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ANOVA FOR DIFFUSIONS AND ITÔ PROCESSES1
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Itô processes are the most common form of continuous semimartingales,
and include diffusion processes. This paper is concerned with the nonpara-
metric regression relationship between two such Itô processes. We are inter-
ested in the quadratic variation (integrated volatility) of the residual in this
regression, over a unit of time (such as a day). A main conceptual finding is
that this quadratic variation can be estimated almost as if the residual process
were observed, the difference being that there is also a bias which is of the
same asymptotic order as the mixed normal error term.

The proposed methodology, “ANOVA for diffusions and Itô processes,”
can be used to measure the statistical quality of a parametric model and, non-
parametrically, the appropriateness of a one-regressor model in general. On
the other hand, it also helps quantify and characterize the trading (hedging)
error in the case of financial applications.

1. Introduction. We consider the regression relationship between two sto-
chastic processes �t and St ,

d�t = ρt dSt + dZt , 0 ≤ t ≤ T ,(1.1)

where Zt is a residual process. We suppose that the processes St and �t are ob-
served at discrete sampling points 0 = t0 < · · · < tk = T . With the advent of high
frequency financial data, this type of regression has been a topic of growing inter-
est in the literature; see Section 2.4. The processes �t and St will be Itô processes,
which are the most commonly used type of continuous semimartingale. Diffusions
are a special case of Itô processes. Definitions are made precise in Section 2.1
below. The differential in (1.1) is that of an Itô stochastic integral, as defined in
Chapter I.4.d of [33] or Chapter 3.2 of [34].

Our purpose is to assess nonparametrically what is the smallest possible residual
sum of squares in this regression. Specifically, for two processes Xt and Yt , denote
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the quadratic covariation between Xt and Yt on the interval [0, T ] by

〈X,Y 〉T = lim
max ti+1−ti↓0

∑
i

(
Xti+1 − Xti

)(
Yti+1 − Yti

)
,(1.2)

where 0 = t0 < · · · < tk = T . (This object exists by Definition I.4.45 or Theo-
rem I.4.47 in [33], pages 51–52, and similar statements in [34] and [38].) In par-
ticular, 〈Z,Z〉T —the quadratic variation of Zt—is the sum of squares of the
increments of the process Z under the idealized condition of continuous obser-
vation. We wish to estimate, from discrete-time data,

min
ρ

〈Z,Z〉T ,(1.3)

where the minimum is over all adapted regression processes ρ.
An important motivating application for the system (1.1) is that of statistical risk

management in financial markets. We suppose that St and �t are the discounted
values of two securities. At each time t , a financial institution is short one unit
of the security represented by �, and at the same time seeks to offset as much
risk as possible by holding ρt units of security S. Zt , as given by (1.1), is then
the gain/loss up to time t from following this “risk-neutral” procedure. In a com-
plete (idealized) financial market, minρ〈Z,Z〉 is zero; in an incomplete market,
minρ〈Z,Z〉 quantifies the unhedgeable part of the variation in asset �, when one
adopts the best possible strategy using only asset S. And this lower bound (1.3) is
the target that a risk management group wants to monitor and control.

The statistical importance of (1.3) is this. Once you know how to estimate (1.3),
you know how to assess the goodness of fit of any given estimation method for ρt .
You also know more about the appropriateness of a one-regressor model of the
form (1.1). We return to the goodness of fit questions in Section 4. A model exam-
ple of both statistical and financial importance is given in Section 2.2.

To discuss the problem of estimating (1.3), consider first how one would find
this quantity if the processes � and S were continuously observed. Note that
from (1.1), one can write

〈Z,Z〉t = 〈�,�〉t +
∫ t

0
ρ2

u d〈S,S〉u − 2
∫ t

0
ρu d〈�,S〉u(1.4)

([33], I.4.54, page 55). Here d〈X,Y 〉t is the differential of the process 〈X,Y 〉t with
respect to time. We shall typically assume that 〈X,Y 〉t is absolutely continuous as
a function of time (for any realization). It is easy to see that the solution in ρt to
the problem (1.3) is uniquely given by

ρt = d〈�,S〉t
d〈S,S〉t = 〈�,S〉′t

〈S,S〉′t
,(1.5)

where 〈�,S〉′t is the derivative of 〈�,S〉t with respect to time. Apart from its sta-
tistical significance, in financial terms ρ is the hedging strategy associated with the
minimal martingale measure (see, e.g., [16] and [41]).
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The problem (1.3) then connects to an ANOVA, as follows. Let Zt be the resid-
ual in (1.1) for the optimal ρt , so that the quantity in (1.3) can be written simply
as 〈Z,Z〉T . In analogy with regular regression, substituting (1.5) into (1.4) gives
rise to an ANOVA decomposition of the form

〈�,�〉T︸ ︷︷ ︸
total SS

=
∫ T

0
ρ2

u d〈S,S〉u︸ ︷︷ ︸
SS explained

+ 〈Z,Z〉T︸ ︷︷ ︸
RSS

,(1.6)

where “SS” is the abbreviation for (continuous) “sum of squares,” and “RSS”
stands for “residual sum of squares.” Under continuous observation, therefore, one
solves the problem (1.3) by using the ρ and Z defined above. Our target of in-
ference, 〈Z,Z〉t , would then be observable. Discreteness of observation, however,
creates the need for inference.

The main theorems in the current paper are concerned with the asymptotic be-
havior of the estimated RSS, as more discrete observations are available within
a fixed time window. There will be some choice in how to select the estima-
tor ̂〈Z,Z〉t . We consider a class of such estimators 〈̂Z,Z〉t . No matter which of
our estimators is used, we get the decomposition

〈̂Z,Z〉t − 〈Z,Z〉t ≈ biast + ([Z,Z]t − 〈Z,Z〉t )(1.7)

to first-order asymptotically, where [Z,Z] is the sum of squares of the increments
of the (unseen) process Z at the sampling points, [Z,Z]t = ∑

i (Zti+1 − Zti )
2; see

the definition (2.4) below.
A primary conceptual finding in (1.7) is the clear cut effect of the two sources

behind the asymptotics. The form of the bias depends only on the choice of the
estimator for the quadratic variation. On the other hand, the variation component
is common for all the estimators under study; it comes only from the discretization
error in discrete time sampling.

It is worthwhile to point out that our problem is only tangentially related to that
of estimating the regression coefficient ρt . This is in the sense that the asymp-
totic behavior of nonparametric estimators of ρt does not directly imply anything
about the behavior of estimators of 〈Z,Z〉T . To illustrate this point, note that the
convergence rates are not the same for the two types of estimators [Op(n−1/4)

vs. Op(n−1/2)], and that the variance of the estimator we use for ρt becomes the
bias in one of our estimators of 〈Z,Z〉T [compare equation (2.9) in Section 2.4
with Remark 1 in Section 3]. For further discussion, see Section 2.4. Depending
on the goal of inference, statistical estimates ρ̂t of the regression coefficient can
be obtained using parametric methods, or nonparametric ones that are either local
in space or in time, as discussed in Sections 2.4 and 4.1 and the references cited in
these sections. In addition, it is also common in financial contexts to use calibration
(“implied quantities,” see Chapters 11 and 17 in [28]).
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The organization is as follows: in Section 2 we establish the framework for
ANOVA, and we introduce a class of estimators of the residual quadratic varia-
tion. Our main results, in Section 3, provide the distributional properties of the
estimation errors for RSS. See Theorems 1 and 2. In Section 4 we discuss the sta-
tistical application of the main theorems. Parametric and nonparametric estimation
are compared in the context of residual analysis. The goodness of fit of a model
is addressed. Broad issues, including the analysis of variation versus analysis of
variance, the moderate level of aggregation versus long run, the actual probability
distribution versus the risk neutral probability distribution in the derivative valua-
tion setting, are discussed in Sections 4.4 and 4.5. After concluding in Section 5,
we give proofs in Sections 6 and 7.

2. ANOVA for Itô processes: framework.

2.1. Itô processes, quadratic variation and diffusions. The assumptions and
definitions in the following two subsections are used throughout the paper, some-
times without further reference. First of all, we shall be working with a fixed fil-
tered probability space.

SYSTEM ASSUMPTION I. We suppose that there is an underlying filtered
probability space (�,F ,Ft , P )0≤t≤T satisfying the “usual conditions” (see, e.g.,
Definition 1.3, page 2, of [33], also in [34]).

We shall then be working with Itô processes adapted to this system, as follows.
Note that Markov diffusions are a special case.

DEFINITION 1 (Itô processes). By saying that X is an Itô process, we mean
that X is continuous (a.s.), (Ft )-adapted, and that it can be represented as a smooth
process plus a local martingale,

Xt = X0 +
∫ t

0
X̃u du +

∫ t

0
σX

u dWX
u ,(2.1)

where W is a standard ((Ft ),P )-Brownian motion, X0 is F0 measurable,
and the coefficients X̃t and σX

t are predictable, with
∫ T

0 |X̃u|du < +∞ and∫ T
0 (σX

u )2 du < +∞. We also write

Xt = X0 + XDR
t + XMG

t(2.2)

as shorthand for the drift and local martingale parts of Doob–Meyer decomposition
in (2.1).

A more abstract way of putting this definition is that Xt is an Itô process if it is a
continuous semimartingale ([33], Definition I.4.21, page 42) whose finite variation
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and local martingale parts, given by (2.2), satisfy that both XDR
t and the quadratic

variation 〈XMG,XMG〉t are absolutely continuous. Obviously, an Itô process is a
special semimartingale, also in the sense of the same definition of [33].

Diffusions are normally taken to be a special case of Itô processes, where one
can write (σX

t )2 = a(Xt , t) and X̃t = b(Xt , t), and similarly in the multidimen-
sional setting. For a description of the link, we refer to Chapter 5.1 of [34].

The Itô process definition extends to a two- or multi-dimensional process,
say, (Xt , Yt ), by requiring each component Xt and Yt individually to be an Itô
process. Obviously, WX is typically different for different Itô processes X. For
two processes X and Y , the relationship between WX and WY can be arbitrary.

The quadratic variation 〈X,X〉t [formula (1.2)] can now be expressed in terms
of the representation (2.1) by ([33], I.4.54, page 55)

〈X,X〉t =
∫ t

0
(σX

u )2 du.

We denote by 〈X,X〉′t the derivative of 〈X,X〉t with respect to time t . Then
〈X,X〉′t = (σX

t )2, and this quantity (or its square root) is often known as volatility
in the finance literature.

Both quadratic variation and covariation are absolutely continuous. This follows
from the Itô process assumption and from the Kunita–Watanabe inequality (see,
e.g., page 69 of [38]).

DEFINITION 2 (Volatility as an Itô process). Denote by 〈X,Y 〉′t the derivative
of 〈X,Y 〉t with respect to time. We shall often suppose that 〈X,Y 〉′t is itself an Itô
process. For ease of notation, we then write its Doob–Meyer decomposition as

d〈X,Y 〉′t = dDXY
t + dRXY

t = D̃XY
t dt + dRXY

t .

Note that the quadratic variation of 〈X,Y 〉′ is the same as 〈RXY ,RXY 〉, and that,
in our notation above, DXY = (〈X,Y 〉′)DR and RXY = (〈X,Y 〉′)MG.

2.2. Model example: Adequacy of the one factor interest rate model. A com-
mon model for the risk free short term interest rate is given by the diffusion

drt = µ(rt ) dt + γ (rt ) dWt ,(2.3)

where Wt is a Brownian motion. For example, in [43], one takes µ(r) = κ(α − r),
and γ (r) = γ = constant, while Cox, Ingersoll and Ross [6] uses the same func-
tion µ, but γ (r) = γ r1/2. For more such models, and a brief financial introduction,
see, for example, [28]. A discussion and review of estimation methods is given by
Fan [14].

One of the implications of this so-called one factor model is the following. Sup-
pose St and �t are the values of two zero coupon government bonds with dif-
ferent maturities. Financial theory then predicts that, until maturity, St = f (rt , t)
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and �t = g(rt , t) for two functions f and g (see [28], Chapter 21, for details
and functional forms). Under this model, therefore, the relationship d�t = ρt dSt

holds from time zero until the maturity of the shorter term bond. It is easy to see
that d〈S,S〉t = f ′

r (rt , t)
2γ (rt )

2 dt and d〈�,S〉t = f ′
r (rt , t)g

′
r (rt , t)γ (rt )

2 dt , with
ρt = d〈�,S〉t /d〈S,S〉t = g′

r (rt , t)/f
′
r (rt , t). Here f ′

r is the derivative of f with
respect to r , and similarly for g′

r .
The one factor model is only an approximation, and to assess the adequacy

of the model, one would now wish to estimate 〈Z,Z〉T over different time inter-
vals. This provides insight into whether it is worthwhile to use a one-factor model
at all. If the conclusion is satisfactory, one can estimate the quantites µ and γ

(and, hence, f and g) with parametric or nonparametric methods (see Sections
2.4 and 4.1), and again, use our methods to assess the fit of the specific model, for
example, as discussed in Section 4.1.

2.3. Finitely many data points. We now suppose that we observe processes,
in particular, St and �t , on a finite set (partition, grid) G = {0 = t0 < t1 < · · · <

tk = T } of time points in the interval [0, T ]. We take the time points to be nonran-
dom, but possibly irregularly spaced. Note that this also covers the case where the
ti are random but independent of the processes we seek to observe, so that one can
condition on G to get back to irregular but nonrandom spacing.

DEFINITION 3 (Observed quadratic variation). For two Itô processes X and Y

observed on a grid G,

[X,Y ]Gt = ∑
ti+1≤t

(
�Xti

)(
�Yti

)
,(2.4)

where �Xti = Xti+1 −Xti . When there is no ambiguity, we use [X,Y ]t for [X,Y ]Gt ,

or [X,Y ](n)
t in case of a sequence Gn.

Note that this is not the same as the usual definition of [X,Y ]t for Itô processes.
We use 〈X,Y 〉t to refer to a continuous process, while [X,Y ]t refers to a (càdlàg)
process which only changes values at the partition points ti .

Since the results of this paper rely on asymptotics, we shall take limits with
the help of a sequence of partitions Gn = {0 = t

(n)
0 < t

(n)
1 < · · · < t

(n)
kn

= T }. As
n → +∞, we let Gn become dense in [0, T ], in the sense that the mesh

δ(n) = max
t

∣∣�t
(n)
i

∣∣ → 0.(2.5)

Here �t
(n)
i = t

(n)
i+1 − t

(n)
i . In other words, the mesh is the maximum distance be-

tween the t
(n)
i ’s. On the other hand, T remains fixed (except briefly in Section 4.5).

In this case, [X,Y ] = [X,Y ]Gn converges to 〈X,Y 〉 uniformly in probability;
see [33], Theorem I.4.47, page 52, and [38], Theorem II.23, page 68. More is true;
see Section 5 of [32], and (our) Sections 2.8 and 6 below.
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Note that, under (2.5), kn = |Gn| → ∞. It is often convenient to consider the
average distance between successive observation points,

�t
(n) = T

kn

;(2.6)

see Assumption A(i) below.

2.4. The regression problem, and the estimation of ρt . The processes in (1.1)
will be taken to satisfy the following.

SYSTEM ASSUMPTION II. We let � and S be Itô processes. We assume that

inf
t∈[0,T ]〈S,S〉′t > 0 almost surely.(2.7)

This assumption assures that ρt , given by (1.5), is well defined under (2.7) by
the Kunita–Watanabe inequality.

As noted in the Introduction, under continuous observation of �t and St , one
can also directly observe the optimal ρt and Zt . Our target of inference, 〈Z,Z〉t ,
would then be observable. Discreteness of observation, however, creates the need
for inference.

In a noncontinuous world, where � and S can only be observed over grid times,
the most straightforward estimator of ρ is

ρ̂t = 〈̂�,S〉′t
〈̂S,S〉′t

= [�,S]t − [�,S]t−hn

[S,S]t − [S,S]t−hn

.(2.8)

For simplicity, this estimator is the one we shall use in the following. The results
easily generalize when more general kernels are used. Note that we have to use a

smoothing bandwidth hn. There will naturally be a tradeoff between hn and �t
(n)

.

As we now argue, this typically results in hn = O((�t
(n)

)1/2).

Asymptotics for estimators of the form ̂〈X,Y 〉′t = ([X,Y ]t − [X,Y ]t−hn)/hn

and, hence, for ρ̂t , are given by Foster and Nelson [17] and Zhang [44]. Let

�t
(n)

be the average observation interval, assumed to converge to zero. If 〈X,Y 〉′t
is an Itô process with nonvanishing volatility, then it is optimal to take hn =
O((�t

(n)
)1/2), and (�t

(n)
)1/4( ̂〈X,Y 〉′t − 〈X,Y 〉′t ) converges in law (for each

fixed t) to a (conditional on the data) normal distribution with mean zero and
random variance. (The mode of convergence is the same as in Proposition 1.)
The asymptotic distributions are (conditionally) independent for different times t .

If 〈X,Y 〉′t is smooth, on the other hand, the rate becomes (�t
(n)

)1/3 rather than

(�t
(n)

)1/4, and the asymptotic distribution contains both bias and variance.
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The same applies to the estimator ρ̂t . In the case when S and � have a diffusion
component, the estimator has (random) asymptotic variance

Vρ̂−ρ(t) = 〈ρ,ρ〉′t
3c

+ cH ′(t)
( 〈�,�〉′t

〈S,S〉′t
− ρ2

t

)
(2.9)

whenever hn/(�t
(n)

)1/2 → c ∈ (0,∞); see [44]. H(t) is defined in Section 2.6
below.

The scheme given in (2.8) is only one of many for estimating 〈X,Y 〉′t by using
methods that are local in time. In particular, Genon-Catalot, Laredo and Picard
[21] use wavelets for this purpose and determine rates of convergence and limit
distributions under the assumption that 〈X,Y 〉′t is deterministic and has smooth-
ness properties.

Other important literature in this area seeks to estimate 〈X,Y 〉′t as a function
of the underlying state variables by methods that are local in space; see, in partic-
ular, [15, 26, 31]. The typical setup is that U = (X,Y, . . .) is a Markov process,
so that 〈X,Y 〉′t = f (Ut) for some function f , and the problem is to estimate f .
If all coefficients in the Markov diffusion are smooth of order s, and subject to
regularity conditions, the function f can be estimated with a rate of convergence

of (�t
(n)

)s/(1+2s).
The convergence obtained for the estimator of f under Markov assumptions

is considerably faster than what can be obtained for (2.8). It does, however, rely
on stronger (Markov) assumptions than the ones (Itô processes) that we shall be
working with in this paper. Since we shall only be interested in ρt as a (random)
function of time, our development does not require a Markov specification and, in
particular, does not require full knowledge of what potential state variables might
be.

Of course, this is just a subset of the literature for estimation of Markov diffu-
sions. See Section 4.1 for further references.

We emphasize that the general ANOVA approach in this paper can be carried
out with other schemes for estimating ρt than the one given in (2.8). We have
seen this as a matter of fine tuning and, hence, beyond the scope of this paper.
This is because Theorems 1 and 2 achieve the same rate of convergence as the one
obtained in Proposition 1.

2.5. Estimation schemes for the residual quadratic variation 〈Z,Z〉t . We now
return to the estimation of the quadratic variation 〈Z,Z〉 of residuals. Given the
discrete data of (�,S), there are different methods to estimate the residual varia-
tion.

One scheme is to start with model (1.1). For a fixed grid G, one first estimates
�Zti through the relation �Ẑti = ��ti − ρ̂ti (�Sti ), where all increments are from
time ti to ti+1, and then obtains the quadratic variation (q.v. hereafter) of Ẑ. This
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gives an estimator of 〈Z,Z〉 as

[Ẑ, Ẑ]t = ∑
ti+1≤t

(
�Ẑti

)2 = ∑
ti+1≤t

[
��ti − ρ̂ti

(
�Sti

)]2
,(2.10)

where the notation of square brackets (discrete time-scale q.v.) is invoked, since
�Ẑti is the increment over discrete times.

Alternatively, one can directly analyze the ANOVA version (1.6) of the
model, where d〈Z,Z〉t = d〈�,�〉t − ρ2

t d〈S,S〉t . This yields a second estima-
tor of 〈Z,Z〉t ,

〈̂Z,Z〉(1)

t = ∑
ti+1≤t

[(
��ti

)2 − ρ̂2
ti

(
�Sti

)2]
.(2.11)

In general, any convex combination of these two,

〈̂Z,Z〉(α)

t = (1 − α)[Ẑ, Ẑ]t + α〈̂Z,Z〉(1)

t ,(2.12)

would seem like a reasonable way to estimate 〈Z,Z〉t , and this is the class of
estimators that we shall consider. Particular properties will be seen to attach

to 〈̂Z,Z〉(1/2)

t , which we shall also denote by ˜〈Z,Z〉t . For a start, it is easy to
see that

˜〈Z,Z〉t = [�, Ẑ]t .(2.13)

Note that (2.13) also has a direct motivation from the continuous model. Since
〈S,Z〉t = 0, (1.1) yields that 〈�,Z〉t = 〈Z,Z〉t .

We establish the statistical properties of the estimator 〈̂Z,Z〉(α)

t and, in particu-

lar, those of ([Ẑ, Ẑ] and ˜〈Z,Z〉t ) in Section 3. Asymptotic properties are naturally
studied with the help of small interval asymptotics.

2.6. Paradigm for asymptotic operations. The asymptotic property of the es-
timation error is considered under the following paradigm.

ASSUMPTION A (Quadratic variation of time). For each n ∈ N , we have a se-
quence of nonrandom partitions Gn = {t (n)

i }, �t
(n)
i = t

(n)
i+1 − t

(n)
i . Let

maxi (�t
(n)
i ) = δ(n). Suppose that:

(i) δ(n) → 0 as n → ∞, and δ(n)/�t
(n) = O(1).

(ii) H(n)(t) =
∑

t
(n)
i+1≤t

(�t
(n)
i )2

�t
(n) → H(t) as n → ∞.

(iii) H(t) is continuously differentiable.

(iv) The bandwidth hn satisfies
√

�t
(n)

hn
→ c, where 0 < c < ∞.

(v) [H(n)(t) − H(n)(t − hn)]/hn → H ′(t), where the convergence is uniform
in t .
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When the partitions are evenly spaced, H(t) = t and H ′(t) = 1. In the more

general case, the left-hand side of (ii) is bounded by tδ(n)/�t
(n)

, while the left-

hand side of (v) is bounded by δ(n)2
/(�t

(n)
h) + δ(n)/�t

(n)
. In all our results,

h is eventually bigger than �t
(n)

and, hence, both the left-hand sides are bounded
because of (i). The assumptions in (ii) and (v) are, therefore, about a unique limit
point, and about interchanging limits and differentiation.

Note that we are not assuming that the grids are nested. Also, as discussed in

Section 2.4, how fast hn and �t
(n)

, respectively, decay has a trade-off in terms
of the asymptotic variance of the estimation error in ρ. It is optimal to take

hn = O(

√
�t

(n)
), whence Assumption A(iv). From now on, we use h and hn in-

terchangeably.

2.7. Assumptions on the process structure. The following assumptions are fre-
quently imposed on the relevant Itô processes.

ASSUMPTION B(X) (Smoothness). X is an Itô process. Also, 〈X,X〉′t and
X̃t are continuous almost surely.

The addition of Assumption B to an Itô process X, and similar smoothness
assumptions in results below, is partially due to the estimation of ρ, which requires
stronger smoothness conditions. In some instances, Assumption B is partially also
a matter of convenience in a proof and can be dropped at the cost of more involved
technical arguments.

2.8. The limit for the discretization error. The error 〈̂Z,Z〉t − 〈Z,Z〉t can be
decomposed into bias and pure discretization error [Z,Z]t − 〈Z,Z〉t . We here
discuss the limit result for the latter, following [32]. We first need the following.

SYSTEM ASSUMPTION III (Description of the filtration). There is a continu-
ous multidimensional P -local martingale X = (X(1), . . . ,X(p)), for some finite p,
so that Ft is the smallest sigma-field containing σ(Xs, s ≤ t) and N , where N
contains all the null sets in σ(Xs, s ≤ T ).

The final statement in the assumption assures that the “usual conditions” ([33],
page 2, [34], page 10) are satisfied. The main implication, however, is on our mode
of convergence, as follows.

PROPOSITION 1 (Discretization theorem). Let Z be an Itô process for which∫ T
0 (〈Z,Z〉′)2

t dt < ∞ a.s. and
∫ T

0 Z̃2
t dt < ∞ a.s. Subject to Assumptions A(i)–(ii)

and System Assumptions I and III,

(
�t

(n))−1/2([Z,Z](n)
t − 〈Z,Z〉t

) L.stable−→
∫ t

0

√
2H ′(u)〈Z,Z〉′u dWu,
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where W is a standard Brownian motion, independent of the underlying data
process X.

The symbol
L.stable−→ denotes stable convergence of the process, as defined in [39]

and [1]; see also [40] and Section 2 of [32].
In the case of an equidistant grid, the result coincides with the applicable part of

Theorems 5.1 and 5.5 in [32], and the proof is essentially the same (see Section 6).
In abstract form, results of this type appear to go back to [40]. The Jacod and Prot-
ter result was used in financial applications by Zhang [44] and Barndorff-Nielsen
and Shephard [3]. The case where Zt is observed discretely and with additive error
is considered in [45] and [46].

Note that the conditions on 〈Z,Z〉′ and Z̃ are the same as in the equidistant
case, due to the Lipschitz continuity of H . Some further discussion and results are
contained in Section 6.

3. ANOVA for diffusions: main distributional results.

3.1. Distribution of [Ẑ, Ẑ]t − 〈Z,Z〉t . Recall that the square bracket [Z,Z]
and the angled bracket 〈Z,Z〉 represent the quadratic variation of Z at discrete and
continuous time-scale, respectively.

THEOREM 1. Under System Assumptions I–II [and, in particular, equation
(1.1)], assume that Assumption A holds. Suppose that S, �, ρ, 〈S,S〉′, 〈�,S〉′,
〈RSS,RSS〉′, 〈R�S,R�S〉′, and 〈R��,R��〉′ are Itô processes, each satisfying
Assumption B. Let the estimator [Ẑ, Ẑ]t be defined as in (2.10). Then, as n → ∞,(

�t
(n))−1/2

([Ẑ, Ẑ]t − 〈Z,Z〉t )
(3.1)

= Dt + (
�t

(n))−1/2([Z,Z](n)
t − 〈Z,Z〉t ) + op(1)

uniformly in t , where

Dt = 1

3c

∫ t

0
〈ρ,ρ〉′u d〈S,S〉u + c

∫ t

0
H ′(u) d〈Z,Z〉u.(3.2)

REMARK 1. The consequence of Theorem 1 is that the quantity in (3.1) con-
verges in law (stably) to

Dt +
∫ t

0

√
2H ′(u)〈Z,Z〉′u dWu;

the op(1) term goes away by Lemma VI.3.31, page 352 in [33].
Note that Dt in (3.2) can be expressed as Dt = ∫ t

0 Vρ̂−ρ(u) d〈S,S〉u, where
Vρ̂−ρ(t) is the asymptotic variance of ρ̂t − ρt ; see (2.9) or [44]. Hence, the (ran-
dom) variance term for ρ̂ becomes a bias term for [Ẑ, Ẑ]. This is intuitively natural
since the ρ̂t are asymptotically independent for different t .
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Theorem 1, together with Proposition 1, says that the estimator [Ẑ, Ẑ]t con-
verges to 〈Z,Z〉t at the order of the square root of the average sampling interval.
In the limit the error term consists of a nonnegative bias Dt , due to the estima-
tion uncertainty [Ẑ, Ẑ] − [Z,Z], and a mixture Gaussian, due to the discretiza-
tion [Z,Z]t −〈Z,Z〉t . The nonnegativeness of the asymptotic bias occurs because
the q.v.’s (〈ρ,ρ〉, 〈S,S〉, 〈Z,Z〉) are nondecreasing processes. Furthermore, (3.2)
displays a bias–bias tradeoff; thus, an optimal c for smoothing can be reached to
minimize the asymptotic bias, though we have not investigated the effect of having
a random c. The discretization term is independent of the smoothing factor.

3.2. Distribution of ˜〈Z,Z〉t − 〈Z,Z〉t .
THEOREM 2. Under System Assumptions I–II, assume that Assumption A

holds. Also assume each of the following processes exists, and is an Itô-process
satisfying Assumption B: �, S, ρ, 〈�,S〉′, 〈S,S〉′, 〈RSS,RSS〉′, 〈R�S,RSS〉′ and
〈R�S,R�S〉′. Also suppose that the processes 〈�,ρ〉′ and 〈S,ρ〉′ are continuous.
Then, uniformly in t ,(

�t
(n))−1/2

(〈̃Z,Z〉t − 〈Z,Z〉t )
= 1

2c

∫ t

0
〈�,S〉′u dρu(3.3)

+ (
�t

(n))−1/2([Z,Z](n)
t − 〈Z,Z〉t ) + op(1).

Remark 1 applies similarly.

Unlike [Ẑ, Ẑ], the asymptotic (conditional) bias associated with ˜〈Z,Z〉t does
not necessarily have a positive or negative sign. Moreover, we are no longer faced
with a bias–bias tradeoff due to the position of c in (3.3). In this case the role of
smoothing in the asymptotic bias will be discussed in Section 3.3.

3.3. General results for the 〈̂Z,Z〉(α)

t class of estimators. From (2.12),

〈̂Z,Z〉(α)

t = (1 − 2α)[Ẑ, Ẑ]t + 2α〈̃Z,Z〉t ,
and it follows from the assumptions of Theorems 1 and 2 that, if one sets

bias(α)
t = α

c

∫ t

0
〈�,S〉′u dρu + (1 − 2α)Dt ,(3.4)

then, as in Remark 1,(
�t

(n))−1/2(〈̂Z,Z〉(α)

t − 〈Z,Z〉t )
= bias(α)

t +(
�t

(n))−1/2([Z,Z](n)
t − 〈Z,Z〉t ) + op(1)(3.5)

L.stable−→ bias(α)
t +

∫ t

0

√
2H ′(u)〈Z,Z〉′u dWu.
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TABLE 1
The effect of constant ρ on the bias components

Estimator Asymptotic bias

[Ẑ, Ẑ]t c
∫ t
0 H ′(u) d〈Z,Z〉u

〈̂Z,Z〉(1)

t −c
∫ t
0 H ′(u) d〈Z,Z〉u

˜〈Z,Z〉t 0

In summary, for any linear combination of the estimators in Theorems 1 and 2,
α ∈ [0,1], the convergence in (3.5) is in law as a process, and the limiting Brown-
ian motion W is independent of the entire data process. For details of stable con-
vergence, see the discussion and references in Section 2.8 above.

The “variance” term (�t
(n)

)−1/2([Z,Z]t − 〈Z,Z〉t ) is the same for any esti-
mator in the linear-combination class, and they are all asymptotically perfectly
correlated. The common asymptotic, conditional variance is independent of the
smoothing bandwidth. It remains unclear whether the common asymptotic vari-
ance could, perhaps, be a lower bound under the nonparametric setting (see [5] for
a comprehensive discussion). This needs further investigation.

For the bias, on the other hand, the estimation procedure plays an important
role, as the bias term varies with α. Also the smoothing effect enters the bias terms.
From Theorems 1 and 2, excessive over-smoothing (smaller c) or under-smoothing

(bigger c) can explode the bias of 〈̂Z,Z〉(α)
, for α �= 1

2 , thus (conditional) bias may
be minimized optimally. When α = 1

2 , it is not obvious how to deal with bias–

bias tradeoff. One might theoretically be able to reduce the bias for 〈̃Z,Z〉 [i.e.,
〈̂Z,Z〉(1/2)

] by choosing the smallest possible bandwidth h. This thought should,
however, be taken with caution. It is not obvious whether the magnitude of the
higher-order terms in the earlier results would remain negligible if the estimation
window h were to decrease faster than the order

√
�t .

Table 1 shows that assuming constant ρ, ˜〈Z,Z〉t will be the best choice among
the three. When ρ is random, none of the estimation schemes in Section 2.5 is
obviously superior to the others.

3.4. Estimating the asymptotic distribution. For statistical inference concern-
ing 〈Z,Z〉, one needs, in view of the above, to estimate the asymptotic (random)
bias and variance. The bias term can be obtained by substitution of estimated
quantities into the relevant expressions, most generally (3.4). We shall here be
concerned with the variance term in (3.5). In view of the stable convergence in
Proposition 1, we therefore seek to estimate

∫ t
0 2H ′(u)(〈Z,Z〉′u)2 du.

By a modification of Barndorff-Nielsen and Shephard [3], and also
Mykland [37], one can do this by considering the fourth-order variation.
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DEFINITION 4 (Observed fourth-order variation). For an Itô processes X ob-
served on a grid G,

[X,X,X,X]t = ∑
ti+1≤t

(
�Xti

)4
.(3.6)

PROPOSITION 2 (Estimation of variance). Assume the regularity conditions
of Theorem 1, and let Ẑ be defined as in that result. Also assume System Assump-
tion III. Then, as n → ∞,

2
3

(
�t

(n))−1[Ẑ, Ẑ, Ẑ, Ẑ]t →
∫ t

0
2H ′(u)(〈Z,Z〉′u)2 du(3.7)

uniformly in probability.

This estimate of variance can be used in connection with Sections 4.2 and 4.3
below.

The proof is given in Section 6. It can be noted from there that the same state-
ment (3.7) would hold under weaker conditions if Ẑ were replaced by Z, as fol-
lows.

REMARK 2. Assume the conditions of Proposition 1, and also that |Z̃| and
〈Z,Z〉′ are bounded a.s. Then, as n → ∞,

2
3

(
�t

(n))−1[Z,Z,Z,Z]t →
∫ t

0
2H ′(u)(〈Z,Z〉′u)2 du(3.8)

uniformly in probability.

This generalizes the corresponding result at the end of page 270 in [3]. The
finding in [37] is exact for small samples in the context of explicit embedding,
where it follows from Bartlett identities. For another use of this methodology, see,
for example, the proof of Lemma 1 in [35].

4. Goodness of fit. The purpose of ANOVA is to assess the goodness of fit
of a regression model on the form (1.1). We here illustrate the use of Theorems
1 and 2 by considering two different questions of this type. In the first section
we discuss how to assess the fit of a parametric estimator for ρ. Afterward, we
focus on the issue of how good is the one regressor model itself, independently of
estimation techniques. This is already measured by the quantity 〈Z,Z〉T , but can
be further studied by considering confidence bands for 〈Z,Z〉t as a process, and
by an analogue to the coefficient of determination. Finally, we discuss the question
of the relationship between this ANOVA and the analysis of variance that is used
in the standard regression setting.
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4.1. The assessment of parametric models. In the following we suppose that
a parametric model is fit to the data, and ρ is estimated as a function of the pa-
rameter. Parametric estimation of discretely observed diffusions has been studied
by Genon-Catalot and Jacod [18], Genon-Catalot, Jeantheau and Laredo [19, 20],
Gloter [22], Gloter and Jacod [23], Barndorff-Nielsen and Shephard [2], Bibby,
Jacobsen and Sørensen [4], Elerian, Siddhartha and Shephard [13], Jacobsen [29],
Sørensen [42] and Hoffmann [27]. This is, of course, only a small sample of the
literature available. Also, these references only concern the type of asymptotics
considered in this paper, where [0, T ] is fixed and �t → 0, and there is also a
substantial literature on the case where �t is fixed and T → ∞.

In Section 3 we have studied the nonparametric estimate 〈̂Z,Z〉(α)

T for the resid-

ual sum of squares. We here compare 〈̂Z,Z〉(α)

T to its parametric counterpart to see
how good the parametric model is in capturing the true regression of � on S.

Specifically, we suppose that data from the multidimensional process Xt is ob-
served at the grid points. Xt has among its components at least St and �t , and
possibly also other processes. The parametric model is of the form Pθ,ψ , θ ∈ �,
ψ ∈ 
 , where the modeling is such that diffusion coefficients are functions of θ ,
while drift coefficients can be functions of both θ and ψ . It is thus reasonable to
suppose that as �t → 0, θ̂ converges in probability to a nonrandom parameter
value θ0, and that

(�t)−1/2(θ̂ − θ0) → ηN(0,1)

in law stably, where η is a function of the data and the N(0,1) term is independent
of the data. (For conditions under which this occurs, consult, e.g., the references
cited above.) θ0 is the true value of the parameter if the model does contain the
true probability, but is otherwise also taken to be a defined parameter.

Under Pθ,ψ , the regression coefficient ρt is of the form βt (θ). Most commonly,
βt(θ) = b(Xt ; θ) for a nonrandom functional b.

We now ask whether the true regression coefficient can be correctly estimated
with the model at hand. In other words, we wish to test the null hypothesis H0 that
βt(θ0) = ρt .

For the ANOVA analysis, define the theoretical residual by

dVt = d�t − βt(θ0) dSt , V0 = 0,

and the observed one by

�V̂ti = ��ti − βti (θ̂ )�Sti , V̂0 = 0.

Under the null hypothesis 〈V,V 〉 = 〈Z,Z〉, and so a natural test statistic is of the
form

U = (�t)−1/2([V̂ , V̂ ]T − 〈̂Z,Z〉(α)

T

)
.

We now derive the null distribution for U , using the results above.
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As an intermediate step, define the discretized theoretical residual

�V d
ti

= ��ti − βti (θ0)�Sti , V d
0 = 0.

Subject to obvious regularity conditions,

[V̂ , V̂ ]T − [V d,V d ]T = − ∑
ti+1≤t

(
βti (θ̂ ) − βti (θ0)

)
�V d

ti
�Sti

+ ∑
ti+1≤t

(
βti (θ̂ ) − βti (θ0)

)2(
�Sti

)2

= −2(θ̂ − θ0)
∑

ti+1≤t

∂βti

∂θ
(θ0)�V d

ti
�Sti + Op(�t)

= −2(θ̂ − θ0)

∫ T

0

∂βt

∂θ
(θ0) d〈V,S〉t + Op(�t).

Also, under the conditions in Proposition 3 in Section 6 (cf. also the proof of

Proposition 2 in the same section), [V d,V d ]T = [V,V ]T + op(�t
1/2

) as �t → 0

[since 〈V d,V d〉t = 〈V,V 〉t + op(�t
1/2

), and 〈V d,V d〉′t ≈ 〈V d,V 〉′t ≈ 〈V,V 〉′t ].
Hence, under the conditions of Theorem 1 or 2,

U = −2(�t)−1/2(θ̂ − θ0)

∫ T

0

∂βt

∂θ
(θ0) d〈V,S〉t

+ (�t)−1/2{([V,V ]T − [Z,Z]T )}
− bias(α)

T +op(1),

where bias(α)
T has the same meaning as in Section 3. If the null hypothesis is satis-

fied, therefore,

U → N(0,1) × 2η

∫ T

0

∂βt

∂θ
(θ0) d〈V,S〉t − bias(α)

T

in law stably. The variance and bias can be estimated from the data. This, then,
provides the null distribution for U .

Another approach is to use U to measure how close the parametric residual
〈V,V 〉 is to the lower bound 〈Z,Z〉. To first order,

(�t)1/2U
P−→ 〈V,V 〉T − 〈Z,Z〉T
=

∫ T

0

(
βt(θ0) − ρt

)2
d〈S,S〉t .

The behavior of U − (�t)−1/2(〈V,V 〉T − 〈Z,Z〉T ) depends on the joint limiting
distribution of ([V,V ]T −〈V,V 〉T )− ([Z,Z]T −〈Z,Z〉T ) and (�t)−1/2(θ̂ − θ0).
The former can be provided by Proposition 1 in Section 2.8 (or Section 5 of [32]),
but further assumptions are needed to obtain the joint distribution. A study of this
is beyond the scope of this paper.



ANOVA FOR DIFFUSIONS 1947

4.2. Confidence bands. In addition to providing pointwise confidence inter-

vals for ̂〈Z,Z〉t (α)
, we can also construct joint confidence bands for the estimated

quadratic variation 〈̂Z,Z〉(α)
of residuals. This is possible because 〈̂Z,Z〉(α)

con-
verges as a process by Theorems 1 and 2.

One proceeds as follows. As a process on [0, T ],
(
�t

(n))−1/2(〈̂Z,Z〉(α)

t − 〈Z,Z〉t ) L−→ bias(α)
t +Lt .

Under all estimation schemes in the linear combination class, we have, by Theo-

rems 1 and 2 and subsequent results on ̂〈Z,Z〉t (α)
,

Lt =
∫ t

0

√
2H ′(u)〈Z,Z〉′u dWu,

where W is a standard Brownian motion independent of the complete data
filtration. Now condition on FT : by the stable convergence, Lt is then a
Gaussian process, with 〈L,L〉t nonrandom. Use the change-of-time construction
of Dambis [7] and Dubins and Schwarz [10] to obtain Lt = W ∗〈L,L〉t , where W ∗ is
a new Brownian motion conditional on FT . It then follows that

max
0≤t≤T

Lt = max
0≤t≤2

∫ T
0 H ′(u)(〈Z,Z〉′u)2 du

W ∗
t ,

min
0≤t≤T

Lt = min
0≤t≤2

∫ T
0 H ′(u)(〈Z,Z〉′u)2 du

W ∗
t .

Now write Ln(t) = (�t
(n)

)
−1/2

( ̂〈Z,Z〉t (α) − 〈Z,Z〉t ) − bias(α)
t . We have

P
(|Ln(t)| ≤ c, for all t ∈ [0, T ]) → P

(|L(t)| ≤ c, for all t ∈ [0, T ])
= P

(
min

0≤t≤τ
W ∗

t ≥ −c, max
0≤t≤τ

W ∗
t ≤ c

)
.

Choose c = cτ such that

P

(
min

0≤t≤τ
W ∗

t ≥ −cτ , max
0≤t≤τ

W ∗
t ≤ cτ

∣∣∣τ)
= 1 − α,

with τ = 2
∫ T

0 H ′(u)(〈Z〉′u)2
du. To find cτ , one can refer to Section 2.8 in [34] for

the distributions of the running minimum and maximum of a Brownian motion.
τ itself can be estimated by using Proposition 2. This completes our construction
of a global confidence band.

4.3. The coefficient of determination R2. In analogy with standard linear re-
gression, one can define R2 by

R2
t = 1 − 〈Z,Z〉t

〈�,�〉t .
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This quantity would have been observed if the whole paths of the processes
� and S had been available. If observations are on a grid, it is natural to use

R̂2
t = 1 − 〈̂Z,Z〉(α)

t

[�,�]t .

Under the assumptions of Section 2, the distribution of R̂2
t can be found by(

�t
(n))−1/2

(R̂2
t − R2

t )

= −(
�t

(n))−1/2
[ 〈̂Z,Z〉(α)

t − 〈Z,Z〉t
〈�,�〉t − (1 − R2

t )
[�,�]t − 〈�,�〉t

〈�,�〉t
]

+ op(1)

= −(
�t

(n))−1/2

× 1

〈�,�〉t
(
([Z,Z]t − 〈Z,Z〉t ) − (1 − R2

t )([�,�]t − 〈�,�〉t ))

− bias(α)
t

〈�,�〉t + op(1),

where bias(α)
t is the bias corresponding to the estimator 〈̂Z,Z〉(α)

t .
A straightforward generalization of Proposition 1 yields that (�t

(n)
)−1/2 ×

([Z,Z]t − 〈Z,Z〉t , [�,�]t − 〈�,�〉t )0≤t≤T converges (stably) to a process with
(bivariate) quadratic variation

∫ t
0 gu du, where

gt = 2H ′(t)
(

(〈Z,Z〉′t )2(〈Z,�〉′t )2

(〈Z,�〉′t )2(〈�,�〉′t )2

)
,

and equation (1.1) yields that 〈Z,�〉′t = 〈Z,Z〉′t . It follows that(
�t

(n))−1/2
(R̂2

t − R2
t )

L.stable−→ R2
t

〈�,�〉t
∫ t

0

√
2H ′(u)〈Z,Z〉′u dWu

+ 1 − R2
t

〈�,�〉t
∫ t

0

√
2H ′(u)[(〈�,�〉′u)2 − (〈Z,Z〉′u)2]dW ∗

u − bias(α)
t

〈�,�〉t ,
where W and W ∗ are independent Brownian motions. For fixed t , the limit is
conditionally normal, with mean −bias(α)

t /〈�,�〉t and variance

1

〈�,�〉2
t

R4
t

∫ t

0
2H ′(u)(〈Z,Z〉′u)2 du

+ 1

〈�,�〉2
t

(1 − R2
t )

2
∫ t

0
2H ′(u)[(〈�,�〉′u)2 − (〈Z,Z〉′u)2]du,
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which can be readily estimated using the device discussed in Section 3.4.

4.4. Variance versus variation: Which ANOVA? The formulation of (1.6) is
in terms of quadratic variation. This raises the question of how our analysis re-
lates to the traditional meaning of ANOVA, namely, a decomposition of variance.
There are several answers to this, some concerning the broad setting provided by
model (1.1), and they are discussed presently. More specific structure is provided
by financial applications, and a discussion is provided in Section 4.5.

In model (1.1), the variation in Z can come from both the drift and martingale
components. As in (2.2),

Zt = Z0 + ZDR
t + ZMG

t .(4.1)

Our analysis concerns most directly the variation in ZMG
t , in that var(ZMG

t ) =
E(〈Z,Z〉t ), where it should be noted that 〈Z,Z〉t = 〈ZMG,ZMG〉t . Hence, if
the ZDR term is identically zero, the analysis of variation is an exact analy-
sis of variance, in terms of expectations. The quadratic variation, however, is
also a more relevant measure of variation for the data that were actually col-
lected. The Dambis [7] and Dubins and Schwarz [10] representation yields that
ZMG

t = V〈Z,Z〉t , where V is a standard Brownian motion on a different time scale.
Therefore, 〈Z,Z〉t = 〈ZMG,ZMG〉t contains information about the actual amount
of variation that has occurred in the process ZMG

t . Using the quadratic variation is,
in this sense, analogous to using observed information in a likelihood setting (see,
e.g., [12]). The analogy is valid also on the technical level: if one forms the dual
likelihood ([36]) from score function ZMG

t , the observed information is, indeed,
〈Z,Z〉t .

If the drift ZDR in (4.1) is nonzero, the analysis applies directly only to ZMG.
So long as T is small or moderate, however, the variability in ZMG is the main
part of the variability in Z. Specifically, both when T → 0 and T → +∞,
ZMG

T = Op(T 1/2) and ZDR
T = Op(T ). Thus, the bias due to analyzing ZMG

t in
lieu of Zt becomes a problem only for large T . At the same time the present
methods provide estimates for the variation in ZMG

t for small and moderate T ,
whereas the variation in ZDR

t can only be consistently estimated when T → +∞
(by Girsanov’s theorem). Thus, we recommend our current methods for moder-
ate T , while one should use other approaches when dealing with a time span T

that is long.

4.5. Financial applications: An instance where variance and variation relate
exactly. It is quite common in finance to encounter the case from Section 4.4,
where Z itself is a martingale, or where one is interested in ZMG only. We here
show a conceptual example of this, where one wants to test whether the residual
Z is zero, or study the distribution of the residual under the so-called Risk Neutral
or Equivalent Martingale Measure P ∗.
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If P is the true, actual (physical) probability distribution under which data is
collected, P ∗ is, by contrast, a probability measure equivalent to P in the sense of
mutual absolute continuity, and it satisfies the condition that the discounted value
of all traded securities must be P ∗-martingales. The values of financial assets,
consequently, are expectations under P ∗. For further details, refer to [8, 9, 11, 24,
25, 28].

If the residual Z relates to the value of a security, one is often interested in
its behavior under P ∗, rather than under P . Specifically, we shall see that one is
interested in ZMG∗, where this is the martingale part in the Doob–Meyer decom-
position (4.1), when taken under P ∗:

Zt = Z0 + ZDR∗
t + ZMG∗ w.r.t. P ∗.(4.2)

The quadratic variation 〈Z,Z〉 = 〈ZMG,ZMG〉 = 〈ZMG∗,ZMG∗〉 is the same under
P and P ∗, but, under the latter distribution it refers to the behavior of ZMG∗ rather
than ZMG.

A simple example follows from the motivating application in the Introduction.
Suppose that � and S are both discounted securities prices, and that one seeks to
offset risk in � by holding ρ units of S. The residual is then, itself, the discounted
value on the unhedged part of �. Under P ∗, therefore, Z is a martingale, Zt =
Z0 + ZMG∗

t . A deeper example is encountered in [44], where we analyze implied
volatilities. In both these cases, in order to put a value on the risk involved in ZMG∗,
one is interested in bounds on the quadratic variation 〈Z,Z〉, under P ∗. This will
help, for example, in pricing spread options on Z.

How do our results for probability P relate to P ∗? They simply carry over,
unchanged, to this probability distribution. Theorems 1 and 2 remain valid by ab-
solute continuity of P ∗ under P . In the case of limiting results, such as those in
Propositions 1 and 3 (in Section 6) and the development for goodness of fit in Sec-
tion 4, we also invoke the mode of stable convergence (Section 2.8) together with
the fact that dP ∗/dP is measurable with respect to the underlying σ -field FT .

Finally, if one wants to test a null hypothesis H0 that ZMG∗ is constant, then
H0 is equivalent to asking whether 〈Z,Z〉T is zero (whether under P or P ∗). This
can again be answered with our distributional results above. In the case of the
example in this section, the H0 of fully offsetting the risk in � also tests whether
Z itself is constant.

5. Conclusion. This paper provides a methodology to analyze the association
between Itô processes. Under the framework of nonparametric, one-factor regres-
sion, we obtain the distributions of estimators of residual variation 〈Z,Z〉. We
then use this in a variety of measures of goodness of fit. We also show how the
method yields a procedure to test the appropriateness of a parametric regression
model. The limiting distributions identify two sources of uncertainty, one from the
discrete nature of the data process, the other from the estimation procedure. Inter-

estingly, among the class of estimators 〈̂Z,Z〉(α)
under consideration, α ∈ [0,1],
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discrete-time sampling only impacts the “variance” component. On the other hand,
different estimation schemes lead to different biases in the asymptotics.

ANOVA for diffusions permits inference over a time interval. This is because

the error terms in the quadratic variation 〈̂Z,Z〉(α)
of residuals and, hence, the error

terms in the goodness of fit measures, converge as a process, whereas the errors in
the estimated regression parameters ρ̂t are asymptotically independent from one
time point to the next. This feature of time aggregation makes ANOVA a natural
procedure to determine the adequacy of an adopted model. Also, the ANOVA is
better posed in that the rate of the convergence is the square of the rate for ρ̂t − ρt .

The “ANOVA for diffusions” approach is appealing also from the position of
applications. As long as one can collect the data as a process, one can rely on the
proposed ANOVA methodology to draw inference without imposing parametric
structure on the underlying process. In financial applications, as in Section 4.5, it
can test whether a financial derivative can be fully hedged in another asset. In the
event of nonperfect hedging, Theorems 1 and 2 tell us how to quantify the amount
of hedging error, as well as its distribution.

6. Convergence in law—Proofs and further results. In the following we
deal with processes that are exemplified by [Z,Z] − 〈Z,Z〉. We mostly fol-
low [32].

PROOF OF PROPOSITION 1. The applicable parts of the proof of the cited
Theorems 5.1 and 5.5 of [32] carry over directly under Assumptions A(i) and A(ii).
When modifying the proofs, as appropriate, t∗ = max(t

(n)
i ≤ t) replaces [tn]/n,

δn replaces n−1 and so on. For example, the right-hand side of their equation (5.10)
on page 290 becomes Kδ2

n. The main change due to the nonequidistant case occurs
in part (iii) of Jacod and Protter’s Lemma 5.3, pages 291 and 292, where in the
definition of αn, t

2Bik
r should be replaced by (H(tr + t)−H(tr))B

ik
r . Assumptions

A(i) and A(ii) are clearly sufficient. �

Note that the result extends in an obvious fashion to the case of multidimen-
sional Z = (Z(1), . . . ,Z(p)). Also, instead of studying [Z,Z] − 〈Z,Z〉, one can,
like [32], state the (more general) result for

∫ t
0 (Z

(i)
u − Z

(i)∗ ) dZ
(j)
u .

In the sequel we shall also be using a triangular array form of Proposition 1; see
the ends of the proofs of Theorems 1 and 2.

PROPOSITION 3 (Triangular array version of the discretization theorem). Let
Z be a vector Itô process for which

∫ T
0 ‖〈Z,Z〉′t‖2 dt < ∞ and

∫ T
0 ‖Z̃t‖2 dt < ∞

a.s. Also, suppose that Z(n), i = 1,2, . . . , are Itô processes satisfying the same
requirement, uniformly. Suppose that the (vector) Brownian motion W is the same
in the Itô process representations of Z and of all the Z(n), that is,

dZ(n),MG
u = σ (n)

u dW and dZMG
u = σu dW.(6.1)
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Suppose that ∫ T

0

∥∥σ (n)
u − σu

∥∥4
du = op(1).(6.2)

Then, subject to Assumptions A(i) and (ii), the processes 1√
�t

(n)

∫ t
0 (Z

(i,n)
u −

Z
(i,n)∗ ) dZ

(j,n)
u converge jointly with the processes 1√

�t
(n)

∫ t
0 (Z

(i)
u − Z

(i)∗ ) dZ
(j)
u to

the same limit.

If one requires stable convergence, one just imposes System Assumption III;
see Theorem 11.2, page 338, and Theorem 15.2(c), page 496, of [30].

PROOF OF PROPOSITION 3. This is mainly a modification of the development
on page 292 and the beginning of page 293 in [32], and the further development in
(their) Theorem 5.5 is straightforward. Again we recollect that H [from Assump-
tions A(i) and (ii)] is Lipschitz continuous.

Note that to match the end of the proof of Theorem 5.1, we really need op(δ4
n).

This, of course, follows by appropriate use of subsequences. �

Finally, we show the result for Section 3.4.

PROOF OF PROPOSITION 2. Let t∗ be the largest grid point smaller than
or equal to t . Then by Itô’s lemma, d(Zt − Zt∗)

4 = 4(Zt − Zt∗)
3 dZt + 6(Zt −

Zt∗)
2 d〈Z,Z〉t . Hence,

[Z,Z,Z,Z]t = ∑
ti+1≤t

[
4

∫ ti+1

ti

(
Zu − Zti

)3
dZu

+ 6
∫ ti+1

ti

(
Zu − Zti

)2
d〈Z,Z〉u

]
(6.3)

= 6
∑

ti+1≤t

∫ ti+1

ti

(
Zu − Zti

)2
d〈Z,Z〉t + Op

(
δ(n)3/2−ε)

,

using Lemma 2 below.
Define an interpolated version of [Z,Z] = [Z,Z]G by letting [Z,Z]interpol

t =
(Zt − Zt∗)

2 + [Z,Z]t∗ . Then, again by Itô’s lemma,∑
ti+1≤t

∫ ti+1

ti

(
Zu − Zti

)2
d〈Z,Z〉t

(6.4)
= 1

4

〈
([Z,Z]interpol − 〈Z,Z〉), ([Z,Z]interpol − 〈Z,Z〉)〉t∗ .

Putting together (6.3) and (6.4), and Proposition 1, as well as Corollary VI.6.30,
page 385 of [33], we obtain (3.8).

Replacing Z by Ẑ, and creating interpolated versions of Ẑ and [Ẑ, Ẑ] as at the
beginning of the proof of Theorem 1 below, (3.7) also follows. �
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7. Proofs of main results.

7.1. Notation. In the following proofs ti always means t
(n)
i , h always means

hn, �t means �t
(n)

and so on. Also, t∗ is the largest grid point less than t , that is,
t∗ = max{t (n)

i ≤ t}. We sometimes write 〈X,X〉t as 〈X〉t , and 〈X,X〉′t as 〈X〉′t for
simplicity. Also, for convenience, we adopt the following shorthand for smooth-
ness assumptions for Itô processes:

ASSUMPTION B (Smoothness).
B.0(X): X is in C1[0, T ].
B.1(X,Y ): 〈X,Y 〉t is in C1[0, T ].
B.2(X): the drift part of X (XDR) is in C1[0, T ].
Assumption B(X) is equivalent to B.1(X,X) and B.2(X).
We shall also be using the following notation:

ϒX(h) = sup
u,s

|Xu − Xs | and ϒXY (h) = sup
u,s

|〈X,Y 〉′u − 〈X,Y 〉′s |,
where supu,s means supu,s∈[0,T ]:|u−s|≤h.

7.2. Preliminary lemmas and proof of Theorem 1.

LEMMA 1. Let Mi,n(t), 0 ≤ t ≤ T , i = 1, . . . , kn, kn = O(�t
−1

), be a col-
lection of continuous local martingales. Suppose that sup1≤i≤kn

〈Mi,n,Mi,n〉T =
Op(�t

β
). Then, for any ε > 0, sup1≤i≤kn

sup0≤t≤T |Mi,n(t)| = Op(�t
β/2−ε

).

The above follows from Lenglart’s inequality. As a corollary, the following is
true.

LEMMA 2. Let X and Y be Itô processes. If X satisfies that |X̃| and 〈X,X〉′
are bounded a.s., then for any ε > 0, ϒX(η) = Op((η + �t)

1/2−ε
). Similarly, if X

and Y satisfy that D̃XY and 〈RXY ,RXY 〉 are bounded (a.s.), then for any ε > 0,
ϒXY (η) = Op((η + �t)

1/2−ε
).

LEMMA 3. Suppose X, Y and Z are Itô processes, and make Assumptions
A(i), B.0(Y ), B[(X), (Z)] and B.1(X,Z). Also, assume that for any ε > 0, as
n → ∞, (�t)1/2−εh−1/2 = o(1). Then

sup
t

1

h2

∣∣∣∣∣
∑

t−h≤ti<ti+1≤t

[∫ ti+1

ti

(
Xu − Xti

)(
Zu − Zti

)
dYu − (�ti)

2

2
〈X,Z〉′ti Ỹti

]∣∣∣∣∣
= op

(
�t

h

)
as n → ∞, where Ỹu = dYu/du.
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PROOF OF LEMMA 3. Without loss of generality, it is enough to show the
result for X = Z. This is because one can prove the results for X, Z and X + Z,
and then proceed via the polarization identity. The conditions imposed also mean
that the assumptions of Lemma 3 are also satisfied for X + Z. Let

It = 1

h2

∑
t−h≤ti<ti+1≤t

[∫ ti+1

ti

(〈X〉u − 〈X〉ti
)
dYu − 1

2
〈X〉′ti Ỹti (�ti)

2
]
,

IIt = 1

h2

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

[(
Xu − Xti

)2 − (〈X〉u − 〈X〉ti
)]

dYu.

Obviously supt |It | = op(�th−1). It is then enough to show

sup
t

|IIt | = op(�th−1),

as follows.
By Itô’s lemma,

IIt = 2

h2

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

∫ u

ti

(
Xv − Xti

)
dXDR

v dYu

︸ ︷︷ ︸
IIt,1

+ 2

h2

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

[∫ u

ti

(
Xv − Xti

)
dXMG

v

]
dYu

︸ ︷︷ ︸
IIt,2

.

Recall that dXDR
v = X̃v dv. Then by B.0(Y ), B.2(X) and the continuity of X, one

gets

|IIt,1| ≤ sup
0≤u≤t

|X̃u| sup
0≤u≤t

|Ỹu| 2

h2

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

(∫ u

ti

∣∣Xv − Xti

∣∣dv

)
du

= op

(
δ(n)

h

)
.

For IIt,2, using integration by parts,

1

h2

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

[∫ u

ti

(
Xv − Xti

)
dXMG

v

]
du

(7.1)

= 1

h2

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

(
Xu − Xti

)[
(�ti) − (u − ti)

]
dXMG

u .
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Equation (7.1) has quadratic variation bounded by

1

h4 sup
i

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

(
Xu − Xti

)2
(ti+1 − u)2 d〈X〉u

≤ 1

h4 sup
i

〈X〉′ti sup
t

∑
t−h≤ti<ti+1≤t

∫ ti+1

ti

(
ϒX(

δ(n)))2
(ti+1 − u)2 du(7.2)

= Op(�t
3−ε

h−3)

by Lemma 2 under Assumptions A(i) and B(X). Following Lemma 1 and B.0(Y ),

supt |IIt,2| = Op(�t
3/2−ε

h−3/2). The result then follows.

DEFINITION 5. Suppose X and Y are continuous Itô processes. Let

BXY
1,i,t =




1

h

∫ t∧ti

ti−h

(
(ti − h) − u

)
d〈X,Y 〉′u, t ≥ ti − h,

0, otherwise
(7.3)

and

BXY
2,i,t =




[2]
h

∑
ti−h≤tj≤tj+1≤ti∧t

∫ tj+1

tj

(
Xs − Xtj

)
dYs, t ≥ ti − h,

0, otherwise,

(7.4)

where [2] indicates symmetric representation s.t. [2] ∫
X dY = ∫

X dY + ∫
Y dX.

Note that by integration by parts via Itô’s lemma, BXY
1,i,ti

= 1
h
(〈X,Y 〉ti −

〈X,Y 〉ti−h) − 〈X,Y 〉′ti and, hence, 〈̂X,Y 〉′ti − 〈X,Y 〉′ti = BXY
1,i,ti

+ BXY
2,i,ti

.

LEMMA 4. Under Assumptions A(i) and B(X,Y, 〈X,Y 〉′) and the order se-
lection of h2 = O(�t), for any ε > 0,

sup
0≤ti≤T

∣∣BXY
1,i,ti

∣∣ = Op(�t
1/4−ε

) and sup
0≤ti≤T

∣∣BXY
2,i,ti

∣∣ = Op(�t
1/4−ε

).

In particular,

sup
0≤ti≤T

∣∣〈̂X,Y 〉′ti − 〈X,Y 〉′ti
∣∣ = Op(�t

1/4−ε
).

In addition, under condition B(〈RXY ,RZV 〉′),
sup
ti

∣∣∣∣〈BXY
1,i ,BZV

1,i 〉
ti

− h

3
〈RXY ,RZV 〉′ti

∣∣∣∣ = Op(h3/2−ε),(7.5)

sup
t

|〈BXY
2,i ,BZV

2,i 〉
t
− Gt | = op(�t

1/2
),(7.6)
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where Gt = 1
h2

∑
t−h≤ti<ti+1≤t (〈X,Z〉′ti 〈Y,V 〉′ti + 〈X,V 〉′ti 〈Y,Z〉′ti )(�ti)

2 and

sup
ti

∣∣〈BZV
1,i ,BXY

2,i 〉
ti

∣∣ = Op

(
�t√

h

)
.(7.7)

PROOF OF LEMMA 4. Using Definition 2, write

BXY
1,i,t = 1

h

∫ t

ti−h

(
(ti − h) − u

)
dRXY

u︸ ︷︷ ︸
B

XY,MG
1,i,t

+ 1

h

∫ t

ti−h

(
(ti − h) − u

)
dDXY

u︸ ︷︷ ︸
B

XY,DR
1,i,t

.(7.8)

Under Assumption B.2(〈X,Y 〉′), supi |BXY,DR
1,i,ti

| = Op(h). Also, by Assumptions

A(i) and B.1(RXY ,RXY ), we have that sup0≤u≤T 〈RXY 〉′u = Op(1), whence

supi〈BXY
1,i ,BXY

1,i 〉T = Op((�t
(n)

)1/2). So supi supt |BXY,MG
1,i,t | = Op(�t

1/4−ε
) by

Lemma 1 and, hence, supi |BXY
1,ti

| = Op(�t
1/4−ε

). By similar methods, Lemmas

1 and 2 can be used to show that supi |BXY
2,ti

| = Op(�t
1/4−ε

).
The orders (7.5)–(7.7) follow from the representation (7.8), and derivations sim-

ilar to those of the proof of Lemma 3. �

The following is now immediate from Lemma 4, by Taylor expansion.

COROLLARY 1. Suppose �, S and ρ are Itô processes, where ρ and ρ̂ are
as defined in Section 2. Then, under conditions A(i), B(�,S, 〈�,S〉′, 〈S,S〉′) and
(2.7), for any ε > 0, we have

sup
ti∈[0,T ]

∣∣ρ̂ti − ρti

∣∣ = Op(�t
1/4−ε

).

In the rest of this subsection we shall set, by convention, ρ̂t to the value ρ̂t∗,
even if the definition in Section 2.4 permits other values of ρ̂t between sampling
points. This is no contradiction since we only use the ρ̂ti in our definition of Ẑ and
in the rest of our development.

Similarly, we extend the definition of Ẑt given at the beginning of Section 2.5
to the case where t is not a sampling point. Specifically,

Ẑt = Ẑt∗ + �t − �t∗ − ρ̂t∗
(
St − St∗

)
= Ẑt∗ + �t − �t∗ −

∫ t

t∗
ρ̂u dSu

by our convention for ρ̂t . We emphasize that Ẑt is no more observable than St

or �t . By this definition of Ẑ, in view of (1.6) and (1.5),

〈Ẑ, Ẑ〉t = 〈Z,Z〉t +
∫ t

0
(ρ̂u − ρu)

2 d〈S,S〉u.(7.9)

We then obtain the following preliminary result for Theorem 1.
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PROPOSITION 4. Under the conditions of Theorem 1, (〈Ẑ, Ẑ〉t − 〈Z,Z〉t )/√
�t = Dt + op(1), uniformly in t , where Dt is given by (3.2).

PROOF. (i) Let Li,n(t) = ∑2
j=1 Lj,i,n(t), where for j = 1,2, Lj,i,n(t) =

(B�S
j,t∧ti

− ρti−hB
SS
j,t∧ti

)/〈S,S〉′ti−h for t ≥ ti − h, and zero otherwise. It is now
easily seen from Lemmas 2 and 4, and Corollary 1, and by the same methods as in
these results, that Li,n(t) approximates ρ̂t − ρt and, in particular, that∫ t

0
(ρ̂u − ρu)

2 d〈S,S〉u = ∑
ti+1≤t

L2
i,n(ti)〈S,S〉′ti−h�ti + Op(�t

3/4−ε
)(7.10)

uniformly in t , for any ε > 0. We now show that∑
ti+1≤t

L2
i,n(ti)〈S,S〉′ti−h�ti

(7.11)
= ∑

ti+1≤t

〈Li,n〉ti 〈S,S〉′ti−h�ti + Op(�t
3/4−ε

).

To this end, set Y (i)(t) = L2
i,n(t) − 〈Li,n〉t and

Zn,t = ∑
ti+1≤t

Y (i)(ti)〈S,S〉′ti−h�ti + Y (i)(t∗)〈S,S〉′t∗−h�t∗.(7.12)

By Lenglart’s inequality ([33], Lemma I.3.30, page 35), (7.11) follows if one can

show that 〈Zn,Zn〉T = Op(�t
3/2−ε

), for any ε > 0. This is what we do in the rest
of (i).

Since 〈Li,n,Lj,n〉t = 0 if (ti − h, ti] and (tj − h, tj ] are disjoint for any ti ≤ T

and tj ≤ T , the quadratic variation of the Zn is considered in the overlapping time
interval:

〈Zn,Zn〉T

≤ sup
0≤t≤T

(〈S,S〉′t )2

∣∣∣∣∣
∑
i

∑
j

(�ti)(�tj )

∫
(ti−h,ti ]∩(tj−h,tj ]

d
〈
Y (i), Y (j)〉

u

∣∣∣∣∣
≤ 2 sup

0≤t≤T

(〈S,S〉′t )2
∑
i≤j

(�ti)(�tj )I{i<j :ti>tj−h}
(∫

(tj−h,ti ]
d
〈
Y (i)〉

u

)1/2

(7.13)

×
(∫

(tj−h,ti ]
d
〈
Y (j)〉

u

)1/2

.

The above line follows from the Kunita–Watanabe inequality (page 69 of [38]).
By Itô’s formula, for ti − h < t < ti , 〈Y (i)〉′t = 4L2

i,n(t)〈Li,n〉′t . Hence, by
Lemma 4, 〈Y (i)〉′t ≤ U1〈Li,n〉′t , where U1 is defined independently of i, and
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U1 = Op(�t
1/2−ε

). Also, by the Kunita–Watanabe inequality and the Cauchy–
Schwarz inequality,

〈Li,n〉′t ≤ 4 sup
0≤u≤T

1

(〈S,S〉′u)2

2∑
j=1

(〈B�S
j,i 〉′

t
+ ρ2

ti−h〈BSS
j,i 〉′t

)
,(7.14)

where BXY
j,i,t , j = 1,2, is defined before Lemma 4. Thus, it is enough that (7.13)

is Op(�t
3/2−ε

) in the two cases where 〈Y (i)〉′t is replaced by (a) U1〈BXY
1,i 〉′

t
, for

(X,Y ) = (�,S) and (S, S), and (b) U1〈BXY
2,i 〉′

t
, for (X,Y ) = (�,S), (S,�) and

(S, S). We do this in the case of 〈BXY
1,i 〉′

t
. The second case is similar.

Obviously, on ti − h < t < ti , 〈BXY
1,i 〉′

t
= 1

h2 (t − (ti − h))2〈RXY 〉′t . Also, set

Nn = supt #{j : t ≤ tj ≤ t + h} and δ
(n)
− = min (t

(n)
i+1 − t

(n)
i ), and note that Nn =

O(h/δ
(n)
− ) = O(h/�t) under Assumption A. Since sup0≤u≤T 〈RXY 〉′u < ∞, the

part of equation (7.13) which is attributable to the BXY
1 term becomes, up to an

Op(1) factor,

U1
�t

2

h2

∑
i≤j :tj−ti<h

[h3 − (tj − ti)
3]1/2[ti − (tj − h)]3/2 = Op(�t

3/2−ε
).(7.15)

(ii) To finish the proof of the proposition, we wish to show that, as
(�t/h)1/2 → c,

�t
−1/2 ∑

ti+1≤t

〈Li,n〉ti 〈S,S〉′ti−h�ti → Dt(7.16)

in probability, for each t . (This is enough, since the convergence of increasing
functions to an increasing function is automatically uniform.) Since supi |〈L1,i,n,

L2,i,n〉ti | = Op(�t
3/4

) from Lemma 4, it follows that it is sufficient to prove sep-
arately that

�t
−1/2 ∑

ti+1≤t

〈L1,i,n〉ti 〈S,S〉′ti−h�ti

(7.17)
P−→ 1

3c

∫ t

0
〈ρ,ρ〉′u d〈S,S〉u

and

�t
−1/2 ∑

ti+1≤t

〈L2,i,n〉ti 〈S,S〉′ti−h�ti

(7.18)
P−→ c

∫ t

0

(〈�,�〉′u
〈S,S〉′u

− ρ2
u

)
H ′(u) d〈S,S〉u.
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Equation (7.17) follows directly from the approximation (7.5) in Lemma 4. It re-
mains to show (7.18). This is what we do for the rest of the proof.

Let A be an Itô process, which we shall variously take to be 1
〈S,S〉′ , − 2ρ

〈S,S〉′
and ρ2

〈S,S〉′ . Consider a subproblem of (7.18), that of the convergence of

�t
−1/2 ∑

ti+1≤t

〈BXY
2,i ,BZV

2,i 〉
ti
Ati−h�ti.(7.19)

By (7.6) in Lemma 4, this is (uniformly in t) equal to

�t
−1/2

h−2
∑

ti+1≤t

∑
ti−h≤tj≤tj+1≤ti

f (tj )(�tj )
2Ati−h�ti + op(1),

where f (t) = 〈X,Z〉′t 〈Y,V 〉′t + 〈X,V 〉′t 〈Y,Z〉′t . By interchanging the two summa-
tions, (7.19) then becomes, up to op(1),

�t
−1/2

h−1
∑

tj+2≤t

f (tj )(�tj )
2h−1

∑
tj+1≤ti≤tj+h

Ati−h�ti

= �t
−1/2

h−1
∑

tj+2≤t

f (tj )Atj (�tj )
2.

This results because the difference between the last two terms is bounded by

�t
−1/2

h−1
∑

tj+2≤t

|f (tj )|(�tj )
2ϒA(h) ≤ sup

t
|f (t)|ϒA(h)�t

1/2
h−1Hn(t)

= op(1),

by Lemma 2. Hence, (7.19) converges to c
∫ t

0 f (u)Au dH(u) = c
∫ t

0 f (u)Au ×
H ′(u) du by Assumption A and since A and f are bounded and continuous. Note
that H is absolutely continuous since it is Lipschitz. The result (7.18) now fol-
lows by aggregating this convergence for the cases of 〈B�S

2,i ,B�S
2,i 〉 (A = 1

〈S,S〉′ ),
〈B�S

2,i ,BSS
2,i 〉 (A = − 2ρ

〈S,S〉′ ) and 〈BSS
2,i ,B

SS
2,i 〉 (A = ρ2

〈S,S〉′ ). �

PROOF OF THEOREM 1. In view of Proposition 4, it is enough to show that

sup
t

|[Ẑ, Ẑ]t − 〈Ẑ, Ẑ〉t − ([Z,Z]t − 〈Z,Z〉t )| = op(�t
−1/2

).(7.20)

From (7.9), 〈Ẑ, Ẑ〉′t − 〈Z,Z〉′t = (ρ̂t − ρt )
2〈S,S〉′, and similarly for the drift of Ẑ

and Z. The result then follows from Proposition 3 and Corollary 1. �

7.3. Additional lemmas for Theorem 2, and proof of the theorem. By the same
methods as above, we obtain the following two lemmas, where the first is the key
step in the second.
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LEMMA 5. Let X, Y and A be Itô processes. Let h = O(�t
1/2

). Assume As-
sumptions A, B.1[(X,X), (A,A), (Y,Y ), (A,X), (A,Y )] and B.2[(X), (A), (Y )].
Define

V XY
t = ∑

ti+1≤t

(
�Xti

)(
�Yti

) + (
Xt − Xt∗

)(
Yt − Yt∗

)
,

U(t) = 1

h

∫ t

0

∑
i

AuI(ti ,ti+1∈[u−h,u])�Vti du(7.21)

− 1

h

∑
ti+1≤t

Ati�Vti (h − �ti).

Then supt |U(t)| = op(�t
1/2

).

LEMMA 6. Let �, S, ρ and Z be the Itô processes defined in earlier sections.
Subject to the regularity conditions in Lemma 5 with (X,Y ) = (�,S), (S, S), or
(ρ, S), and with A = ρ, ρ2 or Z,∫ t

0
(ρ̂u − ρu) d〈�,S〉u = [�,Z]t − [Z,Z]t

− h

3

∫ t

0
ρu d

〈
ρ, 〈S,S〉′〉u + op(h),

uniformly in t .

PROOF OF THEOREM 2. By definition, � ˜〈Z,Z〉ti = �[�, Ẑ]ti . Since
d〈�,Z〉t = d〈Z,Z〉t by assumption, and by subtracting and adding 〈�, Ẑ〉t ,

�t
−1/2

( ˜〈Z,Z〉t − 〈Z,Z〉t )
= �t

−1/2
([�, Ẑ]t − 〈�, Ẑ〉t )︸ ︷︷ ︸

C1

+�t
−1/2

(〈�, Ẑ〉t − 〈�,Z〉t )︸ ︷︷ ︸
C2

.

First notice that

〈�, Ẑ〉′t = 〈�,Z〉′t + (ρt − ρ̂t )〈�,S〉′t .(7.22)

Also, as �t
1/2

/h → c, (7.22) and Lemma 6 show that

C2 = 1√
�t

(n)

∫ t

0
(ρu − ρ̂u) d〈�,S〉u

= [Z,Z]t − [�,Z]t√
�t

(n)
+ 1

3c

∫ t

0
ρu d

〈
ρ, 〈S,S〉′〉u + op(1) uniformly in t.
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Since 〈�,Z〉t = 〈Z,Z〉t , it follows that

�t
1/2

( ˜〈Z,Z〉t − 〈Z,Z〉t )
= �t

1/2
([�, Ẑ]t − 〈�, Ẑ〉t + [Z,Z]t − [�,Z]t )

+ 1

3c

∫ t

0
ρu d

〈
ρ, 〈S,S〉′〉u + op(1)

= �t
1/2

([Z,Z]t − 〈Z,Z〉t ) + 1

3c

∫ t

0
ρu d

〈
ρ, 〈S,S〉′〉u

+ �t
1/2

([�, Ẑ − Z]t − 〈�, Ẑ − Z〉t ) + op(1).

The last component in the above, �t
1/2

([�, Ẑ − Z]t − 〈�, Ẑ − Z〉t ), goes to zero
in probability by Proposition 3, since 〈�,�〉′u, 〈Ẑ − Z, Ẑ − Z〉′u, and 〈�, Ẑ −
Z〉′u satisfy the conditions of this proposition. This is in view of Corollary 1. The
argument is similar to that at the end of the proof of Theorem 1. �
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