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BAYESIAN-MOTIVATED TESTS OF FUNCTION FIT AND THEIR
ASYMPTOTIC FREQUENTIST PROPERTIES

BY MARC AERTS,! GERDA CLAESKENS? AND JEFFREYD. HART?®
Limburgs Universitair Centrum, K. U. Leuven and Texas A& M University

We propose and analyze nonparametric tests of the null hypothesis that a
function belongs to a specified parametric family. The tests are based on BIC
approximationsgpc, to the posterior probability of the null model, and may
be carried out in either Bayesian or frequentist fashion. We obtain results on
the asymptotic distribution ofg|c under both the null hypothesis and local
alternatives. One version afg|c, call it 7g,-, uses a class of models that
are orthogonal to each other and growing in number without bound as sample
size,n, tends to infinity. We show thagn(1—g,-) converges in distribution
to a stable law under the null hypothesis. We also showstfiat can detect
local alternatives converging to the null at the ragflegn/n. A particularly
interesting finding is that the power of thej --based test is asymptotically
equal to that of a test based on the maximum of alternative log-likelihoods.

Simulation results and an example involving variable star data illustrate
desirable features of the proposed tests.

1. Introduction. Consider a model in which the observed data ve¥tdras
distribution f(y, g, ), where f is known, g is an unknown function ang is a
vector of unknown nuisance parameters. We wish to test the null hypothesgs that
is in a specified parametric famifyy= {g(-; #) : 0 € ®} against the nonparametric
alternative thatg ¢ ¢. This paper proposes a Bayes-inspired test of such a
hypothesis. A version of the test was proposed by Hart (1997) in the special case
of checking the fit of a parametric regression model. The idea is simple. Consider
a sequence of models fgrof varying dimensions, one of which is the parametric
(or null) model whose fit is to be tested. The posterior probabitity,of the null
model is computed, and if this probability is sufficiently low, the null model is
rejected. This test may be carried out in either Bayesian or frequentist fashion.
One may determine a sequence of constanpsuch that,, (1 — 7,,) converges in
distribution to a nondegenerate random variable wHgns true and the sample
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sizen tends tooco. This allows the frequentist to conduct a valid large sample test
of given size based an, (1 — ;). On the other hand, a Bayesian may simply wish
to make a decision based on the valuerpfirrespective of an a priori type | error
probability.

The idea of using a Bayesian-motivated statistic in frequentist fashion is not
new. Good (1957) proposed that the distribution of a Bayes factor be computed on
the assumption that a sharp null hypothesis is true ,Ravdlues corresponding to
the Bayes factor be used as a significance criterion. Good (1992) gives an extensive
review of compromises between Bayesian and non-Bayesian methodologies.

Lack-of-fit and goodness-of-fit tests based on orthogonal series expansions
and/or smoothing ideas have received considerable attention in the last fifteen or
so years. Many references to this work may be found in the book of Hart (1997).
Seminal references on series-based goodness-of-fit tests, that is, so-called smooth
tests, are Neyman (1937) and Rayner and Best (1989, 1990). More recently,
Ledwina (1994) and Fan (1996) have proposed adaptive versions of Neyman’s
smooth test. Eubank and Hart (1992) and Aerts, Claeskens and Hart (1999) have
studied the so-called order selection test in the contexts of regression and general
likelihood models, respectively. A nonparametric Bayesian goodness-of-fit test has
been proposed by Verdinelli and Wasserman (1998).

The rest of the paper is organized as follows. Section 2 considers frequentist
and formal Bayesian versions of the proposed test, and discusses the choice of
alternative models and specification of priors. Section 3.1 summarizes a simulation
study comparing the power of our test with other omnibus lack-of-fit tests. In
Section 3.2 our methods are applied to the problem of testing for a trend in the
sequence of times between maximum brightnesses of the long-period variable
star Omicron Ceti or Mira. Section 4 presents our theoretical results on the
asymptotic frequentist properties of the proposed tests. Finally, the Appendix
contains mathematical details and proofs of the theorems.

2. Test procedures. To reiterate, we assume that observed détdave
distribution £ (y, g, n) for some functiorg and vector of parameters We wish
to test the hypothesis, call Hp, that the functiory lies in the parametric family
of functions§. The model which assumes thép is true will be calledMq. We
consider a collection of alternative models denai¢d ..., Mg, where eachy;
corresponds to a different parametric specification for the funcgiomhese
models need not be nested within each other. Since we wish our té& td
be nonparametrick should be fairly “large” and the union affg, M1, ..., Mg
should come close to spanning the space of all possibilitieg.fordeed, we can
envision K growing with the number of observations ¥ in such a way that,
asymptotically, the models under consideratiorspan all the possibilities.

Our tests of Hy are based on a posterior probability féfg or on an
approximation to that probability. These tests run the gamut from a purely
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Bayesian approach based on informative priors to a purely frequentist one that
involves no prior specification at all. In any case, our tests take the form

“reject Hop when, d=‘3fP(Mo|y) is sufficiently small.”

A Bayesian will make a decision, or perhaps abstain from doing so, by simply
examiningr, and/or a Bayes factor. On the other hand, a frequentist will wish to
determine the sampling distribution 8f( Mg|Y) on the assumption tha&j is true,

and then rejecHy at level of significancer if and only if z,, is smaller than an

« quantile of this distribution. The frequentist may well regarddifferently than

a Bayesian. The latter views, as the probability thaHy is true in light of the
observed data, whereas the former may simply view it as a statistic that contains
evidence about the hypotheses of interest.

In Section 2.1 we turn to the question of choosing alternative models
Mi, Mo, ..., a question of relevance to both Bayesians and frequentists. Sec-
tion 2.2 considers a formal Bayesian version of the proposed test, including a
discussion of noninformative priors for the modeélg, M1, .... An asymptotic
version of the test requiring no specification of priors is introduced in Section 2.3.

2.1. Alternative models. We shall consider two main types of alternative
models: those which are guaranteed to contain the true fungti@ least in a
limiting sense) and those which do not necessarily congdint nonetheless lead
to a consistent test for virtually argy An example will be helpful to illustrate these
two types. In the sequel, the model forcorresponding to probability mode/ ;
will be denotecg ;. Suppose thag and each member gf are continuous functions
over the interval0, 1], which means tha¢ can be written as

g(x) =g(x;0) +3(x),
wheres has the Fourier series representation

o0
8(x)=> ajcogmjx), 0<x=<1,

j=0
for constantsg, a1, . ... This representation fof suggests that we take
J
@ gj(x;0,aj) =g(x;0)+ Y o cogmkx),

k=0

whereo ; = (o, . . -, aj)T. Of course, this model could be modified to suit a given
situation. For example, i is a regression function and the mo@etontains an
intercept, then the constant tetry should be eliminated frorg;. Another model
that would be useful for cases wheyés inherently positive is

j
g;i(x;0,a;)=g(x;0) exp[ > Cos(nkx)]

k=0
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Other basis functions can be used as well; popular examples include wavelets
and orthogonal Legendre or Hermite polynomials. Wavelet packets would be

particularly attractive when the most parsimonious basis is unknown to the

investigator.

As j — oo, functions of the form (1) span the space of all functions that
are continuous o0, 1]. In many settings this property is enough to ensure that
there exist tests based on the mod#ls ..., Mk that are consistent against any
continuous alternative télp, so long ask tends tooo at an appropriate rate with
the sample size. An example of such a test is given in Aerts, Claeskens and Hart
(1999).

On the other hand, it is possible to construct consistent tests based on sequences
of models that do not contain, even in the limit, the true funcgioBuch sequences
can have certain advantages when using the methodology proposed in this paper.
For our tests to be consistent, it is usually enough that the best approximation
to g among the models entertained is noginAgain suppose that is a function
defined o0, 1]. Two candidates fog; are

(2) g(x;0)+aj;coqmjx) and g(x;0)expo;cogmjx)].

Now, if g is noting, butis continuous, then, generally speaking, there will extst a
such that the MLE o in g(x; 8) + ax cogkx) consistently estimates a nonzero
guantity [White (1994)]. Such a property itigs the existence of a consistent test.

The alternative models considered could be more or less arbitrary. For example,
in the situation discussed immediately above we could entertain all models of the
form

g(x;0)+ Z o cogmkx),
ke X

where X is a subset of (1, ..., K for someK. If K grows with sample size,
such alternatives are problematic in that the number of models that must be fitted
is 2K+1 which becomes prohibitively large very quickly.

In the sequel we will mainly be concerned with two classes of alternative
models, ones that amested and ones we shall cadingletons that contain only
one more parameter thady. Nested models are such thit; is a special case of
M;1for j=0,1,..., while singletons contaiMg but are not nested within each
other.

2.2. Formal Bayes tests. Corresponding to modeV/;, j =0,1,..., K, are
the nuisance parameteysparameterd ande ; that specifyg, and the dimension
of (8,«;,n), denotedn ;. The likelihood function forM; is L(0,a;,n). Let p;
be the prior probability of thg'th model, andr; (0, «;, ) the conditional prior
density of (8, & j, ) given that the true model i8/;. The posterior probability
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of My, that is, the basis of our test éf, is

po [ Lo, n)mo(Bo, n) dbody
K opj [LO.aj.mm;O® 0, n)d0dodn

K ) -1
={1+ZQ'B/} ;

j:lpo

P (Moly) =

whereB; is the Bayes factor o#/; to Mo, that is,

_JL®.aj w0, ) dOda;dy
’ [ L@o, n)7o(Bo, n) dBody

In a subjective Bayesian analysis, the prior probabiliflesand prior distri-
butionsz;, j =0,1,..., K, are chosen to represent the investigator’s degree of
belief in the various models and the parameters therein. A Bayesian who wishes
to do an analysis independent of his or her own prior beliefs may wish to use non-
informative priors. In our setting, it is necessary to formulate such priors for the
parameters in each of the modeél, ..., Mx and also to specify “vague” prior
probabilities over these models. We have little to say here about the former prob-
lem since much has already been written about it. There has been much debate
about what is the most appropriate noninformative or reference prior in a given
situation, and, indeed, about whether or ay prior can truly express ignorance
about the underlying parameters. Rather than entering this debate, we refer the in-
terested reader to the excellent review article of Kass and Wasserman (1996) for
further discussion of the problem and many relevant references.

We turn now to the question of assigning vague prior probabilities to the models
Moy, ..., M. One possibility is to simply gie each model the sg& probability
of 1/(K 4+ 1). In as much asHy has some special significance (scientific or
otherwise), there may be a prevailing a priori degree of belief in it, expressed by
po=m.Inthis case we could take; = (1-n)/K, j=1,..., K, to express lack
of preference for any alternative model.

For some choices of alternative models it is debatable whether assigning them
equal probabilities is really noninformative. When the models are nested with
mo < mq < ---, one could argue that it is natural to put smaller prior probabilities
on the models of larger dimension. Jeffreys (1961) proposed using the improper
prior p; =1/(j +1), j=0,1,..., for such problems. A proper noninformative
prior for the positive integers was proposed by Rissanen (1983).

Sometimes one may consider more than one model having a given dimension.
If the distinct model dimensions areg < m1 < ---, then we may assign prior
probability of 2-"(+D to the collection of models having dimensien; and
equal probability to each individual model of that dimension. Such a scheme has
been proposed by Berger and Pericchi (1996).
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It is of some interest to know what form, takes in various cases. Hart
(1997) obtains an explicit expression for a very accurate approximatiap to
a regression context where one tests the hypothesis that the regression function is
flat. In most cases, though, it will not be gmble to write this probability as an
explicit function of the data. Numerical integration or use of MCMC methods will
then be needed to computg.

2.3. Tests free of prior specification. Let m(y) be the marginal distribution
of the dataY. In deriving the well-known BIC for selecting model dimension,
Schwarz (1978) showed that in exponential family models

log(P(M;ly)) ~logL; — 3m logn — log(m(y))
= BIC; —log(m(y)),

where n denotes the dimension of, m; is model dimension and.; is
the likelihood function for model; evaluated at the MLE. Applying this
approximation to our test statistR(Mg|y) yields

1 def

P (M, ’«\5 = TBIC-
(Moly) 1+Y K expBIC; —BICy)

Perhaps the most interesting aspect of this approximation, especially for a
frequentist, is that it is completely free of prior probabilities. The statistie

would seem to be attractive to frequentists and Bayesians alike. The frequentist
will appreciate the fact thatgc requires no specification of priors and is thus
immediately usable as a test #f versus general alternatives. For a Bayesian,
mgic can serve as a rough and ready approximation to the posterior probability
of My when the sample size is large, a property established in various contexts
by Schwarz (1978), Haughton (1988), Kass and Raftery (1995) and Kass and
Wasserman (1995). The reader is cautioned, howeversthatwill not always

be an adequate approximation. This is especially true in small to moderate sample
sizes. Furthermore, the approximation can be poor depending on the type of prior
distribution used for the parameters of the modéis M1, ..., Mg . For more on

this last point, the reader is referred to Kass and Wasserman (1995).

2.4. Afrequentisttest. LetA ={M,..., M} be acollection of models, each
of which contains the null model/y as a special case. We consider the test that
rejects the null hypothesis for large values of g|c, where

K -1
meIc =41+ Z n~ /2 (mj—mo) explL;/2} ,
j=1
£L; is the log-likelihood ratio 2lo@.;/Lo), and m; denotes the number of
parametersid/;, j =0, ..., K. Some of the theory to be developed later assumes
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that the model is of generalized linear form. In this case, the observed data
are (X1, Y1), ..., (Xu, Y,,), where eaclx; is a vector of covariates and eatha
scalar response. Assuming the covariates to be fixed and the observations to be
independent, the log-likelihood function has the form
n
eg.m =) [Yig() —b(g(x)]/a(m) + c(Yi, n),
i=1
wherea(-), b(-) andc(-) are known functionsg is an unknown function angl an
unknown dispersion parameter; see, for example, McCullagh and Nelder (1989).
We consider testing the null hypothesis

p
def
(3) Ho:g(x) =Y 0;7;(x) = g(x;0),
j=1
where y1,...,y, are known functions and = (01,...,0,,)T an unknown

parameter vector. The asymptotic maximizer of the expected log-likelihood
1 n
=3 (b (g0xi))g xi: 6) = b(g(xi: 0))]
i=1

with respect tof is denoteddg = (010, ..., epo)T, which is the true parameter
vector whenHy is true and provides a best null approximationgtavhen Hp is
false.

Our most general alternativas;, j =1, 2, ..., are of the form

p J
gix) =) _0iyi(x)+ > v (x)
i=1 i=1

for appropriate functionss, v, .... To produce test statistics that are meaningful
and powerful, we insist that thg’'s be orthonormal in the following sense:

n
@) D v n)b (g(xi:00) =0,  j=12..5k=1...p,
i=1
andforallj, k> 1,
1 1,  j=k,
(5) - X;b”(g(xi; 00))v; (X)) ve(X;) = {0’ ik,
1=
In practice, we may achieve an approximation to (4) and (5) by proceeding
as follows. First, Jet(oo, no) be the maximizer of the null likelihood function.
We assume tha#y converges in probability ta@o. Now, choose a set of
functions uq, up, ... that is a basis for all functions of interest. Then use a
Gram-Schmidt procedure to construgt ..., 9,—, that are linear combinations
of y1,...,yp,u1,...,u,—p satisfying (4) and (5) witldp andv;s replaced bﬁo
andd;s, respectively.
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For generalized linear models, the likelihood ratio statigtjccan be explicitly
obtained as

L7 =2 "[Y;(Aij — Ajo) — {b(Aij) — b(Ajo)}],
i=1
where, forj =0, ..., K,
_ 8 (xi10(M)). &)
aln(My)}

Note that the maximum likelihood estimatar&V/,), /(M) andé ; depend on the
model used.

3. Numerical results. The applicability of the proposed tests is illustrated by
a simulation study in a simple regression setting in Section 3.1 and by an example
involving variable star data in Section 3.2. S-Plus is used for calculations.

3.1. Smulations. We consider normal response data

(6) Yi ~ N (y(xi), n),

wherex; = (i — 1/2)/n,i =1,...,n. The meary(.) is the parameter of interest
and n is the unknown variance parameter. In all settings the sample size was
n = 100 andn = 0.1. We focus on testing for no effect, that is(x) = 6. For

the alternative modeld/; we take

yi)=0+ Y ¢u(x), j=1...K,
kGJCj

with X; a subset of{l,..., j} and ux(-) = pi(-), the normalized Legendre
polynomials on the intervdll/(2n),1 — 1/(2n)], k =1, ..., K. To examine the
influence of the choice oK, all simulations were repeated f&& = 10 and
K =20.
Define AIC; =logL ; — m; [Akaike (1974)],
Fa =argmaxAIC; and 7, =argmaxBIC;.
0<j<K 0<j<K
We compare the singletoB§) and nestedRy) versions of the Bayes-motivated
statisticrgic (Theorem 1) with some other nonparametric omnibus tests:
the tests

Lo=dL£;, and L,=L

o
the “max-test” based on

Mg = max «£; —2logK +loglogK + log,
0<j<K
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and, finally, the adaptive Neyman teg};, which is based on the squared discrete
Fourier transform of the residual vector from the fitted null model [Fan and
Huang (2001), Section 2.1]. We also included two parametric likelihood ratio
tests comparing the null mod&fp with the true (unknown) alternative mod#;
(“Oracle” test) and with the “full” model (FMWM g with Xx ={1,..., K}.

The testsL,, L, and By are all based on a sequence of nested alternative
models with X; = {1,...,j}, j =1,...,K. Score versions ofL, and L,
were studied in Aerts, Claeskens and Hart (2000), who established that in the
present scenarid,, converges in distribution t&; and L, to Wy, whereW, =
Vi+--4+V,forr=212...,K, Vo=0, Vi, Vo,..., Vx is a sequence of
independeng? random variables anglis the value of- that maximizesv, — 2r
overr =0,1,..., K. The tests8y andMs apply singleton alternative models with
K;=1{j},j=1,...,K. The testMg is expected to have power characteristics
similar to those oBs (Theorem 5).

The definition ofrg|c suggests that the distributions of

YA expv;/2)

.
() 1+n-12 Zleexp(v,-/Z)
and

@ K n @D exp(y]_ Vif2)

1+ 2K n-ilexp(y]_, Vi/2)

be used as finite sample corrected approximations to the distributior; of
and By, respectively. ForL;, which converges in distribution to ;@12 random
variable, we include a corrected distribution defined as thdit;ofwhereW, is as
before and is the value of that maximizesV, — rlogn overr =1,...,K.

From a simulation based on 30,000 replications, we obtained critical points
(levelsa = 0.01, 0.05, 0.10) of the large sample distribution of each test statistic,
except for Mg and N4, which are asymptotically distributed with distribution
function exg—exp(—x/2)) (Theorem 5) and exp- exp(—x)) [Fan and Huang
(2001), Theorem 1], respectively. The critical values are shown in Table 1.

TABLE 1
Smulated critical points of limiting null distributions

Test K a=0.10 a=0.05 a=0.01

L, 10 9.393 13.521 21.028
Lq 20 9.985 14.871 28.103
Ly 3.460 5.620 10.832
By 3.728 5.105 8.149
Bg 10 8.170 8.724 9.598

Bg 20 9.027 9.339 9.795
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TABLE 2
Smulated type | error probabilitiesfor K = 10

Test a=0.10 a=0.05 a=0.01

L, 0.100 0.063 0.019
Ly 0.102 0.050 0.010
By 0.094 0.052 0.010
Bg 0.109 0.055 0.012
Mg 0.079 0.036 0.006
Ny 0.125 0.069 0.017

Although thelimiting distributions of By and L;, depend onk, the simulations
produced critical points that were identical for both valueKof

Table 2 shows simulated type | error probabilities for all omnibus tests based on
a simulation of size 5000 witlk = 10. The results are very similar faf = 20.
As mentioned in Fan and Huang (2001), the approximatior(-eepp(—x)) is
not so good. This was confirmed in our simulations. The simulated type | error
probabilities of the adaptive Neyman test, based on the simulated critical points
of Table 1 in Fan and Huang (2001), are considerably better (see last line in
Table 2). The true levels of most tests are close to the nominal levels. The max-
test is somewhat conservative, whereas the adaptive Neyman ang thst are

slightly liberal.
To examine power we consider two types of alternatives:
9) Vi (X) = 14y ()
and
N 1 ¢
(10) Y, (x) = Mk(x)’

with m ranging from 1 to 10. These alternative models are ordered in the sense
that they incorporate higher frequency termsragcreases; foy,> (x) as single
effects and for,Y (x) as nested effects (see Figure 1).

In Figure 2, power results are shown for 1000 data sets generated from the
alternative models (9) and (10), respectively. In all cases, the sample:size
equals 100 and the level of significance is equal to 0.05. For all omnibus tests,
critical points were calculated using the 5000 simulated data sets under the null
hypothesis, and, hence, each omnibus test has true level very close to 0.05.

Focusing on the upper panels (single effect alternatives), four tests essentially
show constant power: the Oracle test, next the singletorBigaind max-tesh/g
with almost identical curves (as expected from Theorem 5), and the full model test.
When increasing the value &f from 10 to 20 (from left to right panel), the power
decreases somewhat, especially for the full model test. The power characteristics
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WMMMMM

FiG. 1. Alternative models: upper row y,,Sl(x), |lower row y,,’:’(x), form=1,..., 10.

of L, andBy are comparable (with some advantagefg): they have the highest
power for the first lower frequency terms but their power drops down rapidly, with
very comparable values for both valueskf The adaptive Neyman test also has
a decreasing trend, but with strikingly higher powers for even alternatives. This
is related to the fact that the cosine based Fourier transform terms enter the sum
in the test statistic first, alternating with the sine terms. Finally, the only test with
an increasing power curve is the, test. For the single effect alternatives, the
Bayesian-motivated ted is clearly the best choice.

For the nested effect alternatives (lower panels in Figure 2), only the full model
test has seemingly constant power behavior; but the higher the vakiéréking
the test more omnibus), the less competitive this parametric approach becomes.
The singleton tesBg and the max-tesMg are again very close and somewhat
comparable to the adaptive Neyman t@st. But their overall performance is
rather poor. The best choices, especially foilarge and for alternativeg? (x)
with m < 7, are the Bayesian-motived teBty and theL, test. As for the
single effect alternatives, the, test seems to be a good choice for (very) high
frequencies.
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Fic. 2. Smulated power curves for alternative models y,,Sl(x) (upper panelsand y,{,v(x) (lower
panels).

No single omnibus test is superior for all types of alternatives. This general
statement, which is accepted as a sort of consensus by many statisticians, is
confirmed by this (small) simulation study. It also shows the importance of
additional knowledge, from experts in tapplication area, about the plausibility
of certain types of alternatives.

3.2. Analysis of data from a variable star. Astronomers, both professional
and amateur, have collected masses of data on variable stars [Mattei (1997)].
The length of time between consecutive maximum brightnesses of a star is an
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important quantity to astronomers since it contains information about the age and
other properties of the star. We shall refer to these lengths of time as “pseudo-
periods,” since they tend to fluctuate substantially about the star's actual period,
which is determined by fitting a periodic function to observations. Of particular
interest is detecting systematic changes, or trends, in a star’s period [Koen and
Lombard (2001)].

Here we will apply the methodology introduced in this paper to test for period
changes in the long-period variable Omicron Ceti, or Mira. Both a frequentist
and a “proper” Bayesian analysis of the data will be done. The datajarg),
Jj=1,...,76, whereY; is the observed time (in days) between thie- 1)st and
Jjth maxima on Mira’s light curve. The light curve is simply Mira’s brightness as a
function of time. A plot of the observed pseudo-periods is given in Figure 3.

Note that we may tredfy, Yo, ..., as a time series, although the indgis not
actually time. A model often used by astronomers is as follows:

Yj=P+Aj+Ij+8j—8j_1, j=12, ...,

whereP is the mean period of the stax,; is a systematic deviation from the mean
period,/; represents random variation intrinsic to the star, anid the error made
in measuring thgth time of maximum brightness.

350

340

pseudo-period
330

(o]
QA .
(<)

310

0.0 0.2 0.4 0.6 0.8 1.0
standardized epoch

FiGc. 3. Mirapseudo-periods and two estimates of trend. The solid lineisa sixth degree polynomial,
the model chosen by BIC. The dashed lineisa local linear smooth.
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A common set of assumptions is that the are i.i.d. with mean 0 and variance
02 < oo, thel;’s are i.i.d. with mean 0 and variane¢ < oo, and the two series
are independent of each other. Our model generalizes two aspects of this one. First

of all, we allow for heteroscedasticity among the via the model
Var(e ;) = explvg + v1j), j=1...,76.

This model is motivated by analysis of data from 378 variable stars by Hart,
Koen and Lombard (2004), which indicates a tendency for residual variance to
decrease overtime, a not unexpected phenomenon since observation methods have
improved with time. A second difference in our model is that we allow/tf®to

follow a first order autoregressive [AR(1)] model, that is,

IJ:pIJ_1+ZJ, j:2,...,76,

where [p| <1 and theZ;s are i.i.d. mean O random variables with finite
variancec2. Our motivation for using an AR model is to circumvent a false
indication of trend. It is well known that the actual size of a trend test assuming
independent data is usually larger than the nominal size when the data exhibit
positive serial correlation.

We will model the trend\ ;, j =1,..., 76, as a polynomial of unknown degree,
and takeK = 15 as an upper bound on the degree. To obtain a likelihood function,
we assume that both thes andZ ;s are Gaussian. Therefore, our complete model
says thatry, ..., Y76 are jointly normal with means of the form

EYp)=po+Bij+---+Bj"  j=1..76
and covariance matrix defined by
0/(1— p?) + explvo + vij] + explug + va(j — D],

COMYE Y =1 po2/(1— p?) — expivg + vaminG, )1, =1,
pli=leZ/(1— p?), i —jl>1
We wish to test the hypothesis
Hy:Ai=Ao=---=A,=0.

In our frequentist analysis, two test statistics were computed. Omgdsfor the
nested polynomial models with degreed (..., 15, and the other is

15 -1
Tsingleton= (1 + Z explog(L;/L;-1) — |09(76)/2]> ,

j=1

where L ; is the maximized likelihood for the degrgepolynomial model. The
componentsL;/L;_1, j =1,...,15, are approximately independent of each
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other, with thejth component representing the relative increase in likelihood when
stepping from & — 1)st to ajth degree polynomial.

The values ofrgic andmsingletonfor the Mira data were 000161 and @0265,
respectively. Inasmuch as these quantities are good approximations to posterior
probabilities of no trend, this is already considerable evidence in favor of a
trend. However, we may also use frequentist methods to judge the significance
of these values. A parametric bootstrap was used to approximate the distribution
of the two statistics on the assumption tliaf is true. Data were generated from
the estimated error model corresponding to the polynomial degree maximizing
BIC,, j =0,1,...,15. The estimated optimal degree was 6, and the maximum
likelihood estimate ofo%/exp(vo) at degree 6 was 0. Essentially, this says
that the experimental errors, — ¢;_1, are estimated to be so large that they
completely overwhelm the intrinsic errork,. The maximum likelihood estimate
of vy at degree 6 was-0.001816. In our bootstrap procedure, we thus generated
observationsY}‘ according to

Yi=et—et .y,  j=1...76

where thee;‘s are i.i.d. withe;‘ ~ N(0, exp(—0.001816)), j =0,1,...,76.
(Since the distributions of our likelihood ratios are invariant to a constant mean
and tovg, we took these two parameters to be 0.)

One thousand sets of bootstrap data were generated, and on each one we
computedrg~ andn;‘inglemnin exactly the same way thabic andmsingletonWere
computed from the original data. Kernel density estimates for the two bootstrap
distributions are shown in Figure 4. In addition, we provide estimates of the

denSItIeS OﬁTB|C’asy andTFsing|etonasy, Where

15 J -1
TTBIC, asy = (1 +) eXp[ Y Vi2— Iog(76)j/2D :

j=1 i=1

15 -1
Tsingletonasy = (1 + Z expV;/2— |09(76)/2])
=1

and Vy,..., V15 are i.i.d.xl2 random variables. The two latter distributions are
large sample approximations to the null distributions of the two statistics.

The two approximations to the distribution afc are in close agreement,
while those for msingleton differ somewhat. The bootstrap distribution has a
heavier left tail than the large sample approximation. Estimatedalues for
mgic andmsingletona@re 0 and 12000, respectively, these being based on the two
bootstrap distributions. So, the frequentist analysis provides strong evidence of a
trend in the Mira pseudo-periods. Estimates of trend are seen in Figure 3.

We now describe a Bayesian analysis of the data. Priors for all model parameters
were determined empirically by fitting distributions to maximum likelihood
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FiG. 4. Approximationsto the distributions of g c (right) and rsingleton(left). The solid lines are
obtained from a Gaussian bootstrap, and the dashed lines are asymptotic distributions.

estimates for a database of 378 stars, one of which is Mira. The prior for the
polynomial degree is of particular importance since the prior probability of
the null hypothesis is simply the prior probability bt= 0. We considered three
different priors fork: uniform overQ1, ..., 15,

nl(k):Wlk_'_l), k=0,1,...,15
and
0.5, k=0,
m2(k) = { 238Dk + 1]t  k=1,...,15.

The prior 71 is a truncated version of Jeffreys’ noninformative prior for an
unrestricted positive integer [Jeffreys (1961), page 238], winjlés a modified
version ofrq that is “fair” to the null hypothesis, in that>(0) = 0.5. Posterior
probabilities of each polynomial degree were approximated using a modification
of Laplace’s method that accounts for the possibility that the MLEé)ttan occur

at its lower boundary of 0. The results are given in Table 3. Regardless of which
prior is used folk, the posterior probability of a tnel is at least 0.978, and, hence,
the Bayesian analysis is in basic agreement with our earlier frequentist one.
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TABLE 3
Approximations to posterior probabilities of polynomial degrees k for Mira data. Thefirst rowis
obtained using the classical BIC approximation to posterior probabilities, while the other three
are based on a proper Bayesian analysis with different priors for k, as explained in the text

Prior k

for k 0 1 2 3 4 5 6 7 8 9 >10

BIC 0.000 0.000 0.000 0.000 0.002 0.320 0.489 0.059 0.095 0.030 0.005
Uniform 0.001 0.003 0.001 0.000 0.002 0.107 0.335 0.109 0.189 0.129 0.124
1 0.009 0.011 0.003 0.001 0.003 0.141 0.377 0.108 0.166 0.102 0.079
b2 0.022 0.011 0.003 0.001 0.003 0.139 0.372 0.106 0.163 0.100 0.080

4. Propertiesof frequentist tests. We now investigate asymptotic frequentist
properties of the test statistic-1 7gic. We show how the limiting distribution
of this statistic depends on the class of modglsand we study the power of
a version of the test based on singleton models (Section 2.1). It will be shown
that the “singleton” test can detect local alternatives tending to the null at rate
J1ogn/\/n, and that its limiting power is completely determined by the largest
Fourier coefficient of the true function. Proofs of all theorems are provided in the
Appendix.

4.1. Limiting distribution under the null hypothesis. Our first two theorems
are quite general in the sense that we only make assumptions about the limiting
behavior of the log-likelihood ratio€ ; = 21og(L ; /Lo). These assumptions hold
for a great variety of likelihood models. In the sequgf, denotes a random
variable having the chi-squared distribution witldegrees of freedom.

The effect of A is well illustrated in our first theorem, in whickk contains
finitely many models.

THEOREM 1. Let A be a set containing only a finite number of different
models, M, ..., Mg, all including the null model My as a special case. Denote
by m the minimal set size m = mini<;<x (|M;|), where |M| is the dimension of
model M, and define

Kn={je{l,....,K}:IMj|=m}={m1),m2),...,m@n)}.
We assume the following conditions hold:

(i) For j=1,..., K, thelog-likelihood ratio £ ; is bounded in probability as
n — oQ.

(i) (Lom@ys- - Longiy) = (V1. ..., Vi), where Vi, ..., V; arejointly distrib-
uted random variables each having the X}121—mo distribution.
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It then follows that

m
n(m_mO)/z(l — BIC) 2) Z exp(%V,-).
Jj=1

Perhaps the most important aspect of Theorem 1 is the fact that the limit
distribution of 1— mgic is completely determined by the models.it with the
fewest parameters. In the special case wheres a finite sequence of nested
models, Theorem 1 implies that”—"0/2(1 — 7gc) converges in distribution
to exqzxm mg)» Wherem is the number of parameters in the smallest model
in 4. This “fewest parameters” phenomenon can also be seen in the BIC-based
goodness-of-fit test proposed by Ledwina (1994), and is a result of the fact that
BIC consistently chooses the null model whEg is true. For more discussion on
the phenomenon, see Claeskens and Hjort (2004).

Our next two theorems address cases in which the number of alternative models
tends tooco with n. Theorem 2 is essentially a corollary to Theorem 1, and, hence,
we do not provide its proof.

THEOREM 2. Let Mg, My, ... be a sequence of nested models containing
numbers of parameters mg < my < -- -, respectively. Assume that under Hyp and
asn — 0o,

D 2
OC]_ — Xml—mo‘

Furthermore, assume that, as n — oo, «£; is bounded in probability for each
j=2,3,.... Thenthere exists a sequence { K, } tending to infinity such that

K, -1
n(ml—mo)/2|:1 — (1+ > expBIC; — B|C0)) i| - quZXml mo)

j=1
asn — 0.

We now assume that the data follow a generalized linear model, as discussed in
Section 2.4. We study the case whete= A consists of the singleton models
M,, ..., Mg discussed at the beginning of Section 2, and w&léend to infinity
with n. Theorems 1 and 2 show that the asymptotic null distributiomg
generally depends only on the models having the smallest number of elements.
Therefore, our next theorem is more general than it first appears, since it also
describes the limiting distribution ofgic in many cases where the alternatives
consist of singletonplus other, larger models.

Define the statistic, by

A2

> —Ze 261(770))
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where

n

.1 A 1 .
Olj=;Z[Yi_b/(g(XﬁaO))]vj(Xi)’ j=1... K.
i=1

From the definition ofrg|c, we have

Sn
14 S,/yn’
where S, = Y%, exp(L;/2). The statisticS, is to §, as a score statistic is to
a likelihood ratio statistic. The quantiw&f/a(ﬁo) is known to have the same
limiting distribution as the log-likelihood ratiaC ; under the null hypothesis and
general regularity conditions, which suggests that under general conditions the
limiting distribution of \/n(1 — 7gic) is the same as that of,. In order to

simplify matters by having an explicit expression for the test statistic, we thus
state Theorem 3 in terms 6f,.

Vn(l—mpic) =

THEOREM 3. Definethe constants
JT K Kag OOSin(x/aK)d
X

=" d bg= K =12,
K= JIogkK o K v J1 x2/logx
Under assumptions A1-A8 in the Appendix,
Sh—ag D
S
bk

asn and K tend to infinity, where S has the stable distribution S1(1, 1, 0), in the
notation of Samorodnitsky and Taqgu (1994).

The mostinteresting aspect of Theorem 3 is that the limiting distributich
not normal. This results from the fact that each terrn(e&ﬁ/[Za(ﬁo)]) converges

in distribution to expy?2/2). Now, exgx?/2) does not have first moment finite,
and, hence, the classic central limit theorem does not appfy .tblowever, the
distribution of expjxlz/Z) isin the domain of attraction of the stable distribution
S1(1,1,0), as is easily verified by checking the conditions of Theorem 1.8.1 in
Samorodnitsky and Taqqu (1994).

Some remarks on the size &f are in order. Ideally, we would alloi to be
as large as — p. However, our method of proving Theorem 3 allowsto be
no larger thar(n'/8). Further restrictions ok may be necessary depending on
the choice of basis functions. The key assumptions in this regard are A2 and A8.
Suppose that1, us, ... are trigonometric functions or Walsh functions [Golubov,
Efimov and Skvortsov (1991)]. Then the bounBg (in A2) are constant for
every K, and no further restriction oK is required. If the dimension of the
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covariate is 1, andy, u», . .. are Legendre polynomials, théx = (constanty/K
[Szegb (1975), pages 68 and 184] and, again, no further restriction is needed.
It is also worth mentioning that the only assumption among A1-A8 affected by
the dimensionality of the covariateis A2. The boundsB1, Bo, ... will, in some
cases, tend to increase with the dimensionality of the covariate. For example, if
one uses products of Legendre polynomials as basis functionsBthevill be of
orderk /2, whered is the dimensionality ok. This, of course, will further reduce
the allowable size oK .

If the practitioner feels it necessary to choose a rather large valke afhd is
concerned about using the large sample distribution of Theorem 3, then bootstrap
methods could be used to approximate the distribution of the test statistic.

4.2. Power against local alternatives. Here we consider power against local
alternatives, that is, alternatives that tend to the null hypothesis-asoco. We
provide rates and constants for local alternatives such that a test basgdas
power tending to 1 and another rate (and constants) such that the power tends to
a<p<l.

THEOREM4. Let assumptions A1-A8 in the Appendix hold, and assume that
the function g in our generalized linear model (GLM) has the form

y1+y2/2l0gak \ <,
\/7_1 )jX_:l(ﬁ]v](x),

where —oo < y1 < oo and y» > 0 are constants. e assume that one of |¢;| is
strictly larger than all others, and define ¢ = maxi< <, 1¢1/+/a(n0), wherea(no)
is the dispersion parameter in the GLM. Letting s, be the (1 — «) quantile of the
stable distribution S1(1, 1, 0) and ® the c.d.f. of the standard normal distribution,
it follows that

&n(x) =g(X;00)+(

_ o, y2 <1/¢,
im_ P (225 zsa)=’a+<1—a><1><y1;>, n=1/,
e aK 1, y2 > 1/¢.

It is important to note that the limiting power of ti$g-based test is determined
by the largest Fourier coefficient of the true function. In contrast, the power of tests
based only omested alternatives is largely determined by the coefficients of the
smallest alternative models, regardless of whether those coefficients are the largest
ones. [See, e.g., Aerts, Claeskens and Hart (2000).] For this reason tests based
on nested alternatives often have poor power against high frequency alternatives,
since lower frequency models are the default “simplest” models. Owing to the
nature ofS,’s null distribution, it is not too surprising that the power 8y is
determined by the largest Fourier coefficient. LePage, Woodroofe and Zinn (1981)
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show explicitly that the limit of sums converging to a stable law is determined by
the few largest summands.

The connection betwee$, and the largest sample Fourier coefficient becomes
even clearer in the next theorem. We consider the test that rdifcter large
values of

né
(11) R, = max [ e }
1<j<k |l a(no)
and show that its limiting power against the local alternatives of Theorem 4
matches that ofS,. Since R, is undoubtedly more familiar to most readers
than isS,, this result provides a sort of benchmark for understanding the power
properties ofs,,.

THEOREMD5. Let R, bethe statistic defined in (11), and suppose that A1-A8
hold. Then if Hy istrue,

lim P(R, —2logK +loglogK + lognm < x)

n,K—oo
= exp(— exp(—x/2)) for each x.

Now define x, = —2loglog(l — «)~1, the 1 — « quantile of the distribution
exp(—exp(—x/2)). When the local alternatives of Theorem 4 hold,

. . S, —b
lim P(R,—2logK +loglogK +logm > xo) = lim P(" Kzsa),

n,K—oo n,K—oo ag

where the latter limit is given in Theorem 4.

4.3. Lindley’'s paradox. Lindley's paradox refers to situations where the
posterior probability of a hypothesidiy, is very high, say 0.95, and yet a
frequentist test indicates strong evidence agatfigtin that the P-value for Hy
is small, say 0.01. Typically a frequentist does not have to deal with Lindley’s
paradox since he or she does not compute posterior probabilities. However,
a frequentist using the tests proposed in Section 3 cannot help but notice it since
the test statistic itself is a posterior probability. A lewelest has the form

(12) “RejectHy if 7, < pp.o,”

with p,, — 1 asn — oo. This implies that for large enough, a posterior
probability (for Hyp) of, for example, 0.99, would lead to rejection B§!

For frequentists concerned with Lindley’s paradox, a relevant question is “at
what sample size does the paradox begin to manifest itself?” It seems reasonable
to say that the paradox occurs only if we rejékf when Hy is a posteriori more
probable thanH,. Therefore, we may ask at what sample size does the critical
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value of test (12) become larger thaf2? The BIC approximation to the posterior
probability of Hyp is
1
1+ 38 n=tmmo/2L, /Lo
Let us assume that;, — mg = 1 for eachk and thatL, /Lo, k=1,..., K, are

asymptotically independent, as is true for the singleton models used in Theorem 3.
When Hy is true, the distribution ofrg|c is thus approximated by that of

TBIC =

1
13 ,
(13) 1+n Y23 exp(Vi/2)
whereVy, ..., Vg are i.i.d.)(l2 random variables. Consider the test that rejéfis

at sample sizez and nominal levele when ngic is no more thanp, x «,
the a quantile of the distribution of (13). For purposes of discussion, we will
say that Lindley’s paradox occurs whemn x , > 1/2. Of coursegic is only
an approximation to the posterior probability &, but Kass and Wasserman
(1995) provide evidence thatgc is an excellent approximation te, for certain
reference priors. To be on the safe side, we could say tHaklrgic < pn. k.«
is an example of Lindley’s paradox in cases where one is using the appropriate
reference priors.

Figure 5 displays approximations of the 95th percentile of the distribution
of (13) as a function of/n and for different values ok . The approximations were
obtained by generating 10,000 independent values of (13). The graph indicates

1.0

percentile
00 02 04 06 08

0 20 40 B0 B0 100 120 140
sqriin)

Fic. 5. Approximate 95th percentiles of (13). From top to bottom, the curves correspond to
K =1,5,10, 20, respectively.
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that for a test of nominal level 0.05, Lindley's paradox is a very large sample
phenomenon when usingk of 10 or more. FoiK = 10, values greater than 0.5
are not included in the rejection region uniilis more than 6000. On the other
hand, the paradox can occur f&ir= 1 whenn is as small as 64. The cage=1
is of particular interest since then the distribution of (13) approximates that of our
statistic for testingHp against a sequence of nested alternatives.

A way of resolving Lindley’s paradox is to use a test of the form

(14) “Reject Hy if m, <min(1/2, py.o).”

What effect does such a rejection region have on the power and level of the test?
Typically, for all » less than someyg, test (14) will be identical to (12). For
largern, test (14) will have level of significance smaller thaand, indeed, tending

to 0 asn — oo. Of course, the smaller rejection region will lead to an attendant
reduction in power. However, in a certain sense the reduction is quite small. It
can be shown that test (14) has power tending to 1 for both fixed alternatives
and local alternatives tending to the null at rdtegn)"//n, wheren > 1/2. For

local alternatives tending to O at ratg.1n, though, the power of (14) tends to O.
Apparently, this is a price that must be paid to avoid Lindley’s paradox.

5. Concluding remarks. A very general means of testing the fit of a
parametric function has been proposed. The parametric model is rejected if its
posterior probability is too small. The test can be carried out in either a Bayesian
or frequentist way. Alternatives to the null hypothesis are modeled by a sequence
of models, which need not be nested. Our simulation study supports the conclusion
that test validity is generally well maintained by use of an asymptotic distribution.

It also shows that our proposed tests can compare favorably with other omnibus
lack of fit tests.

Although some of the theory assumes the model is of the generalized linear
form, the test can be used in a general likelihood context, including discrete or
continuous data and multivariate data with dependence among observations. Our
example using variable star data illustrates the fact that our test can accommodate
dependentdata. The applicability and the performance of the method in a variety of
complex settings, including longitudinal and other types of clustered data, is a topic
of current research. In the multiple regression case, where the covariates belong to
a subset ofR? (d > 1), a variety of sequences of alternative models, including
singleton models and variations thereof, can be chosen and it is not clear which
sequence is preferable or leads to optimal power characteristics. An extensive
simulation study in a variety of settings can shed more light on these important
practical issues. Furthermore, a score version of the proposed frequentist test can
be considered, as well as robust versions of it. These variations and extensions are
currently under investigation.
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APPENDIX

Following are assumptions needed in our proofs of Theorems 3 and 4:

Al. The design pointgy, ..., X, are fixed and confined to a compact sub$et
of R? for all n.
A2. The functionsyy, ..., yp, u1, uz, ... satisfy the following assumptions:

(i) There existsB] < oo such that

sup |yj(X)|<Bi and
1<j<p.xes
(i) there exists a sequence of positive constgits: j = 1,2,...} such
that
sup  |u;(X)| < By, K=12....
1<j<K,xed

A3. The functions, vo, ... satisfy (4) and (5) anél, vo, . .. are constructed from

Y1,.-., ¥Yp, U1, u2, ... as described at the beginning of Section 3.
A4. LetA, g denote the: x K matrix withi, j element:;(x;). Then we assume

that the diagonal elements éf A, x/n are all 1, and that the smallest

eigenvalue OA,{KA,,,K/n is bounded away from O for all and K .

A5. The dispersion parameterng) is positive, and the MLE$ and@o of no
andf, respectively, are such that(a(fip) — a(n0))? and E||6g — 8o||? exist
and are eaclo (n1).

A6. Let ® be the parameter space fér There exists a compact, connected
subsetV of ® such tha¥g € & and, for eackx € 8, g(x; 0) is a continuous
function ofd on V.

A7. The functionb is thrice differentiable with

sup [b"(g(x;0))| < B3
Xes,0eN
for some constanB;, the function (ofx) b”(g(x; 6)) is nonnegative for each
0 <O, and
inf 5" (g(x; 0 0.
xXed8,0eN (g( )) ~

A8. The number of singleton modelx;, tends to infinity withn in such a way
that K < n'/8-¢ and Bx K /% < n'/?=4, wherea is any number such that
O<a<1/8.

PROOF OFTHEOREM 1. Using the explicit expression of the BIC numbers
for the models under consideration, we can write the test statistic in the following
form:

n(1/2)(m—mo) Zlen—(l/Z)(mj—mo) exp(L;/2)

(1/2)(m—mq) —
n (1—mgic) =
Bic) 1+ len‘(l/z)(m-i‘mw exp(L;/2)
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By definition ofm and assumption (i), the denominator ig-10 , (n ~(/2tn=mo)y,
while the numerator is equal ton=(/2m=mo S exp(L,(j)/2) +
0,(n~(/2m=mo)y The result now follows from assumption (ii)J

PROOF OF THEOREM 3. Throughout the proo€s, Co, ... denote positive
constants that depend on neitheror K . To simplify notation, we have suppressed
the dependence of thg's andv;’s onn.

We may expres§; as

aj=a;+e1j+ezj,

where, forj =1,2,...

=

—Z — b/ ((Xi: 00))Jvj (X)),

:

n

1 A
e = > ¥ = b (g(Xi: 00)) |19 (i) — v ()]

i=1
and

n

1 o
e2j ==~ [b/(g(xi: 80)) = b'(3xi; 60)) Jv; (x:).

i=1
We may write
K K K
Sp=>_expUjn/2) + > _ exp(U;n/2)[exp(Rj,) — 11 =Y exp(U;n/2) + rgn,
j=1 j=1 j=1

whereU,, = n&?/a(no) andR;, = (Vj, — U,,)/2. Obviously

Irkal < max [exp(R;y) — 1 Zexp(U,n/Z)
j=1

The remainder of the proof consists of two main parts:

(a) Showing thas, = max<;<x |€Xp(R;,) — 1| is asymptotically negligible,
and
(b) obtaining the large sample distribution@j;1 expU;,/2).

We first consider (a). By Taylor's theorem,
exp(R;,) =1+ R, eXp(R;n)
for R;, such thaiR;,| <|R;,|, and so

6, < max |R;,|exp(|Ri,|).
n_1§j§K| jl’ll FX| jl’l|)
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Now, for all ¢ > 0, takes’ such that’ exps’) = ¢, and so

K
(A.1) (ﬂ{lR/n| <¢ }> = P( maX IR jn| €XP(IRjnl) <<9)
j=1
Define
~2 ~
nos; 1 1 no;
= (oo os) Ty= ey te)
Y72 \aGio)  alno) TS

and

n(e1; + e2;)?

¥ 2aio)
By (A.1) we have

K 3

P(max IRjulexp(IRsal) = ) = 3 3" PUTy = €'/3)

j=1¢=1

1 1 |/ )
_— = > .= ].
a(fo)  a(no) 3

P (1235 2>2 ¢ 2/361(77o)n b VBa(o) 3,
3)7 2J3  2J¢

where we have useH(Y;) = b'(g(X;; 00)), Var(Y;) = a(no)b” (g(X;; o)) and A3.
A bit of algebra shows that, for all sufficiently large,

1 1 ¢ a?(no)ve’
sl ) :
('l aGo) ~ atm) > 3> la (7o) a(n0)|>a(no)\/_+«/§n1/3

By Markov’s inequality and A5, the last probability 8(n~1/3). We have thus
shown thay"5_; P(|T1;| > ¢'/3) = O(Kn™1/3).
We turn now to the terms;, for which

Clearly,

/
P(|T1]|>%)SP< 2/3~ 2>2\/;>+P(l’ll/3

By Markov’s inequality,

¢ N &'a(no) - &'a(no)
P<|T2j|>§>§P<n|aj||el‘,-|> 12 )+P<n|aj||ezj|> 12 )

+ P(a(ﬁo) < L;m))
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The third summand in the last term @(» 1), independent ofj. Letting C1 =
&'a(no)/12,

P(nl@jllezj| > C1) < P(n*3|&;| > VC1) + P(n?3lez;| > v/C1)

a(no) 2/3
=c- st Pl Bleaj| > V/C1).

We have

eaj = —=~ Z[ g (X5 80) — g(xi; 00))b" (g(xi; 80))

i=1
1 R
+5(80: 00 — g0x; oo>)2b/”<gl->}v 00,

where g; is betweeng(x,,ao) and g(x;; 6p). The orthogonalltypropertles 4
imply that the last expression is simply(2n)~ 12” l(g(xl,ao) (xl,ao))2
b"(gi)v;(x;), and so

1/2
12 3 .
le2j| < (; Z(b/”(gn)zv,?(x,-)) max (s (x:: fo) — g(xi: 00))°/2
i=1 ==

16" (&)
<C2||00—00|| m

It follows that
P(1?ez;| > VC7) = P30~ B0l > Ca) + P max|b(3)| > Ca).
<i<n
whereC3z andCy are defined so that, exceeds the valuB; in A7. We now have

P(n?3ley;| > V/C1) < 1/3+P<max|b/”(g,)|>C40006N>+P(00€,Nc)

On the evenﬁo € N, assumption A6 implies that; = g(x;; 0,;) for 8,; € N,
and, hence, (by A7P (maxi<i<, |b"'(g;)| > C4N @ € N) = 0. Along with A5,
we thus have

C Cs

P(n2/3|ezj| > \/Cl) < nTZ + 7
Now consider

P(nl@;|lerj| > C1) < P(n€|@;| > v/C1) + P(n'™C|ex;| > V/C1)

a(no) _
= Gtz P(n'lezj| > VC1),
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for ¢ a numberin(0, 1/2). We may write

p+ij

elj:Z(BU ﬂ”) Z _b/ (Xi;éO))]ur(Xi)y
r=1

and so
p+i ptjfq n N 2
%, < X:l(ﬁ,‘,- — Bj)?- 2;(5 Zi[y,- —b/(g(xi;é'o))]ur(xi))

defp+j R
= Z(ﬂr] ﬁr] n]
r=1

Before proceeding, we define some matrix notation. Aetlenote the ma-
trix A, x in A4, andwW andW then x n diagonal matrices with respective diagonal

elementd” (g(x;; 6p)) andb” (g (X;; 00),i=1,...,n. MatricesB andB are the R
matrices in the QR decomposnlons\Ml/ZA/f andW Y2p /. /n, respectively.
We then have

p+ij

Y (Bej = Brp)® = (p+ HmaxB — fr)* = (p+ IBT — BT

=(p+HIBLB-B)B Y3
_(p+)IB-BI3
o2(B)o2(B)

whereos (M) denotes the smallest singular value of maiix A result of Drm&,
Omladt and Veseb (1994) implies that

IATWA /n|2|ATWA — ATWA||2
o2(ATWA)

Assumptions A2, A4 and A7 and basic properties of matrix norms [Golub and Van
Loan (1996)] now imply that

IB —BJ||3 < C7(8K3 + v2K?) max (b" (g(x:: B0) — b (g(xi; 00)))>.
<i<n

IB—BJ3 < (8K + v2K?) -

Combining previous results yields

P(n*1ef; > C1) < P (n“(p + /)(8K3 +V2K?)

X lTi%(bN(g(XiQ B0)) — b"(g(xi: 80)))%/0(B) > Cg)

+ P(n?1=974z,. > /C1)

< (p+ HICoK3n®~1 + Crnt=279)
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and

K ¢ K K
Z P<|T2j| > 5) = Cll(m) + ClZ(m)

j=1
K \° K 2
* C13(n(1—a)/5) * Cl“(n[a—(l—zcn/Z) '

Taking 1—2c=(1—a)/5=[a — (1 — 2¢)]/2=1/8 and demanding that =
0(n'/8) ensures that the right-hand side above tends to 0.

Since n(e1j + e2;)? < 2n(e§j + egj), the term >"5_; P(|73j| > //3) can
be bounded by a quantity that is asymptotically negligible in comparison to
ZleP(|T2j| > ¢’/3). Combining all the previous steps, it now follows tiéat
tends to 0 in probability ags — oo.

We turn now to step (b) in our proof. We may write

Sn — bk r'Kn

= 51{” + ’
ag ag

where
K expU;jn/2) — bk

ag
We will first show that8g, converges in distribution to a stable law, and then
that rg,/ag converges in probability to 0. Now leftk, be the c.d.f. of8g,,
and Fk the c.d.f. of a random variable having exactly the same formfiggsbut
with Uy, ..., Uk, replaced byZ2, ..., Z2%, whereZi, Z,, ... are i.i.d. random
variables having the standard normal distribution. Obviously,

Fin(x) = Fx (x) + (Fgn(x) — Fg (x)).

Theorem 1.8, pages 50 and 51 of Samorodnitsky and Tagqu (1994), implies that
Fx converges uniformly t&, whereF is theS1(1, 1, 0) stable law, in the notation
of Samorodnitsky and Taqqu (1994).

Now Fg can be written as

’SKn =

K
Fx(x)=P (Z exp(Z%/2) < agx + bK)
j=1
= P((Z]_, ..., Zg) € Ax,]{).
Likewise,
Fgn(x) = P(V/n(@1, ..., ag)/va(o) € Ay k).

Due to the convexity of the exponential function, the sétsy are convex for alk
andK, and, hence, we may apply the multivariate Berry—Esséen theorem of Gotze
(1991) to obtain the bound

SUp|Fkn(x) — Fg (x)| < C15K &,
X
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for all K > 6, where

X 3/2
én.k = (na (o ))3/2ZE|Y b'(g(x;:00)| [;viz(xj)} :

The uniform boundedness bf (g(-; 8p)) (A7) now implies that
3/2
b0k < 55 [Zvﬁxp}
L | )

Bx K 3/2 Cis

_722 [1"(2(x); 00)) /5" (2(Xj; 00) Jvf (X;)
i=1j=1
Bk K3?C
_uz Zb” (g(xj; 00))v2(X;)
i= 1 j=1
BKK5/2C17

Finally, then

ClBBKK7/2
Sup|Fgn(x) — Fx(x)| < — oz
X

and the right-hand side of the last expression tends to 0 by A8.
Finally, consider

Irgnl _ [Zj-‘:lexpw,-n/a — bk +bK}
—Yn ag
= 8,[0p(1) + bk Jax]

= 0p(1) +8,bk Jax.

ag

2609

It is straightforward to show thabx /ax| < Ci9log K. Examining our proof
that$,, converges in probability to O makes it clear tliatog K does also, and,

hence, the proof is completel]

PROOF OFTHEOREM4. ForallK > m, we have
S, — bk

ak

:Wn+Tn’

where
/ =m+1 eXFXV]"/Z)

Wy =— Zexp(VJn/Z) and T, =

K j=1 aK
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Obviously
PW,+T,>s4)=P(Ty >54) + PW, + T, >5,NT), <5g).

We first consider the case wharg‘l = ¢. Without loss of generality, suppose
the largest¢;| is |¢ |, and consider, for any > 0,

1 m—1 m—1
P (@ ,2::1 exp(Vin/2) > s> <P ( U {exp(V]n/Z) > K81}>

j=1

< mip(exp(v]n /2> Ke )

Jj=1 -1
Now V;, = no?]z./a(ﬁo), where

n

1 n
a;==% [¥i = b'(g0xi; 00)]0; (%)

i=1
_Z = b/ (2(xi;00)]v; (%) +0,(n ),

and the last statement foIIows by arguing as in the proof of Theorem 3. Continuing
from the last expression, we have

1 n
aj="> D 1Y = b (ga(x)]vj (X))

i=1

ta Z (8%0)) — B/ (803 00)) v (%)) + 0, (n~/2)

= —Z ;= b (g0 (X)) v (X))

Y1+ y2+/2l00akg
+
NG

)4)]- + 0 tlogak) +o0,(n"?).
We may thus write

Vnd;
A2 I _z. V21
(A.2) Vot 4 +(1+r2 ogax)ﬁ

where Z;,, converges in distribution to a standard normal random variable, and
we have used the fact thgp is consistent fomg under our local alternatives.
Using (A.2) and the fact that|¢;|/+/a(no) <1 for j=1,...,m —1, itis easy

to verify that

+ Op(l)

(exp(V,,,/Z) > Kgl) -0
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asn — oo foreachj =1, ..., m —1. Combined with previous results, this implies
that 37— exp(V;/2)/ax converges to 0 in probability whep,* = ¢, and,
hence, the power has the same limit as

P(T, = s4) + P(exp(Vm,,/Z)/aK +T,>sqNT, < Sa)-
DefineT, by
ak (sq — T) =max(l, ag (so — Tp)).

Using (A.2) and some straightforward algebra, and assuming without loss of
generality that,, > 0, we have

Zinn + (yl/VZ ++/2 IOgaK ) + Op(l)
>V2logag +2109sq — Ty) =  eXp(Vun/2)/ax + Ty > sq.
By Taylor's expansion,

Iog(sa - Tn)
VO,

whereU,, is between 2logg and 2logig + 2109(s, — T,).
Forany O< ¢ < 1, definel, o = I(—o,5,—¢)(Ty). Then

V2logag + 210g(sy — T,)) = +/210gax +

Y1 ||09(Sa - Tn)lln 3 )
PlZ — 1) > —NlhL.,=1
< mn + Vo +0p( )_ JZIogaK +2log£ n,e
1 log(sa — 7)
=< P(Zmn + % +o0,(1) > % NIe= 1)

v,
< P(exp(%)/aK F Ty > 5qNye =1).

Now, arguing as in the proof of Theorem &,,.,, T,) converges in distribution
to (Z,T), whereZ andT are independent with standard normal afdl, 1, 0)
distributions, respectively. Sineg, — oo, this implies that

10g(se — T) | 1n.e

= 1
J2Togayx + 21oge op().
and so
y1 [109(se — T) I e )
P\ Z —= 1) > ~ Nl .=1
( mn+y2+0p( )_\/Zlogak+2Ioge e

AP(Zz—ﬁﬂTfsa—e).
v2

Combining previous results, and by the arbitrariness, @fe now have
(A.3)  liminf P(exp(Viun/2)/ak + Ty = so) = & + (1 — ) D (y1/2).
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Now, for anye > 0,
P(exp(Viun/2)/ak + Ty > s¢ N T, < sq)
< P(exp(Viun/2)/ak = €N T, < sq) + P(sq — & < T, < s4).
Arguing as we did before, the very last quantity converges to
A—a)@(y1/y2) + P(sa —& =T < sa),

and, hence, by the arbitrarinesssof

limsupP (exp(Viun/2)/ak + Ty > s¢) <o+ (1 —a)®(y1/y2).

Combined with (A.3), this yields Theorem 4 for the cz;v{e1L =<.

Whenyz‘1 > ¢, we may show thaw,, tends to O in probability using the same
argument that was applied W, — exp(V,,,/2) /ak in the cas%_1 =z.

Fory, ! < ¢, the limiting power is at least

P(T, > sq) + P(quan/z)/ak + Ty =5 NT, < Soz),

and if we follow exactly the same steps used in the @/@‘ée: ¢, we may establish
that the limiting poweris 1. O

PROOF OF THEOREM 5. Let Z1, Z»,... be a sequence of i.i.d. standard
normal random variables, and defidg = 2logK — loglogK — logz. We first
assume thakly is true. Since

121]2);( an - 21232)1(( |Rjn| <R, = 121]2)}{ an +212}2)I(( |Rjn|
and we have already shown ti#at= max < ;<x | eXp(R,) — 1| is asymptotically
negligible, it suffices to study the distribution & = max <<k Uj,. Let G,k
and G¢ denote the distribution functions @, — dx and max<;<x ij. — dg,
respectively. The random variable sup,x (x) — Gk (x)| is bounded by exactly
the same quantity as was sup,,x (x) — Fg (x)| in the proof of Theorem 3, and,
hence, we need only consider

P( max ZZ <x +d1<) =[1-2(1- o(Vx+dx))]*

1<j<K
_ [1 _2(x+dg)
Vx+dg
—[1—e*PK1 4 o(K~ YK
= exp(—e /%) + 0(1),

K
+o<K—1>}

which completes the proof in the null case.



BAYESIAN TESTS OF FIT 2613

Now assume that the local alternatives of Theorem 4 hold, and define

Wik = max Uj, and Wyg = max Uj,.
1<j<m m<j<K
As in the proof of Theorem 4, we assume without loss of generality that the largest
value of|¢;| is at j =m. Three facts are key in the rest of the proof:

() R, has the same limiting distribution &, .
(iiy P(Wix = dg + x4) convergesto 0 as — oo.
(i) Wag — dg has a limiting distribution equal to that in the null case.

Proof of (i)—(iii) is not provided here since it closely parallels arguments in the
proof of Theorem 4.
Facts (i) and (ii) imply that

P(R, —dg > xo) = P(Upp > dg + x4 UWog —dg > x4) +0(1).
As in the proof of Theorem 4, it is easy to check that
n||—>moo P(Upn > dg + x4) = ®(y18).

This along with (iii) and the fact thdf,,,,, and Wy, are asymptotically independent
implies that

lim P(Upn >dg + x4 U Wog —dg > x4)
n— 00

=P(y10) +a — P(y18)e
=a+ 1A -a)P(y?),
which completes the proof..
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