) > A(f̄ ), that is, f̄ is a minimizer of (6)
in F . �

PROOF OF THEOREM 2. For any f ∈ F , we can write f (x) = c +f1(x
(1))+

· · · + fd(x(d)) = c + g(x), such that
∑n

i=1 fj (x
(j)
i ) = 0, j = 1, . . . , d . Similarly,

write f0(x) = c0 + f01(x
(1)) + · · · + f0d(x(d)) = c0 + g0(x) and f̂ (x) = ĉ +

f̂1(x
(1)) + · · · + f̂d(x(d)) = ĉ + ĝ(x). By construction

∑n
i=1{g0(xi) − g(xi)} = 0,

and we can write (6) as

(c0 − c)2 + 2

n
(c0 − c)

n∑
i=1

εi + 1

n

n∑
i=1

{g0(xi) + εi − g(xi)}2 + τ 2
nJ (g).

Therefore, the minimizing ĉ must minimize (c0 − c)2 + 2/n(c0 − c)
∑n

i=1 εi .
That is, ĉ = c0 +1/n

∑n
i=1 εi . Therefore (ĉ− c0)

2 converges with rate n−1. On the
other hand, ĝ must minimize

1

n

n∑
i=1

{g0(xi) + εi − g(xi)}2 + τ 2
nJ (g).

Let G = {g ∈ F :g(x) = f1(x
(1)) + · · · + fd(x(d)), with

∑n
i=1 fj (x

(j)
i ) = 0, j =

1, . . . , d}. Then g0 ∈ G, ĝ ∈ G. The conclusion of Theorem 2 then follows from
Theorem 10.2 of [17] and the following lemma. �
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LEMMA A.1. Let H∞(δ,G) be the δ-entropy of G for the supremum norm.
Then

H∞
(
δ, {g ∈ G :J (g) ≤ 1}) ≤ Ad(�+1)/�δ−1/�,

for all δ > 0, n ≥ 1 and some A > 0 not depending on δ, n or d .

PROOF. Define Gj as the set of univariate functions of x(j)

Gj =
{
fj ∈ S� :J (fj ) ≤ 1,

n∑
i=1

fj

(
x

(j)
i

) = 0

}
,

where S� is the �th-order Sobolev space. Then from (3), any h ∈ Gj satisfies

�−2∑
ν=0

[
h(ν)(1) − h(ν)(0)

]2 +
∫ 1

0

{
h(�)(t)

}2
dt ≤ 1.(A.2)

We first show that for any h ∈ Gj , we have |h|∞ ≡ {sups∈[0,1] |h(s)|} ≤ 1. For
any fixed h ∈ Gj , define K = {k : 0 ≤ k ≤ � − 1, and for any integer q ∈ [0, k],
there exists aq ∈ [0,1] satisfying h(q)(aq) = 0}. Since

∑n
i=1 h(x

(j)
i ) = 0, we have

0 ∈ K . Let k0 be the largest number in K . Now we consider the two possibilities
k0 �= � − 1 and k0 = � − 1 separately.

If k0 �= � − 1, then k0 ≤ � − 2, k0 ∈ K and k0 + 1 /∈ K . By the definition of K ,
we see that h(k0) is monotone and crosses the x-axis. So for any s ∈ [0,1], we have
|h(k0)(s)| ≤ |h(k0)(1) − h(k0)(0)| ≤ 1. The last inequality follows from (A.2). From
this and the fact that h(k0−1) crosses the x-axis, we get |h(k0−1)(s)| ≤ 1, ∀ s ∈ [0,1].
Continuing with this argument, we get |h|∞ ≤ 1.

On the other hand, if k0 = � − 1, then maxs h(�−1)(s) ≥ 0, and
mins h(�−1)(s) ≤ 0. By (A.2) we get

1 ≥
∫ 1

0

{
h(�)(t)

}2
dt ≥

{∫ 1

0

∣∣h(�)(t)
∣∣dt

}2

≥
{

max
s

h(�−1)(s) − min
s

h(�−1)(s)

}2

.

Therefore −1 ≤ mins h(�−1)(s) ≤ 0 ≤ maxs h(�−1)(s) ≤ 1. That is, |h(�−1)(s)| ≤ 1,
∀ s ∈ [0,1]. Now by the definition of K and that � − 1 ∈ K , we know that h(k)

crosses the x-axis for any integer k ∈ [0, � − 1]. Therefore we get |h|∞ ≤ 1.
Therefore we have shown that |h|∞ ≤ 1 for any h ∈ Gj . It then follows from

Theorem 2.4 of [17], page 19, that

H∞(δ,Gj ) ≤ Aδ−1/�(A.3)

for all δ > 0 and n ≥ 1, and some positive A not depending on δ and n.
By the definition of G and the Gj , we see that in terms of the supreme norm,

if each Gj , j = 1, . . . , d , can be covered by N balls of radius δ, then the set {g ∈
G :J (g) ≤ 1} can be covered by Nd balls with radius dδ. By (A.3) we get

H∞
(
dδ, {g ∈ G :J (g) ≤ 1}) ≤ Adδ−1/�,
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and the conclusion of the lemma follows. �

PROOF OF LEMMA 1. For any f ∈ F , we can write f = b + ∑p
α=1 fα with

fα ∈ F α . Let the projection of fα onto span{Rα(xi, ·), i = 1, . . . , n} ⊂ F α be gα

and its orthogonal complement be hα . Then fα = gα + hα , and ‖fα‖2 = ‖gα‖2 +
‖hα‖2, α = 1, . . . , p. Since R = 1 + ∑p

α=1 Rα is the reproducing kernel of F , we
have, making use of the orthogonal structures,

f (xi) =
〈
1 +

p∑
α=1

Rα(xi, ·), b +
p∑

α=1

(gα + hα)

〉
= b +

p∑
α=1

〈Rα(xi, ·), gα〉,

where 〈·, ·〉 is the inner product in F . Therefore (6) can be written as

1

n

n∑
i=1

{
yi − b −

p∑
α=1

〈Rα(xi, ·), gα〉
}2

+ τ 2
p∑

α=1

(‖gα‖2 + ‖hα‖2)1/2.

Therefore any minimizing f satisfies hα = 0, α = 1, . . . , p, and the conclusion of
the lemma follows. �

PROOF OF LEMMA 2. Denote the functional in (6) by A(f ) and the functional
in (8) by B(θ,f ). We have λ0θ

−1
α ‖P αf ‖2 +λθα ≥ 2λ

1/2
0 λ1/2‖P αf ‖ = τ 2‖P αf ‖,

for any θα ≥ 0 and f ∈ F , and equality holds if and only if θα = λ
1/2
0 λ−1/2‖P αf ‖.

Therefore B(θ,f ) ≥ A(f ) for any θα ≥ 0 and f ∈ F , and equality holds if and
only if θα = λ

1/2
0 λ−1/2‖P αf ‖, α = 1, . . . , p. The conclusion of the lemma fol-

lows. �

Further derivations in the tensor product design case. Now we consider
the function space F = T 1 ⊗ T 2. Define � = {K̄(xi,1, xj,1)}m×m, the marginal
kernel matrix corresponding to the reproducing kernel of T̄ . With a little abuse of
notation, let Rj , j = 1,2, also stand for the n×n matrix of the reproducing kernel
Rj evaluated at the n data points, and the same for R12. Suppose the data points are
permuted appropriately; we have R12 = � ⊗�, where ⊗ stands for the Kronecker
product of matrices. Let 1m be the column vector consisting of m 1’s. For the main
effect spaces, we have R1 = � ⊗ (1m1T

m) and R2 = (1m1T
m) ⊗ �.

Straightforward calculation gives �1m = mt1m, where t = 1/(720m4). Let
{ξ1 = 1m, ξ2, . . . , ξm} be an orthonormal (with respect to the inner product 〈·, ·〉m
in Rm) eigensystem of �, with corresponding eigenvalues mη1,mη2, . . . ,mηm,
where η1 = t , and η2 ≥ η3 ≥ · · · ≥ ηm. Then it is well known that ηi ∼ i−4 for
i ≥ 2. See [16]. Notice ξ1, ξ2, . . . , ξm are also the eigenvectors of 1m1T

m, with cor-
responding eigenvalues being m,0, . . . ,0. Write ξµν = ξµ ⊗ ξν . It is then easy to
check that {ξµν :µ,ν = 1, . . . ,m} form an eigensystem of R1, R2 and R12. The
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eigenvalues of R1, R2 and R12 are, respectively,

r1,µ1 = nηµ; r1,µν = 0 for µ ≥ 1, ν ≥ 2;
r2,1ν = nην; r2,µν = 0 for µ ≥ 2, ν ≥ 1;

r12,µν = nηµην for µ ≥ 1, ν ≥ 1.

It is clear that {ξµν :µ,ν = 1, . . . ,m} is also an orthonormal basis in Rn

with respect to the inner product 〈·, ·〉n. Consider the vector of length n of
function values at the sample points: f = (f (xk,1, x�,2) :k, � = 1, . . . ,m)T. Let
O be the n × n matrix with columns being the vectors ξµν , µ,ν = 1, . . . ,m.
Then OTO = nI . Denote a = (aµν :µ,ν = 1, . . . ,m)T = (1/n)OTf and z =
(zµν :µ,ν = 1, . . . ,m)T = (1/n)OTy. That is,

aµν = 〈f, ξµν〉n, zµν = 〈y, ξµν〉n;
then f ∈ Rn can be expanded in terms of the orthonormal basis,

f = ∑
µ,ν

aµνξµν = f0 + f1 + f2 + f12,

where f0 = a11ξ11, f1 = ∑m
µ=2 aµ1ξµ1, f2 = ∑m

ν=2 a1νξ1ν and f12 =∑m
µ=2

∑m
ν=2 aµνξµν . Then all the components f0, f1, f2 and f12 are orthogo-

nal in Rn. Furthermore, we have zµν = aµν + δµν , where δµν ∼ N(0, σ 2/n), for
µ ≥ 1, ν ≥ 1.

Now let us consider the COSSO estimate (11),

1

n
(y − Rθc − b1n)

T(y − Rθc − b1n) + cTRθc + λ

p∑
α=1

θα subject to θα ≥ 0,

α = 1, . . . , p,

where Rθ = ∑p
α=1 θαRα . Let s = OTc, Dα = (1/n2)OTRαO . Then Dα is a diag-

onal matrix with diagonal elements rα,µν/n, α = 1,2 or 12. The COSSO problem
can be written as

(
z − Dθs − (b,0, . . . ,0)T)T(

z − Dθs − (b,0, . . . ,0)T) + sTDθs + λ

p∑
α=1

θα,

where Dθ = ∑p
α=1 θαDα . It can then be shown by straightforward calculation that,

for the minimizing s, b and θ , ŝ11 = 0, b̂ = z11 and s and θ minimize∑
µ≥2

[{zµ1 − ηµ(θ1 + θ12t)sµ1}2 + ηµ(θ1 + θ12t)s
2
µ1]

+ ∑
ν≥2

[{z1ν − ην(θ2 + θ12t)s1ν}2 + ην(θ2 + θ12t)s
2
1ν]

+ ∑
µ≥2,ν≥2

[(zµν − θ12ηµηνsµν)
2 + θ12ηµηνs

2
µν] + λ(θ1 + θ2 + θ12).
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Therefore, at the minimum we have

ŝµ1 = {1 + ηµ(θ1 + θ12t)}−1zµ1, µ ≥ 2;
ŝ1ν = {1 + ην(θ2 + θ12t)}−1z1ν, ν ≥ 2;
ŝµν = (1 + ηµηνθ12)

−1zµν, µ ≥ 2, ν ≥ 2;
and the θ ’s minimize

A(θ1, θ2, θ12) = ∑
µ≥2

z2
µ1(1 + ηµθ1 + ηµθ12t)

−1 + ∑
ν≥2

z2
1ν(1 + ηνθ2 + ηνθ12t)

−1

+ ∑
µ≥2,ν≥2

z2
µν(1 + θ12ηµην)

−1 + λ(θ1 + θ2 + θ12),

subject to θ1 ≥ 0, θ2 ≥ 0, θ12 ≥ 0. A calculation similar to that in Section 4 then
shows that, when λ is appropriately chosen, the COSSO selects the correct com-
ponents with probability tending to 1.
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