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OPTIMAL TESTING OF EQUIVALENCE HYPOTHESES

By JoSEPHP. ROMANO
Sanford University

In this paper we consider the construction of optimal tests of equivalence
hypotheses. Specifically, assuriig, ..., X, are i.i.d. with distributionPy,
with 6 € R¥. Let g(9) be some real-valued parameter of interest. The null
hypothesis assertg(9) ¢ (a, b) versus the alternativg(9) € (a, b). For
example, such hypotheses occur in bioequivalence studies where one may
wish to show two drugs, a brand name and a proposed generic version,
have the same therapeutic effect. Little optimal theory is available for
such testing problems, and it is the purpose of this paper to provide an
asymptotic optimality theory. Thus, we provide asymptotic upper bounds for
what is achievable, as well as asymptotically uniformly most powerful test
constructions that attain the bounds. The asymptotic theory is based on Le
Cam’s notion of asymptotically normal experiments. In order to approximate
a general problem by a limiting normal problem, a UMP equivalence test is
obtained for testing the mean of a multivariate normal mean.

1. Introduction. SupposeXy,..., X, are i.i.d. with distributionP,, where
6 is a vector inR*. Let g(9) be some real-valued parameter of interest. The
hypothesis testing problem we study in this paper is of the following form: the
null hypothesis assertg0) ¢ (a, b) versus the alternativg(d) € (a, b).

This setup arises when trying to demonstrate equivalence (or sometimes called
bioequivalence) of treatments. By comparing a pharmacokinetic parameter of a
new drug to the standard drug, bioequivalence is declared if the parapetédies
in the interval(a, b), where(a, b) is specified by a regulatory agency. For example,
if g(9) is the difference in treatment means, then equivalence corresponds to values
of g(#) near zero, and s@, b) = (—A, A) for someA > 0. Then, rejection of
the null hypothesis is the same as declaring equivalence. By formulating the null
hypothesis ag(0) ¢ (—A, A), the risk of marketing an alternative drug that does
not behave like the standard drug is controlled. In some situations it may be more
appropriate to specify equivalence by a ratio of means, and equivalence is then
declared if the ratio is near one, so tli@tb) would be an interval containing one.
More generally, the problem may consist of determining equivalence across several
parameters, but only the simple real-valued case is treated here. A very nice recent
account of testing hypotheses of equivalence is given in [17]. For the remainder of
the paper, we assume without loss of generality thab) = (—A, A).
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If P belongs to a one-parameter exponential family, then a (uniformly most
powerful) UMP level« test exists; see [10], Theorem 6 in Chapter 3. More
generally, if the family of distributions is strictly positive of order 3 and other
mild continuity conditions are satisfied, then a UMP test exists; the more general
result appears as Problem 30 in Chapter 3 of [10] and is proved in [7].

ExAMPLE 1.1 (Normal location model ). First, SupposeX is N(u, o?), the
normal distribution with mean: and variances2. Assumecs? is known. The
problem is to testu| > A versus|u| < A. Applying the previously mentioned
result, the UMP levek test rejects if X| < C, whereC = C(a, A, o) satisfies

() o)

and®(.) is the standard normal c.d.f.

Next, SUppos& 1, ..., X, are i.i.d.N(u, o2). For testing the same hypothesis,
the UMP levelr test rejects iinl/2| X, | < C(a, n¥/2A, o).

If o is unknown, no UMP test exists, nor do unbiasedness or invariance
considerations lead to an optimal test.

Outside a small class of models, no optimality theory is available for tests of
equivalence. Wellek [17] provides a general construction of asymptotically valid
tests, based on some asymptotically normal estimators, but no theory is provided
to prove optimality of such procedures. The main goal of this paper is to provide
an asymptotic optimality theory for such problems. Specifically, we obtain bounds
for the asymptotic power of tests of equivalence for a large class of models, as
well as construct efficient tests that attain these bounds. As will be seen, the results
flow from Le Cam’s approach based on convergence of experiments; see [8]. In
order for this approach to be viable, we need to determine an optimal test for the
limiting normal experiment; this is accomplished in Section 2, where an exact finite
sample theory uniformly most powerful test is derived for testing the equivalence
of a linear function of a multivariate normal mean.

In Section 3 we consider asymptotic efficiency. We will formulate the asymp-
totic problem in two distinct ways. First, consider the case when the null hypothesis
parameter space is the complement of a fixed intefvah, A) is considered.
Then, we analyze the case when this interval changes (and shrinksy wiith
each case, attainable upper bounds for the asymptotic power of tests are obtained.
The upper bounds in the two approaches actually differ, and we prefer the second
approach.

In fact, Janssen [6] has already considered the problem of testing equivalence in
a semiparametric two-sample framewaork, which in many ways is a more difficult
problem. He too considered a shrinking alternative parameter space. Building on
the work of Pfanzagl [12, 13] and Janssen [5], his technique also relies on a
reduction to an asymptotically normal experiment. However, he proves optimality
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of the power function at a particular value of the functional of interest, which,

in our case, corresponds to the valuegaP) being zero. He also imposes an
asymptotic similarity condition (see (36) of [6]). Here, we obtain asymptotically
optimal tests, uniformly over values of the parameters in the region for which
equivalence is declared, and no asymptotic unbiasedness condition is imposed.
Of course, we are working in a parametric framework in order to obtain such
a clean result. But, our results can be used in semiparametric models by an
appropriate reduction to a parametric least favorable submodel. Some asymptotic
nonparametric results which differ slightly from those of Janssen [6] can be
obtained from the author.

Even in the normal one-sample problem with unknown variance, the problem
of testing for equivalence has a rich history, and some of the literature is given
in Example 3.1. Our asymptotic results will apply quite generally to parametric
models, under the weak assumption of quadratic mean differentiability. The results
generalize immediately to two-sample @sample) problems, as well as to more
complicated designs (such as a crossover design), as long as the underlying model
is smooth enough to permit convergence to a normal experiment, since the optimal
test in the limiting normal experiment is completely specified in Theorem 2.1.

2. A finite sample UMP test. Throughout, ®(-) is the standard normal
distribution function and,, satisfies®(z,) = «. Before discussing optimality for
general models, we first need to derive the optimal test in the appropriate limiting
normal experiment. This is obtained in the following result.

THEOREM 2.1. Suppose (X1, ..., Xy) is multivariate normal N(u, X) with
unknown mean u = (i1, ..., ux)? and known covariance matrix ¥ (possibly
nonsingular). Fix § > 0 and any vector a = (aq, ..., ax)! satisfying a’ Za > 0.
Consider testing
< 4.

H: >45 Vvs. K:

k k
> aiui > aipg
i=1 i=1
Thena UMP leved o test exists and it rejects H if

k
> aiXi
i=1

<C,

where C = C(«, §, o) satisfies

@ o(57) o ()=

and 62 = a” Za. Hence, the power of thistest against an alternative (w1, ..., ug)
with | Y, aipil =68 <§is

o) (557)
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ProoFE The proof will consider four cases in increasing generality.

Casel. Supposé =1, sothatX1 = X is N(u, 02) and we are testinge| > §
versus|u| < 8. Fix an alternative. = m with [m| < §. Reduce the composite null
hypothesis to a simple one via a least favorable distribution that placesynuass
N(8,0%) and mass + p on N(—3§, ). The value ofp will be chosen shortly so
that such a distribution is least favorable (and will be seen to depend ano
ands). By the Neyman—Pearson lemma, the MP test of

PN, 0%+ (1— p)N(=8,6°%) vs. N(m,o?)
rejects for small values of
@ ! exp—(1/(20%)(X = 8% + (1 — p) exp—(1/(20%) (X + §)]
expl—(1/(202))(X —m)?] ’
or, equivalently, for small values gf(X), where

f(x) = pexp(6 —m)X/o?]+ (1— p)expl—(8 +m)X /o).
We can now choosg so thatf (C) = f(—C), so thatp must satisfy
@ p _ expi(d+m)C/o% —exg—(8 +m)C/o?]
1—p  exp(8 —m)C/o?] —exp—( —m)C/o?]

Sinces —m > 0 and$ + m > 0, both the numerator and denominator of the right-
hand side of (4) are positive, so the right-hand side is a positive number; but,
p/(1— p) is a nondecreasing function pfwith range[0, co) as p varies from 0

to 1. Thus,p is well defined. Also, observé” (x) > 0 for all x. It follows that (for
this special choice of’)

X f(X) = f(O)}={X:]X]|=C}

is the rejection region of the MP test. Such a test is easily seen to bexléwethe
original composite null hypothesis because its power function is symmetric and
decreases away from zero. Thus, the result follows by Theorem 6 in Section 3.7
of [10].

Case 2. Consider now generdl, so that(X1, ..., Xx) has mear{ua, ..., i)
and covariance matrix.. However, consider the special caée,...,a;) =
(1,0,...,0), so we are testingu1| > § versus|ui| < 8. Also, assumeX; and
(X2, ..., Xy) are independent, so that the first row and first colum& @fre zero
except the first entry, which is2 (assumed positive). Using the same reasoning as
in Case 1, fix an alternative = (m1, ..., my) with |m1| < § and consider testing

PN((S,m2,....,my), )+ (1 — p)N((=8,m2,...,my), X)

versusN ((mq, ..., my), X). The likelihood ratio is, in fact, the same as (3) because
each term is now multiplied by the density@, ..., Xx) (by independence), and
these densities cancel. The UMP test from Case 1, which rejects Mhéer C,

is UMP in this situation as well.
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Case3. Asin Case 2, consider; =1 anda; =0 if i > 1, but now allowX to
be arbitrary. Reduce the problem to Case 2 by an appropriate linear transformation.
Simply letY; = X1 and, fori > 1, let
Cov(X1, Xi)X
Var(X1)
so that CoyY1, Y;) =0 if i > 0. Thus, the problem of testing (Y1) = E(X1),
based onY = (Y1,...,Yy), is in the form studied in Case 2, and the UMP test
rejects for smal|Yy| = | X1].

Yi=X; —

9

Case 4. Now, consider arbitrary(as, ...,a;) satisfying a’ £a > 0. Let
Z = 0X, where O is any orthogonal matrix with first rowas, ..., a;). Then
E(Zy)) = Zf.‘zla,-u,-, and the problem of testingz(Z1)| > & versus|E(Z1)| <
reduces to Case 3. Hence, the UMP test rejects for small valugZ1ot=
|YiaiXil. O

Next, we summarize some simple but useful properties of the critical constants
C(a, 8, 0) and the optimal power of the above UMP test that will be used later.

REMARK 2.1. Itis easy to check that, as a functionfthe functioni (C)

given by
C-9$§ —C-6
o (o2

is increasing inC. Since

W —071_g) =a — (=20 +71_4) <,
it follows that
(5) C(a,8,0)>8—0271—¢q-

REMARK 2.2. The functiorC(«, 8, o) satisfies
C(a,$, 5

6) Cled.0) “)=c<a,_,1>.
g

o
It is also easy to check that

Cla,e,1) = z(1-a/2)

ase — 0 andC(«, B,1) — oo asB — oo.

REMARK 2.3. For fixedC = C(«, 8, o), the function
f)=2C—-y)—-2(-C—vy)
is decreasing iy; to see why, just differentiatg. Soif 0< y < §, thenf(y) > a.
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3. Asymptotic optimality. Throughout this section, we assurie, ..., X,
are i.i.d. according to a distributioRy, with 6 € Q, where is an open subset
of R¥. Here the observations take values in a sample spacAssumeP; has
density py with respect tou. We will assume the family is quadratic mean
differentiable (g.m.d.) at certain valuég of 6; that is, there exists a vector of
real-valued functionsg (-, o) = (1(-, 6p), . .., nx (-, 60))T such that

(7) /x[«/peo+h(X) — VPo () — (1(x, 60). W dpu(x) = o(|h]?)

as|h| — 0. Heren is a vector inR* and|k| denotes its Euclidean norm. For such
a family the Fisher information matrix @ is the matrix/ (6p) with (i, j) entry

11160 =4 [ niCx, B0y, (x, 60 da(x).

We also define thecore vectorZ, to be

n

_ 1/2

(8) Zy = Zn(00) = 20~ Y23 [n(X;.60)/ pg (X)),

i=1
For a review of families that are q.m.d., as well as the history and importance of
this notion, see [9]. In particular, we make heavy use of the fact that such families
are locally asymptotically normal, and so the testing problem under consideration
can be approximated by a certain normal testing problem.

Interest focuses og (), whereg is a function from to R. Assumeg is
differentiable with gradient vectgr(9) of dimension 1x k. We will formulate the
problem in two distinct ways. First, we consider the case when the null hypothesis
parameter spac®g is the complement of a fixed intervat A, A). Then, we study
the case when this interval changes (and shrinks) with

3.1. Fixed parameter spaces. Fix A > 0. The problem is to tedig(6)| > A
versus|g(0)| < A. We implicitly assumez is such that there existsgasuch that
g > A, as well as @ with g(6) < —A. For any fixed alternative valug with
lg(@)| < A, the power of any reasonable test agathsiill tend to one. Therefore,
as is customary (see [16], Chapters 14 and 15), we compare power functions
at local alternatives. Consider any fixég satisfying |g(6o0)| = A. For sake of
argument, consider the cag&p) = —A. In order to derive an (obtainable) upper
bound for the limiting power of a test sequengg underfy + hn~Y2, a crude
way to bound the power is based on the simple fact that any tevelst for
testing|g(0)| > A versus|g(9)| < A is also levekr for testingg () < —A versus
g(®) > —A. Since upper bounds for the (asymptotic) power are well known for
the latter testing problem (as in [16], Theorem 15.4), an immediate result follows.
In this asymptotic setup, the statistical problem is somewhat degenerate, as it
becomes one of testing a one-sided hypothesis. For example, suppose, X,
are i.i.d.N (9, 1). Then for largez, one can distinguish < —A andf > —A with
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error probabilities that are uniformly small and tend to zero exponentially fast
with n. In essence, the statistical issue arises only if the@rigenear the boundary

of [—A, A], in which case determining significance essentially becomes one of
testing a one-sided hypothesis.

ExAmMPLE 3.1 (Normal one-sample problem). SupposeXy,..., X, are i.i.d.
N(u,o?), with both parameters unknown. Consider testipg > A versus
lu| < A. The standard-test for testing the one-sided hypothegis: —A against
u > —A rejects if

nY2(Xy 4+ A)/Sy > 110

whereS,f is the (unbiased) sample variance apd; 1, is the 1— « quantile of
the ¢-distribution withn — 1 degrees of freedom. Similarly, the standa#eést of
the hypothesig > A rejects if

nY2(Xy = N) /Sy < —th-11-a-

The intersection of these rejection regions is therefore a keuelst of the null
hypothesigu| > A. Such a construction that intersects the rejection regions of two
one-sided tests (TOST) was proposed in [18] and [15], and can be seen as a special
case of Berger's [2] intersection-union tests; see [3] for a review. The resulting
TOST is given by the test! ©ST that rejects whenX,| < A —n= 28,6, _11_4.

The asymptotic power o, OST against a sequence with meam + hn~=%/2

(h > 0) and variance fixed at? can be calculated directly as

¥ — h
PA+hn_1/2,o{|Xn| <A-n 1/2Sntn—1,1—a} = q)(zl—a B ;>’

which is the optimal bound for the one-sided testing problem given in The-
orem 15.4 of [16]. A similar calculation applies to sequences of the form

A —hn~12, Thus, the TOST is asymptotically optimal in this setup. It should

be remarked that the TOST has been criticized because it is biased (in finite sam-
ples) and tests have been proposed that have greater power; some proposals are
reviewed and studied in [3], [4] and [11]. These points are valid, but no test can
have greater asymptotic power against such local alternatives. On the other hand,
the TOST will be seen to be inefficient under the asymptotic setup of the next
section.

3.2. Srinking alternative parameter space. We now consider a second
asymptotic formulation of the problem. The null hypothesis assetts)| >
sn~1/2 and the alternative hypothesis ass¢(®)| < sn~1/2. Notice now that, in
this asymptotic study, the parameter spaces (or hypotheses) are changing with
Of course, a given hypothesis testing situation deals with a partieubard there
is flexibility in how the problem is embedded into a sequence of similar problems
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to get a useful approximation. Indeed, if equivalence corresponggag < A,
we can always set up the problem by choosing An'/2. From an asymptotic
point of view, it makes sense to allow the null hypothesis parameter space to
change withz, or else the problem becomes degenerate in the sense that the values
of A and—A for g(0) can be perfectly distinguished asymptotically. In testing
for bioequivalence, for example\ represents a small value so that a value of
lg(@)] < A is deemed sufficiently close to zero in a clinical sense. In a particular
situation (such as the previous example witmot too small), a value folg(6)]
of A cannot be perfectly tested against a valug @) = 0. Thus, if 0 is in some
sense not far from both and—A, it follows thatA and— A are not far from each
other either, and the asymptotic setup should reflect this.

We implicitly assume there exists somavith g(0) > 0, as well as some with
g(0) < 0. The main result of this section is the following theorem.

THEOREM3.1. Suppose X1,..., X, arei.i.d. according to Py, 0 € 2, where
Q isassumed to be an open subset of R¥. Consider testing the null hypothesis
0 € Qo =1{0:18(0)| = n~"?)

versus |g(9)| < dn—1/2, where the function g from R* to R is assumed differ-
entiable with gradient ¢(6). Assume for every 6 with g(6) = 0 that the family
{Pg,0 € Q}isg.m.d. at 6 and I (9) isnhonsingular.

() Let ¢, = ¢(X1,...,X,) be a uniformly asymptotically level o sequence
of tests, so that

limsupsupEy (¢,) < a.

n—oo Qo.n

Assume 6 satisfies g(6g) = 0. Then, for any & such that | (¢(6p)” , h)| =8’ < 6,

(9) M SUPE gy 10 12() < @(Ca_ ° )- d>(_c i )

n—00 [2) 06

where o is given by

(10) op = 001 " (00)§00)"
and C = C(w, 8, og,) satisfies (2).
(i) Let 6, be any estimator satisfying

(11) n2(6y — 60) = 17(60) Zu + 0y (1),

(such as an efficient likelihood estimator). Suppose / (¢) is continuous in 6 and
£(0) iscontinuous at fp. Then the test sequence ¢, that rejects when n/2|g(8,)| <
C(a, 8, 0,), where

52 =@ 66T,
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is pointwise asymptotically level « and islocally asymptotically UMP in the sense
that the inequality (9) is an equality. In fact, the same properties hold for any test
sequence that rgjectsif |T,| < C(«, 8, 6,,), if T,, satisfies

Ty = §(00) 1 (00) Zn 6y + opy ()

for every 6p € Q0, where Z,, g, is the score vector defined in (8).

PROOF Fix g satisfyingg(6g) = 0. We will derive an upper bound for the
limiting power of a test sequendgg undertg + hn~1/2. Note that

200+ hn~Y?) =n"Y2(500)7, h) + 0o(n"Y?).

So, if h is such that|(g(6p)”, k)| > 8, then|g(Bo + hn~Y?)| > sn=1/2 for all
sufficiently largen. Hence, ifg, has limiting sizex, then, for such an,

(12) limSupEg p,-12(én) < cv.
n—oo

Since the family is gq.m.d., the sequence of experima‘i’gggum_l/2 (indexed
by a vectork) converges to a limiting (multivariate) normal experiment with
unknown mean vectdr and known covariance matrix 1(6p). Therefore, we can
approximate the power of a test sequengdy the power of a tesh = ¢ (X) for
the (limit) experiment based oxi from the modelV (k, I ~1(6p)); see Lemma 3.4.4
of [14] or Theorem 15.1 of [16]. So, Ig; (/) denote the power function gf(X)
when X ~ N (h, I71(6p)). Then (12) impliesBy (h) < « if 1(g(00)T, h)| > 8. By
continuity of B (h), By(h) < « for any s with 1(¢(00)T, h)| = 8. The choice ofp

to maximizeBy () for this limiting normal problem was given in Theorem 2.1 with
¥ =1"1(0p) anda” = g(6p). Thus, if¢ is levela for testing|(¢(6)”, k)| > 8 and

h satisfieq (¢(6p)” , h)| =8’ < 8, then

c—s —Cc-¥
ﬂ¢(h)§<l>< )—cb( )
0, o,

andC = C(«, §, 0p,) satisfies (2).

To prove (ii), consider the test that rejects wher?|g(6,)| < C(a, 8, 6,). Fix
h such that (¢ (60)”, h)| = 8’ < & and letd, = 6y + hn—Y2. Then, using standard
contiguity arguments, undeéy,,

n2[g0,) — g(0)1->(0,02).
But

n*2g(0,) = (h,$(00)") + o(1).
Therefore, unded,,,

nY2¢@,) 5 N((h, §60)7),02).
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Also, under6,, 6, tends in probability toos,, and soC(«, s, 6,) tends in
probability toC(«, 8, 04,). Hence, lettingZ denote a standard normal variable,

Py, in*?18(0n)| < C(@, 8,640} = Pflog,Z + (h, §(00)")| < C(e, 8, 04p)},
which agrees with the right-hand side of (9]

ExaMPLE 3.2 (Normal one-sample problem, Example 3.1, continued). Sup-
poseXy,..., X, are i.i.d. N(u, o) with both parameters unknown, so that
(u,0). Let g(§) = n and consider testinge| > n~1/2 versus|u| < sn=1/2. By
the previous theorem, for any test sequepgevith limiting size bounded b
and anyh with |k| < §,

(13) Ehn1/2,g(¢n)5<1><c_h>—<I>(_C_h),

o (o2

where C = C(a, §, o) satisfies (2). A test whose limiting power achieves this
bound is given by the tegt’ that rejects when

nY?1X,| < C(a,s,S,),

WhereSf is the (unbiased) sample variance (or any consistent estimaad?) ofin
the normal model, such an approximate test was first proposed by Anderson and
Hauck [1] (but in a two-sample context); in essence, the general construction of
Theorem 3.1 can be viewed as an extension of their method.

On the other hand, the tegt/©ST given in Example 3.1 isno longer
asymptotically efficient. This test (with = §n~/2) rejects when

n'|Xy| <8 = Sutn-11-a
and has power againgt, o) = (hn~—1/2, o) given by
-5+ Sntn—l,l—a —h 5 — Sntn—l,l—a —h }

<Z, <
o o

(14) Phn_l/zﬁa{
where

Zp=nY?(X, — hn~Y?) /o0 ~ N(0, D).
Also, S, — o in probability and#,-11-4 — z1—o. By Slutsky's theorem,
(14) converges to

) h 5 h
(15) P{—+Zl—o{__<Z<__Zl—a__},

o o (o2 o

whereZ ~ N(0, 1). Observe that this last expression is positive ontyzf_, < §;
otherwise, the limiting power is zero! On the other hand, the limiting optimal
power of ¢ is always positive (and greater thanwhen || < §). Even when
the limiting power ofgOST is positive, it is always strictly less than that ¢f.
Note that the limiting expression (15) for the powekdST corresponds exactly
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to using a TOST test in the limiting experimeNt(, 02), where you are testing
|h| > & versus|h| < § with o known; such a procedure is conservative and less
powerful than the UMP test. In general, (5) implies that

C(av 67 &H) > 8 - &nzl—da

which shows that the test; of Theorem 3.1 is always more powerful than the
asymptotic TOST construction.

REMARK 3.1. Thus far, we have considered testing for two situations, first
where the null hypothesis specifieg)| > A and next whereg(6)| > §/n1/2.

Of course, one can also consider the general situation where the null hypothesis
is specified byg(9)| > §/t,, wherer,, — oo. For the purposes of this discussion,
supposeg () = 6 € R. So, suppose we are testify > 3/, with 7, — oo at a

rate slower tham?/2, so thatr, = o(n%/?). By contiguity arguments, the optimal
limiting power will be nondegenerate (meaning away freand 1) for alternatives

of the formé /v, —h/n/2 or 8 /v, + h/n/2 for h > 0, or, more generally, it /n1/2

is replaced by any sequeneg satisfyinge < n=1/2. But, if 7, = o(n'/?), then

8/t, and—4§ /1, can be perfectly distinguished, and so we are essentially in the first
asymptotic setup. That is, the asymptotically optimal power against an alternative
sequencé/t, — h/n1/? is the same as for testing a one-sided hypoth#esis /1,
versus) < 4§/t,.

On the other hand, supposge— oo faster tham'/2, so that:/2/z, — 0. Then
8/t, and—3§/t, are so close that the optimal limiting power against any alternative
sequencé,, with |h,| <§/1, isa.

Perhaps the reader can be more easily convinced of these assertions in the
N(6, 1) model, where explicit expressions for the power of the UMP test exist, but
the previous arguments apply to more general models. Thus, the two asymptotic
approaches previously considered in this section are in essence the most general.

Acknowledgment. Special thanks to Erich Lehmann for some helpful discus-
sion.
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