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A saddlepoint approximation of the Student’st-statistic was derived by
Daniels and Young [Biometrika 78 (1991) 169–179] under the very stringent
exponential moment condition that requires that the underlying density
function go down at least as fast as a Normal density in the tails. This is a
severe restriction on the approximation’s applicability. In this paper we show
that this strong exponential moment restriction can be completely dispensed
with, that is, saddlepoint approximation of the Student’st-statistic remains
valid without any moment condition. This confirms the folklore that the
Student’st-statistic is robust against outliers. The saddlepoint approximation
not only provides a very accurate approximation for the Student’st-statistic,
but it also can be applied much more widely in statistical inference. As a
result, saddlepoint approximations should always be used whenever possible.
Some numerical work will be given to illustrate these points.

1. Introduction. In many statistical applications approximations to the prob-
ability that a random variable (r.v.), sayTn, exceeds a certain threshold value are
important since the exact distribution function (d.f.) ofTn may be very difficult or
even impossible to obtain in most cases. Such approximations are useful, for exam-
ple, in constructing confidence intervals and in calculatingp-values in hypothesis
testing. In those circumstances, we are usually dealing with tail probabilities of the
r.v., Tn. Since these tail probabilities are typically small, accurate approximations
are particularly important.

The “naive” method is to use theNormal approximation, which holds under
mild conditions. However, this approximation is often too rough to be useful for
small to moderate sample sizes. A more refined approximation is theEdgeworth
expansion under some extra conditions. In general, the Edgeworth expansion
improves the Normal approximation, but can still be inaccurate in the tails.
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To overcome the difficulties encountered by the Normal approximation and
the Edgeworth expansion, one can consider using asaddlepoint approximation,
which provides a very good approximation to the tail, as well as in the center
of the distribution. By a “good” approximation, here, we imply one with a small
relative error. By comparison, the Edgeworth expansion gives onlyabsolute errors.
However, when dealing with tail probabilities, the relative error behavior is more
important than the absolute error behavior. For instance, an error of 0.005 is of little
importance when considering tests of size 0.05, but is of great importance when
considering tests of size 0.01. Put another way, if the true probability is 0.01, it is
not of much help to know that the approximation has absolute error of sizeO(n−1)

when n is smaller than, say, 100. When, instead, the relative error isO(n−1),
we have a much more useful statement. It is quite common in statistical practice
to consider test probabilities of the order of 1%, but even smaller probabilities
are of interest in certain test situations. If, for example, one wishes to investigate
whether a chemical substance causes cancer, one will be interested in very small
test probabilities to make a convincing case. In other fields, such as reliability,
small probabilities are the rule rather than the exception.

Saddlepoint approximations have been widely studied and used in many areas in
recent years due to their excellent performance. For more details on the statistical
importance and applications of saddlepoint approximations, one can refer to the
books by Field and Ronchetti (1990), Kolassa (1997), Jensen (1995), Davison and
Hinkley [(1997), Section 9.5] and to the excellent review paper by Reid (1988).
All the literature clearly demonstrates how remarkably accuratethe saddlepoint
approximation can be. Accordingly, one should always use it if it is available.

It is worth mentioning that the extreme accuracy of the saddlepoint approxima-
tion is achieved at a cost of requiring a strong moment condition. Take the sample
mean of independent and identically distributed (i.i.d.) r.v.’s, for example. It is
known that asymptotic normality holds under the second moment condition, and
that anr-term Edgeworth expansion is valid under the(r + 2)th moment condi-
tion plus some smoothness condition (e.g., a nonlattice or the Cramér condition).
However, for the saddlepoint approximation one needs the much stronger condi-
tion that the exponential moment exists around the origin. This certainly limits the
applicability of saddlepoint approximations in practice.

In this paper we shall focus on the saddlepoint approximation of the Student’s
t-statistic. It is common knowledge that the Student’st-statistic plays a pivotal
role in statistics and is the most widely used statistic in the inference of
a population mean. Therefore, accurate approximations to its d.f.’s become
particularly important. Toward this end, Daniels and Young (1991) derived a
saddlepoint approximation for the Student’st-statistic. However, their conditions
are far too strong to be useful in practice. They require that the exponential
moment of the square of the underlying r.v.’s exists near the origin. In other
words, the underlying tail probability of the r.v.’s needs to go to zero as fast as
the Normal distribution does. This is indeed a very severe restriction and makes
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the approximation hardly useful in practice. Even the exponential distribution can
not satisfy this condition.

One of the purposes of this paper is to investigate how to weaken the
strong moment condition given in Daniels and Young (1991) in the saddlepoint
approximation of the Student’st-statistic. One of the key findings of the paper is
that this very strong exponential moment condition can be totally eliminated. This
result is highly significant in statistical inference for two reasons:

1. First of all, it makes the saddlepoint approximation more widely applicable.
It is known [Giné, Götze, and Mason (1997)] that the Student’st-statistic is
asymptoticallyN(0,1) if and only if the r.v. is in the domain of attraction of
the Normal law and that it has anr-term (r ≥ 1) Edgeworth expansion under the
(r + 2)th moment condition plus some smoothness condition (e.g., the nonlattice
or Cramér condition) [Hall (1987)]. Both asymptotic normality and Edgeworth
expansion will not hold under heavy tail distributions, such as the Cauchy
distribution. By contrast, this paper shows that the saddlepoint approximation
does not need any moment condition at all and, at the same time, it provides an
extremely accurate approximation to the tail probability of the Student’st-statistic.

2. Second, the fact that no moment condition is required for the saddlepoint
approximation shows that the Student’st-statistic can guard against possible heavy
tail distributions. This confirms the folklore that the Student’st-statistic is very
robust against possible outliers.

For these reasons, thesaddlepoint approximation should always be used in
practice whenever possible.

The layout of the paper is as follows. Section 2 presents the formulation of the
problem. Some notation and a brief review are given in Section 3. The main result
will be presented in Section 4. Some numerical studies are given in Section 5. The
proofs are given in Section 6. All technical details are left to the Appendix.

2. Formulation of the problem. Let {X,Xn,n ≥ 1} be a sequence of i.i.d.
nondegenerate r.v.’s with d.f.F(x). Write

�X = 1

n

n∑
j=1

Xj .

Now consider the Student’st-statistic

Tn := √
n �X/S, whereS2 = (n − 1)−1

n∑
j=1

(Xj − �X )2 for n ≥ 2.

It is known that asymptotic normality ofTn holds if and only ifX is in the
domain of attraction of the Normal law [Giné, Götze and Mason (1997)], which
implies thatE|X|2−ε < ∞ for anyε > 0. Hall (1987) showed thatTn has anr-term
(r ≥ 1) Edgeworth expansion under the(r + 2)th moment condition plus some
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smoothness condition (e.g., nonlattice or Cramér condition). On the other hand,
Daniels and Young (1991) derived a saddlepoint approximation of Lugannani and
Rice’s (1980) type for the tail probability ofTn under the assumption that the joint
moment generating function ofX andX2 exists, that is,

M(s, t) = exp{K(s, t)} = EesX+tX2
< ∞(2.1)

for (s, t)T in a neighborhood of the origin. However, condition (2.1) requires that
the tail probability ofthe underlying d.f. drop to zero at least as fast as a Normal r.v.
does. This is, indeed, a very restrictive requirement; for example, it is violated even
for the Exponential distribution. This severely limits its applicability in statistical
inference. The natural question is: “Is it possible to weaken the strong exponential
moment condition and, if so, how far can we go?”

Note thatTn is closely related to the so-calledself-normalized sum defined by

Sn

Vn

= √
n

�X
�Vn

,

where

Sn =
n∑

i=1

Xi,

V 2
n =

n∑
i=1

X2
i ,

�Vn =
(
n−1

n∑
i=1

X2
i

)1/2

.

To see this, we note the following identity:

Tn = Sn

Vn

(
n − 1

n − (Sn/Vn)2

)1/2

.

It suffices to investigate the self-normalized sum,Sn/Vn, because of the following
identity:

{Tn ≥ t} =
{

Sn

Vn

≥ t

(
n

n + t2 − 1

)1/2}
.(2.2)

There has been a growing literature on the study of self-normalized sums in recent
years. For instance, one can refer to Logan, Mallows, Rice and Shepp (1973) for
weak convergence, to Griffin and Kuelbs (1989, 1991) for a self-normalized law
of the iterated logarithm, to Giné, Götze and Mason (1997) for the necessary and
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sufficient condition for asymptotic normality, and to Wang and Jing (1999) for
the exponential nonuniform Berry–Esseen bound under finite moment conditions.
However, the work most relevant to the present paper is that by Shao (1997),
who studied self-normalized large deviations. Among other results, Shao [(1997),
Corollary 1.1] showed the following result.

THEOREM2.1 [Shao (1997)]. Assume that either EX = 0 or EX2 = ∞. Then
for x > 0,

lim
n→∞P

( �X
�Vn

≥ x

)1/n

= sup
c≥0

inf
t≥0

E exp
(
t
(
cX − x(X2 + c2)/2

))
.

Since for any r.v.X, either EX2 < ∞ or EX2 = ∞, the assumption that
EX = 0 is reasonable ifEX2 < ∞. In other words, the large deviation for the self-
normalized sum in Theorem 2.1 holdswithout assuming any moment conditions
[see Remark 1.1 of Shao (1997)]. By contrast, a strong condition (2.1) is needed
to derive the saddlepoint approximation for the self-normalized sum by Daniels
and Young’s approach, as noted earlier. This begs the question whether one can
completely eliminate the condition (2.1) in the saddlepoint approximation of the
self-normalized sum. The answer to this question is in the affirmative, as is shown
later in the paper.

3. Notation and brief review. In this section we shall introduce some nota-
tion that is used in later sections. We do this by briefly deriving saddlepoint approx-
imations of the self-normalized sumSn/Vn under the strong exponential moment
condition (2.1), following similar lines to those in Daniels and Young (1991).

The first step involves finding the saddlepoint approximations of the joint
density of(�X, �Y )T , whereY = X2, Yi = X2

i for 1 ≤ i ≤ n and�Y = n−1 ∑n
i=1 Yi .

Assume that the cumulant-generating function of(X,X2)T satisfies

K(s, t) = lnM(s, t) = lnEesX+tX2
< ∞(3.1)

in a neighborhood of the origin. Denote

Ks(s, t) := ∂K(s, t)

∂s
,

Kt(s, t) := ∂K(s, t)

∂t
,

Kss(s, t) := ∂2K(s, t)

∂s2
and so on.

Assume that(X,X2)T has an integrable characteristic function. Then, by the
Fourier inversion formula, the saddlepoint approximation to the joint density,
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fn(x, y), of (�X, �Y )T is given by

fn(x, y) = n2

(2πi)2

∫ ∫
e−n[sx+ty−K(s,t)] ds dt = f̂n(x, y)(1+ rn/n),(3.2)

where integration is along admissible paths inR2, and

f̂n(x, y) = n

2π

e−n[ŝx+t̂ y−K(ŝ,t̂)]

[Kss(ŝ, t̂ )Ktt (ŝ, t̂ ) − K2
st (ŝ, t̂ )]1/2

,(3.3)

whereŝ = ŝ(x, y) andt̂ = t̂ (x, y) are solutions to

Ks(ŝ, t̂ ) = x, Kt (ŝ, t̂ ) = y,(3.4)

and|rn| < C for someC > 0 if (x, y)T is contained in a compact set.
The second step is to find the joint densityf(�X,�X/�Vn)(a, b). Leta = x, b = x/

√
y

(y > 0). The inverse transformation and its Jacobian determinant are

x ≡ x(a, b) := a, y ≡ y(a, b) := a2/b2, J (a, b) = 2a2/b3.(3.5)

Thus, the saddlepoint approximation to the joint density of(�X, �X/�Vn)
T is

f̂(�X,�X/�Vn)(a, b) = |J (a, b)|f̂n(x, y) = n

2π

|J (a, b)|
det{�(a,b)}1/2e−n�(a,b),

whereŝ = ŝ(x(a, b), y(a, b)), t̂ = t̂ (x(a, b), y(a, b)), and

�(a,b) = ŝx(a, b) + t̂y(a, b) − K(ŝ, t̂ ) = ŝa + t̂a2/b2 − K(ŝ, t̂ ),

�(a, b) =
(

Kss(ŝ, t̂ ) Kst (ŝ, t̂ )

Kst (ŝ, t̂ ) Ktt (ŝ, t̂ )

)
,

where ŝ and t̂ satisfy Ks(ŝ, t̂ ) = a and Kt(ŝ, t̂ ) = a2/b2. After some simple
algebra, we obtain

�a(a, b) = ŝ + 2t̂a

b2 ,

�b(a, b) = −2t̂a2

b3
,

�aa(a, b) = 2t̂

b2
+

(
1,

2a

b2

)
�(a,b)−1

(
1,

2a

b2

)T

.

The third step involves finding the marginal density of�X/�Vn. Leta0 = a0(b) be
such that

�(a0, b) := inf
a

�a(a, b).
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If we assume that�aa(a0, b) > 0, then a0 = a0(b) is the unique solution
of �a(a0, b) = 0. Then the Laplace approximation of the marginal density of
�X/�Vn is

f̂�X/�Vn
(b) =:

√
n

2π

|J (a0, b)|
det{�(a0, b)}1/2�

1/2
aa (a0, b)

e−n�(a0,b).

Finally, by applying another Laplace approximation in integratingf̂(�X/�Vn)(b),
we get the saddlepoint approximation for the self-normalized sum. We summarize
the result in the following theorem.

THEOREM 3.1. Assume that:

(C1) EeiξX+iηX2 ∈ Lv(R2) for some v > 1, that is,
∫ ∫ |EeiξX+iηX2|v dξ dη < ∞.

(C2) �aa(a0, b) > 0.
(C3) EesX+tX2

< ∞ in a neighborhood of the origin.

Then we have

P

( �X
�Vn

≥ b

)
= 1− �

(√
nw

) − φ(
√

nw)√
n

(
1

w
− 1

v
+ O(n−1)

)
,

where w = √
2�(a0, b) and v = −det{�(a0, b)}1/2�

1/2
aa (a0, b)t̂0, and (ŝ0, t̂0, a0)

are solutions (s, t, a) to the equations

s + 2ta

b2 = 0,
EXesX+tX2

EesX+tX2 = a,
EX2esX+tX2

EesX+tX2 = a2

b2 .(3.6)

REMARK 3.1. From the first equation of (3.6), we obtain thats = −2ta/b2.
Therefore, on substituting this into the other two equations, then (3.6) reduces to

EXet(−2aX/b2+X2)

Eet(−2aX/b2+X2)
= a,

EX2et(−2aX/b2+X2)

Eet(−2aX/b2+X2)
= a2

b2
.(3.7)

4. Main results. The saddlepoint approximation for the Student’st-statistic
under the strong exponential moment conditions was given in Theorem 3.1.
Condition (C1) is a smoothness condition, which validates the Fourier inversion
formula (3.2). It is satisfied, for instance, when the r.v.X has a density function.
The main purpose of this paper is to remove conditions (C2) and (C3) in
Theorem 3.1.

THEOREM 4.1. Let 0 < b < 1 and let X be a r.v. with EX = 0 or EX2 = ∞.
Assume further that condition (C1) in Theorem 3.1holds. Then

P

( �X
�Vn

≥ b

)
= 1− �

(√
nw

) − φ(
√

nw)√
n

(
1

w
− 1

v
+ O(n−1)

)
,(4.1)

where w and v are defined the same as in Theorem 3.1.
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We make the following remarks:

1. When−1 < b < 0, similarly, we have

P (�X/�Vn ≤ b) = �
(√

nw
) − φ(

√
nw)√
n

(
− 1

w
− 1

v
+ O(n−1)

)
.

2. Theorem 4.1 remains valid whenb = ±1. Take b = 1 for instance. From
Proposition 6.1, condition (C1) implies thatX is a continuous r.v. Then the
left-hand side of (4.1) is

P (�X/�Vn ≥ b) = P (X1 = · · · = Xn,X1 > 0) = 0.

On the other hand, it can be shown thatw = ∞ if b = 1 (see Remark A.1),
which implies that the right-hand side of (4.1) is also zero.

3. The case forb = 0 is slightly different. By the Berry–Esseen bound, we have

P (�X/�Vn ≥ 0) = P (�X ≥ 0) = 1
2{1+ O(n−1/2)},

provided thatE|X|3 < ∞, which is the minimal moment condition required
here. Comparing this with Theorem 4.1, we notice that a stronger condition is
needed for the case whenb = 0 than whenb 	= 0. It may seem odd that one
needs stronger conditions in the middle of the distribution than in the tails. The
reason is that whenb = 0 there is nothing to offset the effect of possibly heavy
tail distributions. Therefore, one must impose extra conditions to control the
tail behavior.

5. Numerical study. In this section we conduct some numerical studies to
investigate the performance of the saddlepoint approximation for the Student’s
t-statistic. LetX1, . . . ,Xn be a random sample from a distribution with p.d.f.f (x).
We shall choosef (x) from several well-known density functions, ranging from
one with very thin tails (e.g., Normal density) to one with rather heavy tails (e.g.,
Cauchy).

Our interest is to calculate the probability of the self-normalized sum,
P (�X/�Vn ≥ b), for a range of values ofb ∈ (0,1). Since the exact value of
the above probability is difficult to obtain in practice, we calculate its “exact”
probability by 1,000,000 Monte Carlo simulations. Then, we compare how well
the saddlepoint approximation performs in comparison with other approximation
methods, such as the large deviation [Shao (1997)], the Edgeworth expansion [Hall
(1987)], and the Normal approximation.

For illustration purposes, we choose the sample size to ben = 5, since different
sample sizes display similar patterns. In the tables below, we use the following
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abbreviations:

“True” = true probability,
“Saddle”= saddlepoint approximation,
“Edgeworth”= Edgeworth expansion,
“L.D.” = large deviation,
“N.A.” = Normal approximation,
“R.E.” = relative error.

5.1. Saddlepoint approximation vs. large deviation. Here we compare the
saddlepoint approximation for self-normalized sums and large deviation results
of Shao (1997). LetX1, . . . ,Xn be a random sample from the Standard Normal
distribution with p.d.f.

f (x) = 1√
2π

e−x2/2.

The reason for deliberately choosing this “nicest” density function is based on the
belief that any approximation method should probably work at its “best” under this
special situation if it works at all. In other words, if a method does not work well
in this case, we cannot expect it to work well in other cases either. The simulation
results are presented in Table 1 and Figure 1.

We first make some general remarks.

TABLE 1

f (x) = (2π)−1/2e−x2/2 (Normal density)

b True Saddle (R.E.) L.D. (R.E.) N.A. (R.E.)

0.05 0.4621 0.4621 (0.0001) 0.9938 (1.15) 0.4555 (0.01)
0.10 0.4243 0.4244 (0.0003) 0.9752 (1.30) 0.4115 (0.03)
0.15 0.3869 0.3872 (0.0007) 0.9447 (1.44) 0.3687 (0.05)
0.20 0.3500 0.3505 (0.001) 0.9030 (1.58) 0.3274 (0.06)
0.25 0.3138 0.3146 (0.003) 0.8510 (1.71) 0.2881 (0.08)
0.30 0.2785 0.2797 (0.004) 0.7900 (1.84) 0.2512 (0.10)
0.35 0.2443 0.2460 (0.007) 0.7213 (1.95) 0.2169 (0.11)
0.40 0.2113 0.2136 (0.01) 0.6467 (2.06) 0.1855 (0.12)
0.45 0.1799 0.1829 (0.02) 0.5680 (2.16) 0.1572 (0.13)
0.50 0.1502 0.1539 (0.02) 0.4871 (2.24) 0.1318 (0.12)
0.55 0.1225 0.1268 (0.04) 0.4063 (2.32) 0.1094 (0.11)
0.60 0.0970 0.1019 (0.05) 0.3277 (2.38) 0.0899 (0.07)
0.65 0.0739 0.0793 (0.07) 0.2534 (2.42) 0.0731 (0.01)
0.70 0.0536 0.0592 (0.10) 0.1857 (2.46) 0.0588 (0.10)
0.75 0.0363 0.0417 (0.15) 0.1266 (2.49) 0.0468 (0.29)
0.80 0.0223 0.0271 (0.22) 0.0778 (2.49) 0.0368 (0.65)
0.85 0.0116 0.0154 (0.33) 0.0406 (2.49) 0.0287 (1.46)
0.90 0.0045 0.0070 (0.53) 0.0157 (2.46) 0.0221 (3.86)
0.95 0.0009 0.0018 (1.03) 0.0030 (2.42) 0.0168 (18.4)
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FIG. 1. Comparisons under the Normal density.

(i) First of all, the saddlepoint approximation provides extremely accurate
approximations to the exact probabilities and performs uniformly better than the
other approximation methods, even for sample sizes as small as 5. In fact, Figure 1
shows that the saddlepoint approximation is almost indistinguishable from the true
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probability. The superiority of the saddlepoint approximation becomes even more
pronounced in the tails of the distributions.

(ii) Since the sample is from a Normal distribution, the Normal approximation
and one-term Edgeworth expansion toP (�X/�Vn ≥ b) coincide. Table 1 shows
that the Normal approximation gives very good approximation at the center of
the distribution in this “nicest” case. However, the approximation soon starts to
deteriorate very quickly toward the tail area of the distribution.

(iii) The large deviation performs miserably throughout the whole range. It is
much worse than even the Normal approximation at the center of the distribution.
In the tail area, the saddlepoint approximation is much superior to the large
deviation. This shows that one can NOT rely on the large deviation to give accurate
approximations of probabilities.

This example clearly demonstrates that the large deviation is no substitute for
the saddlepoint approximation when it comes to accurate approximations, even
for a case as nice as the Normal distribution. The same phenomenon has also been
found for other underlying d.f.’s. For this reason, we shall not include the large
deviation in our simulation studies below.

To see why the large deviation performs so poorly, we note that Theorem 2.1
gives the limit ofP (�X/�Vn ≥ b)1/n asn → ∞. However,[CnP (�X/�Vn ≥ b)]1/n

would give the same limit as long asC1/n
n → 1. That is, the large deviation only

captures the exponential component and any other terms are simply thrown away.
In a way, the relationship between the large deviation and the saddlepoint

approximation is a little like that between the Normal approximation and the
Edgeworth expansion, since in both cases, the former provides the dominant term
for the latter. One major difference is the following. The Normal approximation
can be used in statistical inference when the sample size is reasonably large and
the Edgeworth expansion can often provide more accurate approximations than
the Normal approximation. However, one can not usually rely on large deviation
probability to calculate tail probabilities in general since the approximations are
often too crude to be useful, as shown in the last example. By contrast, the
saddlepoint method can provide extremely accurate approximations throughout
the range.

5.2. Saddlepoint approximations for light tailed distributions. Here, we study
the accuracy of the saddlepoint approximation toP (�X/�Vn ≥ x) when the
underlying distribution has thin tails. LetX1, . . . ,Xn be a random sample from
the centered exponential density with p.d.f.

f (x) = e−(x+1), x ≥ −1.

The tail of the density decreases exponentially fast (but not as fast as the Normal
density function). As mentioned before, even for this “nice” density, the stringent
exponential moment condition given by Daniels and Young (1991) is not satisfied.



2690 B.-Y. JING, Q.-M. SHAO AND W. ZHOU

But the saddlepoint approximation still holds from Theorem 4.1. The Normal
approximation and the Edgeworth expansion are included for comparison. The
results are presented in Table 2 and Figure 2.

We make the following observations.

(i) The saddlepoint approximation is remarkably accurate and uniformly
better than the other approximation methods. Most of the relative errors fall
below 10%, and the maximum error is only 17% near the center of the distribution.

(ii) The Edgeworth expansion performs better than the Normal approximation
throughout the whole range. Both give reasonable approximations at the center,
but they turn very bad toward the tail areas, where the relative errors are of the
order of 1000% for tail area probabilitiesin the order of 1%. By comparison, the
errors for the saddlepoint approximation do not exceed 20% for the whole region.

(iii) This example clearlydemonstrates why accurateapproximationsof the tail
area probabilities are important in statistical inference. It is easy to conceive of a
hypothesis test such that itsp-value is given byPH0(

�X/�Vn ≥ 0.75), where theXi ’s
follow a centered exponential distribution underH0. From Table 2, the true value
is 0.0088< 0.01, which leads to the rejection ofH0 at significance level 1%. The
same conclusion would be reached by using the saddlepoint approximation, but
not by using the Normal approximation or the Edgeworth expansion.

TABLE 2
f (x) = e−(x+1), x ≥ −1 (centered exponential density)

b True Saddle (R.E.) Normal (R.E.) Edgeworth (R.E.)

0.05 0.4231 0.4951 (0.170) 0.4602 (0.09) 0.4024 (0.05)
0.10 0.3869 0.4267 (0.103) 0.4207 (0.09) 0.3611 (0.07)
0.15 0.3487 0.3486 (0.000) 0.3821 (0.10) 0.3197 (0.08)
0.20 0.3090 0.3046 (0.001) 0.3446 (0.12) 0.2792 (0.10)
0.25 0.2680 0.2633 (0.018) 0.3085 (0.15) 0.2407 (0.10)
0.30 0.2270 0.2223 (0.021) 0.2743 (0.21) 0.2052 (0.10)
0.35 0.1866 0.1825 (0.022) 0.2420 (0.20) 0.1732 (0.07)
0.40 0.1486 0.1451 (0.023) 0.2119 (0.43) 0.1452 (0.02)
0.45 0.1141 0.1114 (0.024) 0.1841 (0.61) 0.1214 (0.06)
0.50 0.0840 0.0822 (0.022) 0.1587 (0.89) 0.1015 (0.21)
0.55 0.0594 0.0581 (0.023) 0.1357 (1.28) 0.0851 (0.43)
0.60 0.0402 0.0391 (0.028) 0.1151 (1.86) 0.0717 (0.78)
0.65 0.0256 0.0250 (0.026) 0.0968 (2.77) 0.0608 (1.37)
0.70 0.0156 0.0151 (0.033) 0.0808 (4.19) 0.0517 (2.32)
0.75 0.0088 0.0085 (0.039) 0.0668 (6.59) 0.0441 (4.01)
0.80 0.0045 0.0044 (0.029) 0.0548 (11.15) 0.0376 (7.34)
0.85 0.0021 0.0020 (0.031) 0.0446 (20.43) 0.0319 (14.34)
0.90 0.0008 0.00075 (0.064) 0.0359 (43.86) 0.0269 (32.57)
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FIG. 2. Comparisons under exponential density.

5.3. Saddlepoint approximations for heavy tailed distributions. Here we are
interested in the accuracy of the saddlepoint approximation for self-normalized
sums when the underlying distribution has heavy tails. We shall give two examples.
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EXAMPLE 5.1. LetX1, . . . ,Xn be a random sample from thet2 distribution
with p.d.f.

f (x) = 1

23/2(1+ x2/2)3/2 .

Clearly, EX1 = 0 and Var(X1) = ∞. Also, it is easy to check thatX1 is in the
domain of attraction of the Normal law. It then follows from Giné, Götze and
Mason (1997) that the Student’st-statistic is asymptoticallyN(0,1). Clearly, the
saddlepoint approximation still holds under this heavytail distribution, following
Theorem 4.1. So, in this case, we can compare the saddlepoint approximation with
the Normal approximation of the Student’st-statistic. The results are summarized
in Table 3 and Figure 3.

EXAMPLE 5.2. Let X1, . . . ,Xn be a random sample from the Cauchy
distribution with p.d.f.

f (x) = 1

π(1+ x2)
.

Note that the usual Normal approximation and Edgeworth expansion do not exist
here. However, the saddlepoint approximation continues to hold here. The results
are given in Table 4 and Figure 4.

We make some remarks about the two examples.

(i) Clearly, the saddlepoint approximation is remarkably accurate even for
these rather heavy tail distributions. The relative errors remain very small (under
11% and 13%, resp.) for the range considered.

TABLE 3
f (x) = 2−3/2(1+ x2/2)−3/2 (t2 density)

b True Saddle (R.E.) N.A. (R.E.)

0.40 0.2386 0.2637 (0.105) 0.2119 (0.11)
0.45 0.1987 0.2146 (0.080) 0.1841 (0.07)
0.50 0.1598 0.1708 (0.069) 0.1587 (0.01)
0.55 0.1255 0.1322 (0.053) 0.1357 (0.08)
0.60 0.0953 0.0990 (0.040) 0.1151 (0.21)
0.65 0.0694 0.0713 (0.027) 0.0968 (0.39)
0.70 0.0479 0.0488 (0.019) 0.0808 (0.69)
0.75 0.0310 0.0312 (0.007) 0.0668 (1.15)
0.80 0.0183 0.0182 (0.006) 0.0548 (2.00)
0.85 0.0094 0.0093 (0.019) 0.0446 (3.72)
0.90 0.0038 0.0036 (0.056) 0.0359 (8.34)
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FIG. 3. Comparisons under the t2 density.

(ii) For the t2 density case, asymptotic normality holds and the Normal
approximation performs rather well in the center, but it becomes very poor toward
the tail area. In fact, the relative errors start to shoot up just as the tail probability
decreases to around 5% and beyond, which is the area of most interest in statistical
inference. The plot of relative errors in Figure 3 should leave all doubts behind.

(iii) We have seen that the saddlepoint approximation provides extremely accu-
rate approximation of the distribution of the self-normalized sum or, equivalently,
of the Student’st-statistic, particularly near the tail area. It is also clear that the tail
probability of the Student’st-statistic decreases exponentially fast. These proper-
ties hold irrespective of whether the underlying density has light or heavy tails.
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TABLE 4
f (x) = π−1(1+ x2)−1 (Cauchy density)

b True Saddle (R.E.)

0.40 0.2712 0.3058 (0.13)
0.45 0.2085 0.2302 (0.10)
0.50 0.1515 0.1697 (0.12)
0.55 0.1117 0.1218 (0.09)
0.60 0.0798 0.0845 (0.06)
0.65 0.0537 0.0563 (0.05)
0.70 0.0344 0.0356 (0.04)
0.75 0.0207 0.0210 (0.02)
0.80 0.0112 0.0113 (0.01)
0.85 0.0052 0.0052 (0.00)
0.90 0.0019 0.0019 (0.02)

These results confirm the common belief that the Student’st-statistic provides a
veryrobust procedure for the statistical inference of a population mean with a pos-
sible heavy-tailed distribution. On the other hand, it is well known that the sample
mean is very sensitive to outliers and is not robust against heavy-tailed distribu-
tions.

(iv) Robustness of the self-normalized sums or, equivalently, the Student’s
t-statistic, can also be explained intuitively as follows. It is well known that when
there is an outlier on the right-hand side among the observationsX1, . . . ,Xn, the
sample mean,�X, is dominated by the largest order statistic,X(n) = max{X1, . . . ,

Xn}. For self-normalized sums,�X/�Vn, both �X and �Vn are dominated byX(n),
effectively cancelling the influence of any outlier.

5.4. Summary. The Student’st-statistic is one of the most commonly used
statistics in inference. We have derived a saddlepoint approximation for the
Student’st-statistic under no moment condition. The key results are summarized
as follows.

1. The saddlepoint approximation provides extremely accurate approximations to
the distribution of the Student’st-statistic. The approximation is particularly
useful in calculating small probabilities in the tail areas, which are often of
great interest in practice.

2. The saddlepoint approximation holds under no moment condition. This makes
the application of the saddlepoint approximation very broad. This is significant
for the user since one can use the approximation without having to worry about
whether or not the result is valid.

3. The Student’st-statistic is very robust against possible outliers.

For those reasons, the saddlepoint approximation of the Student’st-statistic should
always be used in practice whenever possible.
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FIG. 4. Comparisons under the Cauchy density.

6. Proof of Theorem 4.1. The immediate consequence of condition (C1) is
as follows.

PROPOSITION 6.1. F(x) is a continuous d.f. under condition (C1) of
Theorem 3.1.
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PROOF. Let 2u be the smallest even integer not less thanv. Then

Eeiξ(X1+···+Xu−Xu+1−···−X2u)+iη(X2
1+···+X2

u−X2
u+1−···−X2

2u)

= ∣∣EeiξX1+iηX2
1
∣∣2u ∈ L1(R2).

By the Fourier inversion theorem inR2 [e.g., see (7.14) of Feller (1971)],
(X1 + · · · + Xu − Xu+1 − · · · − X2u,X

2
1 + · · · + X2

u − X2
u+1 − · · · − X2

2u)
T has a

bounded continuous density, which implies thatF(x) is a continuous d.f. �

The key to getting rid of condition (C2) is the following.

PROPOSITION6.2. Assume that F(x) is a continuous d.f. Then for each fixed
b ∈ (0,1), infa>0�(a,b) is attained at some finite unique point, a0 := a0(b),
which is the solution to �a(a, b) = 0.

PROOF. The proof follows from Lemmas A.6 and A.7.�

In an effort to remove condition (C3), we shall give the following two
propositions.

PROPOSITION6.3. Under the conditions of Theorem 2.1,we have

lim
n→∞P (�X/�Vn ≥ b)1/n = sup

a≥0
inf
t≥0

E exp
(
t
(
aX − b(X2 + a2)/2

))

= exp
{
− inf

a>0
�(a,b)

}
.

PROOF. The first equality follows from Theorem 1.1 of Shao (1997). The
second one follows since

log
(

sup
a≥0

inf
t≥0

E exp
{
t
(
aX − b(X2 + a2)/2

)})

= − inf
a≥0

sup
t≥0

(
1

2
tba2 − logE exp{t (aX − bX2/2)}

)

= − inf
a≥0

sup
t1≤0

(
−t1a

2 − logE exp
{
t1

(
−2a

b
X + X2

)})

(wheret1 = −tb/2)

= − inf
a1≥0

sup
t1≤0

(
−t1

a2
1

b2
− K

(
−2a1

b2
t1, t1

))
(wherea = a1/b)

= − inf
a>0

�(a,b), [by (A.2) and Lemma A.7].
�
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The proposition establishes the relationship between the saddlepoint approxi-
mation formula of Theorem 3.1 and the large deviation results of Theorem 2.1.
It shows that the dominant term in the saddlepoint approximation given in Theo-
rem 3.1 is the same as that in the large deviation of Shao (1997). Since the latter
requires no moment conditions at all, it is therefore reasonable to expect that The-
orem 3.1 holds under no moment conditions as well. Unfortunately, the techniques
used in Shao (1997) cannot be employed here for our purposes. One crucial result
is the following.

PROPOSITION6.4. Assume that F(x) is a continuous d.f. Then, for 0< b < 1,
there exist solutions (ŝ0, t̂0, a0) in (3.6) such that ŝ0 > 0, t̂0 < 0 and a0 > 0.

PROOF. The proof follows straightaway from Lemmas A.3, A.6 and Re-
mark 3.1. �

The critical observation here is thatt̂0 < 0, which implies that the cumulant
generating function,K(s, t) = lnEesX+tX2

, always exists for(s, t)T in a small
neighborhood of(ŝ0, t̂0)

T by the continuity ofK(s, t). This suggests that, in order
to derive self-normalized saddlepoint approximations without moment conditions,
we need to divide the probability,P (�X/�Vn ≥ b), into two regions:

(i) a small neighborhood of(ŝ0, t̂0)
T for which t̂0 < 0, where we need to show

that there exists a saddlepoint approximation without any moment conditions;
(ii) the remaining region outside this small neighborhood of(ŝ0, t̂0)

T , where
we need to show that the probability is “negligible.”

To make these statements precise, define


(b) = {
(x, y)T |b ≤ x/

√
y ≤ 1

}
,


0(b) = {(x, y)T |(x − a0)
2 + (y − a2

0/b2)2 ≤ ε2} ∩ 
(b),


1(b) = 
(b) \ 
0(b).

The closure of an arbitrary set,A, will be denoted asA−. The plots of these regions
are illustrated in Figure 5.

Hence, for any 0< b < 1,

P (�X ≥ b�Vn) =
∫ ∫


(b)
f(�X,�Y )(x, y) dx dy

=
∫ ∫


0(b)
f(�X,�Y )(x, y) dx dy + P

(
(�X, �Y )T ∈ 
1(b)

)
(6.1)

:= J1(b) + J2(b).

Thus, the proof of Theorem 4.1 follows from the next two propositions.
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FIG. 5. Partition of the area of integration.

PROPOSITION6.5. Under the conditions of Theorem 4.1we have

J1(b) = 1− �
(√

nw
) − φ(

√
nw)√
n

(
1

w
− 1

v
+ O(n−1)

)
,(6.2)

where w and v are defined the same as in Theorem 3.1.

PROOF. Denoteh1(s, t;a, b) = Ks(s, t)−a, h2(s, t;a, b) = Kt(s, t)−a2/b2.
Sinceh1(−2a0

b2 t̂0, t̂0;a0, b) = 0, h2(−2a0
b2 t̂0, t̂0;a0, b) = 0 and




∂h1

∂s

∂h2

∂s

∂h1

∂t

∂h2

∂t




∣∣∣∣∣∣∣∣
(s,t,a)=(−(2a0)/b

2t̂0,t̂0,a0)

is positive definite, it follows from the implicit function theorem that there exists
ε > 0 such that̂s1 = ŝ(a, b1) andt̂1 = t̂ (a, b1) are differentiable functions ofa and
b1 when(a, a2/b2

1)
T ∈ 
0(b) for any 0< b < 1, whereŝ1 and t̂1 are solutions to



SADDLEPOINT APPROXIMATION FORt-STATISTIC 2699

the equationsKs(s, t) = a,Kt(s, t) = a2/b2
1. Sincet̂0 < 0, we can always choose

ε to be so small that̂t1 < 0.
Using the transformation (3.5) and the saddlepoint approximation for

f(�X,�Y )(x, y), we get

J1(b̃) =
∫ ∫


0(b̃)
f̂n(x, y)

(
1+ rn

n

)
dx dy

=
∫ ∫

(a,a2/b2)T ∈
0(b̃)
f̂n

(
x(a, b), y(a, b)

)
dx dy

(
1+ O(n−1)

)
(6.3)

=
∫ ∫

(a,a2/b2)T ∈
0(b̃)

n

2π

exp{−n�(a, b)}
det{�(a,b)}1/2

J (a, b) da db
(
1+ O(n−1)

)

=
∫ b̃+δ1

b̃

∫ a0+δ2

a0−δ2

n

2π

exp{−n�(a, b)}
det{�(a,b)}1/2

J (a, b) da db
(
1+ O(n−1)

)
,

where|rn| < C since
0(b̃) is compact andδ1 andδ2 are small positive numbers
such that

if a ∈ [a0 − δ2, a0 + δ2] and b ∈ [b̃, b̃ + δ1] then(a, a2/b2)T ∈ 
0(b̃).

By Proposition 6.2, applying the Laplace approximation to the inner integral
of (6.3) w.r.t.a gives

J1(b̃) =
∫ b̃+δ1

b̃

√
n

2π

exp{−n�(a0(b), b)}
det{�(a0(b), b)}1/2

J (a0(b), b)

�
1/2
aa (a0(b), b)

×
(

1+ r1n

n

)
db

(
1+ O(n−1)

)
(6.4)

=
∫ b̃+δ1

b̃

√
n

2π

exp{−n�(a0(b), b)}
det{�(a0(b), b)}1/2

J (a0(b), b)

�
1/2
aa (a0(b), b)

db
(
1+ O(n−1)

)
,

where|r1n| is uniformly bounded in[b̃, b̃ + δ1].
From Lemma A.8,�(a0(b), b) is a strictly increasing function ofb in the

neighborhood ofb. Define

w ≡ w(b) = √
2�(a0(b), b),

v ≡ v(b) = det{�(a0, b)}1/2�b(a0, b)�
1/2
aa (a0, b)

|J (a0, b)| .

Noting that

dw(b)

db
= 1

w

(
�b(a0, b) + �a(a0, b)

da0(b)

db

)
= �b(a0, b)

w
,
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we have

J1(b̃) =
∫ w̃1

w̃

√
n

2π

e−nw2/2

v
dw

(
1+ O(n−1)

)
,(6.5)

where w̃ = w(b̃) and w̃1 = w(b̃ + δ1). Write ṽ = v(b̃). Applying the Laplace
approximation to the second integral of the following equality, we get

J1(b̃) =
∫ w̃1

w̃

√
n

2π
e−nw2/2dw

(
1+ O(n−1)

)

−
∫ w̃1

w̃

√
n

2π
e−nw2/2w

(
1

w
− 1

v

)
dw

(
1+ O(n−1)

)

= �
(√

nw̃1
) − �

(√
nw̃

) − φ(
√

nw̃)√
n

(
1

w̃
− 1

ṽ
+ O(n−1)

)
(6.6)

= (
1− �

(√
nw̃

))(
1+ O(n−1)

) − φ(
√

nw̃)√
n

(
1

w̃
− 1

ṽ
+ O(n−1)

)

= 1− �
(√

nw̃
) − φ(

√
nw̃)√
n

(
1

w̃
− 1

ṽ
+ O(n−1)

)
,

where, in going from the second-to-the-last to the last line, we used 1− �(x) ∼
φ(x)/x asx → ∞. Replacingb̃ by b, we get the desired result.�

PROPOSITION6.6. Under the conditions of Theorem 4.1,

J2(b)/J1(b) = o(n−m) for any m > 0.(6.7)

PROOF. By Lemma A.8,�(a0(b), b) is a strictly increasing function ofb for
b ∈ (0,1). Therefore, applying Laplace approximations to (6.4) again, we have

C1nexp
[−n�

(
a0(b), b

)] ≤ J1(b) ≤ C2nexp
[−n�

(
a0(b), b

)]
where 0< C1 ≤ C2 < ∞.

The proposition then follows from this and Lemma A.9.�

Finally, Theorem 4.1 follows from (6.1), (6.6) and (6.7).

APPENDIX: SOME USEFUL LEMMAS

From here on, letX be a r.v. withEX = 0 or EX2 = ∞. We shall also adopt
the same notation from Section 3. Write

I (s, t;a, b) = sa + ta2/b2 − K(s, t).

We now give our first lemma.
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LEMMA A.1. For fixed a and b, we have

�(a,b) = sup
s,t

I (s, t;a, b).

When no solutions to ∂I (s, t;a, b)/∂s = ∂I (s, t;a, b)/∂t = 0 exist, we define
�(a,b) = ∞.

PROOF. It is easy to see that, for fixeda and b, I (s, t;a, b) is a concave
function ofs andt and it is differentiable for any(s, t)T ∈ interior(�), where

� = {
θ = (s, t)T :K(s, t) = lnEesX+tX2

< ∞}
.

Therefore,

sup
s,t

I (s, t;a, b) = ŝa + t̂a2/b2 − K(ŝ, t̂ ) = �(a,b),

whereŝ = ŝ(x, y) andt̂ = t̂ (x, y) are solutions to

Ks(ŝ, t̂ ) = a, Kt(ŝ, t̂ ) = a2/b2,(A.1)

whenever the solutions exist. When no solutions exist, then clearly we have
sups,t I (s, t;a, b) = ∞. The proof is complete. �

From Theorem 3.1 and Lemma A.1, we see that the saddlepoint approximation
of the self-normalized sum involves finding, for fixedb,

�(a0, b) := inf
a

�(a, b) = inf
a

sup
s,t

I (s, t;a, b) = I (ŝ0, t̂0;a0, b),

whereŝ0, t̂0 anda0 satisfy (3.6). In particular, we notice that the point(ŝ0, t̂0, a0)
T

falls on the curvês0 = −2a0t̂0/b
2. This motivates the following definition:

g(t, a;b) = I (s, t;a, b)|s=−2at/b2 = −ta2/b2 − K(−2at/b2, t).(A.2)

Also note that the domain ofa in the above infimum can be reduced to{a :ab > 0}
because of the transformationa = x andb = x/

√
y. Since we only consider the

case 0< b < 1, from now on we can supposea > 0.

Let Cs denote the support of the r.v.X, that is,

Cs = {
x :P

(
X ∈ (x − ε, x + ε)

)
> 0 for anyε > 0

}
.

Clearly, Cs must be closed. We further use Card(Cs) to denote the number of
elements inCs and define Card(Cs) = ∞ if Cs does not contain a finite number of
elements.

LEMMA A.2. Assume Card(Cs) ≥ 3. Then g(t, a;b) is strictly decreasing in
t for t ∈ (−ε0,∞) for some ε0 > 0.

PROOF. If suffices to show thatg(t, a;b) is strictly decreasing int , either:
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(I) for t ∈ [0,∞), or
(II) for t ∈ (−ε0,0] for someε0 > 0.

We shall prove (I) first. LetZ = −2aX/b2 + X2. For arbitraryt and t1 such
that 0≤ t < t1, we need to show thatg(t, a;b) > g(t1, a;b). If Eet1Z = ∞, then
g(t1, a;b) = −a2t1/b

2 − lnEet1Z = −∞, in which case (I) follows straightaway.
Now, assume thatEet1Z < ∞ below, which implies that moments ofX of
all orders exist. Thus,g(t, a;b) is differentiable int for t ∈ (−∞, t1). Taking
derivatives gives

∂g(t, a;b)

∂t
= −a2

b2
− EZetZ

EetZ
.(A.3)

Observe that

∂g(t, a;b)

∂t

∣∣∣∣
t=0

= −a2

b2 − EX2 < 0

and

∂2g(t, a;b)

∂t2
= −

(
EZ2etZ

EetZ
−

(
EZetZ

EetZ

)2)
< 0,(A.4)

sinceZ = X2 − 2aX/b2 is nondegenerate by the assumption that Card(Cs) ≥ 3.
Thus, ∂g(t,a;b)

∂t
< 0 whent ∈ [0, t1). Sog(t, a;b) is strictly decreasing in[0, t1).

Sincet1 is arbitrary, we have hence proved (I).
We shall prove (II) next. If there exists somet2 > 0 such thatEet2Z < ∞, then

(II) follows from the fact that∂g(0,a;b)
∂t

= −a2/b2 − EX2 < 0. It remains to prove
(II) under the condition that

Eet3Z = ∞ for all t3 > 0.

To show this, we choose an arbitraryt < 0. Then, from (A.3) we have

∂g(t, a;b)

∂t
= −a2

b2
−

∫ ∞
−∞(−2ax/b2 + x2)et(x−a/b2)2

dF (x)∫ ∞
−∞ et(x−a/b2)2

dF (x)
.(A.5)

By the monotone convergence theorem we have

lim
t→0−

∫ ∞
−∞

et(x−a/b2)2
dF (x) = 1,

(A.6)
lim

t→0−

∫ ∞
−∞

x2et(x−a/b2)2
dF (x) = EX2 (maybe∞),

wheret → 0− means thatt → 0 from the left side of 0.
If E|X| < ∞, then noting|xet(x−a/b2)2| ≤ |x| for t < 0, we can use Lebesgue’s

dominated convergence theorem to get

lim
t→0−

∫ ∞
−∞

(
−2a

b2
x

)
et(x−a/b2)2

dF (x) = −2a

b2
EX = 0.(A.7)
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If E|X| = ∞ (henceEX2 = ∞), then

lim
t→0−

∫ ∞
−∞

(
−2a

b2
x + x2

)
et(x−a/b2)2

dF (x)

≥ lim
t→0−

∫ ∞
−∞

(
−4a2

b4
− x2

4
+ x2

)
et(x−a/b2)2

dF (x)

(A.8)

= −4a2

b4
+ 3

4
EX2

= ∞.

Combining (A.5)–(A.8) gives

lim
t→0−

∂g(t, a;b)

∂t
< 0.

Note thatg(t, a;b) is left continuous att = 0. We conclude (II). �

LEMMA A.3. Assume that F(x) is a continuous d.f. For each fixed b ∈ (0,1)

and a ∈ R, we have

sup
t∈R

g(t, a;b) = sup
t<0

g(t, a;b),(A.9)

and the supremum is either attained at some finite unique point, t̃ := t̃ (a, b) < 0,
or is simply infinity.

PROOF. Defineh(x) := x2 − 2ax/b2 + a2/b2 = (x − a1)(x − a2), where

a10 := a10(a) = a

b2

(
1−

√
1− b2 )

,

a20 := a20(a) = a

b2

(
1+

√
1− b2 )

,

(A.10)
a1 := a1(a) = min(a10, a20),

a2 := a2(a) = max(a10, a20).

Consider the following two cases:

(I′) (a1, a2) ∩ Cs 	= ∅,
(II ′) (a1, a2) ∩ Cs = ∅.

First suppose that (I′) holds. Then there must existW := [a3, a4] ⊂ (a1, a2) so
that:

(i) there existsδ > 0 such thath(x) < −δ for eachx ∈ W ;
(ii) P (X ∈ W) > 0.
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Then we have, ast → −∞,

g(t, a;b) = − ln
∫ ∞
−∞

eth(x) dF (x) ≤ − ln
∫
W

eth(x) dF (x)

≤ − ln
∫
W

e−tδ dF (x) = tδ − lnP (X ∈ W)

→ −∞.

From Lemma A.2, supt∈R g(t, a;b) is attained at some finitẽt = t̃ (a, b) < 0. Since

g(t, a;b) is a differentiable function oft whent < 0, we have∂g(t̃,a;b)
∂t

= 0. This,
together with (A.4), implies that there is at most one solution to the equation
∂g(t,a;b)

∂t
= 0. Therefore,̃t is also unique.

Next suppose (II′) holds. SinceCs is necessarily closed, then[a1, a2] ∩ Cs

contains at most two points,{a1, a2}. Clearly, we have:

(i) h(x) > 0 for eachx ∈ Cs \ {a1, a2};
(ii) P (X ∈ Cs \ {a1, a2}) > 0,

where (ii) follows sinceF(x) is a continuous d.f. Therefore, ast → −∞, we have

g(t, a;b) = − ln
∫ ∞
−∞

eth(x) dF (x) = − ln
∫
Cs\{a1,a2}

eth(x) dF (x) → ∞. �

REMARK A.1. Lemma A.3 also holds true forb ≥ 1, in which case both sides
of (A.9) are equal to infinity.

LEMMA A.4. For 0 < b < 1, define

U = {
a :

(
a1(a), a2(a)

) ∩ Cs 	= ∅

}
,

where a1(a) and a2(a) are defined in (A.10). Then, if F(x) is a continuous d.f.:

1. U is an open set and U 	= ∅, so does U ∩ R+, where R+ = {x :x > 0}.
2. When a ∈ U , then g(t̃(a, b), a;b) = supt<0 g(t, a;b) < ∞, where t̃ = t̃ (a,

b) < 0 is a finite unique solution to the equation ∂g(t,a;b)
∂t

= 0.
3. When a /∈ U , then supt<0 g(t, a;b) = ∞.
4. infa>0 supt∈R g(t, a;b) = infa∈U∩R+ supt<0 g(t, a;b).

PROOF. We only prove 1 since 2–4 follow easily from the proof of Lemma A.3.
First, the claim thatU 	= ∅ can be easily seen from the fact that

⋃
a{a : (a1(a),

a2(a))} = R. Second, we shall show thatU is open, which is equivalent to showing
that the complement ofU ,

U0 = {
a :

(
a1(a), a2(a)

) ∩ Cs = ∅

}
,



SADDLEPOINT APPROXIMATION FORt-STATISTIC 2705

is a closed set. To show this, for any fixeda′ ∈ U0, then(a1(a
′), a2(a

′)) 	⊂ Cs , or
(a1(a

′), a2(a
′)) ⊂ �Cs , the complement ofCs . LetV (a′) be the largest interval such

that (a1(a
′), a2(a

′)) ⊂ V (a′) ⊂ �Cs . For simplicity, assume thata′ > 0 (the cases
for a′ = 0 anda′ < 0 can be treated similarly). Since�Cs is open, thenV (a′) must
be open as well. WriteV (a′) = (c0, d0), where the endpoints could be∞ or −∞.
Write

ac(a
′) := c0(1+ √

1− b2 )

b2
,

ad(a′) := d0(1− √
1− b2 )

b2 .

It is easy to see that the closed interval[ac(a
′), ad(a′)] will be the largest subset

of U0 includinga′. Furthermore, for anya′ 	= a′′, the two intervals[ac(a
′), ad(a′)]

and[ac(a
′′), ad(a′′)] either coincide or are nonoverlapping. Therefore,

U0 = ⋃
a′∈R

[ac(a
′), ad(a′)],

which is closed. The proof is complete.�

LEMMA A.5. For 0 < b < 1:

1. lima→∞ supt<0 g(t, a;b) = ∞, lima→0+ supt<0 g(t, a;b) = ∞;
2. lima→∞ sups∈R,t∈R I (s, t;a, b) = ∞, lima→0+ sups∈R,t∈R I (s, t;a, b) = ∞,

where a → 0+ means that a goes to 0 from the right side.

PROOF. Let k be a positive number. Then

sup
t<0

g(t, a;b) ≥ g

(
− k

a2
, a;b

)

= k

b2
− ln

∫ ∞
−∞

exp
{
− k

a2

(
x2 − 2a

b2
x

)}
dF (x)(A.11)

:= k

b2
− lnM(a).

It follows from Lebesgue’s dominated convergence theorem that

lim
a→∞M(a) = 1, lim

a→0+ M(a) = 0.(A.12)

Combining (A.11) and (A.12) gives

lim inf
a→∞ sup

t<0
g(t, a;b) ≥ k

b2
,

lim inf
a→0+ sup

t<0
g(t, a;b) = ∞.
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Sincek can be arbitrarily large, we have proved 1.
From (A.2) we have sups∈R,t∈R I (s, t;a, b) ≥ supt<0 g(t, a;b). This, together

with 1 above, implies that

lim
a→∞ sup

s∈R,t∈R

I (s, t;a, b) = ∞,

lim
a→0+ sup

s∈R,t∈R

I (s, t;a, b) = ∞,

which completes the proof of 2.�

LEMMA A.6. Assume that F(x) is a continuous d.f. and that 0< b < 1. Then
infa>0 supt∈R g(t, a;b) is attained at some finite unique point, (a, t)T = (a0, t̂0)

T ,
where a0 > 0, t̂0 := t̃ (a0, b) < 0 and they satisfy (3.7).

PROOF. It follows from Lemmas A.3–A.5 that infa>0 supt∈R g(t, a;b) is
attained at some finite pointsa0 ∈ U andt̂0 := t̃ (a0, b) < 0. Whena ∈ U , by part 2
of Lemma A.4, we have

∂g(t̃, a;b)

∂t
= −EZet̃Z

Eet̃Z
− a2

b2 = 0, whereZ = −2a

b2 X + X2.(A.13)

By the assumption thatF(x) is a continuous d.f., which implies thatZ is
nondegenerate, (A.4) is true. It then follows from the implicit function theorem
that t̃ (a, b) is a differentiable function in some neighborhoodU∗(a) of a (also
a differentiable function in some neighborhood ofb). We can also guarantee
thatU∗(a) ⊂ U . Hence supt∈R g(t, a;b) is also a differentiable function in some

neighborhood ofa0. Thusa0 satisfies the equationdg(t̃,a;b)
da

= 0, that is,

EX exp
{
t̃

(
−2a

b2
X + X2

)}
= aE exp

{
t̃

(
− 2a

b2
X + X2

)}
.(A.14)

It follows from (A.13) and (A.14) thata0 andt̂0 are the solutions to the equations

EZetZ = −a2

b2EetZ,

EXetZ = aEetZ,

which are equivalent to (3.7) or (3.6).
Now we show the uniqueness of(a0, t̂0)

T . Suppose(a′
0, t̂

′
0)

T is another point
such thatg(t̂ ′0, a′

0;b) = infa>0 supt∈R g(t, a;b). Note that

g(t, a;b) = − logE exp
{
t

(
−2a

b2
X + X2 + a2

b2

)}
.
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We must have

E exp
{
t̂0

(
−2a0

b2 X + X2 + a2
0

b2

)}
= sup

a>0
E exp

{
t̂0

(
−2a

b2 X + X2 + a2

b2

)}

≥ E exp
{
t̂0

(
−2a′

0

b2 X + X2 + a′2
0

b2

)}
(A.15)

≥ inf
t<0

E exp
{
t

(
−2a′

0

b2 X + X2 + a′2
0

b2

)}

= E exp
{
t̂ ′0

(
−2a′

0

b2 X + X2 + a′2
0

b2

)}
.

If t̂0 	= t̂ ′0, then

E exp
{
t̂0

(
−2a′

0

b2 X + X2 + a′2
0

b2

)}
> inf

t<0
E exp

{
t

(
−2a′

0

b2 X + X2 + a′2
0

b2

)}
(A.16)

by the fact thatE exp{t (−2aX/b2 + X2 + a2/b2)} is a strictly convex function of

t for each fixeda and−2a
b2 X + X2 + a2

b2 is not identically equal to 0. Combining
(A.15) and (A.16), we get

E exp
{
t̂0

(
−2a0

b2 X + X2 + a2
0

b2

)}
> E exp

{
t̂ ′0

(
−2a′

0

b2 X + X2 + a′2
0

b2

)}
,

which contradicts our assumption. Hencet̂0 = t̂ ′0.
Next we show that̂s0 = ŝ′

0. Definef (a, s) = E exp{s(−2X/(ab2) + X2/a2 +
1/b2)}. Note thatf (a, s) is a strictly convex function ofs for each fixeda. Thus,
we have

f (a0, ŝ0) = f (a′
0, ŝ

′
0) = sup

a>0
inf
s<0

f (a, s),

whereŝ0 = t̂0a
2
0 andŝ′

0 = t̂ ′0a′2
0 . Similar to the proof of̂t0 = t̂ ′0 above, we can show

that ŝ0 = ŝ′
0. Hencea0 = a′

0. This completes the proof of uniqueness.�

The next lemma establishes the relationship betweenI (s, t;a, b) andg(t, a;b).

LEMMA A.7. Assume that F(x) is a continuous d.f. Then, for 0< b < 1,

inf
a≥0

sup
t≤0

g(t, a;b) = inf
a>0

sup
t<0

g(t, a;b) = inf
a>0

sup
s∈R,t∈R

I (s, t;a, b) ≡ inf
a>0

�(a,b).

PROOF. The first equality holds sinceg(t, a;b) is strictly decreasing as
t → 0− by Lemma A.2, and supt<0 g(t,0;b) = ∞. We shall now prove the second
equality. From (A.2) we have

inf
a>0

sup
s∈R,t∈R

I (s, t;a, b) ≥ inf
a>0

sup
t<0

g(t, a;b).(A.17)
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From 2 of Lemma A.5 we see that infa>0 sups∈R,t∈R I (s, t;a, b) is attained at
some finiteâ > 0. By Lemma A.6, infa>0 supt<0 g(t, a;b) is also attained at some
a0 > 0 andt̂0 < 0 satisfying equation (3.7), namely,

Ks(−2a0t̂0/b
2, t̂0) = a0, Kt(−2a0t̂0/b

2, t̂0) = a2
0/b2.(A.18)

Therefore,

inf
a>0

sup
s∈R,t∈R

I (s, t;a, b)

= sup
s∈R,t∈R

I (s, t; â, b)

≤ sup
s∈R,t∈R

I (s, t;a0, b)

= sup
s∈R,t∈R

{sa0 + ta2
0/b2 − K(s, t)}

= {sa0 + ta2
0/b2 − K(s, t)}|s=ŝ0,t=t̂0

[whereKs(ŝ0, t̂0) = a0, Kt(ŝ0, t̂0) = a2
0/b

2]

= {sa0 + ta2
0/b2 − K(s, t)}|s=−2a0t̂0/b

2,t=t̂0
[by (A.18)]

= −t̂0a
2
0/b

2 − K(−2a0t̂0/b
2, t̂0)

= g(t̂0, a0;b)

= inf
a>0

sup
t<0

g(t, a;b).

The lemma thus follows from this and (A.17).�

LEMMA A.8. Assume that F(x) is a continuous d.f. Then, for 0 < b < 1,
infa>0 supt<0 g(t, a;b) is a strictly increasing function of b.

PROOF. Regard g(t̃(a, b), a;b) as a joint function ofa and b. Then
∂g(t̃(a,b),a;b)

∂b
|a=a0 = −2a2

0 t̃ (a0,b)

b3 > 0, that is,g(t̃(a0, b), a0;b) is a strictly increas-
ing function ofb in a small neighborhood ofb. If b1 < b2 andb1 is sufficiently
close tob2, we have

g
(
t̃ (a1, b1), a1;b1

) ≤ g
(
t̃ (a2, b1), a2;b1

)
< g

(
t̃ (a2, b2), a2;b2

)
,(A.19)

wherea1 anda2 satisfyg(t̃(a1, b1), a1;b1) = infa>0 g(t̃(a, b1), a;b1) andg(t̃(a2,

b2), a2;b2) = infa>0 g(t̃(a, b2), a;b2), respectively. Lemma A.7 and Proposi-
tion 6.3 imply that infa>0 supt<0 g(t, a;b) is a nondecreasing function ofb, which,
combined with (A.19) holding under the condition thatb1 < b2 andb1 is suffi-
ciently close tob2, proves Lemma A.8. �
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LEMMA A.9. Assume that F(x) is a continuous d.f. Then, for 0 < b < 1,
ε > 0 and m > 0, we have

P
(
(�X, �V 2

n )T ∈ (

1(b)

)−)
/exp

(−ng(t̂0, a0;b)
) = o(n−m).

PROOF. From Corollary 1.1 of Dembo and Shao (1998), we get

lim sup
n→∞

1

n
lnP

(
(�X, �V 2

n )T ∈ (

1(b)

)−)
≤ − inf

(a,a2/b2
1)

T ∈(
1(b))−
sup
s,t

I (s, t;a, b1) =: −Imin,

if the condition (1.12) in Dembo and Shao (1998) holds, which is clearly true since

lim inf
y→∞,(x,y)T ∈(
1(b))−

x2

y
= b2 > 0.

Hence, for allδ1 > 0, there existsn1 such that ifn ≥ n1,

1

n
lnP

(
(�X, �V 2

n )T ∈ (

1(b)

)−) ≤ −Imin + δ1

2
.(A.20)

From (A.2) we have 0≤ supt<0 g(t, a;b1) ≤ sups,t I (s, t;a, b1) for anyb1, which
implies that

−Imin ≤ − inf
(a,a2/b2

1)
T ∈(
1(b))−

sup
t<0

g(t, a;b1).(A.21)

Define

δ1 = inf
(a,a2/b2

1)
T ∈(
1(b))−

sup
t<0

g(t, a;b1) − g(t̂0, a0;b).

We shall now show thatδ1 > 0. Similar to Lemma A.5, we can show that if
b ≤ b′ ≤ 1, then

lim
a→0+,b1→b′ g(t̃, a;b1) = ∞,

lim
a→∞,b1→b′ g(t̃, a;b1) = ∞.

Hence, inf(a,a2/b2
1)

T ∈(
1(b))− g(t̃ , a;b1) is attained at some finiteaE > 0 and

b ≤ bE ≤ 1. By Lemma A.8g(t̂0, a0;b1) = infa>0 supt<0 g(t, a;b1) is a strictly
increasing function ofb1. If bE > b, we have

inf
{(a,b1)

T : (a,a2/b2
1)T ∈(
1(b))−}

sup
t<0

g(t, a;b1)

= inf
{(a,b1)

T : (a,a2/b2
1)

T ∈(
1(b))−}
g
(
t̃ (a, b1), a;b1

)

= g
(
t̃ (aE, bE), aE;bE

)
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≥ inf
a>0

g
(
t̃ (a, bE), a;bE

)
> inf

a>0
g
(
t̃ (a, b), a;b

)
= inf

a>0
sup
t<0

g(t, a;b).

By Lemma A.6,a0 is unique. IfbE = b, we have

g
(
t̃ (aE, bE), aE;bE

) = g
(
t̃ (aE, b), aE;b

)
> g(t̂0, a0;b).

Combining the above facts, we have

inf
(a,a2/b2

1)T ∈(
1(b))−
sup
t<0

g(t, a;b1) > g(t̂0, a0;b).(A.22)

Therefore, we have proved thatδ1 > 0. By (A.20)–(A.22), we have that ifn ≥ n1,

P
(
(�X, �V 2

n )T ∈ (

1(b)

)−) ≤ exp{−ng(t̂0, a0;b) − nδ1/2}.
The proof is complete. �
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