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ESTIMATORS OF DIFFUSIONS WITH RANDOMLY SPACED
DISCRETE OBSERVATIONS: A GENERAL THEORY
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Princeton University and University of Chicago

We provide a general method to analyze the asymptotic properties
of a variety of estimators of continuous time diffusion processes when
the data are not only discretely sampled in time but the time separating
successive observations may possibly be random. We introduce a new
operator, the generalized infinitesimal generator, to obtain Taylor expansions
of the asymptotic moments of the estimators. As a special case, our results
apply to the situation where the data are discretely sampled at a fixed
nonrandom time interval. We include as specific examples estimators based
on maximum-likelihood and discrete approximations such as the Euler
scheme.

1. Introduction. Most theoretical models in finance are spelled out in
continuous time [see, e.g., Merton (1992)], whereas the observed data are, by
nature, discretely sampled in time. Estimating these models from discrete time
observations has become in recent years an active area of research in statistics
and econometrics, and a number of estimation procedures have been proposed
in the context of parametric models for continuous-time Markov processes,
often in the special case of diffusions. Not only are the observations sampled
discretely in time, but it is often the case with financial data that the time separating
successive observations is itself random, as illustrated, for example, in Figure 1 of
Ait-Sahalia and Mykland [(2003), page 484].

This earlier paper focused on the case of inference with the help of likelihood.
For data of the type we consider, however, it is common to use a variety of
estimating equations, of which likelihood is only one instance; see, for example,
Hansen and Scheinkman (1995), Ait-Sahalia (1996, 2002) and Bibby, Jacobsen
and Sgrensen (2004). Our objective in this paper is to carry out a detailed analysis
of the asymptotic properties of a large class of such estimators in the context of
discretely and randomly sampled data. Unlike Ait-Sahalia and Mykland (2003),
it will also permit the diffusion function to depend on both the parameter and the
data.
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We model this situation as follows. Suppose that we observe the process
1) dX; = u(X;;0)dt + o0 (X5 7)dW;

at discrete times in the interv@d, 7], and we wish to estimate the parameters
6 and/ory. We call the observation timeg = 0, 11, 72, ..., Ty,, WhereN7 is

the smallest integer such thag, 1 > T. Because the properties of estimators
vary widely depending upon whether the drift or the diffusion parameters, or both,
are estimated, we consider the three cases of estimatiagd, y) jointly, 8 =6

with y known or 8 = y with & known. In regular circumstances,converges in
probability to some3 and+«/T (8 — ) converges in law tav (O, Qp) asT tends to
infinity.

For each estimator, the correspondiigand, when applicable the bigs- fo,
depend on the transition density of the diffusion process, which is generally
unknown in closed form. Our solution is to derive Taylor expansions for the
asymptotic variance and bias starting with a leading term that corresponds to the
limiting case where the sampling is continuous in time. Our main results deliver
closed form expressions for the terms of these Taylor expansions. For that purpose,
we introduce a new operator, which we call the generalized infinitesimal generator
of the diffusion

Specifically, we write the law of the sampling intervalg = ¢, — 7,,_1 as

(2) A =¢Ao,

where Ag has a given finite distribution and is deterministic. Our Taylor
expansions take the form

0 2
(3) Qp=Qf +eQf +6%QF + 0(3),
(4) B—Bo=bWe+b@e?+ 0(3).

While the limiting term ag goes to zero corresponds to continuous sampling, by
adding higher-order terms i1 we progressively correct this leading term for the
discreteness of the sampling. The two equations (3) and (4) can then be used to
analyze the relative merits of different estimation approaches, by comparing the
order ine at which various effects manifest themselves, and when they are equal,
the relative magnitudes of the corresponding coefficients in the expansion.
Because the coefficients of the expansions depend upon the distribution of
the sampling intervals, we can also use these expressions to assess the effect of
different sampling patterns on the overall properties of estimators. Moreover, our
results apply not only to random sampling, but also to the situation where the
sampling interval is time-varying in a deterministic manner (see Section 5.3), or to
the case where the sampling interval is simply fixed, in which case we just need to
set VafAp] = 0 in all our expressions. One particular example is indeed sampling
at a deterministic fixed time interval, such as, say, daily or weekly, which is the
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setup adopted by much of theaent literature omliscretely obseted diffusions
[see, e.g., Hansen and Scheinkman (1995), Ait-Sahalia (1996, 2002) and Bibby,
Jacobsen and Sgrensen (2004)].

The paper is organized as follows. Section 2 sets up the model and the
assumptions used throughout the paper. Section 3 develops a general theory
that establishes the asymptotic properties of a large class of estimators of
parametric diffusions and their Taylor expansions. Section 4 applies these results
to two specific examples of estimating equations: first, the maximum likelihood
estimator; second, the Euler approximate discrete scheme based on a Gaussian
likelihood. Our conclusions also carry over to the maximum likelihood-type
estimators discussed in Ait-Sahalia and Mykland (2003). We discuss extensions
of the theory in Section 5. Proofs are contained in Section 6. Section 7 concludes.

2. Data structure and inference scheme.

2.1. The process and the sampling. We let 8 = (x, x) denote the domain of
the diffusionX,. In general, 8 = (—o0, +00), but in many examples in finance,
we are led to consider variables such as nominal interest rates, in which case
4§ = (0, +00). Whenever we are estimating parameters, we will take the parameter
space for the/-dimensional vectog to be an open and bounded set. We will make
use of the scale and speed densities of the process, defined as

(5) s(x; B) EeXp{—Z/X(M(y; 0)/0?(y; J/))dy},

(6) m(x; B) = 1/(0%(x; y)s(x; B))

and the scale and speed measus¢s; 8) = [* s(w; B)dw and M(x; B) =
/" m(w; B) dw. The lower bound of integration is an arbitrary point in the interior
of 8. We also define the same increasing transformation as in Ait-Sahalia (2002):

X d
7) g(x1y) z/ g(;y)'

We assume below conditions that make this transformation well defined. By
Itd's lemma, X; = g(X;; y) defined ons = (g(x; ), g(x; y)) satisfiesd X, =

_n@™@ )i 190@™ 05 y);y)
S o(@™y)y) 2 dx ’
where g™ denotes the reciprocal transformation. We also define the scale and

speed densities of, § andsi, andi (x; B) = —((x; B)2 + dfi(x; B)/dx)/2.
We make the following primitive assumptions g, o):

f(x; B)

AssumMPTION 1. For all values of the parameter®,y) we have the
following:
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1. Differentiability: The functiong.(x; 6) ando (x; y) are infinitely differentiable
inx.

2. Nondegeneracy of the diffusion: #f = (—oo, +00), there exists a constant
such thato (x; y) > ¢ > 0 for all x andy. If 8 = (0, +00), lim,_ g+ 02(x;
y) = 0 is possible but then there exist constafs- 0, > 0, p > 0 such
thato?(x; y) > wx” for all 0 < x < & andy. Whether or not lim_, g+ o2(x;
y) = 0, o is nondegenerate in the interior &f that is for eack > 0, there
exists a constant such that2(x; y) > ce >0 forallx €[, +00) andy.

3. Boundary behavioyz, 02 and their derivatives have at most polynomial growth
in x near the boundaries, lim, . S(x; B) = —oo and lim_,z S(x; B) = 400,

(8) )!il)nxinfﬁ(x;ﬁ)>0 and limsupi(x; 8) <0

and
(9) lim  supi(x; B) < +o0.

X—Xx O x—X
4. |dentification: i (x; 6) = w(x; ) for w-almost allx in 8 implies® = 6 and
o?(x;y) =0?(x; ) for m-almost allx in § impliesy = 7.

Under Assumption 1, the stochastic differential equation (1) admits a weak
solution which is unique in probability law. This follows from the Engelbert—
Schmidt criterion [see, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991)
replacingR by § throughout], with explosions ruled out by the boundary behavior
of the process. The divergence of the scale measure makes the boundaries
unattainable, since it implies that

O E/i{/js(v;ﬂ)dv}m(u;ﬂ)duzoo,

Eizfx{/xus(v;ﬁ)dv}m(u;ﬁ)du:oo.

Given that it is unattainable (i.e., given th8t = o0), the boundary is natural
whenN; = oo and entrance wheN; < oo, where

N E/i{/jm(v;ﬂ)dv}s(u;ﬂ)du,

and similarly for the boundary [see, e.g., Section 15.6 in Karlin and Taylor
(1981)]. If both boundaes are entrance, then th&egrability assumption on the
speed measura will automatically be satisfied. When one of the boundaries is
natural, integrability ofn is neither implied nor precluded.

Condition (8), however, guarantees that the proéessll be stationary: withp
denoting the limsup in (8), we have near the right boundary

m(y; B) = eXp{Z/x a(y; 0) a’y} < cexp2bx},
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wherec is a constant, and similarly near the left boundary. Thuss integrable,
and it follows thatm is integrable. Therefore, the proceXsis stationary with
stationary density

_m(x;ﬁ)
[Em(y; Bydy’

(10) m(x, B) =

provided that the initial value of the procesg;, has densityr, which we will
assume in the rest of the paper. Furthermore, condition (8) guarantee¥ that
has exponentially decaying-mixing coefficients (see Lemma 4). Condition (9)
guarantees the regularity of the transition density of the process [see Proposition 2
in Ait-Sahalia (2002)]; note that the condition does not prevefitom going

to —oo, it only excludestoo as a possible limit.

We will denote byL? the Hilbert space of measurable real-valued functipns
on $ such that| f||2 = E[ f(X0)?] < oo for all values of8. When f is a function
of other variables, in addition to the state variable we say thatf € L? if it
satisfies the integrability condition for every given value of the other variables.

To be able to give specific results on the effects of the sampling randomness
on the estimation o8, we need to put some structure on the generation of the
sampling intervalA, = 7, — 7,—1. We setY,, = X,,. We assume the following
regarding the data generating process for the sampling intervals:

ASSUMPTIONZ2. The sampling intervala,, = t,, — t,_1 are independent and
identically distributed. Each,, is drawn from a common distribution which is
independent of,,_; and of the parametet. Also, E[Ag] < +00.

In particular, E[ f(Y1)?] = | f||2. An important special case occurs when the
sampling happens to take place at a fixed deterministic intéryabrresponding
to the distribution ofA,, being a Dirac mass at. See Section 5.3 for extensions.
Throughout the paper we denote Aya generic random variable with the common
distribution of theA,;s.

While we assume that the distribution of the sampling intervals is independent
of B, it may well depend upon its own nuisance parameters (such as an unknown
arrival rate), but we are not interested in drawing inference about the (nuisance)
parameters driving the sampling scheme, only alfoiNote also that in the case
of random sampling times, the numk¥ér + 1 of observations in the intervgd, T']
will be random.

2.2. The estimators and their distribution. We consider a class of estimators
for B obtained by minimizing a criterion function. Specifically, to estimate the
d-dimensional parameter vect@r, we select a vector of moment conditions
h(y1, yo, 9, B, ¢), r > d, which is continuously differentiable ig. We form the
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sample average

Nr—1

(11) mr(B) =Nyt Y h(Yy, Ya—1, Au, B, &)
n=1

and obtaing by minimizing the quadratic form

(12) Or(B) =mr(B) Wrmr (B),

where Wy is anr x r positive definite weight matrix assumed to converge in
probability to a positive definite limilvg. If the system is exactly identified = d,
the choice ofWry is irrelevant and minimizing (12) amounts to settimg (8)
to 0. The functionk is known in different strands of the literature either as a
“moment function” [see, e.g., Hansen (1982)] or an “estimating equation” [see,
e.g., Godambe (1960) and Heyde (1997)].

A natural requirement on the estimating equation—what is needed for consis-
tency of f—is that

(13) EA vy, volh(Y1, Yo. A, Bo, €)] =0.

Throughout the paper we denote By y, v, expectations taken with respect to
the joint law of (A, Y1, Yp) at the true parametey, and write EA y,, and so
on, for expectations taken from the appropriate marginal lawgAafy1), and
so on. As will become clear in the Euler example below, some otherwise fairly
natural estimating strategies lead to inconsistent estimators. To allow for this, we
do not assume that (13) is necessarily satisfied. Rather, we simply assume that
the equatiorE sy, y,[7 (Y1, Yo, A, B, )] = 0 admits a unique root i, which we
define as8 = B(Bo, €).

With N7/ T converging in probability ta E[A])~1, it follows from standard
arguments that/7 (8 — B) converges in law tav (O, Qp), with

(14) Qg1 = (E[A]) D, S5 Dy,
where

Dg = En v, volh(Y1, Yo, A, B, &)1,
Sg.j =Enypyvolh(Yi+j, Yj, A, B, e)h(Y1, Yo, A, B, &)1,

and Sg = ;F:"‘ioo Sg,j. If r > d, the weight matrixWr is assumed to be any
consistent estimator 03‘};1; otherwise its choice is irrelevant. A consistent first-
step estimator of, needed to compute the optimal weight matrix, can be obtained

by minimizing (12) withWr = Id.
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3. Expansion of the asymptotic variance: general results.

3.1. The generalized infinitesimal generator. As we just saw, the asymptotic
distributions of the estimators depend upon expectations of matrices of the
form Ea v, vl f (Y1, Yo, A, B, ¢)]. Because these expectations are not generally
available in closed-form, our approach is based on calculating Taylor expansions
in ¢ of these matrices. The key aspect of our approach is that these Taylor
expansions all happen to be fully explicit.

To calculate Taylor expansions énof the asymptotic variances when the sam-
pling intervals are random, we introduce tiemeralized infinitesimal operator I'g,
for the proces« in (1). This is in analogy to the development in Ait-Sahalia and
Mykland (2003), but permits our current more general fornwéfx; ). To de-
fine this operator, let us first recall a standard concept. The standard infinitesimal
generatorA g, is the operator which returns

af af 1, 92 f
15 Ag, - f=— ,00)— + = 1 Y0)—5
(15) po- [ =55+ 10n o)ay1 + 507015 v0) 02
when applied to functiong that are continuously differentiable oncedintwice
in y; and such thadf/dy; andAg, - f are both inL2 and satisfy

| af/oy1 im af/oy1

n=xs(yn B) n—is(ynf)

We defineD to be the set of functiong which have these properties and are
additionally continuously differentiable i ande. For instance, functiong that
are polynomial iny; near the boundaries of, and their iterates by repeated
application of the generator, retain their polynomial growth characteristic near
the boundaries; so they are all it? and satisfy (16). Near both boundaries,
polynomials and their iterates diverge at most polynomially (under Assumption 1,
w, o2 and their derivatives have at most polynomial growth; multiplying and
adding functions with polynomial growth yields a function still with polynomial
growth). But we will often have exponential divergence 0f1; 8). This would be
the case, for instance, if the left boundaryis= —oo, and there exist constants
E > 0andK > 0 such thatfor alk < —E and(8, ), w(x; 0)/c2(x; y) > K |x|*
for somex > 0; and if the right boundary i$ = +o00, there exist constants > 0
andK > Osuchthatforalk > E and(©, y), u(x; 8)/o%(x; y) < —K x® for some
a > 0; if insteadx = O, there exist constant®& > 0 andK > 0 such that for alll
O<x < E and(®,y), u(x;0)/c%(x;y) > Kx~? for someg > 1 andK > 0. If,
howevergp = 1 andK > 1, then Assumption 1 is still satisfied, butliverges only
polynomially near @'.

Our new operator g, is then defined by its action ofie D:
af [ of 9B

17 Ty - f=AgAg - f+ L+
(17) po- = Bodg f+88+8;388

(16)
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Note that whenAg is random, our operatdrg, is also random since it depends
on Ag. The last term allows for the fact thatcan be a function ofBp, €). Because
we will need to apply repeatedly the operalyy,, let us defineD’ as the set of
functionsf with J + 2 continuous derivatives ify 2(J +2) in y1, such thatf and
its first J iterates by repeated applicationsA, all remain in and additionally
haveJ + 2 continuous derivatives i ands.

3.2. Behavior for small ¢ of the estimating equations. The limiting behavior
of the vectors of moment functions depends crucially on whether one is
estimating separatelg, y or both together. If one is only estimating the drift
parameter®, it will typically be the case thak(y1, yo, 8, B,¢) can be Taylor
expanded around its continuous-sampling lii{o, yo, 0, 8, 0). On the other
hand, when estimating, we will see that such a Taylor expansion is not possible,
andh(y1, yo, 8, B, €) is instead of ordeD (1) ase — 0 (and naturallyy; — yo
ands — 0 at the same time). We shall in the following describe a structure which
is consistent with all the various estimatorsfive consider, and is applicable to
others as well.

We assume the following regularity condition regarding the moment funckions
selected to conduct inference:

ASSUMPTION3. h(y1, y0,6, B,¢) € D’ for someJ > 3. We shall in general
consider moment functioris of the form
7 H(yl’y0767ﬂ’8)
(18) h(ylay0767 ﬂw’?):h()’l, )’0,5,578)4- s
whereh € D7 andH € D/*1. When the functior# is not identically zero, we

add the requirements that
dH (y1, y0, 0, Bo, 0)

(19) H (0. y0. 0, Bo,0) = - = H(y0, Y0, 0, B0, 0) = 0.

’

In our definition ofs, the termH captures the singularity (i.e., powers gf}
which can occur when estimating the diffusion coefficient. Consider, for example,
the case whereé is the likelihood score foi. The log-likelihood expansion in
Ait-Sahalia (2002) is, for the transformed procéss

- =2
% + higher-order terms.

. 1
[(31, Yo, 8, B, &) = —3 In(2m§) —

By the Jacobian formula, the log-likelihood expansion for the original prokess
is, therefore,

1 1/Mm 1 2
[(y1y0.8. B.€) = = In(278) — 2—(3(/ pr— dx)
Yo )

1
-5 In(o2(y1; y)) + higher-order terms.
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The score with respecttois

_} 1 1 YL o (x;y)/0y
”(yl’yO"S’ﬂ’g)‘(s(/yo o(x;y)d")(/yo o (x1y)? dx)

_da(y1y)/0y
o(y1;y)
H must contain the coefficient 6f 1 in &, that is,
y1 1 Y1 oo (x;y)/0
@) Howyos o= ([ ———ax)( [T ax).
yo 0(x;%) Yo o(x;y)

But we are free to add the terms of ordeand higher ta, provided we subtract
them fromh so as to leavé unchanged. For instance, a convenient choice is

(21) H(yl’:yzf;lﬁ’g)l dx) (/yl do (x; y)/dy dx) _gdo0niy)/dy
Y Y

+ higher-order terms.

o0 o(xX;y) o o(x;y)? o(y1; ¥)

and thenz = h — H/§. Both choices ofH satisfy (19) becaus# has the form

=a(y1)b(y1) — éc(y1), wherea andb denote, respectively, the two integrals
andc the coefficient of in (21);c = 0 in (20). Aty; = yo andsé = 0, we haven =
b=0,thus,H =0; andH' =a’b+ ab' — 8¢ =0; andH = ab + ab — 8¢ = 0.
Note also that

Apy-H=—c+p(a@'b+ab —38c) + (02/2)(2d’b’ + a"b + ab” — 8¢,

where prime denotes differentiation with respecytoAt y; = yo andé =0, we
havea = b =0, thus,Ag, - H = —c(yo0) +02(y0; y0)d' (y0)b' (yo) = 0. And this H

does not depend oy, so dH/de = 0, and the likelihood score is a martingale
estimating function, hence unbiased, anddgyds = 0. Thus, by adding the
additional term toH in (21) relative to (20), we also have thag, - H =0 at Q
which makes such a#l closer to being all by itself a martingale in a sense we
make precise in Section 3.4. It makes no difference for the exact likelihood since
h is always a martingale, eveniifand H are not separately, but this is convenient
when analyzing likelihood approximations such as the Euler case in Section 4.2.

3.3. The Dg and Sg o matrices. In order to obtain expansions of the form (3)
for g, we work on its component®g, Sgo and Tg = Sg — Sg 0. The first
result uses our generalized infinitesimal generator to provide the expansions of
the matricesDg andSg o:

LEMMA 1 (Expansions forDg and Sgo). Let h = (h1,...,h,)" denote a
vector of moment functions » = i + A~1H satisfying Assumption 3 and 4 € D3,
H e D*. Also assume (27) and the other conditionson ¢; in Lemma 2.
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1. Inthe case where H isidentically zero, we have
£2
2
and, with the notation % x A'(y1,yo,8,B.&) = h(y1.yo.8, B, &)h(y1, Yo,
8, B,¢), wehave

Sg.0= Eyo[(h x i")]+ €Ea y,[(Cpy - (h x h))]
(23) 2

+ %EA,YO[(FIQO (h x )] + O(d).

2. In the case where H is not zero, (22) and (23) should be evqluated at h
rather than h, yielding D and S} , respectively. Then D = D} + Dj/ and

(22) D= Eylhl+eEayo[(Tpo - 1))+ 5 Eavo[(TF, - )] + O ()

Sg0= Sg,o + S0, where
_ . P _ )
(24) D/? = Ea,yo[80™(Tpo- H)] + EEA,YO[Aol(Fgo “H)]+ 0(e?),
_ ~ & B -
Sho=Eaxo[Ag" (Tpo - (h x HY)] + S Ea vo[Ag™ (T, - (h x H'))]

+ EA,YO[Aal(Fﬂo - (H x fl/))] + %EA,YO[Aal(Féo -(H x fz’))]

1 _
+ EEA,YO[AOZ(rgo (H x H"))]

n %EA,YO[Agz(rgo (H x H"))] + 0(£?).

(25)

3.4. Howfar ish froma martingale? Next, we turn to an analysis of the more
challenging time series matrik = Sg — Sg,0. The simplest case arises when the
moment function is a martingale,

(26) En v [h(Y1, Yo, A, Bo, €)| Yol = 0.

In this circumstance§g ; =0 for all j # 0, and sdly = 0.

Even in the serially correlated case, however, we will show that the sum of
these time series terms can, nonetheless, be small svisesmall. Intuitively, the
closerh will be to a martingale, the smalldiz = Sg — Sg.0.

To define what we mean by the distance from a moment function to a
martingale, denote by; the ith element of the vector of moment functiohs
and defingy; ando; by

Eay[hi (Y1, Yo, A, B, )| Yol
(27) = £“q;(Yo, Po, &)

= Saiqi(YO ﬂo O) + gai+1w

+ O(Sai+2),
ae
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whereq; is an integer greater than or equal to zero for each moment funiction
«; is an index of the order at which the moment comporigndeviates from a
martingale (note that in a vectarnot all component#; need to have the same
indexa;). A martingale moment function corresponds to the limiting case where
a; = +00, q;(Yo, Po, €) is identically zero, andsg = Sg 0. When the moment
functions are not martingales, we will show that the differefige= Sz — Sg.0
is a matrix whose elemert, j) has a leading term of orded (¢™M"@-2))) in ¢
that depends op; andg;. As will become apparent in the following sections,
(27) holds in all the estimation methods we consider.

Note thatE s y, y,[hi (Y1, Yo, A, B, €)1 = 0 by definition of, hence, by the law
of iterated expectations we have thiat[g; (Yo, Bo, €)1 = 0. We will also need the
functionr; (y, Bo, €) defined as

o0
(28) ri (o, Po, €) = —/0 U; - Ag,y - 4i (Yo, Po, &) E[Tn)+1] dt,

whereUs - f(yo, 8, B, &) = Ey,[f (Y1, Yo, A, B,&)|Yo = yo, A = §] is the condi-
tional expectation operator. Recall thatare the sampling times fax, and that
N; =#{1; € (0,1]} (sotg = 0 is not counted). We can assert the following abgut

LEMMA 2. Under Assumption 1 and (27), we suppose that ¢, (Yo, 8o, 0) and
9100500 are jn L2, Finally, let (Ag, - ¢:)(Y, Bo, ¢) be defined, bounded and
continuous in L2-norm on an interval ¢ € [0, eg] (g0 > 0). Then r;(y, Bo, &) is
well defined. Also,

1 E[A?
(29) ri(Yo, Bo, &) =7i (Yo, Po, &) + 58%%(%, Bo, 0) + 0, (),
where
F(y0. Bo. €) = — / { (Us - Ay - 41) (o, o €) d
(30) 0

o0
= [ Wi -a000.po.e)dr.
Alternatively, 7; can be defined as the solution of the differential equation

(31) A,Bo 'Fi('aﬁ07 8) = —Qi(‘7 ﬂ07 8)5
with the side condition that Evy,[7; (Yo, Bo, €)1 = 0.

By convention, here and in the proofs, (f(¢)) ando,(f(¢)) refer to terms
whoseL? norms are, respectivel@ ( f (¢)) ando(f (¢)).

Finally, an alternative form of; is given in the proof of Lemma 2; see (64).
While the indexe; and the functiong; play a crucial role in determining the
order ine of the matrix7g, the functionr; will play an important role in the
determination of its coefficients.
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3.5. The Tg matrix. Putting all this together, we can calculdltg when# is
not a martingale estimating equation. The expansion of the niBjrig obtained
by applying the operatdrg, as follows:

LEMMA 3 (Expansions foffg). Under the assumptions of Lemma 1, assume
also (27) and the other conditions on ¢g; in Lemma 2. Then we have the following:

1. If H iszero, the (i, j) termof thetime seriesmatrix Tg = Sg — Sg0is T3], ),
given by

(80‘1_1Ey0[(hi X )]+ Eno yo[Upo - (i x1))]

g¥itl 2 ai—1
5 Enovo[ Ty - (hi X r)] + e Exol(hj x 1]
(32) + % Eng.vo[ (Do - (hj x 1i))]
Eoti+1

+ TEAOvYO[(Féo ~(hj x ”i))])

[Tgla,j) = ElAo]

+ O(Smin(ai,a_i)+2).

2. If H isnonzero, then (32) should be evaluated at 4 rather than h, yielding Tg.
And Tg = Té‘ + TﬁH , Where

175"V = (8“’_1EA,Y0[A61(F;30 - Hi) xrj]

EfAo]
&

@
+ 7EA0,Y0[A61(F§0 -(H; x1)))]

(33) + &% Eng vo[ gt (Cpo - Hj) X 1]

g% _
+— Eaore[Ao Y, - (Hj x m)])

+0 (emin(a,',otj)—i-l).

Note that for most applications of Lemmas 1-3, the assumption of (27) and the
other conditions op; in Lemma 2 follow from the other assumptions of Lemma 3,
as follows. Normally, one can take to be< 2, since the error term in (32) need
not be smaller than that of (23), and the error term in (33) need not be smaller
than that of (25). The conditions mentioned from Lemma 2 follow; i€ D2 and
H; € D* (more generallyl; € D%+ andH; € DY2).

3.6. Form of the asymptotic variance matrix 2g. By combining our previous
results concernindg, Sgo and Tg, we can now obtain an expression for the
matrix Q2. Specifically, we have the following as an example of a typical situation:
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THEOREM 1 (Form of the matrix2g). Under the conditions of the preceding
lemmas we have the following:

1. When we are only estimating 6, with y9 known, using a vector 4 such that
H =0,and Dg and Sg have the expansions

Dy =D +e2DP + 0(3),
Sy =eSY +62DP + 0(c3),

then the asymptotic variance of the estimator has the expansion 2y = Qéo) +
eQY + 0(6?), where

QO E[ sl Dl 2
1 1 2 2 1 1)\3

2. When we are only estimating y, with 6o known, and Dg and Sg have the
expansions

— pO D 4 2p@ 3
Dy_Dy —{—eDy + & Dy + 0(e”),
Sy =S + S + 252 + 0(e3),
then the asymptotic variance of the estimator has the expansion ,, = Q,(,l)s +
QP2 4 QP34+ 0(e%), where
2
Qb = E[Aqls? /(DY)
2 0 ¢(1 1) ¢(0 0,3
Q@ = E[Aol(DP' s — 2D sP) /(DY)?,
Q) _— D ¢(® 0 H @ ¢
QY = E[Ao](3DSVSP —2DS) D 5§
0 H(D 012 (2 0)\4
— 2D DP P + (DP)5$2) /(D).

3. When we are estimating 6 and y jointly, and the Dg and Sg matrices have the
expansions

5 (gdg}; +e2dyg + 03 eds + 0(e?) )
p= ,

edSy + O(e?) dy) +edf) + 0(e?)
o (ssg{j +elsse + 03 esy) + 0D )
¢ es}(,le) + 0(e?) sﬁ? + es)(,l)z +0@3)’

then the asymptotic variance of the estimator 3 is

a)é%) + sa)(%) + 0(£?) ewé? +0(e?)
2 = M :

iy +0(%)  ewyy + 20y + 0()
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where
0 1 1,2
a’ée) = E[AO]Sée)/(de(e)) )
(@) @ .2 2 O (D3
Wyg = E[AO](dee Spg — 2dpg Sgg )/(dee )%

@ @ @D gD 40
a)ye = w@)/ - E[AO]SQ}/ /(dt9‘9 d)(/y))’

Q@ _ (0) 0)\2
oy, = E[Aols,, /(d,)",

2 _ 0) 4(1) («(0)] (0))3
o)) = E[Aol(dy,)dyy — 2d,)s,))/(dyy)
(@H]

In particular, the diagonal leading terms wé%) and w,;, corresponding to

efficient estimation with a continuous record of observation are identical to
their single-parameter counterparts.

An important fact to note from the above expressions is that to first order in
the asymptotic variances 6fandy are unaffected by whether one estimates just
one of them (and the other one is known) or one estimates both of them jointly. This
is not necessarily the case for the higher-order terms in the asymptotic variances,
since those depend upon the higher-order terms ilthand Sz matrices which
are not necessarily identical to those of their single-parameter counterparts.

Also, the leading term 2y corresponding to efficient estimation with a
continuous record of observations is

Q) = (Ev,[ (314 (Yo: 60)/86) %0 (Yo: yo) ~2])

providedu is continuously differentiable with respectdo And the leading term
in €2, corresponding to efficient estimation pfis

Qb = E[Ao)(2Ey,[ (90 (Yo: 0)/3y) 0 (Yo y0) "2]) ™"

providedo is continuously differentiable with respect ta In the special case
whereo? = y constant, then this becom@%lz) = ZGS‘E[AO].

These leading terms are achieved, in particular, whenthe likelihood score
for 6 andy, respectively, but also by other estimating functions that are able to
mimic the behavior of the likelihood score at the leading order.

3.7. Inconsistency. For the estimator to be consistent, it must be fhat Bg
but, again, this will not be the case for every estimation method. However, in all the
cases we consider, and one may argueafgrreasonable estimation method, the
bias will disappear in the limit where— 0, that is,8(B0, 0) = Bo (so that there is
no bias in the limiting case of continuouswgaling) and the following expansion

0
(34) B=PB(Bo,e)=Po+ > &bV +o0(c?)

g=1
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holds for someQ > 1. The coefficientsh® = (1/¢!) 3?8(Bo, 0)/de? can be
determined as follows. By the definition 8f

(35) Envvo[h(Y1, Yo, A, B(Bo, &), €)] =0.

Consider the case whef¢ = 0. Recognizing thag is a function ofe, as given
in (34), we can compute the Taylor series expansion

Eyl[hm, Yo, A, B, &)|Yo, Al

36
(36) Z h) (Yo, Yo, 0, Bo, 0) + O, (e’ ™),

whose unconditional expectation, in light of (35), must be zero at each order
in . So to determinéD | set to zero the coefficient efin the series expansion

of Ea vy, v,[h(Y1, Yo, A, B(Bo,€),e)] = Ea yo[Ev,[h(Y1, Yo, A, B(Bos €), €)|Yo,
All:

0= EA,YO[(F/SO . h)(Yo, Yo, 0, Bo, 0)]
= E[AO]EY()[(A/SQ : h)(YOa YO’ 07 ﬂO’ O)]

oh ;
+ Eyo[g(Yo, Yo, 0, Bo, 0)] + Ex,lh(Yo. Yo.0. o, 0)]6™

and, hence, iy, [/ (Yo, Yo, 0, Bo, 0)] # O,

bP = —(E[AolEy,[(Ag, - h) (Yo, Y0, 0, Bo, 0)]

37) .
+ Ey,[(3h/d€)(Yo. Yo, 0, Bo. 0)])(Ey,[A(Yo, Yo. 0, Bo. 0)])

Then givenb?, setting the coefficient o2 in that series expansion to zero
determine$ @, and so on. fEy, [/ (Yo, Yo, 0, Bo, 0)] = 0, then one needs to look
at the next order term in the expansion to deterngifté, and so on. This is, for
instance, what happens in the Euler scheme when estintgtsee Section 4.2.

If H # 0, then (36) incorporates bothand H, and one proceeds analogously
to determineb™ and the following coefficients by setting the coefficients of the
expansion of (35) to OFor an example of this, see the estimatiowéfusing the
Euler scheme.

4. Application to specific inference strategies. We now apply the general
results to specific instances of moment functionscorresponding both to
likelihood and nonlikelihood inference strategies, for the model where- y
constant.
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4.1. Maximum-likelihood type estimators. The development of Ait-Sahalia
and Mykland (2003) deals with likelihood type inference, and we recapitulate here
the inference schemes in that work, and how they relate to the present paper. We
applied the general results of the present paper to maximum likelihood estimation,
using three different inference strategies:

1. FIML: Full information maximum likelihood, using the bivariate observations
(Y, Ap).

2. IOML: Partial information maximum likelihood estimator using only the state
observationy,,, with the sampling intervalsitegrated ouit.

3. PFML: Pseudo maximum likelihood estimafametending that the sampling
intervals ardixed at A,, = A.

All three estimators rely on maximizing a version of the likelihood function
of the observations, that is, some functional of the transition depsiyfthe X
process:p(Yy|Yu—1, Ay, 0) for FIML; p(Y,|Y,—1,60) = Ea,[p(YalYa-1, Ay, 6]
for IOML; and p(Y,|Y,—1, A, 8) for PFML (which is like FIML except thatA
is used in place of the actual,). The extent to which these estimators differ from
one another gave rise to different “costs.” FIML is asymptotically efficient, making
the best possible use of the joint discretely sampled @ataA,;). The extent to
which FIML with these data is less efficient than the corresponding FIML when the
full sample path is observable is what we called¢bst of discreteness. IOML is
the asymptotically optimal choice if one recognizes that the sampling intekyals
are random but does not observe them. The extra efficiency loss relative to FIML
is what we called theost of randomness. PFML corresponds to the “head-in-
the-sand” policy consisting of doing as if the sampling intervals were all identical
(pretending thatr,, = A) when, in fact, they are random. The extent by which
PFML underperforms FIML is what we called thest of ignoring the randomness.

We then studied the relative magnitude of these costs in various situations.

The respective scores from these likelihoods are special cases of the estimating
functionsh of the present paper. But the results of the present paper apply to a
much wider class of estimating functions than the three likelihood examples, such
as the following.

4.2. Estimator based on the discrete Euler scheme.  We now apply our general
results to study the properties of estimators of the drift and diffusion coefficients
obtained by replacing the true likelihood functibiy1|yo, §, 8) with its discrete
Euler approximation

(y1 — Yo — 1 (y0; 0)8)?

2028 )
This estimator is commonly used in empirical work in finance, where researchers
often write a theoretical model set in continuous-time but then switch gear in their

1
(38) 1 (y11y0, 8, B) = -5 In(2ro28) —
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empirical work, in effect estimating the paramet@rs= (9, 52)’ of the discrete
time series model

(39) Xitn — X = (X 0)A +6VAna,

where the disturbance is N (0O, 1). The properties of this estimator have been
studied in the case wherk is hot random by Florens-Zmirou (1989). Our results
apply to this particular situation as a special case.

In the terminology of Section 3, our vector of moment functions is

i¥ (y1lyo. 8, B)
h(1. 70,9, f. €)= [[%2()’1|y0’87/3):|

_ [ [1(y0, 8)(y1 — yo — i (yo; 0)8) /a2 }
—1/(202) + (y1 — yo — n(y0: )8)%/(2045)

when both parameters = (6, o2) are unknown, and reduces to one component
when only one parameter is unknown. For this choicé,0f13) is not satisfied
and, thus, the estimator is inconsistent. Note also that the solutiah af
EA’yl,YO[l'QE(Yl, Yo. A, B, ¢)] =0 is independent of 2 and, hence, whether or not
we are estimating 2 does not affect the estimator of the drift parame®grcourse,
this will not be the case in general for the true maximum likelihood estimator.

As we discussed in the general case, the asymptotic bias of the estifaigy,
will be of orderO (¢) or smaller. In this particular case,df is known, the bias in
6 is of orderO(¢). As in the general setting of Section3T (8 — B) converges
in law to N (0, ) and an application of Lemmas 1 and 3 yields the following.

1. When we are only estimatirg with og known, using only the first equation
in (40), we havex; =2 and

q1(y, Bo, 0)
_ E[Af]
=t
(41) § (o-gEyouau/ay)(Yo; 60) (8214/ By 96))(Yo; 60)1((D1/36) (y; 60))2
Ey,[((01/36)(Yo; 60))2]

du(y; 6o) 232M(y;90)>3ﬂ(y;90)>
2 10
+<u(y o) 3y + 0§ 52 50

(40)

in (27). The bias of the drift estimator is
0 — 6o

(42) _ 2 EIAG Exol(012/9y) (Yo; 60) (0%1/ 3y 80))(Yo; 60)]
° ElAo] AEy,[((914/0)(Yo: 60))°]

+ 0(£?)
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and its asymptotic variance 82y = Qéo) + Qél)e + 0(£2) with Széo) =
0ZEy,[((31/36)(Yo; 60))2]~2 (the limiting term caresponding to a continuous
record of observations) and

@ _ ag E[AG]

T 2E[A0lEy,l((011/96)(Yo; 60))%13

n %n %n
(20—0 EYO[ L (¥o: 60) - (Yo eo>]EYO[ ¥o: 00y

+ EY0|:<2_Z(YO§ 90)>2]

2002T9(2) ou 2au
x | ——=— +2E [(—Y;Q)—Y;Q]
< E[Ag] Yo 89( 0: 60) 8y( 0; o)

2 (v 90)]

83
a&EYO[ (Yo fo)- 92<Yo,eo>D)
where
T2 = —2Ey,[1(Yo. Bo, 0)] = 4Ey,[q1(Yo, Bo. 0)G1(Yo, Bo)]

with G1(yo, Bo) = 0 > [*° (0, 60) dzo.
2. When we are only estimating?, with 6o known, using only the second
equation in (40), we have, = 1 and

E[A 0
(43) 920y, o, 0) = [201(—( 60) — Ey{—“(%;@o)})
204 ay

in (27). The bias of the diffusion estimator is

_ ol
52 — 68 =¢E[AglogEy, [5(1/0; 90)]
(44)

202 ou 2
+e2 20 ElfiEy | (35 (an)) |+ 06
dy
and its asymptotic variance i€,. = erlz)e + 52((722)52 + 0(¢3) with szf}z) =
ZJS‘E[AO] (the same first-order term as MLE) and
au
2% = o El ol El8olEx, [5%; | +o31d)
where

T'3 = 4Ey,[q2(Yo, fo. 0)G2(Yo. Bo)] + ——— Exolqz2(Yo. Bo. 0r2(Yo, o, 0)]

2
E[Ao]
with G2(y0, Bo) = —ag * J*° i (z0, 60) dzo.
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3. When we are estimatirgyando 2 jointly, using both equations in (40), the
two components of the bias vect®r Bg are given by (42) and (44), respectively,
(to their respective orders only). We also have that 2, ap = 1 andg = (g1, g2)’
with g1 andg> given by (41) and (43), respectively. The asymptotic variangé of

is
Qs = ( Why  Wpy2 )
Ws29 Wy252
_ (a)é%) + ea)(%) + 0(£?) ea)(l) + 0(£?) )
e, + 0@ el ,+ 820)(22) ,+ 0(e3)
Wherea)(o) Qéo), (1) Q(l) ((712)02 = 95712) and
6
Ww® _ o0 _ 20, Ney
020 — T2 T . 217002’
Ey,[(de/96(Y0; 00))7]

(22) 2= 404E[Ao]<E[Ao]Eyo[—(Yo, 90)] +Gof 2 z),

with 1Y, = 2Ey,[G1(Yo. fo)g2(Yo. fo. O] andr3) , = T3,

Therefore, as is to be expected when using a first-order approximation to the
stochastic differential equation, the asymptotic variance is, to first orderthe
same as for MLE inference. The impact of using the approximation is to second
order in variances (and, of course, is responsible for bias in the estimator). When
estimating one of the two parameters with the other known, the impact of the
discretization approximation on the variance (which MLE avoids) is one order of
magnitude higher than the effect of the discreteness of the data (which MLE is also
subject to).

4.3. Example: the Ornstein~Uhlenbeck process. We now specialize the ex-
pressions above to a specific example, the statioaryq) Ornstein—Uhlenbeck
process

(45) dX,=—60X,dt +odW,.

The transition density (y1]yo, 8, B) of this process is a Gaussian density with
expected value %’ yp and variancel — e=%%)52/(20). The stationary density
7 (yo, B) is also Gaussian with mean 0 and varianég(20).

Because its transition density is known explicitly, this model constitutes one
of the rare instances where, in addition to our Taylor expansions which can
be calculated for any model, we can obtain exact (i.e., non-Taylor expanded)
expressions for the matrice$ o, Dg and Tg. Specifically, for methods relying
on nonmartingale moment functiors the exact calculation of the time series
termTg is based on

Tg = ———En v, v,lh(Y1, Yo, A, B, &) R(Y1, Bo, &)1,

E[Ao]
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whereEa y,[h(Yo, Y1, A, B, €)|Yol = £%q (Yo, Bo, €) = O(Yo, Po, £) and

R(Y1, o, &) = E[Ao0l Y Ey,[Q(Yx, Po, &)|Y1] = e r (Y1, Bo. €).
k=1

This last expression requires the calculatiorEcDY,3|Y1]. To this end, consider
first the law of Y, given Y1 and A,, ..., Ag. In this case)Y; is conditionally
Gaussian with mearv;exg{—60(A2 + --- + Ap)} and variance((k — 1) —
exp{—20(Az + - - - + Ap)}))o?/(20). Hence, we obtain that

E[Y1<2|Yl] = E|:Y126Xp{—29(A2 + 4 Ap))

o2

F (k=D —expl-20(Bg -+ Ak>})|Y1]

= YPElexp{—20A)]%" 1)+ ((k 1) — Elexp{—20 A%,

In Table 1, we report results for the Ornsteln—UhIenbeck parameters estimated
one at a time (i.e§ knowingo? ando2 knowing#). The quantities for the MLE
are based on the developments in Ait-Sahalia and Mykland (2003); for the discrete
Euler scheme, they follow from the results above.

TABLE 1
Asymptotic variance and bias for the Ornstein—Uhlenbeck process estimated using maximum
likelihood and the Euler scheme. These expressions follow from specializing the general resultsto
the Ornstein—Uhlenbeck process. When estimating 6 with known o2 us ng the Euler scheme, Ty =0
for the Ornstein—Uhlenbeck process because (Y, Y1, A, B, ) turns out to be a marti ngale. Note
that it is perfectly acceptable for the variance of 6 to be below that of the MLE estimator. This can
easily occur for an inconsistent estimator. Note that since g = log(1 — 56)/8, one can create a
consistent estimator out of the Euler estimator 6 by using log(1 — §9)/5. The latter isinefficient
relative to the MLE estimator, as expected. When estimating o 2 with known 6, the first-order
expansion for the MLE’s 2> is exact. Thisis because the Ornstein-Uhlenbeck process has a
constant diffusion parameter and a Gaussian likelihood. But for 6, the MLE’s Q¢ involves an
expansion because the exact log-likelihood of the processis a function of exp(—648), which in our
method is then Taylor-expanded in &

MLE Euler
2 202
Q 200+ ¢ < g%[[AO]]) +0(e3) 260 — ( 9of[A]o]) +0(e2)
~ 6
6 —6p 0 (gE[[ ]])+0( 2y
Q,2 £(20§ E[Agl) £(208 E[Aq)) — £2(40005 E[A0)?) + O (%)

52— o2 0 —6(6002E[Ag)) + & (M) 0@
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4.4. The effect of the distribution of the sampling intervals. One of the
implications of our results concerns the impact of the distribution of the sampling
interval on the quality of inference. It is, obviously, better to have as many
sampling times as possible, but, to move beyond thisEfidg]. To the extent
that our expansions depend on other features of the latypfhey do so through
the momenth[Ag], g > 2, as can be seen from the expressions above.

One can then compare whether it seems preferable to minimize these higher-
order moments, and thus have sampling at regular intervals, or whether a certain
amount of randomness ing is preferable. In the case of the MLE for the
Ornstein—Uhlenbeck process, it can be seen from Table 1 that the randomness
of the sampling scheme makes no difference 46t On the other hand, for
the Euler estimation of for the same process, randomness (i.e., higfl’{sﬁr%])
adversely affects the bias but reduces the asymptotic variance. At the first order
in e, randomness has no effect on the estimatioa %fat the second order, more
randomness reduces the asymptotic variance and the bias (since the first-order bias
term is negative, a higher positive second-order bias works to reduce the bias).

Outside of the Ornstein—Uhlenbeck situation, it should be noted that even in the
case of the MLE, it can occur that a somewhat random sampling can be preferable
to sampling at a fixed interval. This occurs, for example, if one estimetdn
the presence of a known drift functign(x) = —x(1 — exp(—x*)) (and, hence,
known 6). For that drift function, one then obtains th&f(331/9y%)(Yo)] > O
and so sgmfz) = —sgnE[Ao] since when we are only estimating, with 6o

known, the asymptotic variance of MLE §3,2 = Qélz)s + 923‘2)83 + 0(e*) with
Q") = 20$ E[Ao] and

@_ 1 2 CATp
(46) Qo= 300E[A0]E[A0]EYO 8y3(Yo, 60)

[see Ait-Sahalia and Mykland (2003) for an analysis of the MLE special case].

Sinclele) only depends on the first momentA&§, there is, therefore, a beneficial

first-order effect of random sampling 62y... For other drifts, such as, for instance,

w(x) = —x3, we haveE[(831/9y%)(Yo)] < 0 and, therefore, the opposite is true.
There is, therefore, no overall rule that covers all cases. In general, the impact of

the sampling depends on the coefficients associated with the momehgs afd

the expansions derived in this paper can be used to gain insight into this impact.

5. Extensionsof thetheory.

5.1. Extensions to more general estimating equations. In terms of admissi-
ble & functions, our theory can be extended from Taylor series to Laurent series
(which have both positive and negative powers)nThat is, the structure can be
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easily generalized to a situation wherés of the form

y0787ﬁ78)
om ’

M Hpn(n
7 m )
h(y1, 0,8, B,€) =h(y1,y0.8,B.€) + Y _

m=1

where i and {H,,;m = 1,..., M} satisfy Assumption 3 wittb* H,, (vo, vo, O,
Bo, 0)/3y1£ =0fork=1,...,m. Since this situation does not appear in practical
estimation methods other than fbf = 1, we have stated the result for that case,
that is, (18), to avoid needlessly complicating the notation.

A different extension is the following. Instead of being of the form (18), the
vector of moment functions is of the form

(47) h(y1, 0,8, B, ) = h(y1, y0, 8, B, &) +

K (y1,y0. 8, B, €)

where bothz andK can be Taylor expanded as specified by (55) and

9K (¥0,70,0, 0,00 _ 3K (y0, 30,0, 50, 0) _
dy1 ap
Then a simple modification of Lemmas 1 and 3 holds: evaluate (22) and (23)

at i instead ofi, and replace (24), (25) and (33), respectively, by the following
contributions fromk :

(49) Df = Exnl(Tso- K)]+ S Eanl(Th, - K)]+ 02,

SKo=Eanl(Tpo - (b x KO)] + 5 Ea xel(TG, - (G x K)]

(48) K(y0, y0,0, Bo,0) = 0.

+ En.yo[(Tpo - (K x i)] + gEA,YO[(Féo (K x )]

(50) )
+ S Eaxo[ (T, - (K x K")]
+ %EA,YO[(Fgo (K x K]+ 0(?),
1 _
T4 Ny = m(b““-’ YEayo[(Tpo - Ki) x 1]
+ %EAO,YO[(F;‘ZSO - (K; x }’j))]
(51) +80”_lEAoJ’o[(l—‘IBO -Kj) xri]
+ %EAO,YO[(F,%() (K x ”i))])

+ O(Smin(ai,a_f)+1)’

yielding Dg = Dj + DX, Sg.0=Sh o+ SKoandTy = T} + TX.
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Note that sinces is deterministic, using: or ¢h as the vector of moment
functions produces the same estimator. Indeed, vitisof the form (47), the two
matricess produced by applying Lemmas 1 and 3 with H) = (¢h+ K, 0) or
the first part of this remark Withfz, K) are identical.

5.2. Extensionsto more general Markov processes. One can extend the theory
to cover more general continuous-time Markov processes, such as jump-diffusions.
In that case, the standard infinitesimal generator of the process applied to a
smoothf takes the form

Jﬁo'f=Aﬁo'f+/{f()’1+Z,y0757 ﬂ,{;‘) _f(yl’y0767 ﬂﬁg)}v(dZ’yO)a

whereAg,, defined in (15), is the contribution coming from the diffusive part of the
stochastic differential equation andiz, yo) is the Lévy jump measure specifying
the number of jumps of size i,z + dz) per unit of time [see, e.g., Protter
(1992)]. In that case, our generalized infinitesimal generator becomes
of ofap
gy - f=AoJg, - — 4+ =,
N A P TF P

that is, the same expression as (17) exceptAhgis replaced by/g,.

5.3. Extensions to more general sampling processes. Another extension
concerns the generation of the sampling intervals. For example, iiilseare
random and i.i.d., ther®[A] has the usual meaning, but even if this is not the
case, byE[A] we mean the limit (in probability, or just the limit if tha;s are
nonrandom) ob_?_; A;/n asn tends to infinity. This permits the inclusion of the
random non-i.i.d. and the nonrandom (but possibly irregularly spaced) cases for
the A;s. At the cost of further complications, the theory can be extended to allow
for dependence in the sampling intervals, wherehyis drawn conditionally on

(Yn—17 An—l)-
6. Proofs.
6.1. Mixing.

LEMMA 4. Under Assumptions 1 and 2, the p-mixing coefficients of the
discretely sampled process decay exponentially fast.

6.2. Proof of Lemma 4. We start by showing that the sequenceparfixing
coefficients{ps; § > 0} of the process
E[¢(Yo)(Us - ¢)(Yo)]

(52) 05 = sup )
(6.9 € L2|E[$ (Yo)l=E[Y (Y0)]=0} Il
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decays exponentially fast a& increases. Under Assumption 1, specifically
condition (8), the operatot/s, as defined just after equation (28), is a strong
contraction and there exists > 0 such that|Us - ¥| < exp(—«8) ||| [see
Propositions 8 and 9 in Hansen and Scheinkman (1995)]. Thus, by the Cauchy—
Schwarz inequality,

|E[¢(X0)(Us - ) (X0l < 91lIUs - 1| < l@llll¥ [l exp(—«3),

that is,ps < exp(—«3J).

The mixing property of the underlying continuous time procgss r > 0}
translates into the following mixing property for the discretely (and possibly
randomly) sampled state procegs,;;n =0,..., Nr}. For functions¢ and
in L2, we have
El¢p(Yo)¥ (Y] = E[¢(X0) ¥ (Xay+-+4,)]

= Eny.. 0 [E[@ XV (XArtta,) AL ..., Ay]]
= Eny,...00[Exol® (X0 Exo[¥ (X aytta,) X0, AL, ..., Ay]]]

= Enq,...00[Exol®(X0) (Unytta, - ¥)(X0)]]
so that

|E[(Yo) ¥ (Y)1l < Eay,.... a0 [| Exo[¢ (X0) (Unyt-ta, - ¥)(X0) ][]
(53) < Engoa [BXP=A A1+ + A))]lolv
= {Ealexp(—« M) V" #1lI¥ I,

with the last equality following from the independence of thgs. Since

0 < Exalexp(—« A] < 1, the Y;,s satisfy a mixing property sufficient to insure
the validity of the central limit theorem for sums of functions of the data
{(A,Y);n=0,...,Nr}.

6.3. Proof of Lemma 1. To calculate Taylor expansions of functiofig¥1, Yo,
A, B,e) e D7, note first that

&ﬂfWL%JﬁgSN%MSZM

54 e/
o4 Zj- ) (Yo, Y0,0, Bo, 0) + O, (e’ *H).

All the expectations are taken with respect to the law of the process at the true
value Bp. This is in analogy to Theorem 1 in Ait-Sahalia and Mykland [(2003),
page 498].
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1. Starting withDg, assume first that/ = 0, and write a Taylor expansion of
Ey,[h|Yo, Alin A, using (54):

Ea v [h(Y1, Yo, A, B, €)|Yo= yol
= h(yo, y0. 0, Bo. 0)

. 9h 0oh 3B
+o( EldollAp -]+ 5 + 57 = L (60.0) + 06,

with the partial derivatives on the right-hand side evaluate@@tyo, O, 8o, 0).
This follows from the fact thak can be Taylor expanded inaround O,

_ dh 1 5 3°h
h(y1, yo,8, B, &) = h(yo, 0,0, B0, 0) + (y1 — yo) -— + s (y1 —y0)*—
ay1 2 dyT
(55) _
oh oh oh 38(Bo, 0)
—cA I - - -
+858 o+888+8ﬂ 5% e+o(e),

with all the partial derivatives of on the right-hand side evaluated(ab, yo, O,
Bo, 0). At the next order, we can write this more compactly as

Ea v [h(Y1, Yo, A, B, €)|Yo = ol

(56) = (30, 50,0, Bo. 0) + &I - ) (Y0, Y0, 0, B0, 0)
2
& .
+ 5 (T, h)(Yo. Y0.0. fo. 0) + O(&%).

The unconditional expectation (22) follows from (56) by taking expectations with
respect tarp and using the law of iterated expectations.

Turning t0Sg.0 = Ea v, v [h(Y1, Yo, A, B, e)h(Y1, Yo, A, B, ¢)'], assume first
that H = 0. The result (23) follows from applying the generalized infinitesimal
generator tah x h':

Eay[(h x h')(Y1, Yo, A, B, &)| Yol

= (h x h")(Yo, Y0, 0, Bo, 0) + ¢ Ea o[ (T, - (h x 1)) (Yo, Yo, 0, Bo, 0)]
2
&

S Eaxol (T - (0 x h)) (Yo, Y0.0. o, 0] + Op ().

+

2. Suppose now thdf is not zero. Let;; = i; + A~1H; for h; € D' andH; €
D'+, Applying (54) toh; and H; separately, then combining their expansions to
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get the expansion far;, we obtain that
Ey,[hi(Y1, Yo, A, B, &)|Yo, A
= Ey,[hi (Y1, Yo, A, B, £)|Yo, Al
+e  Ey,[Ag Hi(Y1, Yo, A, B, #)|Yo, Al

(57) e e J+1
=2 b -hi+e Z AOFﬁOH+0(e+)
j=0 j= 1/

Y
€ - 1 1+t } J+1
=3 T b)) + ——= A T H) 0,7
XZ:J{ fo- +j+1 0 (o f+OpE)

because under Assumption 3 we hdfie= 0 when evaluated dtyg, yo, O, Bo, 0).
So the expansion (54) foH; starts at orders! (or higher); without that,
a singularity of ordee—* would result from the premultiplication by .

The additional contribution toDg is given by (24) following a similar
construction, where we use again equation (54). From

Ey,[H(Y1, Yo, A, B, 8)|Yo, Al

= H (Yo, Yo, 0, Bo, 0) + &(I'g, - H) (Yo, Yo, 0, Bo, 0)
£? 2 7 3
+ E(Fﬁo - H)(Yo, Y0, 0, Bo, 0) + 0 (),
where we recall tha#l (Yo, Yo, O, Bo, 0) =0 under (19) and
Enyoy[A™TH (Y1, Yo, A, B, e)]
= En v, vo[ A Evi[H(Y1, Yo, A, B, )| Yo, Al],
we conclude that

Ea v, vo[AT H(Y1, Yo, A, B, )]

82 2 . 3
+ 5 (T, - H) (Yo, Y0.0. 0, 0) + Oe >”

= En yo[Ag (T, - H)(Yo, Y0,0, fo, 0)]

& _ .
+5Ea. 1[4 Y(r2, - H)(Yo, Y0, 0, Bo. 0)] + O(£?).

The term contributed by to Sg o that is potentially the largest involves the
cross productA~1H) x (ATYH), that is, Ea v, y,[A"?(H x H')(Y1, Yo, A,
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B, ¢)]. To evaluate it, we start with
Ey,[(H x H)(Y1, Yo, A, B, &)|Yo, Al

= (H x H) (Yo, Yo, 0, Bo, 0) + S(Fﬁo - (H x H/))(Yo, Yo, 0, Bo, 0)

2
2
Next, note that

H(Yo,Y0,0,B0,00=0 and (T4, (H x H'))(Yo,Y0,0,80,0)=0
under (19). Indeed, we have
(T, - (H x H'))(Yo, Yo,0, Bo, 0)
d(H x H') N d(H x H/)a_B

+ —(I', - (H x H")) (Yo, Y00, Bo.0) + 0, (%),

:AOAﬁO'(H X H/)+

ae ap oe
aH/ /
= Ag{ 2H Yo: 60)2H
0{ aA + 1 (Yo; o) oy1
OH 0H’ 92H’ OH' OH' 9B
+02(Yo; Y0) <2— + 2H )} +2H +2H—_—ﬂ,
ay1 dy1 dy10y1 de 0B oe

where in the equation abové and its derivatives, listed without argument, are
understood to be evaluated@y, Yo, 0, Bo, 0).

Since H (Yp, Y0,0, 80,0) = 0 and gy = 0H(Yp, Yo, 0, Bo,0)/0y1 = 0 un-
der (19), it follows that

(l“,g0 - (H x H/))(Yo, Y0, 0, Bo,0) =0.
Then, from
EnvvolA™2(H x H')(Y1, Y0, A, B, &)]
= Eavyvo[A2Ey,[(H x H') (Y1, Yo, A, B, €)|Yo, Al],
we conclude that

Ea v, vo[AT2(H x H')(Y1, Y0, A, B, €)]

&2

- EA,YO[AaZs—Z{E(F,%O (H x H')) (Yo, Y0.0. 0. 0)
83

6
= Ea vo[A5%(T3, - (H x H"))(Yo, Y0, 0. fo. 0)]

& _
+ éEA,YO[Aoz(rgo -(H x H"))(Yo, Y0, 0, Bo, 0)] + O(£?).



SAMPLING OF DIFFUSIONS 2213

Finally, the other two cross product term&a y, y,[A"1(H x k)] and
Ea v, v,[A™(h x H")], are dealt with similarly. They are of orde?(1) since
H(YO7 Y07 0, ﬁo, 0) - 0

Ey,[A~YH x I')(Y1, Yo, A, B, €)|Yo, A

= e YAG Ey,[(H x I')(Y1, Yo, A, B, €)|Yo, Al

2

8—(1“50 “(H x 1)) + 0,,(83)}

— g_lAal{(H x h')+e(Tpy - (H x 1)) + >

= Ay (Cpe - (H x B)) + = AO Y%, (H x 1) + 0,
and similarly forEy,[A~1(h x H')(Y1, Yo, A, B, €)|Yo, Al.

6.4. Proof of Lemma 2. Note first thatr; (v, Bo, ¢) and#; (v, Bo, €) are well
defined as a consequence of theboundedness o 4, - ¢;, and the exponential
mixing from that follows from Lemma 4. We here take the first expression in (30)
to be the definition of. To see the equality with the second expression, note that
Ag, - (tq;) = qi +tAg, - qi. The second expression fofollows. As beforeY has
the stationary distribution aofg.

Let No(u) be the number ofi(o) = 1;/¢ in the interval(0, u]. Also, setZ(¢) =

Eltng+1—t1andZO () = E[r](v(z))(t)+1 — 1], and note that, by Wald’s identity,

(58) ZOWw) = E[AE[NO ) +1] —u,

and similarly without the superscript 0. In particulZis) = ¢ Z© (¢/¢). Since the
integrals are well defined, it follows that

e Hri (Y, Po. &) — 4(Y, Bo. £)) = / Uy - Agy - qi(Y. Po. ©)Z(t) dt
(59)

- / Uy - Agy - qi(Y. Bo, £)ZO(t/e) dr.
0

In the sequel, we assume that> 0 through a countable sequence. THdimit
will be independent of the choice of sequence, and so it will be validges to
zero generally. We also need the mixing coefficiefrom Lemma 4 (there written
ask) and an exponerit; > 0 which can take on different values.

We first need to establish some facts ab@(f (r), and here we make use of
Feller (1971), to which all references in the next two paragraphs are made. First
note thatZ©@ is the solution of the renewal equatigi® = (@ + F©O 4 7O,
whereF @ is the c.d.f. ofAg, andz @ (1) = [>°(1— F©(8)) ds. This follows from
the proof of Theorem XI-3.1 (pages 366 and 367). Since we have assumed that
E[Ag] < 00, the same proof assures that lim ,sZﬁP) () < oo in the nonarithmetic
case forAg, and the same follows in the arithmetic case from the development
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on pages 362 and 363. (The distinction between the arithmetic and nonarithmetic
cases is described on page 138.) Siril€eis bounded, the Lemma on page 359
assures thaZ (© is bounded on finite intervals, whence

(60) supZ©@() < and ipr(O)(t) > 0,
t

where the latter inequality is by construction.
Also, the same Theorem XI-3.1 in Feller (1971) establishes &%) —

%E[A%]/E[Ao] ast — oo in the nonarithmetic case. In this case, therefore, for

all A1 > 0, in the sense of weak convergence of measurgf,aw),

1 E[A3]

_ oL s
(61) exp—Ar1t}Z <S)dt—>exp{ klt}ZE[Ao]

dt,

by (60). In the arithmetic cas&,© (r) does not converge, but (61) follows from
the results on pages 362 and 363. This is what we needed from Feller (1971), and
we now proceed to make use of (60) and (61).

We then establish the convergence in probability of (59). As in the proof of
Lemma 4,

|| Ul‘ (Aﬂo “qi (Y’ :807 8) - Aﬂo : Qi(Y’ :807 O)) ||
<exp—Art}[Ap, - qi (Y, Bo, &) — Apy - qi (Y, o, 0)|.

By the L2 continuity of Ag, - qi(Y, Bo, ¢), and by (60), we can repladé; Ag, -
q;(Y, Bo.e) by U;Ag, - qi (Y, Bo,0) for the purpose of this convergence. Since
U:Ag, - qi(Y, Bo, 0) can be taken to be continuoustion [0, co] (since the limit
is zero ag — o0), and in view of (61) (withh; < 1), the limit of (59) must be as
in (29), but for the moment we have only shown convergence in probability.

The final result (29) and (30) then follows if we can show that the square of the
left-hand side of (59) is uniformly integrable as~> 0. This is the case since

E[s=2(ri(Y, Bo, &) — #4(Y, o, £))°]
. /0 di /0 dSE[U; - Ay - qi(Y, Bo, ©)Us - Ago - i (Y, Bo. £)]

x ZOQ/e)2O(s/e).

In the same way as in the discussion above, the limit of the integral coincides with
the integral of the limit. Hence, uniform integrability follows.

To see howr solves the differential equation, with the given side condition,
proceed as follows. By the second expression in (30), and stygeand U;
commute,

(Agy - 7i) (v, Po. &) = /0 (Ur - Agy - 4i) (v, Bo, €) = —qi (¥, Po. &).
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If 7; is chosen to satisfy
(62) Ey,[7i (Yo, Bo, €)] =0

under the stationary distribution, asymptotic ergodicity will forgdo have the
second form from (30).
Exploiting the form of the scale functiondefined in (5), we can rewrite (31) as

i[afz(y,ﬂo,f:) 1 }

dy dy s(y; Bo)
[ 1 79F(.Bo.e) | 9%Hi(y. fo.e) 1
B 5[5(% ﬁo)] dy ay?  s(y; Bo)
_ (2 Wy bo) 970y, fo.e) 82fi(y,ﬂo,8)> 1
o?(y;v0)  dy dy? s(y; Bo)
24,(y, o, €)

T 02(y; yo)s(y: Bo)
To solve this, we have

i (y, Bo. &) [ 24i(x, Bo. )
(63) dy _S(y’ﬂO)<Cl /x az(x;yo)S(x;ﬂo)dx>'

Subject to regularity conditions on the functierf, the constant of integration
must beC1 = 0, otherwise’; would not be integrable under. It follows that

Z .
6 Ao pee=Co [ [ ZIELED s poyaz,
x Jx 04(x; yo)s(x; Bo)
where the second constant of integrat@nis determined so that (62) holds. We
only need the functiomt for the purpose of calculating expressions of the form
Eyyl¢ (Yo)7:i (Yo, Bo, €)1, where Ey,[¢(Yo)] = 0 (as wheng = ¢, for instance).
Then the value ofC, is irrelevant for the calculation of those unconditional

expectations.
As e — 0, we haver; (y, Bo, 0) = 7;(y, Bo, 0) and it follows from (63) that
(65) i[a"i(y,ﬁ& 0 1 }=_ 24i(y, o, 0)
dy dy  s(y: Po) a2(y; y0)s(y: Bo)

since that equation does not involve differentiation with respeet tadeed, in
light of (29), we definér; /de as follows:
1E[AZ]

Oy 0.0 = Ly 0. 0) + 3
gg PO = PO T S A

qi (v, Bo, 0).

We also define

8*ri (Yo, Bo, 0) _ 8"Fi (Yo, Bo, 0)
ayk N ayk
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for k = 1, 2, and with these definitions of the partial derivatives;oévaluated at
(Yo, Bo, 0) we see that; is Taylor-expandable in the form

ar; (Yo, o, 0)
Fi(Y1, Bo, &) = ri(Yo. Bo, 0) + (Y1 — Yo) 78;8
1 »9%r;(Yo, f0,0) 9, (Yo, Bo, 0)
+5(01—Yo) 5,2 +e& oe +o0p(e).

If 02 =y constant, dividing (65) byrg yields an equivalent form in terms of
the stationary density :

[P0 D (35 0 | = — S5 3 o O 3 o).
y dy ol

6.5. Proof of Lemma 3. 1. When the moment condition is not a martingale,
the matrixSg includes time series ternfg = Sg — Sg 0 which must be calculated.
We start by showing the derivation in the case of sciajdine generalization to the
vector case is straightforward and is given at the end of this part of the proof. Recall
equation (27), now for a scalaf y,[h(Y1, Yo, A, B, )| Yol = £%q (Yo, Bo. €),
whereq (Yo, Bo, ¢) is of orderO(1) in ¢, and where ther is an integer greater
than zero, typicallyr = 1 or 2. The covariance terms then become

o0
Tg=Sp—Spo=2)  Spi
k=1

E[h(Y1, Y0, AQ, B, &)h(Yir1, i, AP, B, 6)]

2

2

~.
[
e

23 E[h(Y1, Yo, AQ, B, &) E[h(Yii1, Vi, AR, B )|3¢]]

(66)

Mz [

23 E[h(Y1, Yo, AQ, B, £)e%q(Yx, Bo. €)]

1
=2¢* Y E[h(Y1, Yo, A9, B, &) E[q(Yk, Bo. €)|Y1]]
k=1

x~
1

1 =
= 2{',‘0{ lmEA,Yl,Yo[h(Yla YO’ A? ﬂa S)F(Yla ﬁ07 8)]’

where3; denotes the standard filtration up to tine
The final transition in (66) requires showing that

(67) r(y, Bo.€) =€E[Aol Y _ Ey,lq(Yx, Bo. £)|Y1=y].
k=1
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To see this, note that(Xo, Bo, ¢) and(Ag, - ¢)(Xo, Bo, ¢) are integrable under the
stationary distribution, fog € [0, gg]. Then, fort > u,

t
E[/ (Am-qxxbe)dqxo:y}
Tp—1\U
t
= E|:/ (Aﬁo : Q)(Xsw S)I(szr,,_l/\u) dS’XO = y]
_/ Aﬁo (Xs,e)lXo_ ]P(sztn_l/\u)ds

:/0 (USA/So 'Q)(V’S)P(S >T,_1Au)ds.

The validity of Fubini’s theorem and the integrability of all quantities considered
follow from our assumptions since algg_1 is independent of th& process, and
the latter is stationary. These facts are also used in the following.

By It6’s lemma, and sincéfnilm %q(Xs, g)o (Xy; yo) dW; is a local martin-
gale inz, we therefore get

400
(68) Elq(Ya_1.6)|Xo=yl=— /O (UsApy - q) (v, €)P(s = Tu_1)ds.

This is by first lettingr — +o0 and theru — +o00. We here use that[g(X;, ¢)]
goes to zero asgets large.
To go from (68) to (67), note that the former implies

eE[Ao] Z Ey g Yk, Bo,&)|Y1=

(69) k=1

+00 n
= —eE[Ao]/O (UsApy-q) (v, €) ( Z P(s > Tk—l)) ds.
k=1

As n — 400, we have) ]_; P(s > 1,—1) — E[N,] + 1. Note that E[N,] <
+o00 by the Lemma on page 11-359 in Feller (1971). Also, sifCA] < 400,
Eltn,+1] = E[A](E[Ns] + 1). It follows that one can let go to infinity in (69)
and still have a finite limit. The result (67) follows.

We now proceed with the analysis Bf. Assume first that/ = 0. We return to
the general case below. From (66),

1 _
—1
T,B =28a mEA,Yl,YQ[h(Ylv Y07 A,ﬁ,S)F(Y]_, ﬂ07 8)]

1
= 2:%~ 1E[A ](Eyo[h(Yo, Yo, 0, Bo, 0)r (Yo, fo, 0)]

+ SEAo,Yo[(Fﬁo : (h X I"))(YO, YO’ 07 ﬂO’ O)]
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2

+ 5 Eaqol(T, - (1 x 1) (Yo, Y0,0. fo. 0] + 0, (e?))

2

= Fiag) & Erolh x 1)(Yo. Y0.0. fo. O]

+ €% Eng,vo[(Tgo - (h x 1)) (Yo, Yo, 0, Bo, 0)]
ot+1
+——En, vo[(T'3, - (h x ) (Yo, Y0, 0, Bo, 0)])

+ O(SOH_Z),
where(h x r)(Yo, Yo, 0, Bo, 0) = h(Yo, Yo, 0, Bo, 0) r (Yo, Po, 0), and

(Fﬁo - (h x r))(Yo, Yo, 0, Bo, 0)

or oh
=(Tpy-h) xr+hx(Tg,- r)+Aoa (Yo; yo)——
dy1dy1
ah ah  o2(Yo:yo) 9°h\ 0h  dh 9B
70)  =(Ao[— Yo;00) — + —————— |+ — + ——
(70) (o(aA—l-M(o o)8 +— 8yf)+8 +aﬁae)xr

a?(Yo; yo) 3% ) N a_r)

+hx< < Y,H—
(Yo; 6o) " > 02 %%

oh or
+ Ao A(Yo; Vo)— X —
dyr  dy1’
with the understanding here and below that the functions listed without arguments
are all evaluated af; = Yo, A =0, B = o [sinceB(Bo, 0) = Bo] ande = 0.
Note that this requires that the functierbe Taylor-expandable in as given
in (66).
For multidimensionak = (hy, ..., h,)’, stillassumingd = 0, the(i, ;) term of
the Ty = Sg — Sg,0 matrix is

o0

[Tpli.j) = Y {E[hi(Y1. Yo, AQ, B, e)h;(Yei1, Yi AP, B, g)]
k=1
+ E[h;(Y1, Yo, AQ, B, e)h; (Yis1, Y, AR, B e)]}
(71) 1 )
=%~ mEA,Yl,YO[hi(Yl, Yo, A, B,e)rj(Y1, Bo, &)]

o 1 _
+ g% 1mEA,yl,yo[h (Y1, Yo, A, B, &)ri (Y1, Bo, ©)].

By applying the univariate calculation above to the two terms involvinands ;,
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it follows that[7%];, ;) is given by

[Tsli.j) = (%L Ey,[(h:i x r;)(Yo, Yo, 0, Bo, 0)]

E[Ao]

+ &% Eng.yo[(Tgo - (hi x 7)) (Yo, Yo, 0, Bo., 0)]
eo{j-‘rl 2
+ TEAOvYO[(FﬁO . (l’ll X rj))(YO’ YOv O’ ﬂ07 O)])

+ Fiac € Exl () x ) (Yo, Yo,0, fo, O]

+ g% EAQ,YQ[(FﬂO : (hj X ri))(YO’ YOv Ov /30’ O)]
EaH—l 2
+ TEA()’yO[(FﬁO . (hj X rl))(Y07 YO, 07 /30’ 0)])

+0 (Smin(ai,aj)ﬁ-Z).

2. We now investigate the contribution of a nonzéfdo 7. Equation (27) now
follows from

Ea v [hi (Y1, Yo, A, B, €)| Yol

= Ex[Ey.[hi (Y1, Yo, A, B, €)|Yo, A
72) AlEv[hi(Y1, Yo, A, B, €)|Yo, Al]

o 1 L
=j:0ﬁ{EAO[(Fl]30 -hi)] + (jTl)EAO[AO 1(Fl]3;-1, Hz)]} + 0(8J+1)

= &% q; (Yo, Bo, 0) + 0, (%1

if we let o; denote an indey at which the sum in the right-hand side of (72)
i§ nonzero. As above, consider first the case of scAlaand recall that: =
h+ A~1H. We now have to look at

o0
Tg =2 E[h(Y1, Yo, AQ, B, e)h(Yis1, Yi. AP B, &)]
j=1

(e e]
=2 E[{h(Y1. Yo, A? B, ¢)
k=1

+(AO) T H (11, Yo, AQ, B, &) | E[h(Yirn. Yi. AR B &) [3¢]]

1 . _
= 28a_1mEA7yl’yo[{h(Y1, Yo, A, B, ¢)

+A"YH (Y, Yo, A, B, &)}r (Y1, Bo, €)]
+ 0(e%),
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where the ternEA’yl’yo[ﬁ(Yl, Yo, A, E e)r(Y1, Bo, €)] is the one we dealt with in
part 1 of this proof. The additional contribution 1 is, therefore, represented by
the term

1 _
TS = 28“—1mEA,yl,yo[A—1H(Y1, Yo, A, B, &)r (Y1, Bo. €)]
(73)

1 _
= 28“—1m Ea yo[A " Ey,[H(Y1, Yo, A, B, £)r(Y1, Bo, €)|Yo, Al].

By (54), the conditional expectation &f x r can be Taylor-expanded as
Ey,[H(Y1, Yo, A, B, &)r (Y1, fo, €)|Yo, Al
= H (Yo, Y0, 0, Bo, 0)r (Yo, Bo, 0)

(74) +&(Tpy - (H x 1) (Yo, 0.0, o, 0)
2
2
Recall that under (19} (Yo, Yo, 0, Bo, 0) = 0 so the term of ordet® in (74) is Q
For the term of ordes?, we have as in (70),

(Cg, - (H x 1)) (Yo, Yo, 0, Bo, 0)

+— (T, - (H x 1)) (Yo, Y0, 0, B0, 0) + O ().

or oH
=(Tpy-H) xr+H x (Tgy-7) + Moo (Yo; yo) — —

dy1 dy1
=(Tpy- H) x,

with the last equation following from the fact that
oH
H(YOv YO! O’ :807 O) = a—yl(YOv YO’ 07 /307 O) = 0

under (19). Next,

Ea yo[A™ (T, - (H x 1)) (Yo, Yo,0, B0, 0)]
= EA,YO[Aal(Fﬁo : H) X r]

_ OH dH  o2%(Yo: yo) 9°H
= EA,Y0|:A0 1(A0<8—A + n(Yo; 00)8—))1 + 7—>

2 8yf

oH O0H 8/8) }
— +—— | Xr
de aB de

E [8H i ]+E[A_1]E [aH}
= —r 4 — r —r
laa” " 2 32 0 7710 e
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[recall that%(Yo, Yo, 0, Bo, 0) = 0 under (19)]. This term may or may not be zero
depending upon the functiorf andr. The next order term is given by

g2

&
Ene| A5 (TG, - (H x 1) (Y0, 0.0.60.0) | = 2

Thus, plugging the result of (74) into (73), we get

EA,YO[Agl(Fgo (H x r))].

2 ~1 ~1
Iy = E[Ao] <8a En yo[Ag™(Tpo - H) x 1]

o

+ %EA’YO[Aal(Féo - (H x r))]) + 0%,

For multidimensionaH = (Ha, ..., H,)', the(i, j) term of theTﬁH matrix is

1 _
H 1 ~1
[T 1. j) =& ElAol EA vy, volA "H; (Y1, Yo, A, B,e)rj(Y1, Bo, €)]

pel_ T En v,y [A7YH; (Y1, Yo, A, B, &)ri(Y1, Bo, &)]
E[Ag]
+ O(Emin(ai,aj)+1)
= s“f—liEA vol Ao (Tpo - Hi) x 1]
E[Ao] ,Yol20 Bo i J
g% 1

+ 7mEA,Yo[AEl(F§O (H; xrj)]

1
-1 1
+&* mEA,Yo[Ao (Tpo - Hj) x ri]
e 1 12
5 mEA,Yo[Ao (Tg, - (Hj xri))]

+0 (Emin(ai,aj)-s-l)'

+

6.6. Proof of Theorem1. This corollary is a direct consequence of the (usual,
nonstochastic) Taylor formula applied to the expression (14), Withand Sg
given by Lemmas 1 and 3.

7. Conclusions. We have developed a set of tools for analyzing a large
class of estimators of discretely-sampled continuous-time diffusions, including
their asymptotic variance and bias. By Taylor-expanding the different matrices
involved in the asymptotic distribution of the estimators, we are able to deliver
fully explicit expressions of the various quantities determining the asymptotic
properties of these estimators, and compare their relative merits. Our analysis
covers the case where the sampling interval is random. As special cases, we
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cover the situation where the sampling is done at deterministic time-varying dates
and the situation where the sampling occurs at fixed intervals. Most estimation
methods can be analyzed within our framework—essentially any method that
can be reduced to a method of moments or estimating equation problem. The
two specific examples we analyzed display the various behaviors covered by our
theorems, and we showed how our results can be used to assess the impact of
different sampling patterns on the properties of these estimators.
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