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A saddlepoint approximation of the Studentstatistic was derived by
Daniels and YoungBiometrika 78 (1991) 169—-179] under the very stringent
exponential moment coittbn that requires that the underlying density
function go down at least as fast as a Normal density in the tails. This is a
severe restriction on the approximation’s applicability. In this paper we show
that this strong exponential moment restriction can be completely dispensed
with, that is, saddlepoint approximation of the Student&atistic remains
valid without any moment condition. T confirms the folklore that the
Student’s -statistic is robust against outliers. The saddlepoint approximation
not only provides a very accurate approximation for the Studerdtatistic,
but it also can be applied much more widely in statistical inference. As a
result, saddlepoint approximations should always be used whenever possible.
Some numerical work will be given to illustrate these points.

1. Introduction. In many statistical applications approximations to the prob-
ability that a random ugable (r.v.), sayl,, exceeds a certain threshold value are
important since the exact distribution function (d.f.)lfmay be very difficult or
evenimpossible to obtain in most cases. Such approximations are useful, for exam-
ple, in constructing confidence intervals and in calculaprgalues in hypothesis
testing. In those circumstances, we are usually dealing with tail probabilities of the
r.v., T,. Since these tail probabilities are typically small, accurate approximations
are particularly important.

The “naive” method is to use thidormal approximation, which holds under
mild conditions. However, this approximation is often too rough to be useful for
small to moderate sample sizes. A more refined approximation iEdpeworth
expansion under some extra conditions. In general, the Edgeworth expansion
improves the Normal approximation, but can still be inaccurate in the tails.
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To overcome the difficulties encountered by the Normal approximation and
the Edgeworth expansion, one can consider usisgddlepoint approximation,
which provides a very good approximation to the tail, as well as in the center
of the distribution. By a “good” approximation, here, we imply one with a small
relative error. By comparison, the Edgeworth expansion givesatisiylute errors.
However, when dealing with tail probabilities, the relative error behavior is more
important than the absolute error behavior. For instance, an errdd@B & of little
importance when considering tests of siz@4) but is of great importance when
considering tests of size@L. Put another way, if the true probability is 0.01, it is
not of much help to know that the approximation has absolute error otxize?!)
whenn is smaller than, say, 100. When, instead, the relative errco?('rs—l),
we have a much more useful statement. It is quite common in statistical practice
to consider test probabilities of the order of 1%, but even smaller probabilities
are of interest in certain test situations. If, for example, one wishes to investigate
whether a chemical substance causes cancer, one will be interested in very small
test probabilities to make a convincing case. In other fields, such as reliability,
small probabilities are the rule rather than the exception.

Saddlepoint approximations have been widely studied and used in many areas in
recent years due to their excellent performance. For more details on the statistical
importance and applications of saddlepoint approximations, one can refer to the
books by Field and Ronchetti (1990), Kolassa (1997), Jensen (1995), Davison and
Hinkley [(1997), Section 9.5] and to the excellent review paper by Reid (1988).
All the literature clearly dmonstrates how rearkably accuratéhe saddlepoint
approximation can be. Accordingly, one should always use it if it is available.

It is worth mentioning that the extreme accuracy of the saddlepoint approxima-
tion is achieved at a cost of requiring a strong moment condition. Take the sample
mean of independent and identically distributed (i.i.d.) r.v.’s, for example. It is
known that asymptotic narality holds under the second moment condition, and
that anr-term Edgeworth expansion is valid under ttret+ 2)th moment condi-
tion plus some smoothness condition (e.g., a nonlattice or the Cramér condition).
However, for the saddlepoint approximation one needs the much stronger condi-
tion that the exponential moment exists around the origin. This certainly limits the
applicability of saddlepoint approximations in practice.

In this paper we shall focus on the saddlepoint approximation of the Student’s
t-statistic. It is common knowledge that the Studemnt®atistic plays a pivotal
role in statistics and is the most widely used statistic in the inference of
a population mean. Therefore, accurate approximations to its d.f.'s become
particularly important. Toward this end, Daniels and Young (1991) derived a
saddlepoint approximation for the Studentstatistic. However, their conditions
are far too strong to be useful in practice. They require that the exponential
moment of the square of the underlying r.v.s exists near the origin. In other
words, the underlying tail probability of the r.v.'s needs to go to zero as fast as
the Normal distribution does. This is indeed a very severe restriction and makes
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the approximation hardly useful in practice. Even the exponential distribution can
not satisfy this condition.

One of the purposes of this paper is to investigate how to weaken the
strong moment contion given in Daniels and dung (1991) in the saddlepoint
approximation of the Studentisstatistic. One of the key findings of the paper is
that this very strong exponential moment condition can be totally eliminated. This
result is highly significant in statistical inference for two reasons:

1. First of all, it makes the saddlepoint approximation more widely applicable.
It is known [Giné, Gotze, and Mason (1997)] that the Studenssatistic is
asymptoticallyN (0, 1) if and only if the r.v. is in the domain of attraction of
the Normal law and that it has anterm (- > 1) Edgeworth expansion under the
(r + 2)th moment condition plus some smoothness condition (e.g., the nonlattice
or Cramér condition) [Hall (1987)]. Both asymptotic normality and Edgeworth
expansion will not hold under heavy tail distributions, such as the Cauchy
distribution. By contrast, this paper shows that the saddlepoint approximation
does not need any moment condition at all and, at the same time, it provides an
extremely accurate approximation to the tail probability of the Studesstatistic.

2. Second, the fact that no moment condition is required for the saddlepoint
approximation shows that the Studentstatistic can guard against possible heavy
tail distributions. This confirms the folklore that the StudemtStatistic is very
robust against possible outliers.

For these reasons, tteaddlepoint approximation should always be used in
practice whenever possible.

The layout of the paper is as follows. Section 2 presents the formulation of the
problem. Some notation and a brief review are given in Section 3. The main result
will be presented in Section 4. Some numerical studies are given in Section 5. The
proofs are given in Section 6. All technical details are left to the Appendix.

2. Formulation of the problem. Let {X, X,,,n > 1} be a sequence of i.i.d.
nondegenerate r.v.'s with d.f (x). Write
_ 12
X==> Xj.

n =1

Now consider the Student/sstatistic

T,:=vnX/S,  wheres?=(n—1"1> (X; - X)?forn>2.
j=1
It is known that asymptotic normality df, holds if and only ifX is in the
domain of attraction of the Normal law [Giné, Gotze and Mason (1997)], which
implies thatE| X |2 ¢ < oo for anye > 0. Hall (1987) showed thdf, has an--term
(r = 1) Edgeworth expansion under tie+ 2)th moment condition plus some
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smoothness condition (e.g., nonlattice or Cramér condition). On the other hand,
Daniels and Young (1991) derived a saddlepoint approximation of Lugannani and
Rice’s (1980) type for the tail probability @, under the assumption that the joint
moment generating function &f and X2 exists, that is,

2.1) M(s, 1) = explK (s, 1)} = Ee*XT1X% < o

for (s, )T in a neighborhood of the origin. However, condition (2.1) requires that
the tail probability othe underlying d.f. drop to zero at least as fast as a Normal r.v.
does. Thisis, indeed, a very restrictive requirement; for example, it is violated even
for the Exponential distribution. This severely limits its applicability in statistical
inference. The natural question i$sft possible to weaken the strong exponential
moment condition and, if so, how far can we go?”

Note that7,, is closely related to the so-calledf-normalized sum defined by

S, X
—_— = n— .
v, Vi vV,

where

n
Sp = in,
i=1
n
vi=3 X2
i=1

n 1/2
V, = (n_linz> .
i=1
To see this, we note the following identity:
Su n—1 /2
=S (ot )
Vo \n —(8,/ V)

It suffices to investigate the self-normalized suiyy V,,, because of the following
identity:

(2.2) (T, >t} = {% > t(%)m}.

f n+1%—

There has been a growing literature on the study of self-normalized sums in recent
years. For instance, one can refer to Logan, Mallows, Rice and Shepp (1973) for
weak convergence, to Griffin and Kuelbs (1989, 1991) for a self-normalized law

of the iterated logarithm, to Giné, G6tze and Mason (1997) for the necessary and
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sufficient condition for asymptotic normality, and to Wang and Jing (1999) for
the exponential nonuniform Berry—Esseen bound under finite moment conditions.
However, the work most relevant to the present paper is that by Shao (1997),
who studied self-normalized large deviations. Among other results, Shao [(1997),
Corollary 1.1] showed the following result.

THEOREM?2.1 [Shao (1997)]. Assumethat either EX = 0or E X2 = co. Then
for x > 0,

lim P(: zx) = supinf E exp(t(cX — x(X* + ¢9)/2)).

n—00 Vn CZO’ZO

Since for any r.v.X, either EX2 < co or EX? = oo, the assumption that
EX = 0is reasonable if X2 < oo. In other words, the large deviation for the self-
normalized sum in Theorem 2.1 holdéthout assuming any moment conditions
[see Remark 1.1 of Shao (1997)]. By contrast, a strong condition (2.1) is needed
to derive the saddlepoint approximation for the self-normalized sum by Daniels
and Young's approach, as noted earlier. This begs the question whether one can
completely eliminate the condition (2.1) in the saddlepoint approximation of the
self-normalized sum. The answer to this question is in the affirmative, as is shown
later in the paper.

3. Notation and brief review. In this section we shall introduce some nota-
tion thatis used in later sections. We do this by briefly deriving saddlepoint approx-
imations of the self-normalized suff}/V, under the strong exponential moment
condition (2.1), following similar lies to those in Daniels and Young (1991).

The first step involves finding the saddlepoint approximations of the joint
density of (X, Y)T, whereY = X2, ¥; = X?for1<i <nandY =n"1Y" V.
Assume that the cumulant-generating functioriof X2)” satisfies

(3.1) K(s,1) =InM(s, 1) = In Ee*X+1X* < 0

in a neighborhood of the origin. Denote

0K (s,1)
K(s,t) = ,
as
0K (s,1)
Kl‘(s’t) = 81‘ 5
92K (s, 1
Kss(s, 1) := # and so on.
as

Assume that(X, X7 has an integrable characteristic function. Then, by the
Fourier inversion formula, the saddlepoint approximation to the joint density,
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fu(x,y),0f (X, Y)T is given by

(32) fulx.y)= f f nlsxty=K 601 g g = f (e, y) (L + ra/n).

(2 (2ri)?
where integration is along admissible pathstif) and

—n[§x+z‘y—K(§ N1

(3.3) falx,y) = 2n Ky (5, ) Ki(5,7) — K2(5,1)]%2°

wheres = §(x, y) andf = f(x, y) are solutions to
(34) KS(§7f)=xa KZ(§7f)=y’

and|r,| < C for someC > 0 if (x, y)T is contained in a compact set.
The second step is to find the joint densf’gyg,)—(m)(a, b).Leta=x,b=x/./y
(y > 0). The inverse transformation and its Jacobian determinant are

(35) x=x(a,b):=a, y=yla,b):=ad’/b> J(a,b) =2a%/b>.
Thus, the saddlepoint approximation to the joint densitgX6fX /V,)” is

i |J(a’b)| e—nA(a’b)
27 det{A(a, b)}2 ’

wheres = §(x(a, b), y(a, b)), f =t(x(a, b), y(a, b)), and

f&xx @ b)=1J(@ b falx,y) =

Aa,b) =35x(a,b) +1y(a,b) — K(§,7) =$a +ia®/b® — K§, 1),

K5, 1) Ky (3, f))

A(a, b) = (KSI(§’ l"\) Kt[(ue, f)

where§ and 7 satisfy K,(5,7) = a and K;(5,7) = a?/b?. After some simple
algebra, we obtain

2,\

A (Cl b)—S+ bza
2ta?

Ab(a7b)=_ b3 )

2f 2a _ 2a\T
Aaa(a,b)zﬁ—i-(l bz)A(a b) ( bz) .
The third step involves finding the marginal densityofV;,. Letag = ag(b) be

such that

Alao, b) :=1inf Ag(a, b).
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If we assume thatA,,(ag, b) > 0, then ag = ag(b) is the unique solution
of Ag(ao,b) = 0. Then the Laplace approximation of the marginal density of

X/V,is
. n |J (a0, b)| “nA(agb)
fx v D)=+ e MROD,
X/Vn V 27 defA(ao, b)}/2A Y (ao, b)

Finally, by applying another Laplace approximation in integratj‘?@;g/vn)(b),
we get the saddlepoint approximation for the self-normalized sum. We summarize
the result in the following theorem.

THEOREM 3.1. Assumethat:
(C1) Eei$X+nX* ¢ [V(R2) for somev > 1,thatis, [ [|Ee$X+nX*|P g¢ dn < co.
(C2) Ayu(ag, b) > 0.
(C3) Ee’X+X? o0 in a neighborhood of the origin.

Then we have

P(% zb) =1-o(Vnw) - @(% —%+0(n‘1)),

where w = /24 (ao, b) and v = — det{ A (ag, b)}/2AY?(ag, b)fo, and (5o, 7o, ao)
are solutions (s, ¢, a) to the equations
2ta EXeSX-H‘XZ Ex2eSX+l‘X2 612

(36) s+7=0 FosXtixz & EosX+1X2 p2’

REMARK 3.1. From the first equation of (3.6), we obtain that —2ra/b?.
Therefore, on substituting this into the other two equations, then (3.6) reduces to

E X! (—2aX/b?+X?) E X201 (—2aX/b?+X?) 2

(3.7) Feol(—2ax/p2+x?) Eel(—2aX/b24X2) p2’

4. Main results. The saddlepoint approximation for the Studemtstatistic
under the strong exponential moment conditions was given in Theorem 3.1.
Condition (C1) is a smothness condition, which validies the Fourier inversion
formula (3.2). It is satisfied, for instance, when the Kvhas a density function.
The main purpose of this paper is to remove conditions (C2) and (C3) in
Theorem 3.1.

THEOREM4.1. LetO<b <1landlet X bear.v. with EX =0or EX? = co.
Assume further that condition (C1)in Theorem 3.1 holds. Then

(4.1) P(Vi zb) =1-(Vnw) — M(% - % + O(n‘l)),

n

where w and v are defined the same asin Theorem 3.1.
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We make the following remarks:

1. When—1 < b < 0, similarly, we have

R 1

P(X/V, <b)=®(J/nw) — M(-— -+ O(n_1)>.

Jn w v

2. Theorem 4.1 remains valid when= +1. Take b = 1 for instance. From

Proposition 6.1, condition (C1) implies that is a continuous r.v. Then the
left-hand side of (4.1) is

P(X/Vy>b)=PX1=---=X,, X1>0)=0.

On the other hand, it can be shown that= co if » =1 (see Remark A.1),
which implies that the right-hand side of (4.1) is also zero.
3. The case fob = 0 is slightly different. By the Berry—Esseen bound, we have

P(X/V, 20 =P(X >0)=3{1+0(n"?),

provided thatE|X|® < oo, which is the minimal moment condition required
here. Comparing this with Theorem 4.1, we notice that a stronger condition is
needed for the case whén= 0 than wherb # 0. It may seem odd that one
needs stronger conditions in the middle of the distribution than in the tails. The
reason is that wheh = 0 there is nothing to offset the effect of possibly heavy
tail distributions. Therefore, one must impose extra conditions to control the
tail behavior.

5. Numerical study. In this section we conduct some numerical studies to
investigate the performance of the saddlepoint approximation for the Student’s
t-statistic. LetX1, ..., X, be arandom sample from a distribution with p.¢f.{x).

We shall choosef (x) from several well-known density functions, ranging from
one with very thin tails (e.g., Normal density) to one with rather heavy tails (e.g.,
Cauchy).

Our interest is to calculate the probability of the self-normalized sum,
P(X/V, > b), for a range of values ob € (0,1). Since the exact value of
the above probability is difficult to obtain in practice, we calculate its “exact”
probability by 1,000,000 Monte Carlo simulations. Then, we compare how well
the saddlepoint approximation performs in comparison with other approximation
methods, such as the large deviation [Shao (1997)], the Edgeworth expansion [Hall
(1987)], and the Normal approximation.

For illustration purposes, we choose the sample size i0b&, since different
sample sizes display similar patterns. In the tables below, we use the following
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abbreviations:

“True” = true probability,

“Saddle”= saddlepoint approximation,
“Edgeworth”= Edgeworth expansion,
“L.D.” = large deviation,

“N.A.” = Normal approximation,
“R.E.” =relative error.

5.1. Saddlepoint approximation vs. large deviation. Here we compare the
saddlepoint approximation for self-normalized sums and large deviation results
of Shao (1997). LeK1, ..., X,, be a random sample from the Standard Normal
distribution with p.d.f.

! 12,
N

The reason for deliberately choosing this “nicest” density function is based on the
belief that any approximation method should probably work at its “best” under this
special situation if it works at all. In other words, if a method does not work well
in this case, we cannot expect it to work well in other cases either. The simulation
results are presented in Table 1 and Figure 1.

We first make some general remarks.

fx) =

TABLE 1
£(x) = 27)~2e=7%/2 (Normal density)

b  True Sadde (RE) LD. (RE) NA. (RE)

0.05 04621 04621 (0.000) 09938 (1.15 04555 (0.01)
0.10 04243 04244 (0.0003 09752 (1.300 0.4115 (0.03)
0.15 03869 03872 (0.0007 09447 (144 03687 (0.05)
0.20 03500 03505 (0.001) 0.9030 (1.58 0.3274 (0.06)
025 03138 03146 (0.003 0.8510 (1.71) 0.2881 (0.08)
030 02785 02797 (0.004 0.7900 (1.84 0.2512 (0.10)
0.35 02443 02460 (0.007) 0.7213 (195 0.2169 (0.11)
0.40 02113 02136 (0.01) 0.6467 (2.06) 0.1855 (0.12)
045 01799 01829 (0.02 05680 (2.16) 0.1572 (0.13)
050 01502 01539 (0.02 0.4871 (224 0.1318 (0.12)
0.55 01225 01268 (0.04 0.4063 (232 0.1094 (0.11)
0.60 00970 01019 (0.05 0.3277 (2.38) 0.0899 (0.07)
0.65 00739 Q0793 (0.07) 0.2534 (242 0.0731 (0.01)
0.70 00536 Q0592 (0.10 0.1857 (2.46) 0.0588 (0.10)
0.75 00363 Q0417 (0.15 0.1266 (249 0.0468 (0.29)
0.80 00223 Q0271 (0.22 0.0778 (249 0.0368 (0.65)
0.85 00116 Q0154 (0.33 0.0406 (249 0.0287 (1.46)
0.90 00045 Q0070 (0.53 0.0157 (2.46) 0.0221 (3.86)
0.95 00009 Q0018 (1.03 0.0030 (242 0.0168 (18.4)
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Companson of prababililies
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i s, siminiaioic PP E PP ——
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FiG. 1. Comparisons under the Normal density.

(i) First of all, the saddlepoint approximation provides extremely accurate
approximations to the exact probabilities and performs uniformly better than the
other approximation methods, even for sample sizes as small as 5. In fact, Figure 1
shows that the saddlepoint approximation is almost indistinguishable from the true
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probability. The superiority of the saddlepoint approximation becomes even more
pronounced in the tails of the distributions.

(ii) Since the sample is from a Normal distribution, the Normal approximation
and one-term Edgeworth expansion RgX/V, > b) coincide. Table 1 shows
that the Normal approximation gives very good approximation at the center of
the distribution in this “nicest” case. However, the approximation soon starts to
deteriorate very quickly toward the tail area of the distribution.

(iii) The large deviation performs miserably throughout the whole range. It is
much worse than even the Normal approximation at the center of the distribution.
In the tail area, the saddlepoint approximation is much superior to the large
deviation. This shows that one can NOT rely on the large deviation to give accurate
approximations of probabilities.

This example clearly demonstrates that the large deviation is no substitute for
the saddlepoint approximation when it comes to accurate approximations, even
for a case as nice as the Normal distribution. The same phenomenon has also been
found for other underlying d.f.’s. For this reason, we shall not include the large
deviation in our simulation studies below.

To see why the large deviation performs so poorly, we note that Theorem 2.1
gives the limit of P(X/V, > b)Y/" asn — oco. However,[C, P(X/V, > b)]¥/"
would give the same limit as long &’" — 1. That is, the large deviation only
captures the exponential component and any other terms are simply thrown away.

In a way, the relationship between the large deviation and the saddlepoint
approximation is a little like that between the Normal approximation and the
Edgeworth expansion, since in both cases, the former provides the dominant term
for the latter. One major difference is the following. The Normal approximation
can be used in statistical inference when the sample size is reasonably large and
the Edgeworth expansion can often provide more accurate approximations than
the Normal approximation. However, one can not usually rely on large deviation
probability to calculate tail probabilities in general since the approximations are
often too crude to be useful, as shown in the last example. By contrast, the
saddlepoint method can provide extremely accurate approximations throughout
the range.

5.2. Saddlepoint approximationsfor light tailed distributions. Here, we study
the accuracy of the saddlepoint approximation R¢X/V, > x) when the
underlying distribution has thin tails. Lé{y, ..., X, be a random sample from
the centered exponential density with p.d.f.

fx)= e~ +D, x> -1

The tail of the density decreases exponentially fast (but not as fast as the Normal
density function). As mentioned before, even for this “nice” density, the stringent
exponential moment conditogiven by Daniels and Young (1991) is not satisfied.
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But the saddlepoint approximation still holds from Theorem 4.1. The Normal
approximation and the Edgeworth expansion are included for comparison. The
results are presented in Table 2 and Figure 2.

We make the following observations.

() The saddlepoint approximation is remarkably accurate and uniformly
better than the other approximation methods. Most of the relative errors fall
below 10%, and the maximum error is only 17% near the center of the distribution.

(i) The Edgeworth expansion performs better than the Normal approximation
throughout the whole range. Both give reasonable approximations at the center,
but they turn very bad toward the tail areas, where the relative errors are of the
order of 1000% for tail area probabilitiés the order of 1%. By comparison, the
errors for the saddlepoint approximation do not exceed 20% for the whole region.

(i) This example clearhdemonstrates why accurapproximationsf the tail
area probabilities are important in statistical inference. It is easy to conceive of a
hypothesis test such that jtsvalue is given byPy, (X /V,, > 0.75), where theX;’s
follow a centered exponential distribution undés. From Table 2, the true value
is 0.0088< 0.01, which leads to the rejection &fy at significance level 1%. The
same conclusion would be reached by using the saddlepoint approximation, but
not by using the Normal approximation or the Edgeworth expansion.

TABLE 2
F)=e 01D x > _1 (centered exponential density)

b True  Saddle (R.E) Normal (R.E.) Edgeworth (R.E.)

0.05 04231 04951 (0.170 0.4602  (0.09) 01024 (0.05)
0.10 03869 04267 (0.103 0.4207  (0.09) B611 (0.07)
0.15 03487 03486  (0.000 0.3821  (0.10) B197 (0.08)
0.20 03090 Q3046  (0.00DH 0.3446 (0.12) ®792 (0.10)
0.25 02680 02633 (0.018 0.3085 (0.15) @407 (0.10)
030 02270 02223 (0.021) 0.2743  (0.21) ®052 (0.10)
0.35 01866 01825 (0.022 0.2420 (0.20) aL732 (0.07)
040 01486 01451 (0.023 0.2119 (0.43) (1452 (0.02)
045 01141 01114 (0.029 0.1841 (0.61) 214 (0.06)
0.50 00840 Q0822  (0.022 0.1587  (0.89) 01015 (0.21)
055 00594 00581  (0.023 0.1357  (1.28) 0851 (0.43)
0.60 00402 00391  (0.028 0.1151 (1.86) @717 (0.78)
0.65 00256 Q00250 (0.026 0.0968 (2.77) 0608 (1.37)
0.70 00156 00151  (0.033 0.0808 (4.19) 517 (2.32)
0.75 00088 00085  (0.039 0.0668  (6.59) 0441 (4.01)

0.80 00045 Q0044  (0.029 0.0548 (11.15) ®376 (7.34)
0.85 00021 00020  (0.031 0.0446  (20.43) ®319 (14.34)
0.90 00008 Q00075 (0.064) 0.0359  (43.86) 269 (32.57)
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Comparison of prababiliies

e
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g0 4
45 4
40 4 1
35 1
an 4

FiG. 2. Comparisons under exponential density.

5.3. Saddlepoint approximations for heavy tailed distributions. Here we are
interested in the accuracy of the saddlepoint approximation for self-normalized
sums when the underlying distribution has heavy tails. We shall give two examples.
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EXAMPLE 5.1. LetX;,..., X, be a random sample from theg distribution
with p.d.f.

)

T 232(14 x2/2)32

Clearly, EX1 = 0 and VarX1) = co. Also, it is easy to check thaX; is in the
domain of attraction of the Normal law. It then follows from Giné, Goétze and
Mason (1997) that the Student'sstatistic is asymptoticallyv (0, 1). Clearly, the
saddlepoint approriation still holds under this heavsil distribution, following
Theorem 4.1. So, in this case, we can compare the saddlepoint approximation with
the Normal approximation of the Student’statistic. The results are summarized

in Table 3 and Figure 3.

ExaMPLE 5.2. Let X3,...,X, be a random sample from the Cauchy
distribution with p.d.f.

= Taey

Note that the usual Normal approximation and Edgeworth expansion do not exist
here. However, the saddlepoint approximation continues to hold here. The results
are given in Table 4 and Figure 4.

We make some remarks about the two examples.

() Clearly, the saddlepoint approximation is remarkably accurate even for
these rather heavy tail distributions. The relative errors remain very small (under
11% and 13%, resp.) for the range considered.

TABLE 3
) =2732(1+x2/2)73/2 (1, density)

b  True Saddle (RE) NA. (RE)

040 02386 02637 (0.105 0.2119 (0.11)
045 01987 02146 (0.080 0.1841 (0.07)
0.50 01598 01708 (0.069 0.1587 (0.01)
055 01255 01322 (0.053 0.1357 (0.08
0.60 00953 Q0990 (0.040 0.1151 (0.21)
0.65 00694 Q0713 (0.027 0.0968 (0.39
0.70 00479 00488 (0.019 0.0808 (0.69
0.75 00310 Q0312 (0.007 0.0668 (1.15
0.80 00183 Q0182 (0.006 0.0548 (2.00
0.85 00094 Q0093 (0.019 0.0446 (3.72
0.90 00038 Q0036 (0.056 0.0359 (8.3%
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Fic. 3. Comparisons under the r, density.

(i) For the r» density case, asymptotic normality holds and the Normal
approximation performs rather well in the center, but it becomes very poor toward
the tail area. In fact, the relative errors start to shoot up just as the tail probability
decreases to around 5% and beyond, which is the area of most interest in statistical
inference. The plot of relative errors in Figure 3 should leave all doubts behind.

(i) We have seen that the saddlepoint approximation provides extremely accu-
rate approximation of the distribution of the self-normalized sum or, equivalently,
of the Student’s-statistic, particularly near the tail area. It is also clear that the tall
probability of the Student’s-statistic decreases exponentially fast. These proper-
ties hold irrespective of whether the underlying density has light or heavy tails.
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TABLE 4
f(x) =211+ x?)~1 (Cauchy density)

b True  Saddle  (RE)

0.40 02712 03058 (0.13
0.45 02085 02302 (0.10
0.50 01515 01697 (0.12
0.55 01117 01218 (0.09
0.60 00798 00845 (0.06)
0.65 00537 00563 (0.05)
0.70 00344 00356 (0.09)
0.75 00207 00210 (0.02
0.80 00112 00113 (0.0
0.85 00052 00052 (0.00)
0.90 00019 00019 (0.02

These results confirm the common belief that the Studerdtatistic provides a
veryrobust procedure for the statistical inference of a population mean with a pos-
sible heavy-tailed distribution. On the other hand, it is well known that the sample
mean is very sensitive to outliers and is not robust against heavy-tailed distribu-
tions.

(iv) Robustness of the self-normalized sums or, equivalently, the Student’s
t-statistic, can also be explained intuitively as follows. It is well known that when
there is an outlier on the right-hand side among the observaliens ., X,,, the
sample mean¥, is dominated by the largest order statisfig,) = max{ Xy, ...,

X,}. For self-normalized sums{/V,, both X andV, are dominated by,
effectively cancelling the influence of any outlier.

5.4. [ummary. The Student's-statistic is one of the most commonly used
statistics in inference. We have derived a saddlepoint approximation for the
Student’st-statistic under no moment condition. The key results are summarized
as follows.

1. The saddlepoint approximation provides extremely accurate approximations to
the distribution of the Studentsstatistic. The approximation is particularly
useful in calculating small probabilities in the tail areas, which are often of
great interest in practice.

2. The saddlepoint approximation holds under no moment condition. This makes
the application of the saddlepoint approximation very broad. This is significant
for the user since one can use the approximation without having to worry about
whether or not the result is valid.

3. The Student’s-statistic is very robust against possible outliers.

For those reasons, the saddlepoint approximation of the Studestéitistic should
always be used in practice whenever possible.
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6. Proof of Theorem 4.1. The immediate consequence of condition (C1) is
as follows.

PROPOSITION 6.1. F(x) is a continuous d.f. under condition (C1) of
Theorem3.1.
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PROOF Let 2u be the smallest even integer not less thaihen
Eeié-(xl‘i‘"""xu_Xu+l_'"_XZu)‘HU(X%+"'+X5_X3+l_m_Xgu)
_ |Eei$X1+ian|2u e LY(R?).

By the Fourier inversion theorem i®? [e.g., see (7.14) of Feller (1971)],
X1+ +Xu—Xup1— — Xou, Xs4 -+ X2-X2,—--—X3)  hasa
bounded continuous density, which implies tlidk) is a continuous d.f. [

The key to getting rid of condition (C2) is the following.

PROPOSITIONG.2. Assumethat F(x) isa continuous d.f. Then for each fixed
b e (0,1, inf,o0A(a, b) is attained at some finite unique point, ag := ao(b),
which isthe solutionto A, (a, b) =0.

ProoOF The proof follows from Lemmas A.6 and A.7[]

In an effort to remove condition (C3), we shall give the following two
propositions.
PROPOSITION6.3. Under the conditions of Theorem 2.1, we have
fim P(X/V, = b)Y/ = supinf E explt(aX — b(X? +a?)/2))

a>01=

= exp{— im:)A(a, b)}.

PROOFE The first equality follows from Theorem 1.1 of Shao (1997). The
second one follows since

Iog(supigg Eexp|t(aX —b(X?+ az)/z)})

a>01=

1
= — inf sup(Etbaz —log E expit (a X — bX2/2)})

az0¢>0

. 2 2a 2
=—inf sup| —r1a“ — logEexpisi( — X + X
azoaso b

(wherety = —tb/2)

2
. 2a

=— mfO sup(—t1% — K(—b—zltl, tl)) (wherea = a1/b)
a120¢ <0

=— infOA(a, b), [by (A.2) and Lemma A.X
a>

O
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The proposition establishes the relationship between the saddlepoint approxi-
mation formula of Theorem 3.1 and the large deviation results of Theorem 2.1.
It shows that the dominant term in the saddlepoint approximation given in Theo-
rem 3.1 is the same as that in the large deviation of Shao (1997). Since the latter
requires no moment conditions at all, it is therefore reasonable to expect that The-
orem 3.1 holds under no moment conditions as well. Unfortunately, the techniques
used in Shao (1997) cannot be employed here for our purposes. One crucial result
is the following.

PROPOSITIONG.4. Assumethat F(x) isacontinuousd.f. Then,for 0 < b < 1,
there exist solutions (3o, 7o, ag) in (3.6) such that §o > 0, 7o < 0 and ag > 0.

PrRoOOF The proof follows straightaway from Lemmas A.3, A.6 and Re-
mark 3.1. O

The critical observation here is that < 0, which implies that the cumulant

generating functionk (s, r) = In Ee*X+X* always exists fors, 1) in a small
neighborhood ofso, 79)” by the continuity ofK (s, 7). This suggests that, in order

to derive self-normalized saddlepoint approximations without moment conditions,
we need to divide the probability (X /V, > b), into two regions:

(i) a small neighborhood afso, 70)” for which 7y < 0, where we need to show
that there exists a saddlepoint apgimation without any moment conditions;

(ii) the remaining region outside this small neighborhoodsef 7o)’ , where
we need to show that the probability is “negligible.”

To make these statements precise, define
Qb) = {, »Ib<x/Jy <1},
Qo(b) = ((x, 1) 1(x —a0)® + (y — a§/b>* < 2} N Q(b),
Q1) =2(b) \ Qo(b).

The closure of an arbitrary set, will be denoted agt ~. The plots of these regions
are illustrated in Figure 5.
Hence, forany G< b < 1,

P(X > bV, =// < (x, v)dxd
( n) Q(b)f(x,y)( y) y

(6.1) = ffgo(b) fxr @ ydxdy+ P((X.Y)" € Qb))

= J1(b) + J2(b).

Thus, the proof of Theorem 4.1 follows from the next two propositions.
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Ya

y=x? b2

Qq(h >

FiG. 5. Partition of the area of integration.

PROPOSITIONG6.5. Under the conditions of Theorem 4.1 we have

1 1
(6.2) (b)) =1~ ®(Vnw) - @(5 —-+ 0<n—1)),

where w and v are defined the same asin Theorem 3.1.

PROOF Denotehi(s, 1;a,b) = K(s, 1) —a, ha(s, t; a, b) = K; (s, 1) —a?/b>.
Sincehs (— 2o, fo: ao. b) = 0, hao(—2R1o, io; ag, b) = 0 and

oh1 0ho
ds 0os
oh1 0ho

ot at (s,t,a):(—(zao)/bzfo,fo,ao)

is positive definite, it follows from the implicit function theorem that there exists
e > 0 such thaf, = §(a, by) andfy = 7(a, bp) are differentiable functions ef and
by when(a, a?/b?)T e Qo(b) for any 0< b < 1, wheres; and#; are solutions to
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the equations, (s, 1) = a, K, (s, t) = a®/b3. Sincefp < 0, we can always choose
¢ to be so small thaf, < O.

Using the transformation (3.5) and the saddlepoint approximation for
fx 7)), y), we get

n=[[ At y>(1+ %) dx dy

= :'l , , 1 -1
—/(a,az/bZ)Teszo(E)f (x(a.b). y(@, b)) dxdy(1+ 0(n™))
(6.3)

_ n exp{—nA(a,b)}

N ./(a,aZ/bZ)Teszo(E) 27 def{A(a, b)}1/2

B f15+61 /ao+82 n exp—nA(a, b)}
b Jag—s, 2m def{A(a, b)}1/2

J(a,b)dadb(14 O(n~1))

J(a,b)dadb(1+ 0(n™1)),

where|r,| < C sinceQq(b) is compact and, ands are small positive numbers
such that

if a €lag—082,a0+82] and be[b,b+81]  then(a,a?/b®T e Qo(b).

By Proposition 6.2, applying the Laplace approximation to the inner integral
of (6.3) w.r.t.a gives

Sy [T [ exp=nAao(b). b)) T (ao(b). b)
: )_/’; 2n detAao(), b)Y2 AY2(ag(b). b)

(6.4) x (1+ %”) db(1+ 0(n™1))

_f5+61 iexp{—nA(ao(b),b)} J(ao(b), D)
b

db(1+0mn™ 1),
2 detf{A(ao(b), D)2 A2 (40(b), b) ( )

where|r1,| is uniformly bounded irib, b + 81].
From Lemma A.8,A(ag(b), b) is a strictly increasing function ab in the
neighborhood ob. Define

w=w(b)=+v2A(ao(b), b),

def{A(ao, b)}Y2A,(ao, b) Azl (ao, b)

v=v(b) =
®) |/ (ao, b)|
Noting that
dwb) 1 dag(b) Ap(ag, b)
=—(A Ag(ag, = ,
27 = (Ata. ) + Agtan,b) S0 ) = 2



2700 B.-Y. JING, Q.-M. SHAO AND W. ZHOU

we have

5 W —nw?/2
(6.5) Jl(b):/~ 1‘/%6 dw(l+ 0@m™b),

v

wherew = w(b) and w1 = w(b + §1). Write & = v(b). Applying the Laplace
approximation to the second integral of the following equality, we get

~ w1
Jl(b):/w /%e‘”wz/zdw(l+ omb)

Wy 1 1
_/ ie—nw2/2w<_ _ _) dw(l+ O(n_l))
w V2T w v

_ VoS PV (1L

(6.6) = ®(V/nw1) — ®(vVnw) NG <w 5+0( ))
el L oty SN (1 1
— (- o)+ 0 ) - FTE (S -2+ 067
4 — ¢y 1 1 a1
—1- o (i) - L0 (-5+om™).

where, in going from the second-to-the-last to the last line, we use@1x) ~
¢ (x)/x asx — oo. Replacingy by b, we get the desired result[]

PROPOSITIONG6.6. Under the conditions of Theorem4.1,
(6.7) Jo(b)/J1(b) =o0(n™™) for any m > 0.
PROOF By lLemma A.8,A(ao(b), b) is a strictly increasing function df for
b € (0, 1). Therefore, applying Laplace approximations to (6.4) again, we have
Cinexgd—nA(ao(d), b)] < J1(b) < Conexd—nA(ag(b), )]
where 0< C1 < Co < 00.

The proposition then follows from this and Lemma A.9.
Finally, Theorem 4.1 follows from (6.1), (6.6) and (6.7).
APPENDIX: SOME USEFUL LEMMAS

From here on, leX be ar.v. withEX = 0 or E X2 = co. We shall also adopt
the same notation from Section 3. Write

I(s,t;a,b)=sa+ta®/b®> — K(s,1).

We now give our first lemma.
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LEMMA A.1. For fixed a and b, we have
A(a,b)=supl(s,t;a,b).
s,t

When no solutions to 37(s,t;a,b)/ds = dl(s,t;a,b)/ot = 0 exist, we define
A(a,b) = 0.

PROOF It is easy to see that, for fixed and b, I(s,t;a,b) is a concave
function ofs andr and it is differentiable for anys, )7 € interion(®), where

O={0=(s.07 :K(s.t) = IN Ee"¥ X" < 50}
Therefore,

supl (s, t; a, b) = §a + ta®/b® — K (5,1) = A(a, b),
s,t

wheres = §(x, y) andf = f(x, y) are solutions to
(A.1) K;(3,1)=a, K.($,7) =a?/b?
whenever the solutions exist. When no solutions exist, then clearly we have
sup ;I (s,t; a,b) = oo. The proof is complete. [
From Theorem 3.1 and Lemma A.1, we see that the saddlepoint approximation

of the self-normalized sum involves finding, for fixed

Al(ao, b) :=inf A(a, b) =infsupl (s, 1; a, b) = I (So, fo; ao, b),
s,t

wheresy, 7o andag satisfy (3.6). In particular, we notice that the poify, 7o, ag)”
falls on the curvéy = —2agig/b?. This motivates the following definition:

(A2) g(t,a;b)y=1(s,t;a,b)|._ » = —ta’®/b® — K(—2at/b*,1).
s=—2at/b

Also note that the domain afin the above infimum can be reduced#a ab > 0}
because of the transformatian= x andb = x/,/y. Since we only consider the
case O< b < 1, from now on we can suppose> 0.

Let C; denote the support of the r¥., that is,

Cs={x:P(X € (x —¢&,x+¢)) > 0foranye > 0}.

Clearly, C; must be closed. We further use Carg) to denote the number of
elements inC; and define Cand’y) = oo if Cy does not contain a finite number of
elements.

LEMMA A.2. Assume CardC;,) > 3. Then g(¢, a; b) is strictly decreasing in
t for t € (—gg, o0) for some gg > 0.

PrRooOF If suffices to show thag (¢, a; b) is strictly decreasing in, either:
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() for r € [0, c0), Or
(I for ¢ € (—eg, 0] for someeg > 0.

We shall prove (1) first. LeZ = —2aX/b? + X?. For arbitraryr andr; such
that 0< ¢ < 11, we need to show that(r, a; b) > g(t1, a; b). If Ee't? = oo, then
g(t1, a; b) = —a?m1/b% — In E€'*% = —o0, in which case (1) follows straightaway.
Now, assume thaEe?? < oo below, which implies that moments of of
all orders exist. Thusg(¢, a; b) is differentiable inz for r € (—oo, t1). Taking
derivatives gives

ag(t,a;b) a’? EZe'Z

A.3 =
(A-3) ot b2 EetZ
Observe that
dg(t,a; b 2
08(t,a; b) —_% _px2_p
ot =0 b2
and
82 t,a. b EZZ tZ EZ tZ\ 2
(A.4) 0%g(t,aib) _ e e -0
912 EetZ EetZ

sinceZ = X2 — 2aX/b? is nondegenerate by the assumption that Gard> 3.
Thus, %40 - 0 whent € [0,11). Sog(t,a; b) is strictly decreasing ifi0, 71).
Sincer, is arbitrary, we have hence proved (1).

We shall prove (I1) next. If there exists some> 0 such thatEe’2? < oo, then
(Il) follows from the fact tha8 %4 — _42/52 _ Ex2 < 0. It remains to prove
(1) under the condition that

Ee? =00  forallzz > 0.

To show this, we choose an arbitrary: 0. Then, from (A.3) we have

(AS5) dg(t,a;b)  a® [ (—2ax/b? +xD)e! /P 4 F (x)
' ot o2 [ e!(x—a/b?? JF (x) '

—00

By the monotone convergence theorem we have

. o0 _ b2)2
hrg 'O G (x) = 1,
t—0" J—0
(A.6) -~ .
lim x2e! P gF(x) = EX?  (maybeco),
t—0~J—00
wherer — 0~ means that — 0 from tzhcze left side of 0.
If E|X| < oo, then notingxe!*—4/b)7| < |x| for t < 0, we can use Lebesgue’s

dominated convergence theorem to get

) 00 2a L 1H2)2 2a
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If E|X| = oo (henceE X2 = c0), then

o/ 2a
lim <——x +x2>et(x_a/b2)2dF(x)

t—0"J—0 bz
2 2
> |in37 > <—% — xz +x2>et(x—a/b2)2dp(x)
(ALS) t— -0
_ 4a? L 3ex2
bt 4
= Q.
Combining (A.5)—(A.8) gives
jim 28¢48)
t—0- ot '

Note thatg(z, a; b) is left continuous at = 0. We conclude (ll). O

LEMMA A.3. Assumethat F(x) isa continuous d.f. For each fixed b € (0, 1)
and a € R, we have

(A.9) supg(t, a; b) =supg(t,a; b),

teR t<0
and the supremum is either attained at some finite unique point, 7 :=7(a, b) <0,
or issimply infinity.
PROOF  Defineh(x) := x2 — 2ax /b + a?/b? = (x — a1)(x — az), where

a
a10:= a10(@) = (1= V1-b?),

azo = azo(a) = %(1 +V1-1b?),
(A.10) _
ay := ai(a) = min(aio, a20),

az = az(a) = maxaio, a20).
Consider the following two cases:

(I") (a1,a2) NCs # 2,
(1) (a1, a2) N Cy = 2.

First suppose that’(l holds. Then there must exi8t := [a3, a4] C (a1, a2) SO
that:

(i) there exists$ > 0 such thak(x) < —§ for eachx € W;
(i) P(XeW)=>0.
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Then we have, as— —oo,

[e.e]
g(t,a;b) = —Inf e’h(")dF(x)g—ln/ MO GF (x)
—00 w

< —Inf e PdF(x)=1t5—InP(X € W)
w
— —0OQ.

From LemmaA.2, supy g(z, a; b) is attained at some finite= 7 (a, b) < 0. Since
g(1,a; b) is a differentiable function of whenr < 0, we have’ 2442 — o, This,
together with (A.4), implies that there is at most one solution to the equation
98ab) — 0, Thereforef is also unique.

Next suppose (1) holds. SinceC; is necessarily closed, thdaj, az] N C;

contains at most two point§z1, az}. Clearly, we have:

() h(x) > O0foreachx € Cs \ {a1, az};
(i) P(X € Cy\{a1,az}) >0,

where (ii) follows sinceF (x) is a continuous d.f. Therefore, as> —oo, we have

—00

o0
g(t,a;b) = —In/ MO gF (x) = —In/ M AF(x) > 00, 4
Cs\{a1,a2}

REMARK A.1. LemmaA.3 also holds true fér> 1, in which case both sides
of (A.9) are equal to infinity.

LEMMA A.4. For 0 < b < 1,define

U ={a:(a1(a), az(a)) N Cs # &},
where a;(a) and az(a) are definedin (A.10). Then, if F(x) isa continuousd.f.:

1. Uisanopensetand U # @, sodoesU N R™, where R = {x :x > 0}.

2. When a € U, then g(i(a,b),a; b) = sup_og(t,a; b) < oo, where f = 7(a,
b) < Oisa finite unique solution to the equation 2%42) — o,

3. Whena ¢ U, thensup_q g(t, a; b) = oo.

4. inf;=oSUPcgr g(t,a; b) =inf,cynp+SUR o &(t, a; b).

PrROOF We only prove 1 since 2—4 follow easily from the proof of Lemma A.3.

First, the claim thal # @ can be easily seen from the fact thai{a : (a1(a),
az(a))} = R. Second, we shall show thétis open, which is equivalent to showing
that the complement df,

Uo = {a:(a1(a), az(a)) N Cy = &},
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is a closed set. To show this, for any fixede Up, then(ai(a’), ax(a’)) ¢ Cs, or
(a1(a’), azx(a’)) C Cy, the complement of ;. Let V (a’) be the largest interval such
that (a1(a’), ax(a’)) € V(a’) C Cs. For simplicity, assume that > 0 (the cases
for «’ = 0 anda’ < 0 can be treated similarly). Sineg is open, ther¥/ (a’) must
be open as well. Writ&' (a) = (co, do), where the endpoints could e or —co
Write

, Co(1+\/l—b2)
ac(a ) = b2 )
. do(L—V1—b?)
aqg(a’) .= ) .

It is easy to see that the closed interi@l(a’), az(a’)] will be the largest subset
of Up includinga’. Furthermore, for any’ # a”, the two intervalga.(a’), az(a’)]
and[a.(a"), a;(a”)] either coincide or are nonoverlapping. Therefore,

Uo= | lac(a), aq(ah)],

a’eR

which is closed. The proof is completel]

LEMMA A5. ForO<b < 1:

1. limy— oo SUR_g&(t, a; b) =00, lim,_ o+ SUP_ &(t, a; b) =00
2. lim,- o SURcg.rer I (s, t;a,b) =00, lim,_, o+ SURcg er I (s,1;a,b) =00

wherea — 0 meansthat a goesto 0 fromthe right side.

PROOF Letk be a positive number. Then

k
supg(t,a; b) > g(—;, a, b)

h In/ exp{ ( 2621 )}dF(x)

It follows from Lebesgue’s dominated convergence theorem that
(A.12) all_>moo M(a)=1, a|l>r2+ M(a) =0.

(A.11)

Combining (A.11) and (A.12) gives

I|m|nf supg(t,a; b) >
7 <0

lim |nf supg(t,a; b) =

a—0% 1.0
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Sincek can be arbitrarily large, we have proved 1.
From (A.2) we have sypg ;g I (s, t; a,b) > sup_og(t, a; b). This, together
with 1 above, implies that

lim sup I(s,t;a,b)= o0,
a_)ooseR,teR

lim sup I(s,t;a,b)=o0,
a—0" 5eR teR

which completes the proof of 2.0

LEMMA A.6. Assumethat F(x) isacontinuousd.f. andthat 0 < b < 1. Then
inf,~0SURcg g(t, a; b) is attained at some finite unique point, (a, t)” = (ao, f0)7,
where ag > 0, 7o := 7 (ag, b) < 0 and they satisfy (3.7).

ProoOF It follows from Lemmas A.3-A.5 that ipfosupcrg(t, a;b) is
attained at some finite poinég € U andiq := 7 (ag, b) < 0. Whena € U, by part 2
of Lemma A.4, we have

o iz 2
(a13) 8Lab) —EZe” at o herez— Xy 4 x2,

or EetZ b2 b2
By the assumption thaF(x) is a continuous d.f., which implies thaf is
nondegenerate, (A.4) is true. It then follows from the implicit function theorem
that7(a, b) is a differentiable function in some neighborhobd(a) of a (also
a differentiable function in some neighborhood i9f We can also guarantee
thatU*(a) C U. Hence supy g(t, a; b) is also a differentiable function in some

neighborhood ofig. Thusag satisfies the equatiofﬁ“%ﬂ — 0, that is,

(A.14) EX exp{f(—%X + XZ)} =aE exp{f(—%X + XZ) }

It follows from (A.13) and (A.14) thatg andfy are the solutions to the equations

2
tz a4
EZe __ﬁ

EXe'Z = aEe’Z,

¥4
Ee'”~,

which are equivalentto (3.7) or (3.6).
Now we show the uniqueness @fo, 70)” . Supposeay, i;)” is another point
such thatg (7, ay; b) = inf,~0SUp g g(7, a; b). Note that
a

) 2a 9 2
gt,a;b) = —IogEeXp{t(—ﬁX+X + bZ)}'
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We must have
~ ( 2ag o, af ~( 2a ,  d?
Eexplio -9 x + X =supEexpiiol ——=X + X
p{°< pz +b2>} s p{°< pZh +b2>}
N 2ay, a/z
zEexp{t()( b2X+X2+b2>}
2 5 12
>infEe “Ox 4+ x
= Xp{( p ot +b2)}

261 5 12
= Eexp{t ——X X
p{o( 2t +b2)}
If 7o # 7§, then

R 2 5 12 ' 2 O ) 12
(A.16) Eexp{t( 2 22X+ Xx +b2)}>;DBEexp{( 12 X+X +b2)}
by the fact thatt exp{r (—2a X /b? + X? + a?/b?)} is a strictly convex function of

t for each fixedu and——X + X%+ Z—g is not identically equal to 0. Combining
(A.15) and (A.16), we get

2a 2 2a 2
EeXp{m(—b—X + X%+ bZ)} > Eexp{to<—b—X + X%+ b—)}

which contradicts our assumption. Herige= 7.

Next we show thafo = 5. Define f (a, s) = E exp{s(—2X/(ab?) + X?/a® +
1/b%)}. Note thatf (a, s) is a strictly convex function of for each fixed:. Thus,
we have

(A.15)

f (ao, S0) = f(ag, Sp) = SUpmf f(a,s),

a>0 S<

where$g = fpa3 ands) = t6a62 Similar to the proof ofp = 7, above, we can show
thatso = §;. Henceag = ag. This completes the proof of uniqueness]

The next lemma establishes the relationship betwee)r; a, b) andg(z, a; b).

LEMMA A.7. Assumethat F(x) isacontinuousd.f. Then,for O<b < 1,
|nf Supg(t a;b)= |nf Supg(t a;by=inf sup I(s,t;a,b)= im;A(a,b).
a>

0/<0 0«0 a>05¢eR teR

PROOF The first equality holds since(z, a; b) is strictly decreasing as
t — 0~ by LemmaA.2, and sypg g (¢, 0; b) = oo. We shall now prove the second
equality. From (A.2) we have

(A.17) inf sup I(s,t;a,b)>inf Supg(t a;b).

a>04cR teR a>0;_0
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From 2 of Lemma A.5 we see that infoSURcg ;< 1 (s, 1; a, b) is attained at
some finitez > 0. By Lemma A.6, inf-oSup_q g(¢, a; b) is also attained at some
ap > 0 andip < 0 satisfying equation (3.7), namely,

(A18) K, (—2aoto/b? fo) =ao,  K,(—2apio/b?, fo) = ad/b>.
Therefore,

inf sup I(s,t;a,b)

“>OseR,teR

= sup I(s,t;a,b)
seER,teR

< sup I(s,t;a0,b)
seR,teR

= sup {sap+ta3/b®>— K (s, 1)}
seER,teR

= (sao + tad/b?® — K (s, 1)}]

s=50,t=fop
[whereK; (S0, fo) = ao, K (S0, fo) = a3/b?]
= {sao+1ag/b* — K (s, DY y—pugiospzimiy DY (A.18)]
= —ioag/b? — K (—2aglo/b?, fo)
= g(fo, ao; b)
= inf supg(z, a; b).

a=Y1<0

The lemma thus follows from this and (A.17)J

LEMMA A.8. Assume that F(x) is a continuous d.f. Then, for 0 < b < 1,
inf,~0 SUP_g g(t, a; b) isastrictly increasing function of b.

PrRoOOF Regard g(f(a, b),a;b) as a joint function ofa and b. Then

7 . 2~ - ~ - - -
W lamap = — 2”0’(20’17) > 0, that is, g (f (ag, b), ao; b) is a strictly increas-

ing function of b in a small neighborhood di. If b1 < by andb1 is sufficiently
close toby, we have

(A.19) g(t(a1, b1),a1; b1) < g(t(az, b1), az; b1) < g(t(az, b2), az; b),

wherea; anday satisfyg(f (a1, b1), a1; b1) =inf,-0g(t(a, b1), a; b1) andg((az,
by),az; by) = inf,-o g(f(a, bs),a; by), respectively. Lemma A.7 and Proposi-
tion 6.3 imply thatinf-o sup_q g(z, a; b) is a nondecreasing function bfwhich,
combined with (A.19) holding under the condition that< b, and b is suffi-
ciently close tabo, proves Lemma A.8.
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LEMMA A.9. Assume that F(x) is a continuous d.f. Then, for 0 < b < 1,
¢ >0andm > 0, we have

P((X, V)" € (Qub))")/ exp(—ng(io, ag; b)) = o(n™).
PrRooOF From Corollary 1.1 of Dembo and Shao (1998), we get

lim sup} InP((X,VHT € (Qu1(b))")

n—oo N

< - inf supl (s, t; a, b1) =: —Inin,
(@,a?/b?) T e(Qq (b))~ s.t

if the condition (1.12) in Dembo and ShatP@8) holds, which is clearly true since
lim inf 20
y—00,(x,y)Te(Q1(b)~ ¥
Hence, for all§; > 0, there existg such that ifn > nq,
o1

(A.20) % InP((X, V)T € (Qu1(b)7) < —Imin + >

From (A.2) we have G sup_q g(t, a; b1) <sup , I(s,t; a, by) for anyb;, which
implies that

(A.21) —Imin < — inf supg(t, a; by).
(a,a2/b3)T e(Q(b))~ 1<0

Define

81= inf supg(t, a; b1) — g(fo, ao; b).
(a,a2/b3)T e(Q(b))~ 1<0

We shall now show tha$; > 0. Similar to Lemma A.5, we can show that if
b<b' <1,then

lim  g(t,a;b1) =00,
a—0%,b1—b'

lim g, a;by) =co.
a—00,b1—>b’

Hence, inf, .2/,2)7 (1)) g(t,a; by) is attained at some finitay > 0 and
b < bg < 1. By Lemma A.8g(fo, ap; b1) = inf,~0SUp_q g(t, a; b1) is a strictly
increasing function oby. If b > b, we have

inf supg (¢, a; b1)
{(a.b)7 : (a,a2/b?)T (Q1(b))"} t<0

= inf g(7(a,b1),a; b1)
{(a.b)T : (a,a2/b?)T (Q1(b))}

=g(t(ag, bE), ag; bg)



2710 B.-Y. JING, Q.-M. SHAO AND W. ZHOU
> inf g(i(a,bg), a; bg)
a>0
> inf g(t(a,b), a; b)
a>0

= inf supg(¢, a; b).

a>0,_q

By Lemma A.6,a¢ is unique. Ifbg = b, we have

g(f(ag,bp),ag; bg) =g(i(ag, b), ag; b) > g(io, ao; b).
Combining the above facts, we have

(A.22) inf supg(t, a; by) > g(fo, ag; b).
(a.a?2/b3)T e(Q1(b))~ 1<0

Therefore, we have proved th&at> 0. By (A.20)—(A.22), we have that if > n,
P((X. V)" € (Qub))") < exp—ng(fo, ao: b) — nd1/2).
The proof is complete.
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