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ESTIMATORS OF DIFFUSIONS WITH RANDOMLY SPACED
DISCRETE OBSERVATIONS: A GENERAL THEORY

BY YACINE AÏT-SAHALIA 1 AND PER A. MYKLAND 2

Princeton University and University of Chicago

We provide a general method to analyze the asymptotic properties
of a variety of estimators of continuous time diffusion processes when
the data are not only discretely sampled in time but the time separating
successive observations may possibly be random. We introduce a new
operator, the generalized infinitesimal generator, to obtain Taylor expansions
of the asymptotic moments of the estimators. As a special case, our results
apply to the situation where the data are discretely sampled at a fixed
nonrandom time interval. We include as specific examples estimators based
on maximum-likelihood and discrete approximations such as the Euler
scheme.

1. Introduction. Most theoretical models in finance are spelled out in
continuous time [see, e.g., Merton (1992)], whereas the observed data are, by
nature, discretely sampled in time. Estimating these models from discrete time
observations has become in recent years an active area of research in statistics
and econometrics, and a number of estimation procedures have been proposed
in the context of parametric models for continuous-time Markov processes,
often in the special case of diffusions. Not only are the observations sampled
discretely in time, but it is often the case with financial data that the time separating
successive observations is itself random, as illustrated, for example, in Figure 1 of
Aït-Sahalia and Mykland [(2003), page 484].

This earlier paper focused on the case of inference with the help of likelihood.
For data of the type we consider, however, it is common to use a variety of
estimating equations, of which likelihood is only one instance; see, for example,
Hansen and Scheinkman (1995), Aït-Sahalia (1996, 2002) and Bibby, Jacobsen
and Sørensen (2004). Our objective in this paper is to carry out a detailed analysis
of the asymptotic properties of a large class of such estimators in the context of
discretely and randomly sampled data. Unlike Aït-Sahalia and Mykland (2003),
it will also permit the diffusion function to depend on both the parameter and the
data.
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We model this situation as follows. Suppose that we observe the process

dXt = µ(Xt; θ) dt + σ(Xt;γ ) dWt(1)

at discrete times in the interval[0, T ], and we wish to estimate the parameters
θ and/orγ . We call the observation timesτ0 = 0, τ1, τ2, . . . , τNT

, whereNT is
the smallest integer such thatτNT +1 > T . Because the properties of estimators
vary widely depending upon whether the drift or the diffusion parameters, or both,
are estimated, we consider the three cases of estimatingβ = (θ, γ ) jointly, β = θ

with γ known orβ = γ with θ known. In regular circumstances,β̂ converges in
probability to someβ̄ and

√
T (β̂ − β̄) converges in law toN(0,�β) asT tends to

infinity.
For each estimator, the corresponding�β and, when applicable the biasβ̄ −β0,

depend on the transition density of the diffusion process, which is generally
unknown in closed form. Our solution is to derive Taylor expansions for the
asymptotic variance and bias starting with a leading term that corresponds to the
limiting case where the sampling is continuous in time. Our main results deliver
closed form expressions for the terms of these Taylor expansions. For that purpose,
we introduce a new operator, which we call the generalized infinitesimal generator
of the diffusion.

Specifically, we write the law of the sampling intervals�n = τn − τn−1 as

� = ε�0,(2)

where �0 has a given finite distribution andε is deterministic. Our Taylor
expansions take the form

�β = �
(0)
β + ε�

(1)
β + ε2�

(2)
β + O(ε3),(3)

β̄ − β0 = b(1)ε + b(2)ε2 + O(ε3).(4)

While the limiting term asε goes to zero corresponds to continuous sampling, by
adding higher-order terms inε, we progressively correct this leading term for the
discreteness of the sampling. The two equations (3) and (4) can then be used to
analyze the relative merits of different estimation approaches, by comparing the
order inε at which various effects manifest themselves, and when they are equal,
the relative magnitudes of the corresponding coefficients in the expansion.

Because the coefficients of the expansions depend upon the distribution of
the sampling intervals, we can also use these expressions to assess the effect of
different sampling patterns on the overall properties of estimators. Moreover, our
results apply not only to random sampling, but also to the situation where the
sampling interval is time-varying in a deterministic manner (see Section 5.3), or to
the case where the sampling interval is simply fixed, in which case we just need to
set Var[�0] = 0 in all our expressions. One particular example is indeed sampling
at a deterministic fixed time interval, such as, say, daily or weekly, which is the
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setup adopted by much of the recent literature ondiscretely observed diffusions
[see, e.g., Hansen and Scheinkman (1995), Aït-Sahalia (1996, 2002) and Bibby,
Jacobsen and Sørensen (2004)].

The paper is organized as follows. Section 2 sets up the model and the
assumptions used throughout the paper. Section 3 develops a general theory
that establishes the asymptotic properties of a large class of estimators of
parametric diffusions and their Taylor expansions. Section 4 applies these results
to two specific examples of estimating equations: first, the maximum likelihood
estimator; second, the Euler approximate discrete scheme based on a Gaussian
likelihood. Our conclusions also carry over to the maximum likelihood-type
estimators discussed in Aït-Sahalia and Mykland (2003). We discuss extensions
of the theory in Section 5. Proofs are contained in Section 6. Section 7 concludes.

2. Data structure and inference scheme.

2.1. The process and the sampling. We let S = (x, x̄) denote the domain of
the diffusionXt . In general,S = (−∞,+∞), but in many examples in finance,
we are led to consider variables such as nominal interest rates, in which case
S = (0,+∞). Whenever we are estimating parameters, we will take the parameter
space for thed-dimensional vectorβ to be an open and bounded set. We will make
use of the scale and speed densities of the process, defined as

s(x;β) ≡ exp
{
−2

∫ x(
µ(y; θ)/σ 2(y;γ )

)
dy

}
,(5)

m(x;β) ≡ 1/
(
σ 2(x;γ )s(x;β)

)
(6)

and the scale and speed measuresS(x;β) ≡ ∫ x
s(w;β)dw and M(x;β) ≡∫ x

m(w;β)dw. The lower bound of integration is an arbitrary point in the interior
of S. We also define the same increasing transformation as in Aït-Sahalia (2002):

g(x;γ ) ≡
∫ x du

σ (x;γ )
.(7)

We assume below conditions that make this transformation well defined. By
Itô’s lemma,X̃t ≡ g(Xt ;γ ) defined onS̃ = (g(x;γ ), g(x̄;γ )) satisfiesdX̃t =
µ̃(X̃t ;β)dt + dWt with

µ̃(x;β) ≡ µ(ginv(x;γ ); θ)

σ (ginv(x;γ );γ )
− 1

2

∂σ (ginv(x;γ );γ )

∂x
,

whereginv denotes the reciprocal transformation. We also define the scale and
speed densities of̃X, s̃ andm̃, andλ̃(x;β) ≡ −(µ̃(x;β)2 + ∂µ̃(x;β)/∂x)/2.

We make the following primitive assumptions on(µ,σ ):

ASSUMPTION 1. For all values of the parameters(θ, γ ) we have the
following:
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1. Differentiability: The functionsµ(x; θ) andσ(x;γ ) are infinitely differentiable
in x.

2. Nondegeneracy of the diffusion: IfS = (−∞,+∞), there exists a constantc

such thatσ(x;γ ) > c > 0 for all x and γ . If S = (0,+∞), limx→0+ σ 2(x;
γ ) = 0 is possible but then there exist constantsξ0 > 0, ω > 0, ρ ≥ 0 such
thatσ 2(x;γ ) ≥ ωxρ for all 0 < x ≤ ξ0 andγ . Whether or not limx→0+ σ 2(x;
γ ) = 0, σ is nondegenerate in the interior ofS, that is for eachξ > 0, there
exists a constantcξ such thatσ 2(x;γ ) ≥ cξ > 0 for all x ∈ [ξ,+∞) andγ .

3. Boundary behavior:µ, σ 2 and their derivatives have at most polynomial growth
in x near the boundaries, limx→x S(x;β) = −∞ and limx→x̄ S(x;β) = +∞,

lim
x→x

inf µ̃(x;β) > 0 and lim
x→x̄

supµ̃(x;β) < 0(8)

and

lim
x→x or x→x̄

supλ̃(x;β) < +∞.(9)

4. Identification:µ(x; θ) = µ(x; θ̃) for π -almost allx in S implies θ = θ̃ and
σ 2(x;γ ) = σ 2(x; γ̃ ) for π -almost allx in S impliesγ = γ̃ .

Under Assumption 1, the stochastic differential equation (1) admits a weak
solution which is unique in probability law. This follows from the Engelbert–
Schmidt criterion [see, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991)
replacingR by S throughout], with explosions ruled out by the boundary behavior
of the process. The divergence of the scale measure makes the boundaries
unattainable, since it implies that

�x̄ ≡
∫ x̄{∫ x̄

u
s(v;β)dv

}
m(u;β)du = ∞,

�x ≡
∫
x

{∫ u

x
s(v;β)dv

}
m(u;β)du = ∞.

Given that it is unattainable (i.e., given that�x̄ = ∞), the boundarȳx is natural
whenNx̄ = ∞ and entrance whenNx̄ < ∞, where

Nx̄ ≡
∫ x̄{∫ x̄

u
m(v;β)dv

}
s(u;β)du,

and similarly for the boundaryx [see, e.g., Section 15.6 in Karlin and Taylor
(1981)]. If both boundaries are entrance, then the integrability assumption on the
speed measurem will automatically be satisfied. When one of the boundaries is
natural, integrability ofm is neither implied nor precluded.

Condition (8), however, guarantees that the processX̃ will be stationary: withb
denoting the lim sup in (8), we have near the right boundary

m̃(y;β) = exp
{

2
∫ x

µ̃(y; θ) dy

}
≤ c exp{2bx},
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wherec is a constant, and similarly near the left boundary. Thus,m̃ is integrable,
and it follows thatm is integrable. Therefore, the processX is stationary with
stationary density

π(x,β) = m(x;β)∫ x̄
x m(y;β)dy

,(10)

provided that the initial value of the process,X0, has densityπ, which we will
assume in the rest of the paper. Furthermore, condition (8) guarantees thatX

has exponentially decayingρ-mixing coefficients (see Lemma 4). Condition (9)
guarantees the regularity of the transition density of the process [see Proposition 2
in Aït-Sahalia (2002)]; note that the condition does not preventλ̃ from going
to −∞, it only excludes+∞ as a possible limit.

We will denote byL2 the Hilbert space of measurable real-valued functionsf

on S such that‖f ‖2 ≡ E[f (X0)
2] < ∞ for all values ofβ. Whenf is a function

of other variables, in addition to the state variabley1, we say thatf ∈ L2 if it
satisfies the integrability condition for every given value of the other variables.

To be able to give specific results on the effects of the sampling randomness
on the estimation ofβ, we need to put some structure on the generation of the
sampling intervals�n = τn − τn−1. We setYn = Xτn. We assume the following
regarding the data generating process for the sampling intervals:

ASSUMPTION2. The sampling intervals�n = τn − τn−1 are independent and
identically distributed. Each�n is drawn from a common distribution which is
independent ofYn−1 and of the parameterβ. Also,E[�2

0] < +∞.

In particular,E[f (Y1)
2] = ‖f ‖2. An important special case occurs when the

sampling happens to take place at a fixed deterministic interval�̄, corresponding
to the distribution of�n being a Dirac mass at̄�. See Section 5.3 for extensions.
Throughout the paper we denote by� a generic random variable with the common
distribution of the�ns.

While we assume that the distribution of the sampling intervals is independent
of β, it may well depend upon its own nuisance parameters (such as an unknown
arrival rate), but we are not interested in drawing inference about the (nuisance)
parameters driving the sampling scheme, only aboutβ. Note also that in the case
of random sampling times, the numberNT +1 of observations in the interval[0, T ]
will be random.

2.2. The estimators and their distribution. We consider a class of estimators
for β obtained by minimizing a criterion function. Specifically, to estimate the
d-dimensional parameter vectorβ, we select a vector ofr moment conditions
h(y1, y0, δ, β, ε), r ≥ d, which is continuously differentiable inβ. We form the
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sample average

mT (β) ≡ N−1
T

NT −1∑
n=1

h(Yn,Yn−1,�n,β, ε)(11)

and obtainβ̂ by minimizing the quadratic form

QT (β) ≡ mT (β)′WT mT (β),(12)

whereWT is an r × r positive definite weight matrix assumed to converge in
probability to a positive definite limitWβ . If the system is exactly identified,r = d ,
the choice ofWT is irrelevant and minimizing (12) amounts to settingmT (β)

to 0. The functionh is known in different strands of the literature either as a
“moment function” [see, e.g., Hansen (1982)] or an “estimating equation” [see,
e.g., Godambe (1960) and Heyde (1997)].

A natural requirement on the estimating equation—what is needed for consis-
tency ofβ̂—is that

E�,Y1,Y0[h(Y1, Y0,�,β0, ε)] = 0.(13)

Throughout the paper we denote byE�,Y1,Y0 expectations taken with respect to
the joint law of (�,Y1, Y0) at the true parameterβ0, and writeE�,Y1, and so
on, for expectations taken from the appropriate marginal laws of(�,Y1), and
so on. As will become clear in the Euler example below, some otherwise fairly
natural estimating strategies lead to inconsistent estimators. To allow for this, we
do not assume that (13) is necessarily satisfied. Rather, we simply assume that
the equationE�,Y1,Y0[h(Y1, Y0,�,β, ε)] = 0 admits a unique root inβ, which we
define asβ̄ = β̄(β0, ε).

With NT /T converging in probability to(E[�])−1, it follows from standard
arguments that

√
T (β̂ − β̄) converges in law toN(0,�β), with

�−1
β = (E[�])−1D′

βS−1
β Dβ,(14)

where

Dβ ≡ E�,Y1,Y0[ḣ(Y1, Y0,�, β̄, ε)],
Sβ,j ≡ E�,Y1,Y0[h(Y1+j , Yj ,�, β̄, ε)h(Y1, Y0,�, β̄, ε)′],

and Sβ ≡ ∑+∞
j=−∞ Sβ,j . If r > d, the weight matrixWT is assumed to be any

consistent estimator ofS−1
β ; otherwise its choice is irrelevant. A consistent first-

step estimator of̄β, needed to compute the optimal weight matrix, can be obtained
by minimizing (12) withWT = Id .
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3. Expansion of the asymptotic variance: general results.

3.1. The generalized infinitesimal generator. As we just saw, the asymptotic
distributions of the estimators depend upon expectations of matrices of the
form E�,Y1,Y0[f (Y1, Y0,�,β, ε)]. Because these expectations are not generally
available in closed-form, our approach is based on calculating Taylor expansions
in ε of these matrices. The key aspect of our approach is that these Taylor
expansions all happen to be fully explicit.

To calculate Taylor expansions inε of the asymptotic variances when the sam-
pling intervals are random, we introduce thegeneralized infinitesimal operator �β0

for the processX in (1). This is in analogy to the development in Aït-Sahalia and
Mykland (2003), but permits our current more general form ofσ 2(x;γ ). To de-
fine this operator, let us first recall a standard concept. The standard infinitesimal
generatorAβ0 is the operator which returns

Aβ0 · f = ∂f

∂δ
+ µ(y1, θ0)

∂f

∂y1
+ 1

2
σ 2(y1;γ0)

∂2f

∂y2
1

(15)

when applied to functionsf that are continuously differentiable once inδ, twice
in y1 and such that∂f/∂y1 andAβ0 · f are both inL2 and satisfy

lim
y1→x

∂f/∂y1

s(y1;β)
= lim

y1→x̄

∂f/∂y1

s(y1;β)
= 0.(16)

We defineD to be the set of functionsf which have these properties and are
additionally continuously differentiable inβ andε. For instance, functionsf that
are polynomial iny1 near the boundaries ofS, and their iterates by repeated
application of the generator, retain their polynomial growth characteristic near
the boundaries; so they are all inL2 and satisfy (16). Near both boundaries,
polynomials and their iterates diverge at most polynomially (under Assumption 1,
µ, σ 2 and their derivatives have at most polynomial growth; multiplying and
adding functions with polynomial growth yields a function still with polynomial
growth). But we will often have exponential divergence ofs(y1;β). This would be
the case, for instance, if the left boundary isx = −∞, and there exist constants
E > 0 andK > 0 such that for allx < −E and(θ, γ ), µ(x; θ)/σ 2(x;γ ) ≥ K|x|α
for someα ≥ 0; and if the right boundary is̄x = +∞, there exist constantsE > 0
andK > 0 such that for allx > E and(θ, γ ), µ(x; θ)/σ 2(x;γ ) ≤ −Kxα for some
α ≥ 0; if insteadx = 0+, there exist constantsE > 0 andK ≥ 0 such that for all
0 < x < E and(θ, γ ), µ(x; θ)/σ 2(x;γ ) ≥ Kx−φ for someφ > 1 andK > 0. If,
however,φ = 1 andK ≥ 1, then Assumption 1 is still satisfied, buts diverges only
polynomially near 0+.

Our new operator�β0 is then defined by its action onf ∈ D :

�β0 · f ≡ �0 Aβ0 · f + ∂f

∂ε
+ ∂f

∂β

∂β

∂ε
.(17)
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Note that when�0 is random, our operator�β0 is also random since it depends
on�0. The last term allows for the fact thatβ can be a function of(β0, ε). Because
we will need to apply repeatedly the operator�β0, let us defineDJ as the set of
functionsf with J +2 continuous derivatives inδ, 2(J +2) in y1, such thatf and
its firstJ iterates by repeated applications ofAβ0 all remain inD and additionally
haveJ + 2 continuous derivatives inβ andε.

3.2. Behavior for small ε of the estimating equations. The limiting behavior
of the vector h of moment functions depends crucially on whether one is
estimating separatelyθ , γ or both together. If one is only estimating the drift
parametersθ , it will typically be the case thath(y1, y0, δ, β, ε) can be Taylor
expanded around its continuous-sampling limith(y0, y0,0, β,0). On the other
hand, when estimatingγ , we will see that such a Taylor expansion is not possible,
andh(y1, y0, δ, β, ε) is instead of orderOp(1) asε → 0 (and naturallyy1 → y0
andδ → 0 at the same time). We shall in the following describe a structure which
is consistent with all the various estimators ofβ we consider, and is applicable to
others as well.

We assume the following regularity condition regarding the moment functionsh

selected to conduct inference:

ASSUMPTION3. h(y1, y0, δ, β, ε) ∈ DJ for someJ ≥ 3. We shall in general
consider moment functionsh of the form

h(y1, y0, δ, β, ε) = h̃(y1, y0, δ, β, ε) + H(y1, y0, δ, β, ε)

δ
,(18)

whereh̃ ∈ DJ andH ∈ DJ+1. When the functionH is not identically zero, we
add the requirements that

H(y0, y0,0, β0,0) = ∂H(y1, y0,0, β0,0)

∂y1
= Ḣ (y0, y0,0, β0,0) = 0.(19)

In our definition ofh, the termH captures the singularity (i.e., powers of 1/δ)
which can occur when estimating the diffusion coefficient. Consider, for example,
the case whereh is the likelihood score forγ. The log-likelihood expansion in
Aït-Sahalia (2002) is, for the transformed processX̃,

l̃(ỹ1, ỹ0, δ, β, ε) = −1

2
ln(2πδ) − (ỹ1 − ỹ0)

2

2δ
+ higher-order terms.

By the Jacobian formula, the log-likelihood expansion for the original processX

is, therefore,

l(y1, y0, δ, β, ε) = −1

2
ln(2πδ) − 1

2δ

(∫ y1

y0

1

σ(x;γ )
dx

)2

− 1

2
ln

(
σ 2(y1;γ )

) + higher-order terms.
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The score with respect toγ is

h(y1, y0, δ, β, ε) = 1

δ

(∫ y1

y0

1

σ(x;γ )
dx

)(∫ y1

y0

∂σ (x;γ )/∂γ

σ (x;γ )2 dx

)

− ∂σ (y1;γ )/∂γ

σ (y1;γ )
+ higher-order terms.

H must contain the coefficient ofδ−1 in h, that is,

H(y1, y0, δ, β, ε) =
(∫ y1

y0

1

σ(x;γ )
dx

)(∫ y1

y0

∂σ (x;γ )/∂γ

σ (x;γ )2 dx

)
.(20)

But we are free to add the terms of orderδ and higher toH, provided we subtract
them fromh̃ so as to leaveh unchanged. For instance, a convenient choice is

H(y1, y0, δ, β, ε)

=
(∫ y1

y0

1

σ(x;γ )
dx

)(∫ y1

y0

∂σ (x;γ )/∂γ

σ (x;γ )2 dx

)
− δ

∂σ (y1;γ )/∂γ

σ (y1;γ )

(21)

and thenh̃ = h − H/δ. Both choices ofH satisfy (19) becauseH has the form
H = a(y1)b(y1) − δc(y1), wherea andb denote, respectively, the two integrals
andc the coefficient ofδ in (21);c = 0 in (20). Aty1 = y0 andδ = 0, we havea =
b = 0, thus,H = 0; andH ′ = a′b + ab′ − δc′ = 0; andḢ = ȧb + aḃ − δċ = 0.

Note also that

Aβ0 · H = −c + µ(a′b + ab′ − δc′) + (σ 2/2)(2a′b′ + a′′b + ab′′ − δc′′),

where prime denotes differentiation with respect toy1. At y1 = y0 andδ = 0, we
havea = b = 0, thus,Aβ0 ·H = −c(y0)+σ 2(y0;γ0)a

′(y0)b
′(y0) = 0. And thisH

does not depend onε, so ∂H/∂ε = 0, and the likelihood score is a martingale
estimating function, hence unbiased, and so∂β̄/∂ε = 0. Thus, by adding the
additional term toH in (21) relative to (20), we also have that�β0 · H = 0 at 0,
which makes such anH closer to being all by itself a martingale in a sense we
make precise in Section 3.4. It makes no difference for the exact likelihood since
h is always a martingale, even ifh̃ andH are not separately, but this is convenient
when analyzing likelihood approximations such as the Euler case in Section 4.2.

3.3. The Dβ and Sβ,0 matrices. In order to obtain expansions of the form (3)
for �β , we work on its componentsDβ , Sβ,0 and Tβ = Sβ − Sβ,0. The first
result uses our generalized infinitesimal generator to provide the expansions of
the matricesDβ andSβ,0:

LEMMA 1 (Expansions forDβ and Sβ,0). Let h = (h1, . . . , hr)
′ denote a

vector of moment functions h = h̃ + �−1H satisfying Assumption 3 and h̃ ∈ D3,
H ∈ D4. Also assume (27) and the other conditions on qi in Lemma 2.
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1. In the case where H is identically zero, we have

Dβ = EY0[ḣ] + εE�,Y0

[(
�β0 · ḣ)] + ε2

2
E�,Y0

[(
�2

β0
· ḣ)] + O(ε3)(22)

and, with the notation h × h′(y1, y0, δ, β, ε) ≡ h(y1, y0, δ, β, ε)h(y1, y0,

δ, β, ε)′, we have

Sβ,0 = EY0[(h × h′)] + εE�,Y0

[(
�β0 · (h × h′)

)]
+ ε2

2
E�,Y0

[(
�2

β0
· (h × h′)

)] + O(ε3).
(23)

2. In the case where H is not zero, (22) and (23) should be evaluated at h̃

rather than h, yielding Dh̃
β and Sh̃

β,0, respectively. Then Dβ = Dh̃
β + DH

β and

Sβ,0 = Sh̃
β,0 + SH

β,0, where

DH
β = E�,Y0

[
�−1

0

(
�β0 · Ḣ )] + ε

2
E�,Y0

[
�−1

0

(
�2

β0
· Ḣ )] + O(ε2),(24)

SH
β,0 = E�,Y0

[
�−1

0

(
�β0 · (h̃ × H ′)

)] + ε

2
E�,Y0

[
�−1

0

(
�2

β0
· (h̃ × H ′)

)]
+ E�,Y0

[
�−1

0

(
�β0 · (H × h̃′)

)] + ε

2
E�,Y0

[
�−1

0

(
�2

β0
· (H × h̃′)

)]
(25)

+ 1

2
E�,Y0

[
�−2

0

(
�2

β0
· (H × H ′)

)]
+ ε

6
E�,Y0

[
�−2

0

(
�3

β0
· (H × H ′)

)] + O(ε2).

3.4. How far is h from a martingale? Next, we turn to an analysis of the more
challenging time series matrixTβ = Sβ − Sβ,0. The simplest case arises when the
moment function is a martingale,

E�,Y1[h(Y1, Y0,�,β0, ε)|Y0] = 0.(26)

In this circumstance,Sβ,j = 0 for all j 
= 0, and soTβ = 0.
Even in the serially correlated case, however, we will show that the sum of

these time series terms can, nonetheless, be small whenε is small. Intuitively, the
closerh will be to a martingale, the smallerTβ = Sβ − Sβ,0.

To define what we mean by the distance from a moment function to a
martingale, denote byhi the ith element of the vector of moment functionsh,
and defineqi andαi by

E�,Y1[hi(Y1, Y0,�, β̄, ε)|Y0]
≡ εαiqi(Y0, β0, ε)

= εαiqi(Y0, β0,0) + εαi+1∂qi(Y0, β0,0)

∂ε
+ O(εαi+2),

(27)
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whereαi is an integer greater than or equal to zero for each moment functionhi .
αi is an index of the order at which the moment componenthi deviates from a
martingale (note that in a vectorh not all componentshi need to have the same
indexαi). A martingale moment function corresponds to the limiting case where
αi = +∞, qi(Y0, β0, ε) is identically zero, andSβ = Sβ,0. When the moment
functions are not martingales, we will show that the differenceTβ ≡ Sβ − Sβ,0

is a matrix whose element(i, j) has a leading term of orderO(εmin(αi,αj )) in ε

that depends onqi and qj . As will become apparent in the following sections,
(27) holds in all the estimation methods we consider.

Note thatE�,Y1,Y0[hi(Y1, Y0,�, β̄, ε)] = 0 by definition ofβ̄, hence, by the law
of iterated expectations we have thatEY0[qi(Y0, β0, ε)] = 0. We will also need the
functionri(y,β0, ε) defined as

ri(y0, β0, ε) = −
∫ ∞

0
Ut · Aβ0 · qi(y0, β0, ε)E

[
τN(t)+1

]
dt,(28)

whereUδ · f (y0, δ, β, ε) ≡ EY1[f (Y1, Y0,�,β, ε)|Y0 = y0,� = δ] is the condi-
tional expectation operator. Recall thatτi are the sampling times forX, and that
Nt = #{τi ∈ (0, t]} (soτ0 = 0 is not counted). We can assert the following aboutri :

LEMMA 2. Under Assumption 1 and (27), we suppose that qi(Y0, β0,0) and
∂qi(Y0,β0,0)

∂ε
are in L2. Finally, let (Aβ0 · qi)(Y,β0, ε) be defined, bounded and

continuous in L2-norm on an interval ε ∈ [0, ε0] (ε0 > 0). Then ri(y,β0, ε) is
well defined. Also,

ri(Y0, β0, ε) = r̆i(Y0, β0, ε) + 1

2
ε
E[�2

0]
E[�0]qi(Y0, β0,0) + op(ε),(29)

where

r̆i (y0, β0, ε) = −
∫ ∞

0
t (Ut · Aβ0 · qi)(y0, β0, ε) dt

=
∫ ∞

0
(Ut · qi)(y0, β0, ε) dt.

(30)

Alternatively, r̆i can be defined as the solution of the differential equation

Aβ0 · r̆i (·, β0, ε) = −qi(·, β0, ε),(31)

with the side condition that EY0[r̆i(Y0, β0, ε)] = 0.

By convention, here and in the proofsOp(f (ε)) andop(f (ε)) refer to terms
whoseL2 norms are, respectively,O(f (ε)) ando(f (ε)).

Finally, an alternative form of̆ri is given in the proof of Lemma 2; see (64).
While the indexαi and the functionqi play a crucial role in determining the
order in ε of the matrixTβ, the functionri will play an important role in the
determination of its coefficients.
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3.5. The Tβ matrix. Putting all this together, we can calculateTβ whenh is
not a martingale estimating equation. The expansion of the matrixTβ is obtained
by applying the operator�β0 as follows:

LEMMA 3 (Expansions forTβ ). Under the assumptions of Lemma 1, assume
also (27)and the other conditions on qi in Lemma 2. Then we have the following:

1. If H is zero, the (i, j) term of the time series matrix Tβ = Sβ − Sβ,0 is [Tβ ](i,j ),
given by

[Tβ ](i,j ) = 1

E[�0]
(
εαj−1EY0[(hi × rj )] + εαj E�0,Y0

[
�β0 · (hi × rj )

]
+ εαj +1

2
E�0,Y0

[
�2

β0
· (hi × rj )

] + εαi−1EY0[(hj × ri)]
+ εαiE�0,Y0

[(
�β0 · (hj × ri)

)]
+ εαi+1

2
E�0,Y0

[(
�2

β0
· (hj × ri)

)])
+ O

(
εmin(αi,αj )+2).

(32)

2. If H is nonzero, then (32) should be evaluated at h̃ rather than h, yielding T h̃
β .

And Tβ = T h̃
β + T H

β , where

[T H
β ](i,j ) = 1

E[�0]
(
εαj −1E�,Y0

[
�−1

0

(
�β0 · Hi

) × rj
]

+ εαj

2
E�0,Y0

[
�−1

0

(
�2

β0
· (Hi × rj )

)]
+ εαi−1E�0,Y0

[
�−1

0

(
�β0 · Hj

) × ri
]

+ εαi

2
E�0,Y0

[
�−1

0

(
�2

β0
· (Hj × ri)

)])
+ O

(
εmin(αi,αj )+1).

(33)

Note that for most applications of Lemmas 1–3, the assumption of (27) and the
other conditions onqi in Lemma 2 follow from the other assumptions of Lemma 3,
as follows. Normally, one can takeαi to be≤ 2, since the error term in (32) need
not be smaller than that of (23), and the error term in (33) need not be smaller
than that of (25). The conditions mentioned from Lemma 2 follow ifh̃i ∈ D3 and
Hi ∈ D4 (more generally,̃hi ∈ Dαi+1 andHi ∈ Dαi+2).

3.6. Form of the asymptotic variance matrix �β . By combining our previous
results concerningDβ, Sβ,0 and Tβ, we can now obtain an expression for the
matrix�β. Specifically, we have the following as an example of a typical situation:
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THEOREM 1 (Form of the matrix�β ). Under the conditions of the preceding
lemmas we have the following:

1. When we are only estimating θ , with γ0 known, using a vector h such that
H = 0, and Dβ and Sβ have the expansions

Dθ = εD
(1)
θ + ε2D

(2)
θ + O(ε3),

Sθ = εS
(1)
θ + ε2D

(2)
θ + O(ε3),

then the asymptotic variance of the estimator has the expansion �θ = �
(0)
θ +

ε�
(1)
θ + O(ε2), where

�
(0)
θ = E[�0]S(1)

θ /
(
D

(1)
θ

)2
,

�
(1)
θ = E[�0](D(1)

θ S
(2)
θ − 2D

(2)
θ S

(1)
θ

)
/
(
D

(1)
θ

)3
.

2. When we are only estimating γ , with θ0 known, and Dβ and Sβ have the
expansions

Dγ = D(0)
γ + εD(1)

γ + ε2D(2)
γ + O(ε3),

Sγ = S(0)
γ + εS(1)

γ + ε2S(2)
γ + O(ε3),

then the asymptotic variance of the estimator has the expansion �γ = �
(1)
γ ε +

�
(2)
γ ε2 + �

(3)
γ ε3 + O(ε4), where

�(1)
γ = E[�0]S(0)

γ /
(
D(0)

γ

)2
,

�(2)
γ = E[�0](D(0)

γ S(1)
γ − 2D(1)

γ S(0)
γ

)
/
(
D(0)

γ

)3
,

�(3)
γ = E[�0](3D(1)

γ S(0)
γ − 2D(0)

γ D(2)
γ S(2)

γ

− 2D(0)
γ D(1)

γ S(1)
γ + (

D(0)
γ

)2
S(2)

γ

)
/
(
D(0)

γ

)4
.

3. When we are estimating θ and γ jointly, and the Dβ and Sβ matrices have the
expansions

Dβ =
(

εd
(1)
θθ + ε2d

(2)
θθ + O(ε3) εd

(1)
θγ + O(ε2)

εd
(1)
γ θ + O(ε2) d

(0)
γ γ + εd

(1)
γ γ + O(ε2)

)
,

Sβ =
(

εs
(1)
θθ + ε2s

(2)
θθ + O(ε3) εs

(1)
θγ + O(ε2)

εs
(1)
γ θ + O(ε2) s

(0)
γ γ + εs

(1)
γ γ + O(ε2)

)
,

then the asymptotic variance of the estimator β̂ is

�β =
(

ω
(0)
θθ + εω

(1)
θθ + O(ε2) εω

(1)
θγ + O(ε2)

εω
(1)
γ θ + O(ε2) εω

(1)
γ γ + ε2ω

(2)
γ γ + O(ε3)

)
,
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where

ω
(0)
θθ = E[�0]s(1)

θθ /
(
d

(1)
θθ

)2
,

ω
(1)
θθ = E[�0](d(1)

θθ s
(2)
θθ − 2d

(2)
θθ s

(1)
θθ

)
/
(
d

(1)
θθ

)3
,

ω
(1)
γ θ = ω

(1)
θγ = E[�0]s(1)

θγ /
(
d

(1)
θθ d(0)

γ γ

)
,

ω(1)
γ γ = E[�0]s(0)

γ γ /
(
d(0)
γ γ

)2
,

ω(2)
γ γ = E[�0](d(0)

γ γ d(1)
γ γ − 2d(1)

γ γ s(0)
γ γ

)
/
(
d(0)
γ γ

)3
.

In particular, the diagonal leading terms ω
(0)
θθ and ω

(1)
γ γ corresponding to

efficient estimation with a continuous record of observation are identical to
their single-parameter counterparts.

An important fact to note from the above expressions is that to first order inε,
the asymptotic variances ofθ̂ andγ̂ are unaffected by whether one estimates just
one of them (and the other one is known) or one estimates both of them jointly. This
is not necessarily the case for the higher-order terms in the asymptotic variances,
since those depend upon the higher-order terms in theDβ andSβ matrices which
are not necessarily identical to those of their single-parameter counterparts.

Also, the leading term in�θ corresponding to efficient estimation with a
continuous record of observations is

�
(0)
θ = (

EY0

[(
∂µ(Y0; θ0)/∂θ

)2
σ(Y0;γ0)

−2])−1

providedµ is continuously differentiable with respect toθ . And the leading term
in �γ corresponding to efficient estimation ofγ is

�(1)
γ = E[�0](2EY0

[(
∂σ (Y0;γ0)/∂γ

)2
σ(Y0;γ0)

−2])−1

providedσ is continuously differentiable with respect toγ . In the special case
whereσ 2 = γ constant, then this becomes�

(1)

σ2 = 2σ 4
0E[�0].

These leading terms are achieved, in particular, whenh is the likelihood score
for θ andγ , respectively, but also by other estimating functions that are able to
mimic the behavior of the likelihood score at the leading order.

3.7. Inconsistency. For the estimator to be consistent, it must be thatβ̄ ≡ β0
but, again, this will not be the case for every estimation method. However, in all the
cases we consider, and one may argue forany reasonable estimation method, the
bias will disappear in the limit whereε → 0, that is,β̄(β0,0) = β0 (so that there is
no bias in the limiting case of continuous sampling) and the following expansion

β̄ = β̄(β0, ε) = β0 +
Q∑

q=1

εqb(q) + o(εQ)(34)
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holds for someQ ≥ 1. The coefficientsb(q) = (1/q!) ∂qβ̄(β0,0)/∂εq can be
determined as follows. By the definition ofβ̄,

E�,Y1,Y0

[
h
(
Y1, Y0,�, β̄(β0, ε), ε

)] ≡ 0.(35)

Consider the case whereH = 0. Recognizing that̄β is a function ofε, as given
in (34), we can compute the Taylor series expansion

EY1[h(Y1, Y0,�, β̄, ε)|Y0,�]

=
J∑

j=0

εj

j !
(
�

j
β0

· h)
(Y0, Y0,0, β0,0) + Op(εJ+1),

(36)

whose unconditional expectation, in light of (35), must be zero at each order
in ε. So to determineb(1), set to zero the coefficient ofε in the series expansion
of E�,Y1,Y0[h(Y1, Y0,�, β̄(β0, ε), ε)] = E�,Y0[EY1[h(Y1, Y0,�, β̄(β0, ε), ε)|Y0,

�]]:
0 = E�,Y0

[(
�β0 · h)

(Y0, Y0,0, β0,0)
]

= E[�0]EY0

[(
Aβ0 · h)

(Y0, Y0,0, β0,0)
]

+ EY0

[
∂h

∂ε
(Y0, Y0,0, β0,0)

]
+ EY0[ḣ(Y0, Y0,0, β0,0)]b(1)

and, hence, ifEY0[ḣ(Y0, Y0,0, β0,0)] 
= 0,

b(1) = −(
E[�0]EY0

[(
Aβ0 · h)

(Y0, Y0,0, β0,0)
]

+ EY0[(∂h/∂ε)(Y0, Y0,0, β0,0)])(EY0[ḣ(Y0, Y0,0, β0,0)])−1
.

(37)

Then givenb(1), setting the coefficient ofε2 in that series expansion to zero
determinesb(2), and so on. IfEY0[ḣ(Y0, Y0,0, β0,0)] = 0, then one needs to look
at the next order term in the expansion to determineb(1), and so on. This is, for
instance, what happens in the Euler scheme when estimatingθ ; see Section 4.2.

If H 
= 0, then (36) incorporates both̃h andH, and one proceeds analogously
to determineb(1) and the following coefficients by setting the coefficients of the
expansion of (35) to 0. For an example of this, see the estimation ofσ 2 using the
Euler scheme.

4. Application to specific inference strategies. We now apply the general
results to specific instances of moment functionsh, corresponding both to
likelihood and nonlikelihood inference strategies, for the model whereσ 2 = γ

constant.
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4.1. Maximum-likelihood type estimators. The development of Aït-Sahalia
and Mykland (2003) deals with likelihood type inference, and we recapitulate here
the inference schemes in that work, and how they relate to the present paper. We
applied the general results of the present paper to maximum likelihood estimation,
using three different inference strategies:

1. FIML: Full information maximum likelihood, using the bivariate observations
(Yn,�n).

2. IOML: Partial information maximum likelihood estimator using only the state
observationsYn, with the sampling intervalsintegrated out.

3. PFML: Pseudo maximum likelihood estimatorpretending that the sampling
intervals arefixed at�n = �̄.

All three estimators rely on maximizing a version of the likelihood function
of the observations, that is, some functional of the transition densityp of the X

process:p(Yn|Yn−1,�n, θ) for FIML; p̃(Yn|Yn−1, θ) = E�n[p(Yn|Yn−1,�n, θ]
for IOML; and p(Yn|Yn−1, �̄, θ) for PFML (which is like FIML except that�̄
is used in place of the actual�n). The extent to which these estimators differ from
one another gave rise to different “costs.” FIML is asymptotically efficient, making
the best possible use of the joint discretely sampled data(Yn,�n). The extent to
which FIML with these data is less efficient than the corresponding FIML when the
full sample path is observable is what we called thecost of discreteness. IOML is
the asymptotically optimal choice if one recognizes that the sampling intervals�n

are random but does not observe them. The extra efficiency loss relative to FIML
is what we called thecost of randomness. PFML corresponds to the “head-in-
the-sand” policy consisting of doing as if the sampling intervals were all identical
(pretending that�n = �̄) when, in fact, they are random. The extent by which
PFML underperforms FIML is what we called thecost of ignoring the randomness.
We then studied the relative magnitude of these costs in various situations.

The respective scores from these likelihoods are special cases of the estimating
functionsh of the present paper. But the results of the present paper apply to a
much wider class of estimating functions than the three likelihood examples, such
as the following.

4.2. Estimator based on the discrete Euler scheme. We now apply our general
results to study the properties of estimators of the drift and diffusion coefficients
obtained by replacing the true likelihood functionl(y1|y0, δ, β) with its discrete
Euler approximation

lE(y1|y0, δ, β) = −1

2
ln(2πσ 2δ) − (y1 − y0 − µ(y0; θ)δ)2

2σ 2δ
.(38)

This estimator is commonly used in empirical work in finance, where researchers
often write a theoretical model set in continuous-time but then switch gear in their
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empirical work, in effect estimating the parametersβ̄ = (θ̄ , σ̄ 2)′ of the discrete
time series model

Xt+� − Xt = µ(Xt; θ̄ )� + σ̄
√

�ηt+�,(39)

where the disturbanceη is N(0,1). The properties of this estimator have been
studied in the case where� is not random by Florens-Zmirou (1989). Our results
apply to this particular situation as a special case.

In the terminology of Section 3, our vector of moment functions is

h(y1, y0, δ, β, ε) =
[

l̇Eθ (y1|y0, δ, β)

l̇E
σ2(y1|y0, δ, β)

]

=
[

µ̇(y0, θ)
(
y1 − y0 − µ(y0; θ)δ

)
/σ 2

−1/(2σ 2) + (
y1 − y0 − µ(y0; θ)δ

)2
/(2σ 4δ)

](40)

when both parameters inβ = (θ, σ 2) are unknown, and reduces to one component
when only one parameter is unknown. For this choice ofh, (13) is not satisfied
and, thus, the estimator is inconsistent. Note also that the solution inθ of
E�,Y1,Y0[l̇Eθ (Y1, Y0,�,β, ε)] = 0 is independent ofσ 2 and, hence, whether or not
we are estimatingσ 2 does not affect the estimator of the drift parameter. Of course,
this will not be the case in general for the true maximum likelihood estimator.

As we discussed in the general case, the asymptotic bias of the estimator,β̄−β0,

will be of orderO(ε) or smaller. In this particular case, ifσ 2 is known, the bias in
θ̂ is of orderO(ε). As in the general setting of Section 3,

√
T (β̂ − β̄) converges

in law to N(0,�β) and an application of Lemmas 1 and 3 yields the following.
1. When we are only estimatingθ , with σ 2

0 known, using only the first equation
in (40), we haveα1 = 2 and

q1(y,β0,0)

= E[�2
0]

4σ 2
0

×
(

σ 2
0EY0[(∂µ/∂y)(Y0; θ0) (∂2µ/(∂y ∂θ))(Y0; θ0)]((∂µ/∂θ)(y; θ0))

2

EY0[((∂µ/∂θ)(Y0; θ0))
2]

+
(

2µ(y; θ0)
∂µ(y; θ0)

∂y
+ σ 2

0
∂2µ(y; θ0)

∂y2

)
∂µ(y; θ0)

∂θ

)
(41)

in (27). The bias of the drift estimator is

θ̄ − θ0

= −εσ 2
0

E[�2
0]

E[�0]
EY0[(∂µ/∂y)(Y0; θ0)(∂

2µ/(∂y ∂θ))(Y0; θ0)]
4EY0[((∂µ/∂θ)(Y0; θ0))2] + O(ε2)

(42)
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and its asymptotic variance is�θ = �
(0)
θ + �

(1)
θ ε + O(ε2) with �

(0)
θ =

σ 2
0EY0[((∂µ/∂θ)(Y0; θ0))

2]−1 (the limiting term corresponding to a continuous
record of observations) and

�
(1)
θ = σ 2

0E[�2
0]

2E[�0]EY0[((∂µ/∂θ)(Y0; θ0))2]3

×
(

2σ 2
0EY0

[
∂µ

∂θ
(Y0; θ0)

∂2µ

∂θ2 (Y0; θ0)

]
EY0

[
∂µ

∂y
(Y0; θ0)

∂2µ

∂y ∂θ
(Y0; θ0)

]

+ EY0

[(
∂µ

∂θ
(Y0; θ0)

)2]

×
(

2σ 2
0T

(2)
θ

E[�2
0]

+ 2EY0

[(
∂µ

∂θ
(Y0; θ0)

)2∂µ

∂y
(Y0; θ0)

]

− σ 2
0EY0

[
∂µ

∂y
(Y0; θ0)

∂3µ

∂y ∂θ2 (Y0; θ0)

]))
,

where

T
(2)
θ = −2EY0[q̇1(Y0, β0,0)] = 4EY0[q1(Y0, β0,0)G1(Y0, β0)]

with G1(y0, β0) = σ−2
0

∫ y0 µ̇(z0, θ0) dz0.

2. When we are only estimatingσ 2, with θ0 known, using only the second
equation in (40), we haveα2 = 1 and

q2(y,β0,0) = E[�0]
2σ 2

0

(
∂µ

∂y
(y, θ0) − EY0

[
∂µ

∂y
(Y0; θ0)

])
(43)

in (27). The bias of the diffusion estimator is

σ̄ 2 − σ 2
0 = εE[�0]σ 2

0EY0

[
∂µ

∂y
(Y0; θ0)

]

+ ε22σ 2
0

3
E[�2

0]EY0

[(
∂µ

∂y
(Y0; θ0)

)2]
+ O(ε3)

(44)

and its asymptotic variance is�σ2 = �
(1)

σ2 ε + �
(2)

σ2 ε2 + O(ε3) with �
(1)

σ2 =
2σ 4

0E[�0] (the same first-order term as MLE) and

�
(2)

σ2 = 4σ 4
0E[�0]

(
E[�0]EY0

[
∂µ

∂y
(Y0; θ0)

]
+ σ 4

0T
(1)

σ2

)
,

where

T
(1)

σ2 = 4EY0[q2(Y0, β0,0)G2(Y0, β0)] + 2

E[�0]EY0[q2(Y0, β0,0)r2(Y0, β0,0)]

with G2(y0, β0) = −σ−4
0

∫ y0 µ(z0, θ0) dz0.
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3. When we are estimatingθ andσ 2 jointly, using both equations in (40), the
two components of the bias vectorβ̄ −β0 are given by (42) and (44), respectively,
(to their respective orders only). We also have thatα1 = 2, α2 = 1 andq = (q1, q2)

′
with q1 andq2 given by (41) and (43), respectively. The asymptotic variance ofβ̂

is

�β =
(

ωθθ ωθσ2

ωσ2θ ωσ2σ2

)

=
(

ω
(0)
θθ + εω

(1)
θθ + O(ε2) εω

(1)

θσ2 + O(ε2)

εω
(1)

σ2θ
+ O(ε2) εω

(1)

σ2σ2 + ε2ω
(2)

σ2σ2 + O(ε3)

)
,

whereω
(0)
θθ = �

(0)
θ , ω

(1)
θθ = �

(1)
θ , ω

(1)

σ2σ2 = �
(1)

σ2 and

ω
(1)

σ2θ
= ω

(1)

θσ2 = 2σ 6
0

EY0[(∂µ/∂θ(Y0; θ0))2] t
(1)

θσ2,

ω
(2)

σ2σ2 = 4σ 4
0E[�0]

(
E[�0]EY0

[
∂µ

∂y
(Y0; θ0)

]
+ σ 4

0 t
(1)

σ2σ2

)
,

with t
(1)

θσ2 = 2EY0[G1(Y0, β0)q2(Y0, β0,0)] andt
(1)

σ2σ2 = T
(1)

σ2 .

Therefore, as is to be expected when using a first-order approximation to the
stochastic differential equation, the asymptotic variance is, to first order inε, the
same as for MLE inference. The impact of using the approximation is to second
order in variances (and, of course, is responsible for bias in the estimator). When
estimating one of the two parameters with the other known, the impact of the
discretization approximation on the variance (which MLE avoids) is one order of
magnitude higher than the effect of the discreteness of the data (which MLE is also
subject to).

4.3. Example: the Ornstein–Uhlenbeck process. We now specialize the ex-
pressions above to a specific example, the stationary (θ > 0) Ornstein–Uhlenbeck
process

dXt = −θXt dt + σ dWt.(45)

The transition densityp(y1|y0, δ, β) of this process is a Gaussian density with
expected valuee−δθy0 and variance(1 − e−2δθ )σ 2/(2θ). The stationary density
π(y0, β) is also Gaussian with mean 0 and varianceσ 2/(2θ).

Because its transition density is known explicitly, this model constitutes one
of the rare instances where, in addition to our Taylor expansions which can
be calculated for any model, we can obtain exact (i.e., non-Taylor expanded)
expressions for the matricesSβ,0, Dβ andTβ . Specifically, for methods relying
on nonmartingale moment functionsh, the exact calculation of the time series
termTβ is based on

Tβ = 2

E[�0]E�,Y1,Y0[h(Y1, Y0,�, β̄, ε)R(Y1, β0, ε)],
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whereE�,Y1[h(Y0, Y1,�, β̄, ε)|Y0] = εαq(Y0, β0, ε) ≡ Q(Y0, β0, ε) and

R(Y1, β0, ε) = E[�0]
∞∑

k=1

EYk
[Q(Yk,β0, ε)|Y1] = εα−1r(Y1, β0, ε).

This last expression requires the calculation ofE[Y 2
k |Y1]. To this end, consider

first the law ofYk given Y1 and �2, . . . ,�k . In this case,Yk is conditionally
Gaussian with meanY1 exp{−θ(�2 + · · · + �k)} and variance((k − 1) −
exp{−2θ(�2 + · · · + �k)})σ 2/(2θ). Hence, we obtain that

E[Y 2
k |Y1] = E

[
Y 2

1 exp{−2θ(�2 + · · · + �k)}

+ σ 2

2θ

(
(k − 1) − exp{−2θ(�2 + · · · + �k)})|Y1

]

= Y 2
1 E[exp{−2θ�}](k−1) + σ 2

2θ

(
(k − 1) − E[exp{−2θ�}](k−1)

)
.

In Table 1, we report results for the Ornstein–Uhlenbeck parameters estimated
one at a time (i.e.,θ knowingσ 2 andσ 2 knowingθ). The quantities for the MLE
are based on the developments in Aït-Sahalia and Mykland (2003); for the discrete
Euler scheme, they follow from the results above.

TABLE 1
Asymptotic variance and bias for the Ornstein–Uhlenbeck process estimated using maximum

likelihood and the Euler scheme. These expressions follow from specializing the general results to
the Ornstein–Uhlenbeck process. When estimating θ with known σ2 using the Euler scheme, Tθ = 0
for the Ornstein–Uhlenbeck process because h(Y0, Y1,�, β̄, ε) turns out to be a martingale. Note
that it is perfectly acceptable for the variance of θ̂ to be below that of the MLE estimator. This can

easily occur for an inconsistent estimator. Note that since θ0 = log(1− δθ̄)/δ, one can create a
consistent estimator out of the Euler estimator θ̂ by using log(1− δθ̂ )/δ. The latter is inefficient

relative to the MLE estimator, as expected. When estimating σ2 with known θ , the first-order
expansion for the MLE’s �σ2 is exact. This is because the Ornstein–Uhlenbeck process has a
constant diffusion parameter and a Gaussian likelihood. But for θ , the MLE’s �θ involves an

expansion because the exact log-likelihood of the process is a function of exp(−θδ), which in our
method is then Taylor-expanded in δ

MLE Euler

�θ 2θ0 + ε2
(

2θ3
0E[�3

0]
3E[�0]

)
+ O(ε3) 2θ0 − ε

(
2θ2

0E[�2
0]

E[�0]
)

+ O(ε2)

θ̄ − θ0 0 −ε

(
θ2

0E[�2
0]

2E[�0]
)

+ O(ε2)

�σ2 ε(2σ4
0E[�0]) ε(2σ4

0 E[�0]) − ε2(4θ0σ
4
0 E[�0]2) + O(ε3)

σ̄2 − σ2
0 0 −ε(θ0σ2

0E[�0]) + ε2
(

2θ2
0E[�2

0]
3

)
+ O(ε3)
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4.4. The effect of the distribution of the sampling intervals. One of the
implications of our results concerns the impact of the distribution of the sampling
interval on the quality of inference. It is, obviously, better to have as many
sampling times as possible, but, to move beyond this, fixE[�0]. To the extent
that our expansions depend on other features of the law of�0, they do so through
the momentsE[�q

0], q ≥ 2, as can be seen from the expressions above.
One can then compare whether it seems preferable to minimize these higher-

order moments, and thus have sampling at regular intervals, or whether a certain
amount of randomness in�0 is preferable. In the case of the MLE for the
Ornstein–Uhlenbeck process, it can be seen from Table 1 that the randomness
of the sampling scheme makes no difference forσ 2. On the other hand, for
the Euler estimation ofθ for the same process, randomness (i.e., higherE[�2

0])
adversely affects the bias but reduces the asymptotic variance. At the first order
in ε, randomness has no effect on the estimation ofσ 2; at the second order, more
randomness reduces the asymptotic variance and the bias (since the first-order bias
term is negative, a higher positive second-order bias works to reduce the bias).

Outside of the Ornstein–Uhlenbeck situation, it should be noted that even in the
case of the MLE, it can occur that a somewhat random sampling can be preferable
to sampling at a fixed interval. This occurs, for example, if one estimatesσ 2 in
the presence of a known drift functionµ(x) = −x(1 − exp(−x4)) (and, hence,
known θ ). For that drift function, one then obtains thatE[(∂3µ/∂y3)(Y0)] > 0
and so sgn�(3)

σ2 = −sgnE[�0] since when we are only estimatingσ 2, with θ0

known, the asymptotic variance of MLE is�σ2 = �
(1)

σ2 ε + �
(3)

σ2 ε3 + O(ε4) with

�
(1)

σ2 = 2σ 4
0E[�0] and

�
(3)

σ2 = −1

3
σ 6

0E[�0]E[�2
0]EY0

[
∂3µ

∂y3 (Y0; θ0)

]
(46)

[see Aït-Sahalia and Mykland (2003) for an analysis of the MLE special case].
Since�

(1)

σ2 only depends on the first moment of�0, there is, therefore, a beneficial
first-order effect of random sampling on�σ2. For other drifts, such as, for instance,
µ(x) = −x3, we haveE[(∂3µ/∂y3)(Y0)] < 0 and, therefore, the opposite is true.

There is, therefore, no overall rule that covers all cases. In general, the impact of
the sampling depends on the coefficients associated with the moments of�0, and
the expansions derived in this paper can be used to gain insight into this impact.

5. Extensions of the theory.

5.1. Extensions to more general estimating equations. In terms of admissi-
ble h functions, our theory can be extended from Taylor series to Laurent series
(which have both positive and negative powers inε). That is, the structure can be
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easily generalized to a situation whereh is of the form

h(y1, y0, δ, β, ε) = h̃(y1, y0, δ, β, ε) +
M∑

m=1

Hm(y1, y0, δ, β, ε)

δm
,

where h̃ and {Hm;m = 1, . . . ,M} satisfy Assumption 3 with∂kHm(y0, y0,0,

β0,0)/∂yk
1 = 0 for k = 1, . . . ,m. Since this situation does not appear in practical

estimation methods other than forM = 1, we have stated the result for that case,
that is, (18), to avoid needlessly complicating the notation.

A different extension is the following. Instead of being of the form (18), the
vector of moment functionsh is of the form

h(y1, y0, δ, β, ε) = h̆(y1, y0, δ, β, ε) + K(y1, y0, δ, β, ε)

ε
,(47)

where bothh̆ andK can be Taylor expanded as specified by (55) and

K(y0, y0,0, β0,0) = ∂K(y0, y0,0, β0,0)

∂y1
= ∂K(y0, y0,0, β0,0)

∂β
= 0.(48)

Then a simple modification of Lemmas 1 and 3 holds: evaluate (22) and (23)
at h̆ instead ofh, and replace (24), (25) and (33), respectively, by the following
contributions fromK :

DK
β = E�,Y0

[(
�β0 · K̇)] + ε

2
E�,Y0

[(
�2

β0
· K̇)] + O(ε2),(49)

SK
β,0 = E�,Y0

[(
�β0 · (h̃ × K ′)

)] + ε

2
E�,Y0

[(
�2

β0
· (h̃ × K ′)

)]
+ E�,Y0

[(
�β0 · (K × h̃′)

)] + ε

2
E�,Y0

[(
�2

β0
· (K × h̃′)

)]
(50)

+ 1

2
E�,Y0

[(
�2

β0
· (K × K ′)

)]
+ ε

6
E�,Y0

[(
�3

β0
· (K × K ′)

)] + O(ε2),

[T K
β ](i,j ) = 1

E[�0]
(
εαj−1E�,Y0

[(
�β0 · Ki

) × rj
]

+ εαj

2
E�0,Y0

[(
�2

β0
· (Ki × rj )

)]
+ εαi−1E�0,Y0

[(
�β0 · Kj

) × ri
]

(51)

+ εαi

2
E�0,Y0

[(
�2

β0
· (Kj × ri)

)])
+ O

(
εmin(αi,αj )+1),

yieldingDβ = Dh̆
β + DK

β , Sβ,0 = Sh̆
β,0 + SK

β,0 andTβ = T h̆
β + T K

β .
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Note that sinceε is deterministic, usingh or εh as the vector of moment
functions produces the same estimator. Indeed, whenh is of the form (47), the two
matrices�β produced by applying Lemmas 1 and 3 with(h̃,H) = (εh̆ + K,0) or
the first part of this remark with(h̆,K) are identical.

5.2. Extensions to more general Markov processes. One can extend the theory
to cover more general continuous-time Markov processes, such as jump-diffusions.
In that case, the standard infinitesimal generator of the process applied to a
smoothf takes the form

Jβ0 · f = Aβ0 · f +
∫

{f (y1 + z, y0, δ, β, ε) − f (y1, y0, δ, β, ε)}ν(dz, y0),

whereAβ0, defined in (15), is the contribution coming from the diffusive part of the
stochastic differential equation andν(dz, y0) is the Lévy jump measure specifying
the number of jumps of size in(z, z + dz) per unit of time [see, e.g., Protter
(1992)]. In that case, our generalized infinitesimal generator becomes

�β0 · f ≡ �0Jβ0 · f + ∂f

∂ε
+ ∂f

∂β

∂β

∂ε
,

that is, the same expression as (17) except thatAβ0 is replaced byJβ0.

5.3. Extensions to more general sampling processes. Another extension
concerns the generation of the sampling intervals. For example, if the�is are
random and i.i.d., thenE[�] has the usual meaning, but even if this is not the
case, byE[�] we mean the limit (in probability, or just the limit if the�is are
nonrandom) of

∑n
i=1 �i/n asn tends to infinity. This permits the inclusion of the

random non-i.i.d. and the nonrandom (but possibly irregularly spaced) cases for
the�is. At the cost of further complications, the theory can be extended to allow
for dependence in the sampling intervals, whereby�n is drawn conditionally on
(Yn−1,�n−1).

6. Proofs.

6.1. Mixing.

LEMMA 4. Under Assumptions 1 and 2, the ρ-mixing coefficients of the
discretely sampled process decay exponentially fast.

6.2. Proof of Lemma 4. We start by showing that the sequence ofρ-mixing
coefficients{ρδ; δ > 0} of the process

ρδ ≡ sup
{φ,ψ∈L2|E[φ(Y0)]=E[ψ(Y0)]=0}

E[φ(Y0)(Uδ · ψ)(Y0)]
‖φ‖‖ψ‖ ,(52)



SAMPLING OF DIFFUSIONS 2209

decays exponentially fast asδ increases. Under Assumption 1, specifically
condition (8), the operatorUδ, as defined just after equation (28), is a strong
contraction and there existsκ > 0 such that‖Uδ · ψ‖ ≤ exp(−κδ)‖ψ‖ [see
Propositions 8 and 9 in Hansen and Scheinkman (1995)]. Thus, by the Cauchy–
Schwarz inequality,

|E[φ(X0)(Uδ · ψ)(X0)]| ≤ ‖φ‖‖Uδ · ψ‖ ≤ ‖φ‖‖ψ‖exp(−κδ),

that is,ρδ ≤ exp(−κδ).

The mixing property of the underlying continuous time process{Xt ; t ≥ 0}
translates into the following mixing property for the discretely (and possibly
randomly) sampled state process{Yn;n = 0, . . . ,NT }. For functionsφ and ψ

in L2, we have

E[φ(Y0)ψ(Yn)] = E
[
φ(X0)ψ

(
X�1+···+�n

)]
= E�1,...,�n

[
E

[
φ(X0)ψ

(
X�1+···+�n

)|�1, . . . ,�n

]]
= E�1,...,�n

[
EX0

[
φ(X0)EX0

[
ψ

(
X�1+···+�n

)|X0,�1, . . . ,�n

]]]
= E�1,...,�n

[
EX0

[
φ(X0)

(
U�1+···+�n · ψ)

(X0)
]]

so that

|E[φ(Y0)ψ(Yn)]| ≤ E�1,...,�n

[∣∣EX0

[
φ(X0)

(
U�1+···+�n · ψ)

(X0)
]∣∣]

≤ E�1,...,�n

[
exp

(−λ(�1 + · · · + �n)
)]‖φ‖‖ψ‖

= {E�[exp(−κ�)]}n‖φ‖‖ψ‖,
(53)

with the last equality following from the independence of the�ns. Since
0 < E�[exp(−κ�] < 1, the Yns satisfy a mixing property sufficient to insure
the validity of the central limit theorem for sums of functions of the data
{(�n,Yn);n = 0, . . . ,NT }.

6.3. Proof of Lemma 1. To calculate Taylor expansions of functionsf (Y1, Y0,

�, β̄, ε) ∈ DJ , note first that

EY1[f (Y1, Y0,�, β̄, ε)|Y0,� = δ]

=
J∑

j=0

εj

j !
(
�

j
β0

· f )
(Y0, Y0,0, β0,0) + Op(εJ+1).

(54)

All the expectations are taken with respect to the law of the process at the true
valueβ0. This is in analogy to Theorem 1 in Aït-Sahalia and Mykland [(2003),
page 498].



2210 Y. AÏT-SAHALIA AND P. A. MYKLAND

1. Starting withDβ, assume first thatH = 0, and write a Taylor expansion of
EY1[ḣ|Y0,�] in �, using (54):

E�,Y1[ḣ(Y1, Y0,�, β̄, ε)|Y0 = y0]
= ḣ(y0, y0,0, β0,0)

+ ε

(
E[�0][Aβ0 · ḣ] + ∂ḣ

∂ε
+ ∂ḣ

∂β
× ∂β̄

∂ε
(β0,0)

)
+ O(ε2),

with the partial derivatives on the right-hand side evaluated at(y0, y0,0, β0,0).

This follows from the fact thath can be Taylor expanded inε around 0,

h(y1, y0, δ, β̄, ε) = h(y0, y0,0, β0,0) + (y1 − y0)
∂h

∂y1
+ 1

2
(y1 − y0)

2∂2h

∂y2
1

+ ∂h

∂δ
ε�0 + ∂h

∂ε
ε + ∂h

∂β

∂β̄(β0,0)

∂ε
ε + o(ε),

(55)

with all the partial derivatives ofh on the right-hand side evaluated at(y0, y0,0,

β0,0). At the next order, we can write this more compactly as

E�,Y1[ḣ(Y1, Y0,�, β̄, ε)|Y0 = y0]
= ḣ(y0, y0,0, β0,0) + ε

(
�β0 · ḣ)

(Y0, Y0,0, β0,0)

+ ε2

2

(
�2

β0
· ḣ)

(Y0, Y0,0, β0,0) + O(ε3).

(56)

The unconditional expectation (22) follows from (56) by taking expectations with
respect toY0 and using the law of iterated expectations.

Turning toSβ,0 ≡ E�,Y1,Y0[h(Y1, Y0,�, β̄, ε)h(Y1, Y0,�, β̄, ε)′], assume first
that H = 0. The result (23) follows from applying the generalized infinitesimal
generator toh × h′:

E�,Y1[(h × h′)(Y1, Y0,�, β̄, ε)|Y0]
= (h × h′)(Y0, Y0,0, β0,0) + εE�,Y0

[(
�β0 · (h × h′)

)
(Y0, Y0,0, β0,0)

]
+ ε2

2
E�,Y0

[(
�2

β0
· (h × h′)

)
(Y0, Y0,0, β0,0)

] + Op(ε3).

2. Suppose now thatH is not zero. Lethi = h̃i + �−1Hi for h̃i ∈ DJ andHi ∈
DJ+1. Applying (54) toh̃i andHi separately, then combining their expansions to
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get the expansion forhi , we obtain that

EY1[hi(Y1, Y0,�, β̄, ε)|Y0,�]
= EY1[h̃i (Y1, Y0,�, β̄, ε)|Y0,�]

+ ε−1EY1[�−1
0 Hi(Y1, Y0,�, β̄, ε)|Y0,�]

=
J∑

j=0

εj

j ! �
j
β0

· h̃i + ε−1
J+1∑
j=1

εj

j ! �−1
0 �

j
β0

· Hi + Op(εJ+1)

=
J∑

j=0

εj

j !
{(

�
j
β0

· h̃i

) + 1

j + 1
�−1

0

(
�

j+1
β0

· Hi

)} + Op(εJ+1)

(57)

because under Assumption 3 we haveHi = 0 when evaluated at(y0, y0,0, β0,0).

So the expansion (54) forHi starts at orderε1 (or higher); without that,
a singularity of orderε−1 would result from the premultiplication byε−1.

The additional contribution toDβ is given by (24) following a similar
construction, where we use again equation (54). From

EY1[Ḣ (Y1, Y0,�, β̄, ε)|Y0,�]
= Ḣ (Y0, Y0,0, β0,0) + ε(�β0 · Ḣ )(Y0, Y0,0, β0,0)

+ ε2

2

(
�2

β0
· Ḣ )

(Y0, Y0,0, β0,0) + Op(ε3),

where we recall thaṫH(Y0, Y0,0, β0,0) = 0 under (19) and

E�,Y1,Y0[�−1Ḣ (Y1, Y0,�, β̄, ε)]
= E�,Y1,Y0

[
�−1EY1[Ḣ (Y1, Y0,�, β̄, ε)|Y0,�]],

we conclude that

E�,Y1,Y0[�−1Ḣ (Y1, Y0,�, β̄, ε)]
= E�,Y0

[
�−1

0 ε−1
{
ε
(
�β0 · Ḣ )

(Y0, Y0,0, β0,0)

+ ε2

2

(
�2

β0
· Ḣ )

(Y0, Y0,0, β0,0) + O(ε3)

}]
= E�,Y0

[
�−1

0

(
�β0 · Ḣ )

(Y0, Y0,0, β0,0)
]

+ ε

2
E�,Y0

[
�−1

0

(
�2

β0
· Ḣ )

(Y0, Y0,0, β0,0)
] + O(ε2).

The term contributed byH to Sβ,0 that is potentially the largest involves the
cross product(�−1H) × (�−1H), that is, E�,Y1,Y0[�−2(H × H ′)(Y1, Y0,�,
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β̄, ε)]. To evaluate it, we start with

EY1[(H × H ′)(Y1, Y0,�, β̄, ε)|Y0,�]
= (H × H ′)(Y0, Y0,0, β0,0) + ε

(
�β0 · (H × H ′)

)
(Y0, Y0,0, β0,0)

+ ε2

2

(
�2

β0
· (H × H ′)

)
(Y0, Y0,0, β0,0) + Op(ε3).

Next, note that

H(Y0, Y0,0, β0,0) = 0 and
(
�β0 · (H × H ′)

)
(Y0, Y0,0, β0,0) = 0

under (19). Indeed, we have(
�β0 · (H × H ′)

)
(Y0, Y0,0, β0,0)

= �0 Aβ0 · (H × H ′) + ∂(H × H ′)
∂ε

+ ∂(H × H ′)
∂β̄

∂β̄

∂ε

= �0

{
2H

∂H ′

∂�
+ µ(Y0; θ0)2H

∂H ′

∂y1

+ σ 2(Y0;γ0)

(
2
∂H

∂y1

∂H ′

∂y1
+ 2H

∂2H ′

∂y1∂y1

)}
+ 2H

∂H ′

∂ε
+ 2H

∂H ′

∂β̄

∂β̄

∂ε
,

where in the equation aboveH and its derivatives, listed without argument, are
understood to be evaluated at(Y0, Y0,0, β0,0).

Since H(Y0, Y0,0, β0,0) = 0 and gH = ∂H(Y0, Y0,0, β0,0)/∂y1 = 0 un-
der (19), it follows that(

�β0 · (H × H ′)
)
(Y0, Y0,0, β0,0) = 0.

Then, from

E�,Y1,Y0[�−2(H × H ′)(Y1, Y0,�, β̄, ε)]
= E�,Y1,Y0

[
�−2EY1[(H × H ′)(Y1, Y0,�, β̄, ε)|Y0,�]],

we conclude that

E�,Y1,Y0[�−2(H × H ′)(Y1, Y0,�, β̄, ε)]

= E�,Y0

[
�−2

0 ε−2
{
ε2

2

(
�2

β0
· (H × H ′)

)
(Y0, Y0,0, β0,0)

+ ε3

6

(
�3

β0
· (H × H ′)

)
(Y0, Y0,0, β0,0) + O(ε4)

}]
= E�,Y0

[
�−2

0

(
�2

β0
· (H × H ′)

)
(Y0, Y0,0, β0,0)

]
+ ε

6
E�,Y0

[
�−2

0

(
�3

β0
· (H × H ′)

)
(Y0, Y0,0, β0,0)

] + O(ε2).
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Finally, the other two cross product terms,E�,Y1,Y0[�−1(H × h̃′)] and
E�,Y1,Y0[�−1(h̃ × H ′)], are dealt with similarly. They are of orderO(1) since
H(Y0, Y0,0, β0,0) = 0:

EY1[�−1(H × h̃′)(Y1, Y0,�, β̄, ε)|Y0,�]
= ε−1�−1

0 EY1[(H × h̃′)(Y1, Y0,�, β̄, ε)|Y0,�]

= ε−1�−1
0

{
(H × h̃′) + ε

(
�β0 · (H × h̃′)

) + ε2

2

(
�2

β0
· (H × h̃′)

) + Op(ε3)

}
= �−1

0

(
�β0 · (H × h̃′)

) + ε

2
�−1

0

(
�2

β0
· (H × h̃′)

) + Op(ε3)

and similarly forEY1[�−1(h̃ × H ′)(Y1, Y0,�, β̄, ε)|Y0,�].

6.4. Proof of Lemma 2. Note first thatri(y,β0, ε) and r̆i (y, β0, ε) are well
defined as a consequence of theL2 boundedness ofAβ0 · qi , and the exponential
mixing from that follows from Lemma 4. We here take the first expression in (30)
to be the definition of̆r . To see the equality with the second expression, note that
Aβ0 · (tqi) = qi + tAβ0 · qi . The second expression forr̆ follows. As before,Y has
the stationary distribution ofX0.

Let N0(u) be the number ofτ (0)
i = τi/ε in the interval(0, u]. Also, setZ(t) =

E[τN(t)+1 − t] andZ(0)(t) = E[τ (0)
N0(t)+1 − t], and note that, by Wald’s identity,

Z(0)(u) = E[�0]E[
N(0)(u) + 1

] − u,(58)

and similarly without the superscript 0. In particular,Z(t) = εZ(0)(t/ε). Since the
integrals are well defined, it follows that

ε−1(ri(Y,β0, ε) − r̆i(Y,β0, ε)
) = ε−1

∫ ∞
0

Ut · Aβ0 · qi(Y,β0, ε)Z(t) dt

= −
∫ ∞

0
Ut · Aβ0 · qi(Y,β0, ε)Z

(0)(t/ε) dt.

(59)

In the sequel, we assume thatε → 0 through a countable sequence. TheL2 limit
will be independent of the choice of sequence, and so it will be valid asε goes to
zero generally. We also need the mixing coefficientλ from Lemma 4 (there written
asκ) and an exponentλ1 > 0 which can take on different values.

We first need to establish some facts aboutZ(0)(t), and here we make use of
Feller (1971), to which all references in the next two paragraphs are made. First
note thatZ(0) is the solution of the renewal equationZ(0) = z(0) + F (0) ∗ Z(0),
whereF (0) is the c.d.f. of�0, andz(0)(t) = ∫ ∞

t (1−F (0)(δ)) dδ. This follows from
the proof of Theorem XI-3.1 (pages 366 and 367). Since we have assumed that
E[�2

0] < ∞, the same proof assures that lim supt Z
(0)(t) < ∞ in the nonarithmetic

case for�0, and the same follows in the arithmetic case from the development
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on pages 362 and 363. (The distinction between the arithmetic and nonarithmetic
cases is described on page 138.) Sincez(0) is bounded, the Lemma on page 359
assures thatZ(0) is bounded on finite intervals, whence

sup
t

Z(0)(t) < ∞ and inf
t

Z(0)(t) ≥ 0,(60)

where the latter inequality is by construction.
Also, the same Theorem XI-3.1 in Feller (1971) establishes thatZ(0)(t) →

1
2E[�2

0]/E[�0] as t → ∞ in the nonarithmetic case. In this case, therefore, for
all λ1 > 0, in the sense of weak convergence of measures on[0,∞),

exp{−λ1t}Z(0)

(
t

ε

)
dt → exp{−λ1t}1

2

E[�2
0]

E[�0] dt,(61)

by (60). In the arithmetic case,Z(0)(t) does not converge, but (61) follows from
the results on pages 362 and 363. This is what we needed from Feller (1971), and
we now proceed to make use of (60) and (61).

We then establish the convergence in probability of (59). As in the proof of
Lemma 4, ∥∥Ut

(
Aβ0 · qi(Y,β0, ε) − Aβ0 · qi(Y,β0,0)

)∥∥
≤ exp{−λt}∥∥Aβ0 · qi(Y,β0, ε) − Aβ0 · qi(Y,β0,0)

∥∥.
By the L2 continuity of Aβ0 · qi(Y,β0, ε), and by (60), we can replaceUtAβ0 ·
qi(Y,β0, ε) by UtAβ0 · qi(Y,β0,0) for the purpose of this convergence. Since
UtAβ0 · qi(Y,β0,0) can be taken to be continuous int on [0,∞] (since the limit
is zero ast → ∞), and in view of (61) (withλ1 < λ), the limit of (59) must be as
in (29), but for the moment we have only shown convergence in probability.

The final result (29) and (30) then follows if we can show that the square of the
left-hand side of (59) is uniformly integrable asε → 0. This is the case since

E
[
ε−2(ri(Y,β0, ε) − r̆i (Y,β0, ε)

)2]
=

∫ ∞
0

dt

∫ ∞
0

dsE
[
Ut · Aβ0 · qi(Y,β0, ε)Us · Aβ0 · qi(Y,β0, ε)

]
× Z(0)(t/ε)Z(0)(s/ε).

In the same way as in the discussion above, the limit of the integral coincides with
the integral of the limit. Hence, uniform integrability follows.

To see howr̆ solves the differential equation, with the given side condition,
proceed as follows. By the second expression in (30), and sinceAβ0 and Ut

commute,(
Aβ0 · r̆i)(y,β0, ε) =

∫ ∞
0

(
Ut · Aβ0 · qi

)
(y,β0, ε) = −qi(y,β0, ε).
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If r̆i is chosen to satisfy

EY0[r̆i (Y0, β0, ε)] = 0(62)

under the stationary distribution, asymptotic ergodicity will forcer̆i to have the
second form from (30).

Exploiting the form of the scale functions defined in (5), we can rewrite (31) as

∂

∂y

[
∂r̆i(y,β0, ε)

∂y

1

s(y;β0)

]

= ∂

∂y

[
1

s(y;β0)

]
∂r̆i(y,β0, ε)

∂y
+ ∂2r̆i(y, β0, ε)

∂y2

1

s(y;β0)

=
(

2
µ(y; θ0)

σ 2(y;γ0)

∂r̆i(y,β0, ε)

∂y
+ ∂2r̆i(y, β0, ε)

∂y2

)
1

s(y;β0)

= − 2 qi(y,β0, ε)

σ 2(y;γ0)s(y;β0)
.

To solve this, we have

∂r̆i(y,β0, ε)

∂y
= s(y;β0)

(
C1 −

∫ y

x

2 qi(x,β0, ε)

σ 2(x;γ0)s(x;β0)
dx

)
.(63)

Subject to regularity conditions on the functionσ 2, the constant of integration
must beC1 = 0, otherwisĕri would not be integrable underπ . It follows that

r̆i(y, β0, ε) = C2 −
∫ y

x

∫ z

x

2 qi(x,β0, ε)

σ 2(x;γ0)s(x;β0)
dx s(z,β0) dz,(64)

where the second constant of integrationC2 is determined so that (62) holds. We
only need the function̆r for the purpose of calculating expressions of the form
EY0[φ(Y0)r̆i(Y0, β0, ε)], whereEY0[φ(Y0)] = 0 (as whenφ = q, for instance).
Then the value ofC2 is irrelevant for the calculation of those unconditional
expectations.

As ε → 0, we haveri(y,β0,0) = r̆i(y, β0,0) and it follows from (63) that

∂

∂y

[
∂ri(y,β0,0)

∂y

1

s(y;β0)

]
= − 2 qi(y,β0,0)

σ 2(y;γ0)s(y;β0)
(65)

since that equation does not involve differentiation with respect toε. Indeed, in
light of (29), we define∂ri/∂ε as follows:

∂ri

∂ε
(y,β0,0) = ∂r̃i

∂ε
(y,β0,0) + 1

2

E[�2
0]

E[�0]qi(y,β0,0).

We also define

∂kri(Y0, β0,0)

∂yk
≡ ∂kr̆i(Y0, β0,0)

∂yk
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for k = 1,2, and with these definitions of the partial derivatives ofri evaluated at
(Y0, β0,0) we see thatri is Taylor-expandable in the form

ri(Y1, β0, ε) = ri(Y0, β0,0) + (Y1 − Y0)
∂ri(Y0, β0,0)

∂y

+ 1

2
(Y1 − Y0)

2∂2ri(Y0, β0,0)

∂y2
+ ε

∂ri(Y0, β0,0)

∂ε
+ op(ε).

If σ 2 = γ constant, dividing (65) byσ 2
0 yields an equivalent form in terms of

the stationary densityπ :

∂

∂y

[
∂ri(y,β0,0)

∂y
π(y;β0)

]
= − 2

σ 2
0

qi(y,β0,0)π(y;β0).

6.5. Proof of Lemma 3. 1. When the moment condition is not a martingale,
the matrixSβ includes time series termsTβ = Sβ −Sβ,0 which must be calculated.
We start by showing the derivation in the case of scalarh; the generalization to the
vector case is straightforward and is given at the end of this part of the proof. Recall
equation (27), now for a scalar,E�,Y1[h(Y1, Y0,�, β̄, ε)|Y0] = εαq(Y0, β0, ε),
whereq(Y0, β0, ε) is of orderO(1) in ε, and where theα is an integer greater
than zero, typicallyα = 1 or 2. The covariance terms then become

Tβ = Sβ − Sβ,0 = 2
∞∑

k=1

Sβ,k

= 2
∞∑

j=1

E
[
h
(
Y1, Y0,�

(0), β̄, ε
)
h
(
Yk+1, Yk,�

(k), β̄, ε
)]

= 2
∞∑

k=1

E
[
h
(
Y1, Y0,�

(0), β̄, ε
)
E

[
h
(
Yk+1, Yk,�

(k), β̄, ε
)|�k

]]

= 2
∞∑

k=1

E
[
h
(
Y1, Y0,�

(0), β̄, ε
)
εαq(Yk,β0, ε)

]
= 2εα

∞∑
k=1

E
[
h
(
Y1, Y0,�

(0), β̄, ε
)
E[q(Yk,β0, ε)|Y1]]

= 2εα−1 1

E[�0]E�,Y1,Y0[h(Y1, Y0,�, β̄, ε)r(Y1, β0, ε)],

(66)

where�j denotes the standard filtration up to timej .
The final transition in (66) requires showing that

r(y,β0, ε) = εE[�0]
∞∑

k=1

EYk
[q(Yk,β0, ε)|Y1 = y].(67)
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To see this, note thatq(X0, β0, ε) and(Aβ0 · q)(X0, β0, ε) are integrable under the
stationary distribution, forε ∈ [0, ε0]. Then, fort ≥ u,

E

[∫ t

τn−1∧u

(
Aβ0 · q)

(Xs, ε) ds
∣∣∣X0 = y

]

= E

[∫ t

0

(
Aβ0 · q)

(Xs, ε)I(s≥τn−1∧u) ds
∣∣∣X0 = y

]
=

∫ t

0
E

[(
Aβ0 · q)

(Xs, ε)|X0 = y
]
P (s ≥ τn−1 ∧ u)ds

=
∫ t

0

(
UsAβ0 · q)

(y, ε)P (s ≥ τn−1 ∧ u)ds.

The validity of Fubini’s theorem and the integrability of all quantities considered
follow from our assumptions since alsoτn−1 is independent of theX process, and
the latter is stationary. These facts are also used in the following.

By Itô’s lemma, and since
∫ t
τn−1∧u

∂
∂y

q(Xs, ε)σ (Xs;γ0) dWs is a local martin-
gale int , we therefore get

E[q(Yn−1, ε)|X0 = y] = −
∫ +∞

0

(
UsAβ0 · q)

(y, ε)P (s ≥ τn−1) ds.(68)

This is by first lettingt → +∞ and thenu → +∞. We here use thatE[q(Xt , ε)]
goes to zero ast gets large.

To go from (68) to (67), note that the former implies

εE[�0]
n∑

k=1

EYk
[q(Yk,β0, ε)|Y1 = y]

= −εE[�0]
∫ +∞

0

(
UsAβ0 · q)

(y, ε)

(
n∑

k=1

P (s ≥ τk−1)

)
ds.

(69)

As n → +∞, we have
∑n

k=1P (s ≥ τk−1) → E[Ns] + 1. Note thatE[Ns] <

+∞ by the Lemma on page II-359 in Feller (1971). Also, sinceE[�] < +∞,
E[τNs+1] = E[�](E[Ns] + 1). It follows that one can letn go to infinity in (69)
and still have a finite limit. The result (67) follows.

We now proceed with the analysis ofTβ . Assume first thatH = 0. We return to
the general case below. From (66),

Tβ = 2εα−1 1

E[�0]E�,Y1,Y0[h(Y1, Y0,�, β̄, ε)r(Y1, β0, ε)]

= 2εα−1 1

E[�0]
(
EY0[h(Y0, Y0,0, β0,0)r(Y0, β0,0)]

+ εE�0,Y0

[(
�β0 · (h × r)

)
(Y0, Y0,0, β0,0)

]
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+ ε2

2
E�0,Y0

[(
�2

β0
· (h × r)

)
(Y0, Y0,0, β0,0)

] + Op(ε3)
)

= 2

E[�0]
(
εα−1EY0[(h × r)(Y0, Y0,0, β0,0)]

+ εαE�0,Y0

[(
�β0 · (h × r)

)
(Y0, Y0,0, β0,0)

]
+ εα+1

2
E�0,Y0

[(
�2

β0
· (h × r)

)
(Y0, Y0,0, β0,0)

])
+ O(εα+2),

where(h × r)(Y0, Y0,0, β0,0) ≡ h(Y0, Y0,0, β0,0) r(Y0, β0,0), and(
�β0 · (h × r)

)
(Y0, Y0,0, β0,0)

= (
�β0 · h) × r + h × (

�β0 · r) + �0σ
2(Y0;γ0)

∂r

∂y1

∂h

∂y1

=
(
�0

(
∂h

∂�
+ µ(Y0; θ0)

∂h

∂y1
+ σ 2(Y0;γ0)

2

∂2h

∂y2
1

)
+ ∂h

∂ε
+ ∂h

∂β

∂β

∂ε

)
× r(70)

+ h ×
(
�0

(
µ(Y0; θ0)

∂r

∂y1
+ σ 2(Y0;γ0)

2

∂2r

∂y2
1

)
+ ∂r

∂ε

)

+ �0σ
2(Y0;γ0)

∂h

∂y1
× ∂r

∂y1
,

with the understanding here and below that the functions listed without arguments
are all evaluated atY1 = Y0, � = 0, β̄ = β0 [sinceβ̄(β0,0) = β0] andε = 0.

Note that this requires that the functionr be Taylor-expandable inε as given
in (66).

For multidimensionalh = (h1, . . . , hr)
′, still assumingH = 0, the(i, j) term of

theTβ = Sβ − Sβ,0 matrix is

[Tβ ](i,j ) =
∞∑

k=1

{
E

[
hi

(
Y1, Y0,�

(0), β̄, ε
)
hj

(
Yk+1, Yk,�

(k), β̄, ε
)]

+ E
[
hj

(
Y1, Y0,�

(0), β̄, ε
)
hi

(
Yk+1, Yk,�

(k), β̄, ε
)]}

= εαj−1 1

E[�0]E�,Y1,Y0[hi(Y1, Y0,�, β̄, ε)rj (Y1, β0, ε)]

+ εαi−1 1

E[�0]E�,Y1,Y0[hj (Y1, Y0,�, β̄, ε)ri(Y1, β0, ε)].

(71)

By applying the univariate calculation above to the two terms involvinghi andhj ,
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it follows that[Tβ ](i,j ) is given by

[Tβ ](i,j ) = 1

E[�0]
(
εαj−1EY0[(hi × rj )(Y0, Y0,0, β0,0)]

+ εαj E�0,Y0

[(
�β0 · (hi × rj )

)
(Y0, Y0,0, β0,0)

]
+ εαj+1

2
E�0,Y0

[(
�2

β0
· (hi × rj )

)
(Y0, Y0,0, β0,0)

])
+ 1

E[�0]
(
εαi−1EY0[(hj × ri)(Y0, Y0,0, β0,0)]
+ εαiE�0,Y0

[(
�β0 · (hj × ri)

)
(Y0, Y0,0, β0,0)

]
+ εαi+1

2
E�0,Y0

[(
�2

β0
· (hj × ri)

)
(Y0, Y0,0, β0,0)

])
+ O

(
εmin(αi,αj )+2).

2. We now investigate the contribution of a nonzeroH to Tβ . Equation (27) now
follows from

E�,Y1[hi(Y1, Y0,�, β̄, ε)|Y0]
= E�

[
EY1[hi(Y1, Y0,�, β̄, ε)|Y0,�]]

(72)

=
J∑

j=0

εj

j !
{
E�0

[(
�

j
β0

· h̃i

)] + 1

(j + 1)
E�0

[
�−1

0

(
�

j+1
β0

· Hi

)]} + O(εJ+1)

= εαiqi(Y0, β0,0) + Op(εαi+1)

if we let αi denote an indexj at which the sum in the right-hand side of (72)
is nonzero. As above, consider first the case of scalarH and recall thath =
h̃ + �−1H. We now have to look at

Tβ = 2
∞∑

j=1

E
[
h
(
Y1, Y0,�

(0), β̄, ε
)
h
(
Yk+1, Yk,�

(k), β̄, ε
)]

= 2
∞∑

k=1

E
[{

h̃
(
Y1, Y0,�

(0), β̄, ε
)

+ (
�(0)

)−1
H

(
Y1, Y0,�

(0), β̄, ε
)}

E
[
h
(
Yk+1, Yk,�

(k), β̄, ε
)|�k

]]
= 2εα−1 1

E[�0]E�,Y1,Y0

[{
h̃(Y1, Y0,�, β̄, ε)

+ �−1H(Y1, Y0,�, β̄, ε)
}
r(Y1, β0, ε)

]
+ O(εα),
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where the termE�,Y1,Y0[h̃(Y1, Y0,�, β̄, ε)r(Y1, β0, ε)] is the one we dealt with in
part 1 of this proof. The additional contribution toTβ is, therefore, represented by
the term

T H
β = 2εα−1 1

E[�0]E�,Y1,Y0[�−1H(Y1, Y0,�, β̄, ε)r(Y1, β0, ε)]

= 2εα−1 1

E[�0]E�,Y0

[
�−1EY1[H(Y1, Y0,�, β̄, ε)r(Y1, β0, ε)|Y0,�]].(73)

By (54), the conditional expectation ofH × r can be Taylor-expanded as

EY1[H(Y1, Y0,�, β̄, ε)r(Y1, β0, ε)|Y0,�]
= H(Y0, Y0,0, β0,0)r(Y0, β0,0)

+ ε
(
�β0 · (H × r)

)
(Y0, Y0,0, β0,0)

+ ε2

2

(
�2

β0
· (H × r)

)
(Y0, Y0,0, β0,0) + Op(ε3).

(74)

Recall that under (19),H(Y0, Y0,0, β0,0) = 0 so the term of orderε0 in (74) is 0.
For the term of orderε1, we have as in (70),(

�β0 · (H × r)
)
(Y0, Y0,0, β0,0)

= (
�β0 · H ) × r + H × (

�β0 · r) + �0σ
2(Y0;γ0)

∂r

∂y1

∂H

∂y1

= (
�β0 · H ) × r,

with the last equation following from the fact that

H(Y0, Y0,0, β0,0) = ∂H

∂y1
(Y0, Y0,0, β0,0) = 0

under (19). Next,

E�,Y0

[
�−1ε

(
�β0 · (H × r)

)
(Y0, Y0,0, β0,0)

]
= E�,Y0

[
�−1

0

(
�β0 · H ) × r

]
= E�,Y0

[
�−1

0

(
�0

(
∂H

∂�
+ µ(Y0; θ0)

∂H

∂y1
+ σ 2(Y0;γ0)

2

∂2H

∂y2
1

)

+ ∂H

∂ε
+ ∂H

∂β

∂β

∂ε

)
× r

]

= EY0

[
∂H

∂�
r + σ 2

2

∂2H

∂y2
1

r

]
+ E[�−1

0 ]EY0

[
∂H

∂ε
r

]
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[recall that∂H
∂β

(Y0, Y0,0, β0,0) = 0 under (19)]. This term may or may not be zero
depending upon the functionsH andr. The next order term is given by

E�,Y0

[
�−1ε2

2

(
�2

β0
· (H × r)

)
(Y0, Y0,0, β0,0)

]
= ε

2
E�,Y0

[
�−1

0

(
�2

β0
· (H × r)

)]
.

Thus, plugging the result of (74) into (73), we get

T H
β = 2

E[�0]
(
εα−1E�,Y0

[
�−1

0

(
�β0 · H ) × r

]
+ εα

2
E�,Y0

[
�−1

0

(
�2

β0
· (H × r)

)]) + O(εα+1).

For multidimensionalH = (H1, . . . ,Hr)
′, the(i, j) term of theT H

β matrix is

[T H
β ](i,j ) = εαj −1 1

E[�0]E�,Y1,Y0[�−1Hi(Y1, Y0,�, β̄, ε)rj (Y1, β0, ε)]

+ εαi−1 1

E[�0]E�,Y1,Y0[�−1Hj(Y1, Y0,�, β̄, ε)ri(Y1, β0, ε)]

+ O
(
εmin(αi,αj )+1)

= εαj −1 1

E[�0]E�,Y0

[
�−1

0

(
�β0 · Hi

) × rj
]

+ εαj

2

1

E[�0]E�,Y0

[
�−1

0

(
�2

β0
· (Hi × rj )

)]
+ εαi−1 1

E[�0]E�,Y0

[
�−1

0
(
�β0 · Hj

) × ri
]

+ εαi

2

1

E[�0]E�,Y0

[
�−1

0

(
�2

β0
· (Hj × ri)

)]
+ O

(
εmin(αi,αj )+1).

6.6. Proof of Theorem 1. This corollary is a direct consequence of the (usual,
nonstochastic) Taylor formula applied to the expression (14), withDβ and Sβ

given by Lemmas 1 and 3.

7. Conclusions. We have developed a set of tools for analyzing a large
class of estimators of discretely-sampled continuous-time diffusions, including
their asymptotic variance and bias. By Taylor-expanding the different matrices
involved in the asymptotic distribution of the estimators, we are able to deliver
fully explicit expressions of the various quantities determining the asymptotic
properties of these estimators, and compare their relative merits. Our analysis
covers the case where the sampling interval is random. As special cases, we
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cover the situation where the sampling is done at deterministic time-varying dates
and the situation where the sampling occurs at fixed intervals. Most estimation
methods can be analyzed within our framework—essentially any method that
can be reduced to a method of moments or estimating equation problem. The
two specific examples we analyzed display the various behaviors covered by our
theorems, and we showed how our results can be used to assess the impact of
different sampling patterns on the properties of these estimators.
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