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ATTRIBUTING A PROBABILITY TO THE SHAPE
OF A PROBABILITY DENSITY

By PETERHALL AND HONG Oo0l
Australian National University

We discuss properties of two nimeids for ascribingprobabilities to the
shape of a probability distributiorOne is based on the idea of counting
the number of modes of a bootstrap version of a standard kernel density
estimator. We argue that the simplest form of that method suffers from the
same difficulties that inhibit level accuracy of Silverman’s bandwidth-based
test for modality: the conditional digbution of the bootstrap form of a
density estimator is not a good approximation to the actual distribution of
the estimator. This difficulty is less pronounced if the density estimator is
oversmoothed, but the problem of selecting the extent of oversmoothing is
inherently difficult. It is shown that the optimal bandwidth, in the sense
of producing optimally high sensitivity, depends on the widths of putative
bumps in the unknown density and is exactly as difficult to determine as
those bumps are to detect. We also develop a second approach to ascribing
a probability to shape, using Miller and Sawitzki’s notion of excess mass.
In contrast to the context just discussed, it is shown that the bootstrap
distribution of empirical excess mass is a relatively good approximation to its
true distribution. This leads to empirical approximations to the likelihoods of
different levels of “modal sharpness,” or “delineation,” of modes of a density.
The technique is illustrated numerically.

1. Introduction. Assigning a probability, or a measure of likelihood, to
a quantity determined by an infinite number of unknown parameters is an
intrinsically difficult problem. This is particularly the case when definition of
the function requires a certain level of smoothing, for example in the case of a
probability density. It has recently been proposed [Efron and Tibshirani (1998)]
that relative likelihoods of the numbers of modes of a density might be calculated
by, in effect, counting the numbers of modes of bootstrap versions of a kernel
density estimator. This can be viewed as a development of Silverman’s (1981)
bootstrap method for testing for the number of modes of a distribution; Silverman
adjusted the bandwidth of the estimator until the mode count agreed with that
specified by the null hypothesis.

We argue that such bootstrap likelihoods do not converge in probability and in
particular do not converge to the “truth” in the standard frequentist sense, unless
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the bandwidth is chosen an order of magnitude larger than would be appropriate
for standard kernel density estimation. Using subsampling methods does not
overcome this difficulty; if anything, those techniques make matters a little worse.
The difficulties are related to the knowrvid inconsistency of Silverman’s (1981)

test for the number of modes. Indeed, both problems are rooted in the fact that the
bootstrap distribution of a kernel density estimator is not a good approximation
to the unconditional distribution of the estimator, if the bandwidth is of its usual
pointwise optimal size.

If the bandwidth is allowed to take larger than usual values, then these problems
recede. However, the difficulty then arises of determining how large the bandwidth
should be. We show that this problem is essentially insoluble; the size of the
bandwidth depends on the widths of small potential modes, the very existence
of which one is trying to determine.

There is, however, a second, related class of problems, where we may exploit
the fact that (under the assumption of a given number of modes) the “modal
sharpness,” or extent of delineation of the modes of a density, can be accurately
estimated in terms of empirical excess mass. Most important, in contrast to
problems related to the likelihood of the number of modes, the distribution
of empirical excess mass can be accurately approximated using the standard
bootstrap, without requiring choice of a smoothing parameter. In this way a set of
graphs of constrained density estimates can be constructed, having excess masses
that correspond to quantiles of the estimated distribution of excess mass for a given
number §, say) of modes, and actually havikgmodes. A value ok can be
determined by testing, or sets of graphs can be constructed for different numbers
of modes.

We discuss these two approaches as much because they contrast as because
they are similar. The first, density estimator-based technique cannot be interpreted
in frequentist terms, and indeed Donoho’s (1988) results essentially imply that
there is not a meaningful way of empirically assessing the likelihood that a density
hasm modes. The second method sidesteps these difficulties by eschewing the
problem of computing a likelihood for modality, and instead focuses on measuring
the “pointiness” of the density’s peaks and troughs. Since this approach has a
conventional interpretation in frequentist terms, then it is necessarily different from
the first, but the two are plainly connected; the number of modes of a probability
density is closely related to its excess mass, not least through the fact that empirical
approximations to the latter are used to test hypotheses about the former.

Another similarity is that both methods claim to attribute a probability to the
shape of a density. For the first method the probability is the likelihood that the
density has a given number of modes, while for the second it is the coverage
probability of a confidence interval for excess mass.

Section 2.1 will discuss issues of bandwidth choice in the first class of problems,
where the likelihood of modality is approximated by mode counting. The second
problem class, where shape is described in terms of excess mass, will be discussed
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in Section 2.2. Both accounts rely critically on theoretical properties, which will be
described in Section 3. Efron and Tibshirani (1998) have already carefully worked
through numerical examples in the first problem class, and so in the numerical
work in Section 2.2 we shall confine attention to the second class.

2. Methodology and general properties.

2.1. Counting modes of a kernel estimator. Efron and Tibshirani (1998)
developed an engaging and particularly original approach to solving problems that
are more general than that considered in the present paper. Efron and Tibshirani’'s
method allows them to ascribe a “probability” to the event that a density
bimodal, by in effect counting the number of modes in the bootstrap form of an
appropriately constructed kernel estimator, for example,

(2.1) f(x)=%ile(x _hX"),

where K is a known probability densityh denotes the bandwidth an¥ =
{X1,...,X,} is a random sample drawn from the distribution with dengity

The arguments Efron and Tibshirani use are, of necessity because the range of
problems they treat is so broad, heuristic rather than rigorously mathematical.
We shall argue that, in the context of modality of densities, their definition of the
amount of probability attributable to different density shapes is not interpretable
as a probability in the usual frequentist sense.

Related issues were addressed by Donoho (1988), who demonstrated on essen-
tially topological grounds that the probability that a density has at leasbdes
is definable, whereas the chance that the density has eXaetbydes is not. We
should mention too that Efron and Tibshirani’'s method is somewhat more sophis-
ticated than the counting approach we shall discuss below, for example through
being founded on Gaussian-based transformations of the bootstrap distributions of
numbers of counts. However, since the large sample distributions of those counts
are not approximately Normally distributed (see, e.g., Theorem 3.1), it is not diffi-
cult to show that our conclusions apply to the more complex method.

The method that Efron and Tibshirani (1998) suggest using for bandwidth
selection, that is, ten-fold cross-validation, produces (as it is designed to) a
bandwidth of an order that is asymptotically optimal for pointwise accuracy of the
estimator. In particular, the bandwidth is of size'/°, wheren denotes sample
size. This will prove important in the first part of our discussion, although later we
shall consider larger bandwidths.

We shall show in Theorem 3.1 that for such a bandwidth, the bootstrap
distribution of the number of modes of the bootstrapped density estimator
converges in distribution but not in probability; the latter, not the former, is the
usual sense in which, for practical reasons, one wishes a bootstrap quantity to



PROBABILITY DENSITIES 2101

converge. Moreover, the in-distribution limit does not accurately reflect the number
of modes of the sampled distribution. In particular, even if the sampled distribution
is strictly unimodal, the weak limit of the bootstrap likelihood is hondegenerately
supported on the set of all strictly positive integers.

Naturally one seeks a way of overcoming these difficulties. The method of
subsampling, or thexi out of n bootstrap” as it is sometimes called, has a good
reputation for remedying convergence problems in a wide range of applications of
the bootstrap. See, for example, Bickel and Ren (1996), Lee (1999) and Politis,
Romano and Wolf (1999). In Theorem 3.2 we shall show, however, that in the
context of estimating the number of modes pf subsampling actually tends
to impair performance of the bootstrap when the bandwidth is of siZé®.

It results in the likelihood being approximated by an indicator function, and so

the bootstrap estimate of the probability that the sampled density hasdes is

well approximated by a random variable that takes only the values 0 and 1. This
indicator variable does not converge in probability. It does converge in distribution,

but not to the deterministic indicator of the number of modes of the true density.

The landscape changes markedly when a larger order of bandwidth is employed,
however. If modes and local minima of the density are “clearly defined,” in the
sense that the curvature of the density does not vanish at those turning points and
the density has no shoulders, and if the bandwidth converges to 0 at a strictly slower
rate tham —1/®, then the probability that the density estimator has the same number
of modes as the true density converges to kras oo. This result, and those
discussed earlier, are valid provided we avoid spurious small modes in the tails that
arise from data sparseness. This problem is commonly addressed as part of kernel-
based inference for the number of modes; see, for example, Fisher, Mammen and
Marron (1994) and Hall and York (2001). [A densiy has a “shoulder” at a
point x if both f/(x) and f”(x) vanish andx is not a turning point. To remove
the latter possibility it is usual to assunié(x) # 0 if f'(x) =0.]

In reality, however, the issues are more complex than this simple asymptotic
account suggests. The most important problems involving determination of the
number of modes are arguably those where the modes are not “clearly defined” in
the context discussed immediately above. Examples include problems where it is
difficult to distinguish between a small mode and a shoulder. To some extent these
instances too can be satisfactorily addressed by simply counting the number of
modes of a kernel density estimator, as proposed by Efron and Tibshirani (1998),
although now the choice of bandwidth becomes a more critical issue. Theorem 3.3
will show that the bandwidth should now be at least an order of magnitude larger
thann—Y7; otherwise, spurious additional modes will be introduced in the region
of a shoulder, if the density should have a shoulder rather than a small mode.
Therefore, the bandwidth for the density estimator that will enable a bump to be
detected must be strictly narrower than the bump for which we are looking.

Moreover, the bandwidth should not be too large, or we shall smooth the bump
into the shoulder and miss it altogether. For example, suppose a small bump is
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constructed above the shoulder, of widthand with its height chosen so that the
density estimator continues to have three bounded derivatives./ilakeh (n)

to converge to 0 aa — oo, so that the problem becomes more complex as
more information becomes available. In order to correctly distinguish the bump
as a mode, by counting the number of modes of a kernel density estimator, the
bandwidth for the latter must converge to zero at a rate that is strictly fastethan
These results, which are made concise in Theorem 3.4, also hold if we count the
number of modes of the bootstrap form of the density estimator.

2.2. Excess mass as a descriptor of density shape. The notion of excess
mass was introduced by Miuller and Sawitzki (1991), and has been discussed
extensively; see, for example, Polonik (1995, 1998), Gezeck, Fischer and Timmer
(2997), Cheng and Hall (1998), Chaudhuri and Marron (1999, 2000), Polonik and
Yao (2000) and Fisher and Marron (2001). It is closely related to Hartigan
and Hartigan’s (1985) notion of a “dip” in a distribution, and in fact Hartigan
and Hartigan's dip test for unimodality is equivalent, in one dimension, to the
excess mass test. Either approach can be thought of as being based on the “taut
string” method for constructing an empirical distribution that is constrained to be
unimodal. That technique has a range of applications to other problems, including
monotone and convex approximation [e.g., Leurgans (1982)], nonparametric
regression more generally [e.g., Mammen and van de Geer (1997) and Davies and
Kovac (2001)] and data exploration [Davies (1995)].

Excess mass of order > 1, and the corresponding excess mass difference, are
defined, respectively, by

En(\) = sup Y {F(L;j)— AL},
Li,....Lmj—_q

Ay = SUHEm()‘) - Em—l()\)},
A>0

2.2)

in which the first supremum is taken over all sequentes.., L,, of disjoint
intervals, and||L|| denotes the length of. The empirical form Am, of A,
is obtained by replacmg?m(k) andE,,_1(1) at (2.2) byEm(M and Em 1(A),
respectively, whereE,, (1) is defined as at (2.2) but witl# replaced by the
empirical distribution functiorf based on the datasi&t Properties oz, directly
reflect those ofA,,, not least through the fact thak,, is consistent forA,,
asn — oQ.

To appreciate the connection betweap, and the shape of the density,
observe that whem = 2 and f is bimodal,A,, equals the least amount of mass
that needs to be removed from one of the modes, and placed into the trough
between them, in order to rend¢runimodal. In particularA> = O if and only
if f is unimodal. For a genergil and form > 2, A,, =0 if f has no more than
m — 1 modes, although the converse is not generally true:fer 3. For instance,
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A3 = 0 for a strictly trimodal density if and only if the height of either of the outer
modes does not exceed the height of the local minimum between the other two
modes. One can reasonably argue that in this case the lowest mode is insubstantial
relative to the other two, and that\y = 0 if and only if the densityf has no

more than two relatively substantial modes.” Analogous interpretations are valid
for m > 4.

The fact that the excess mass statistic does not exactly relate to the number
of modes (not least because “insubstantial modes” do not directly influence
the statistic) means that our approach to ascribing a probability to density
shape is quite different from the mode-focused method suggested by Efron and
Tibshirani (1998). Our approach is clearly influenced by modality, but is far from
being driven by it. It measures the shape of a distribution using information
about mode “strength,” and in some ways pays scant attention to the number of
modes. It is partially linked to Efron and Tibshirani’s (1998) approach through
work of Chaudhuri and Marron (1999, 2000), which emphasizes mode counts but
nevertheless assesses the strengths of putative modes.

Focusing on the casa,, = 0 addresses only one example of the ways in
which A,, reflects the shape gf. More generally, the fact that,, (1) represents
the maximum deviation off from a composition ofz uniform distributions of
height implies that asA,, increases at least some of the modes diecome
more pronounced. To gain insight into this property, consider the case vhsre
the density of a mixture op > m Normal N (u;, Ul_z) populations, with distinct
fixed meansuy, ..., u, and respective nonvanishing, fixed mixing proportions
m1,...,Tp. The supremum ofA,,, over all such densities, equals the sum of
the p — m + 1 smallest values at;, and is attained by letting the corresponding
p —m + 1 values ofs; decrease to zero. In particular, the modes corresponding to
these distributions in the mixture become infinitely sharp spikes. Furthermore, if
the mixture density has modes then the maximum valueAj, is attained only by
letting thep — m + 1 values ofo; (corresponding to the — m + 1 smallestr;’s)
converge to zero.

The simplest case in the Normal mixture example is that whetep = 2 and
0 <m1 < mp < 1. There,A, > 0 if and only if o4 ando» are chosen so that the
Normal mixture is bimodal, angly — 0 asA» increases to its maximum value,.

(The limit A — 71 can be attained with fixed ando; — 0, and also witho,
o2 — 0 together.)

Properties such as those discussed in the three previous paragraphs argue that
for fixed m, relatively large values ok, are associated with densitigshat have
more thann — 1 “substantive” modes, and with all buit — 1 of the modes being
relatively sharp.

2.3. Imposing constraints on excess mass.  If we were to construcy in such
a way thatA,, (f) = A, then we would be allowing the estimator to reflect the
actual empirical level of “modal sharpness.” Note particularly that calculation
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of A,, does not involve any smoothing, Whereﬁsdoes require a smoothing
parameter. Conceptually, computing subject to A, (f) = A,, is similar to
constructing a density estimator subject to one or more moments of the distribution
with density / being equal to the corresponding empirical moments for the
datasefX. Advantages of the latter procedure have been discussed by Jones (1991)
and Hall and Presnell (1999), for example. In practice, however, the task is
significantly more difficult when the constraint is in terms of excess mass, not
least becausa,, (f) is a highly nonlinear function of .

We can be more bold than to ask simply thsy,( f) = A,,. The distribution
of A,, may be approximated using bootstrap methods (see Theorem 3.5), and
estimates of the quantiles of the distribution may be computed. In this way we
may construct versions of under the constraint that its excess mass equals any
given quantile, thereby computing density estimates that reflect the sharpness of
the true density in a median sense or in the sense of any given probability for
excess mass.

This procedure can be implemented using data-sharpening methods [Choi and
Hall (1999) and Braun and Hall (2004)], to impose constraints on estimator shape.
The method produces a new estlmaﬁgr computed as wag = fx but from a
sharpened datasyt with excess mas4, say. [We would usually choose to be
an estimator of a quantile of the distribution ﬂfn(fy).] The method starts with

a density estimatorf, which could be eithelfyx or fz, the latter being another
version of fx, this time constructed for another sharpened sar#ple

In the latter caseZ might be deliberately constructed so thfathas a different
shape fromfy. Discussion of the principle of data sharpening, and of reasons
why an intermediate dataset, might be generated fror prior to using data
sharpening to impose a constraint on excess mass, is given in Appendix A. An
algorithm for data sharpening is presented in Appendix B.

The number of modes qu will be determined partly by the number of modes
of f, and partly by the numerical value chosen far For example, |ff is
unimodal, implying thatAo( /) = 0, but we taken = 2 andA > 0, thenfy will
have a second mode, generally becoming more pronounckdraseases. Iff is
trimodal then constrainingg(fy) to equalA < Az(f), and steadily reducing
to zero, may reduce the number of modes to two or may simply reduce the height
of one of the two outer modes to the height of the local minimum between the other
two modes. The outcome here dependsfonf f is trimodal, and if one of the
modes is “insubstantial” (in the sense of Section 2.2), then constrajmoﬁy)
to equalA > As(f) will often make that mode more pronounced; the mode will
not be smoothed away. (More generally, all the modes to which we refer above
are modes in the usual sense, i.e., local maxima of the density. They can be either
“substantial” or “insubstantial” from the viewpoint of excess mass.)

There are potential alternative approaches, although they are difficult to
implement in practice. One might consider using a single, fixed bandwidth, and
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vary it to ensure a given value of empirical excess mass. However, this approach
is so strongly influenced by data in the tails of the distribution that it is often
impractical. For example, iff is a Normal density, and the desired number of
modes equals one, then the bandwidth must diverge to infinity with sample size,
at rate at leastiogn)¥/2, in order to ensure that empirical excess mass difference
equals zero (equivalently, that the density estimator is unimodal). An alternative
technique would be to use a bandwidth that varies with location, but that approach
too is strongly influenced by outlying data and is difficult to use to estimate
densities with a given number of modes when that number exceeds one. Moreover,
even under the constraint of a single mode it is difficult to select a variable
bandwidth that produces a given value of excess mass.

2.4. Real-data illustration of constraints on excess mass. We illustrate ap-
plication of our data-sharpening method to the chondrite dataset of Good and
Gaskins (1972, 1980). There is evidence [e.g., Leonard (1978) and Silverman
(1981)] that these data come from a distribution with at least two modes, and
likely no more than two modes. Good and Gaskins (1972), Simonoff (1983) and
Minnotte, Marchette and Wegman (1998) note that the chondrite dataset may con-
tain evidence of three modes, while Muller and Sawitzki (1991) are inconclusive
in this regard. Evidence for the third mode is based on just three data points, and
S0 is not strong; see Silverman’s contribution to the discussion of Leonard (1978).
A kernel density estimate based on the chondrite data, with bandwidth chosen by
the Sheather and Jones (1991) plug-in rule, is shown by the dotted lines in the
panels of Figure 1 and does in fact have just two modes. If it had three modes,
say, we would use data sharpening to reduce one of the modes to a shoulder, so
that the final density estimate had just two modes. Then in subsequent steps of our
algorithm we would replace the real dataset by its sharpened form.

Fixing the bandwidth, and using bootstrap simulation, we estimated quantiles of
the distribution ofﬁz for levelsa = 0.005, Q01, 005, 095, 099 and 0995. The
corresponding density estimates are depicted in Figure 1. They were computed
using the algorithm given in Appendix B. Estimates for low valuesxoére
relatively close to being unimodal, while those torclose to 1 have pronounced
modes and antimodes.

We also applied our technique to the geyser dataset of Weisberg (1985) and
Scott (1992), which consists of 107 eruption durations for the Old Faithful geyser.
Tests for multimodality based on the excess mass statistic, calibrated in a variety
of ways, argue strongly that the sampled distribution has at least two modes;
see Miller and Sawitzki (1991). There is no evidence of more than two modes,
and in particular a kernel density estimate constructed using the Sheather and
Jones (1991) plug-in bandwidth shows two pronounced modes and not even a
suggestion of a shoulder. Construction of the quantile curve estimates gives results
similar to those in Figure 1.
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(a) alpha = .5% (b) alpha = 1% (c) alpha = 5%
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(d) alpha = 95% (e) alpha = 99% (f) alpha = 99.5%
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Fic. 1. Density estimates calculated from sharpened versions of the chondrite data, where the
extent of sharpening is such as to ensure the excess mass of the density estimate equals the
a-level quantile of the bootstrap distribution of the excess mass statistic. In each panel the dotted
curve depicts the conventional kernel estimator, using the same Sheather—Jones bandwidth as the
sharpened versions shown by the unbroken curve. The values of « are 0.005, 0.01, 0.05, 0.95,
0.99and 0.995,and correspond to the curves shown in panels (a)Hf), respectively.

3. Theoretical propertiesof shape probabilities.

3.1. Shape probabilities for fixed densities. Let f be as at (2.1), and denote
by f* the standard bootstrap form ¢f, computed from a resampl¥* derived
by sampling randomly with replacement frak. Write N (n) and N*(n) for the
numbers of modes (i.e., local maxima) gfand f*, respectively. Among other
results we shall show that if'/°4 — Cg > 0 asn — oo then N(n) and N*(n)
converge in distribution. The limit is degenerate if and onlfif = oo; in this
case it is concentrated at the atom 1.

Next we describe the limiting distributions 8f(z) andN*(n) in the “standard”
case, where/>h — Cg € (0, 00). Let W and W* denote independent standard
Brownian bridges, letxg be the mode off, and assumingf(xg) > 0 and

f//(XO) < O! pUt
() = [ (x0) Y2 f K"GOW (y +u)du,

£5(y) = f (o) Y2 f K" @)W*(y + 1) du.

n(y) = Cy V?E(y) + Coyf" (x0),
n*(y) = Cy 2 (E(y) + % (1)) + Coyf” (x0),

(3.1)
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each stochastic process being definedfob < y < co. Note that wherk is the
Gaussian kernel, each process is infinitely differentiable with probability 1. Let
N and N* denote the numbers of downcrossings of Orbgnd n*, respectively.
Both random variables are well defined and finite with probability 1 and take only
strictly positive integer values. We shall note in Theorem 3.1 that, under regularity
conditions, the limiting distribution o¥ (n) is the distribution of¥, and the limit
of the bootstrap distribution a¥*(n) may be expressed as the distribution\of
conditional onWw.

Assumef has two continuous derivatives on its support, which we take to equal

= [a, b] where—oco < a < b < 00, and thatf (a) = f(b) =0, f'(a+) > 0 and
f'(b—) < 0. Call this condition(Cr1). Suppose too that in the interior &fthe
equationf’(x) = 0 has a unique solutiomg € (a, b), and thatf”(xg) < O; call
this (C2). Assume of the bandwidth that for sorde- 0, h = h(n) = o(n=?%)
asn — oo, and thatn/°1 is bounded away from 0; call this conditig@,). For
simplicity, and since the Gaussian kernel is by far the most commonly used in
density estimation problems associated with shape, we shall suppose throughout
that K (1) = (gn)‘l/zexp(—uZ/Z). However, since monotonicity of the number
of modes off as a function of: is not a concern in our work, the majority of
our results hold for sufficiently smooth, unimodal, compactly supported kernels
such as the triweight. In such cases the inequalifies 0 and /' < 0 in the third
probability at (3.3) should be replaced by nonsharp inequalities.

Let xo denote the point at whiclf achieves its largest local maximum. Then
Xo is well defined with probability 1.

THEOREM 3.1 (Bootstrap approximation to distribution®). Assume (Cy1),
(Cr2) and (Cp), and that K isthe Gaussian kernel.

(a) If in addition to (Cy,) we have n'/°h — Cq € (0, 00), then

sup|P{N(n) =k} — P(N =k)| > 0
k>0
as n — oo. While this result continues to hold if N(n) and N are replaced by
N*(n) and N*, respectively, the bootstrap distribution of N*(n) doesnot converge
in the usual sense. Indeed, there exists a construction of (W, W*) that depends on
X and is such that
(3.2) sup|P{N*(n) = k| %} — P(N*=k|W)| > 0
k>0
in probability asn — oo.
(b) If, onthe other hand n/5h — oo, then both P{N (n) = 1} and P{N*(n) =
1} converge to 1, and so with probability converging to 1 both f and f* are
unimodal. Furthermore, if n4/9=%) — oo for some § > 0, then each of the
probabilities
P{N®n) =1}, P{N*(n) =1} and

(3.3) R A

P{f'>00n(—o0, xp) and f" < 0on (xg, 00)}
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equals1— O(n=*) for all A > 0.

The first portions of parts (a) and (b) of Theorem 3.1, relating only to the
nonbootstrap case, are given by Mammen (1995). See also Mammen, Marron and
Fisher (1992) and Konakov and Mammen (1998).

It will follow from our proof of (3.2) that the particular construction Bf, given
the data, does not converge, and in particular h@&(* = k|W) does not converge
in probability asn — co. Therefore, wherCq < oo the distribution of N*(n),
conditional on the data, does not converge in probability as co. Furthermore,
part (a) of the theorem implies that while the unconditional distribution of
N*(n) does converge, it does not converge to the limiting distributiotv o).
Theorem 3.1 has several more general or more detailed forms, which are given in
a longer version of this paper obtainable from the authors.

Next we show that subsampling fails to remove the inconsistency problems
suffered by the bootstrap in the present setting. In fact the bootstrap distribution
of N*(n), in the case of subsampling, is well approximated by a crude indicator
function of N(n). Nevertheless, subsampling does not, to first order, impair
consistency when the bandwidth is of larger order that/’®. These properties
are stated formally in Theorem 3.2. By way of notation, we redefifie= X* (m)
to be a resample of size < n drawn by sampling randomly, with replacement,
from X, and construcf* andN;s for this version ofX*.

THEOREM 3.2 (Subsample bootstrap approximation to distributionNof
Assume (Cy1), (Cy2) and (Cy), that K is the Gaussian kernel, and that the
resamplesizem = m(n) satisfiesm — coandm/n — 0asn — oo.

(a) Ifin addition to (C;) we have n/°h — Cq € (0, o0), then

Sup| P{N*(n) = k|X} — I{N(n) =k}| > 0
k>0
in probability asn — oo.
(b) If ontheother hand n/°h — oo, thenboth P{N (n) = 1} and P{N*(n) = 1}
convergeto 1.

3.2. Shape probabilities for densities with small modes. Theorem 3.1 has
analogues in the case of densities with one or more shoulders, that is, points
at which f’ and f” both vanish. In this case the critical size of the bandwidth
is n=1/7, rather tham—Y/®, provided f”” does not also vanish at the shoulder.

In particular, if 1 is of smaller order tham—/7 then the probability that the
number of modes of exceeds any fixed integer converges to  as oo, and if
nY"h — Co > 0 then the distribution of the number of modes has a proper limit,
degenerate at the atomif f has justv modes and’g = co. For the latter result it
is sufficient to assuméC 1), along with the conditioC 4) that in the interior of
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the support off the equationf’(x) = 0 has justv, say, solutions, at just2— 1 of
which f” #£ 0, with f”” having three continuous, nonvanishing derivatives in the
neighborhoods of the other— 2v + 1 zeros off’. Constraint(Cr4) implies that

f hasv local maximay — 1 local minima andv — 2v + 1 shoulders.

Shoulders may be regarded as embryonic modes, and for this reason densities
with shoulders are of particular interest since they lie on boundaries separating
classes of densities with different shapes, expressed through their “modalities.”
See, for example, Cheng and Hall (1999). In both theoretical and numerical studies
the performances of methods for assigning probabilities to density shapes may be
assessed in terms of their success inimgaishing betweenlensities that have
shoulders and those which have small modes in places that would otherwise be
shoulders. With this in mind we shall expand the class of densities satisfying
(Cr1) and (Cy3) by allowing the first and second derivatives, but not the first,
second and third, to vanish simultaneously. We shall discuss the performance,
uniformly over such densities, of emjgial methods for asghing probabilities to
the numbers of modes and show that techniques based on counting the number of
modes of a kernel density estimator can have optimal performance, in a minimax
sense, if bandwidth is chosen larger thart/”.

To simplify discussion we shall base our lower bound on perturbations of a
density f with just one mode and one shoulder. Specificaflyyill satisfy (Cy1)
and the following condition, which we calCs): In the interior of$ the equation
f'(x) = 0 has just two solutions;g, x1 € (a, b), with xg denoting the mode of
and satisfyingf”(xo) < 0, andx; representing a shoulder and such tifabas
three continuous derivatives in a neighborhoodoff” (x1) = 0 and " (x1) # 0.

Given any empirical procedut# for counting the number of modes of a density,
we would want./ to equal 1, with high probability, when applied to a dataset
drawn from a distribution whose density satisfi€s1) and(Cys).

Now perturbf by adding a small bump at the shoulder, as follows..Lelenote
a symmetric, compactly supported probability density with three continuous
derivatives on the real line, a unique mode at the origin satisfyifi(®) < 0, no
other pointx in the interior of the support af such that)’(x) = 0 and such that
the equation%|f/”(x1)|y2 = [¢/(y)| has a unique solution ofD, co) which also
satisfiesf” (x1)y + ¥ (y) # 0. Call this conditionCy,); as we shall show in the
proof of Theorem 3.3, the last part (€, ) ensures that the added bump produces
a single additional mode. Lét = h1(n) — 0, and let the perturbed density be

)+ h3y{(x — x1)/ h1)
1+ hf '

Jn(x) =

In this formula, the factoh% ensures that likg, f,, has three bounded derivatives
in a neighborhood ok;. The denominator % h‘l1 guarantees thaf, integrates
to 1. We would wantV to equal 2, with high probability, when applied to data
from the distribution with density,,.



2110 P. HALL AND H. OOl

The densityf, has just two modes, aly = xg + o(h1) andys = x1 + o(h1),
respectively. Of course, a local minimum occurs between them [at a point with
formulax1+ O(h1)], but no other turning points and no shoulders exist. Choosing
h1 larger or smaller makes the small bump nearmore or less pronounced,
respectively.

Our next theorem shows that in order for it to be possible to correctly distinguish
two modes in the density,, based on a sample of size the rate at whichiq
converges to 0 must be strictly slower than'/’.

THEOREM 3.3 (Necessity of using large bandwidth when counting modes).
Assume f satisfies (Cr1) and (Cys), and that v satisfies (Cy). Let & denote
any empirical procedurefor counting the number of modes of a density, and use it
to estimate the number of modes of f and of f,,, based on samples of size n from
these respective distributions. If & is asymptotically correct in each case, that is,
if both Pr(N =1) — Land P, (N =2) — 1,then n¥/"hq — oo asn — oo.

Itis likewise possible to show thatif/"h1 — oo then, provided the bandwidth
h in the kernel density estimatgtconverges to 0 at a rate that lies strictly between
n~Y7 and the rate at which; decreases, the naive rulé that simply counts the
number of modes of is asymptotically correct. In this sense it achieves the level
of precision that is shown by Theorem 3.3 to be optimal. See Mammen (1995) for
discussion and details. Konakov and Mammen (1998) treat the multivariate version
of this result.

3.3. Probability distribution of excess mass. In Section 2.2 we defined the
excess mass\,,, of f, and discussed potential applications of approximations to
the distribution of the empirical form,,, of this quantity. Here we describe the
limiting distribution of A,, in the casen = 2.

Givenintervalsly, L, as at (2.2), leLo; denote the version df ; that produces
the second supremum there in the case 2. Assumef = F’ is bimodal, letg
denote the value of that maximises>(A) — E1(1), and writeLg1 = (x1, x2) and
Lo2 = (x3, x4), Wwhere without loss of generality; < - - - < x4. In this notation,

E>(ho) = {F(x2) — F(x1) — Xo(x2 — x1)}
+{F (x4) — F(x3) — Ao(x4 — x3)}.

Note thatf (x;) = Agforl<i <4.

We shall suppose too that one mode contains strictly less excess mass than the
other, in the sense that the mode from which mass is removed, and placed into
the trough between the modes when the nearest unimodal density is constructed,
is uniquely defined. We shall call this mode the “smallest mode.” Without loss
of generality the smallest mode is the second of the two modes, lying between

(3.4)
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x3 andxs. See Figure 5 of Muller and Sawitzki (1991) for an illustration of this
case.

Next we define the limiting distribution oﬁz; it is a mixture of correlated
Normals. LetN = (N, N3, N4) denote a trivariate Normally distributed vector
with zero mean and covariances given by MarN;) = F(x;)){1 — F(x;)}
for i < j; redefineé; and & to be standard Brownian motions, stochastically
independent ofV; and defindl to equal 1 if

sup&a(u) — u? _| o2 13
sup€a(u) — u? 1 (xa)

and to equal 2 otherwise. Finally, pﬂt: N2; — Ns.

We assume of that it has a continuous derivative, ultimately monotone in each
tail, that the constraintg’(x) = 0 and f (x) # 0 are jointly satisfied at just three
points, P < x@ < x® | in the neighborhood of each of whicH’ exists and
is continuous, and”’(x®) < 0, f”(x?) > 0 and f”(x®) < 0, and the points
x1, ..., x4 at (3.4) are such that eaghi(x;) # 0. Call this conditionC ). Let K;
denote the version ok, computed not frondX but from X*, the latter obtained
by sampling randomly, with replacement, frdxh

THEOREM 3.4 (Consistency of bootstrap estimate of excess mass distribution).
Assume f satisfies (Cfg). Then the distribution of n'/?(A; — A) converges,
as n — oo, to the distribution of Z. Furthermore, the conditional distribution
of n1/2(A% — Ap), given X, convergesin probability to the distribution of Z.

It follows from Theorem 3.4, and symmetry of the distribution &f that
both the standard percentile bootstrap methods consistently estimate quantiles of
the distribution ofA,. Therefore, the percentile bootstrap produces confidence
intervals for the excess mass, that have asymptotically correct coverage
accuracy. For instance, if @ « < 1 andf, is defined to be the infimum of
valuess such thatP(A} < ¢|%) > «, then it follows from the theorem that
P(Ay <1,) — a asn — oo. The percentile bootstrap technique was used in
Section 2.2 to construct confidence regionsAgrand hence to compute estimates
of f whose shapes (in terms of their “modal sharpness” or “delineation,” as
expressed through excess mass) correspond to particular quantiles.

Theorem 3.4 is readily extended to show that, under regularity conditions
analogous t@Cyg), and for generah > 2, the limiting distribution ohl/z(A

An) is consistently approximated by the conditional distributidff (A% — A,,).
Of course, such a result fails if, when computing the bootstrap approximation,
we mistakenly constrain the initial estlmatgfz to have too few modes. (See
Section 2.3 for discussion g%;.) In particular, if we constrairfz to haveM < mg
modes, wherezg denotes the true number of modesfgfthen f converges not
to f but to anM-mode density that is nearest fan a sense that can be defined in
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terms of the distance measutk,used for the data-sharpening algorithm. On this
occasion, this basic inconsistency renders invalid any bootstrap approximations
that start fromfz.

4. Proofsof Theorems 3.1 and 3.2. The nonbootstrap parts of Theorem 3.1
are given by Mammen (1995), but since parts of his argument are needed for the
bootstrap case and for Theorem 3.2, they are reproduced in outline form here.

4.1. Monotonicity of f outside (xo — ¢, xo + &). Define Di(x) = f'(x) —
E{f'(x)} and ¢ = logn. The argument used to derive Lemma 6 of Mammen,
Marron and Fisher (1992) [see also Silverman (1983)] may be employed to prove
that for eachh > 0 there exist®3 = B()1) > 0 such that

P{ sup |Di(x)| > B(E/nh3)1/2} =0mn™™).
a<x<b
Note too thatE{f'(x)} = f'(x) + o(1) uniformly in x € [a + 8, b — 5] for each
§ >0, while E{f'(x)} > 3 f'(x) + o(1) uniformly in x € [a, xol and E{ f"(x)} <
%f/(x) + o(1) uniformly in x € [xo, b]. It follows from these properties that for
eache € (0, min(xg — a, b — xg)), and allx > 0,

P{f'>0o0n[a,xo—¢landf' <0on[xg+e,bl} = O(n™*).

The definition of / implies directly that with probability 1/’ > 0 on (—cc, a)
and /' <0 on(b, o0). Hence, for each € (0, min(xo — a, b — xp)), and allx > 0,
P{f" > 0o0n(—o0,x0—¢]andf <0 on=[xg+ &, 00)}

(4.1)
=1-0n™").

Similarly, (4.1) holds iff” is replaced by /*)'.

4.2. Approximation to f’ and (f*)' on (xo — &,x0 + ¢). Define Dj(x) =
f'@) = ),
£10) = [ KGO Wol F(x + hu) du,

£ (x) = / K" )W{F (x + hu)) du,

whereWp, andWg conditional on both and Wy, are standard Brownian bridges,
and F denotes the conventional empirical distribution function of the safxple
from which f was computed. It may be proved, using the embedding of Komlés,
Major and Tusnady (1976), théitop and W may be constructed such that

D1(x) =n~Y2n72g1(x) + Ru(x),
4.2 R
D3 (x) =n"Y2h 725 (x) + R} (x),
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where for eacld, A > 0 ands € (0, min(xg — a, b — xq)),

P{ sup |R1(x)|>n_l+5h_2}=O(n_)‘),
|[x—xol<e

(4.3)
P{ sup |Rf(x)|>n_l+5h_2}:O(n_)‘).

|[x—xol<e

4.3. Monotonicity of ' and (f*)’ outside (xo — Ch,xo + Ch). Note that
E{f'(x)} = f'(x) + o(h) uniformly in x € (xg — &, xo + &), for sufficiently small
¢ > 0, and that

(4.4) Sup [ELf (o +hy)} = hyf" (x0)| = o(h)

yI<
for any C > 0. It may be deduced from these results, the fact thist not less
than a constant multiple of~1/°, and properties of a Brownian bridge, that for
eachCq, § > 0 there exist€ > 0 such that for all sufficiently smadl > 0, and all
sufficiently largen,

P{n=Y?h=2g1(x) + E(f'(x)} is greater thaC1 4
(4.5) for —e <x —x0<—Ch,
and is lessthar C1h for Ch <x —xg<e} >1-34.

Similarly we may prove that (4.5) holds if we replagg by & + &;.

If n1/9=3) — o0 for somes > 0 then both results may be strengthened by re-

placing “> 1 — §” on the right-hand side of (4.5) by=1— O(n~*) forall A > 0.
Combining (4.1)—(4.3) and (4.5) we deduce that for e&ch 0 there exists

C > 0 such that for all sufficiently large,

P{f'(x) is strictly positive forx < xq— Ch
(4.6)
and strictly negative fox > xo+ Ch} >1— 4,

and that (4.6) continues to holdﬁ’ is replaced b)(f*)/. Moreover, both results
continue to hold with = 1 — §” on the right-hand side of (4.6) replaced by
“=1— 0@ ") forall » > 0,” providedn*/9=%h — oo for somes > 0.

4.4. Approximation to 7" and (f*)’ on (xog — Ch, xg + Ch). Define D(y) =
D1(xo + hy) and D*(y) = Dj(xo + hy). Noting the continuity properties of a
Brownian bridge and that for eaéhi > 0 the probability that sufF' — F'| exceeds
n=1/2 equalso (n—*), we may deduce that, defining

E5(y) = / K" WELF (o + hy + hu)} du,
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it is true that for eaclt, §, > > 0,
P{ Sup [£5 (xo+ hy) — E5()| > ns—ﬂ/“)} — 0.
ly|<C

From this result, (4.2), (4.3) and the fact thiatis no smaller than a constant
multiple ofn~Y/°, we may deduce that for each » > 0 and some > 0,

(4.7 P{ sup |D*(y) —n~Y2h 725 (y)| > n—(l/z)—5h—3/2} =0mn™).
lyl<C

Note that we may writdVo(z) = V (¢) —tV (¢), whereV is a standard Brownian
motion, and thatW; may be represented analogously. These properties, and
arguments similar to those in the previous paragraph, allow us to show that if we
define¢ andé* as at (3.1), for appropriate choiceswfand W*, then for some
8 > 0 we have for eacly’, A > 0,

P[lsug{m(y) ~ Y20 + 185 () — hY2E ()} > n—fshl/z] — 0.
yI=

From this result, (4.2), (4.3) and (4.7) we may deduce that
D(y) = mh®~V2(£(y) + R()},
D*(y) = mh®)~Y2(£*(y) + R* ()},

where for somé > 0 and eacl, » > 0,

(4.8)

(4.9) P[lsug{|R<y>|+ R* ()]} zn—‘s] — o).
yI=

In the notation of (4.8),
f'(xo+hy) = (h®)7V2{E(p) + Ry} + E{f (xo + hy)},
(4.10)  (f*) (xo+hy) = (nh®)Y2EQ) +E5(0) + R(Y) + R* ()}
+ E{f'(xo+ hy)}.

4.5. Proof of Theorem3.1(a). Defing andn™*, in terms of andé*, as at(3.1).
It follows from (4.4), (4.9) and (4.10) that

£(y) =nY°f (xo+ hy) = n(y) + 0,(),
£*(y) = nY3(f*) (xo + hy) = n* () + 0,(2),

both results holding uniformly iny| < C. The processes, n*, ¢ and ¢*

are all differentiable, each derivative equals (1) uniformly on[-C, C], and
¢'=n"+4+ 0,1 and (¢*) = (1) + 0,(1) uniformly on [-C, C], for each
C > 0. Furthermore, if the downcrossings of 0 hyon [—C, C] occur at points
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Z1,...,Zy, WhereM < N, then (@QP(M = N) - 1 asC — oo, (b) with
probability 1 noZ; equalsC or —C, and (c) for each > 0,

IimOP{|n’(Zi)| > ¢ for eachi} = 1.
E—>

Together these properties imply that for e&th- 0O,
P{the number of downcrossings of 0 iy
on(xo — Ch, xo+ Ch) equals

(4.11)
the number of downcrossings of 0 by

on(xg—Ch,xo+Ch)} -1

asn — oo. Similarly, (4.11) holds if(f’, n) is replaced by((/*)’, n*). Theo-
rem 3.1(a) follows from (4.6), (4.11) and their bootstrap forms.

4.6. Proof of Theorem3.1(b) Minor modifications of the previous arguments
show that whem/5h — oo, P{N (n) = 1} and P{N*(n) = 1} both converge to 1.
Next we prove that when/> =% — oo for somes > 0, we have for each > 0,
(4.12) P{(Nm)=1=1—0n").

Similar arguments may be used to obtain the same identity for the other two
probabilities at (3.3).

Observe from (4.6) and the comments which immediately follow it that (4.12)

will follow if we show that for eachC > 0,

P{f’ has at most one zero itig — Ch, xo+ Ch)} =1— O(n™")
for eachi > 0. This result is in turn implied by: for each> 0,
(4.13)  P{f” hasno zerosixg — Ch,xo+Ch)}=1—0n™™).
We may establish an analogue, 6, of the first parts of (4.9) and (4.10),
[ o+ hy) = (nh®) TVE (y) + S} + E(f (xo + hy)},
where, for some > 0 and eacit, A > 0,
(4.14) P{sluyg 1S(y)| > n—S} =0mn™).
Y=

The conditionn/®~%h — 0o, which we are currently assuming, implies that
(nh®~Y2 = 0(n=*) for somee > 0. From this result, (4.14) and properties of
a Brownian motion, we may deduce that for each 0 and allC, A > 0,

P2 sup |5/ + ()| = ¢ = 067
lyl=C

It follows from this property, the fact that” (0) < 0 and the expansioBi{ /" (xo+

hy)} = f"(x0) + o(1) uniformly in |y| < C, that the probability thatf” <0

throughout (xo — Ch, xo + Ch) equals 1— O(n™") for all C,1 > 0. This

implies (4.13).
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4.7. Outline proof of Theorem 3.2. Result (4.6), and the properties noted
immediately below it, continue to be valid in the present case. And (4.7) holds
in the following form, for the same definition ¢k as before: for eacli’, A > 0
and somé& > 0,

P{ sup |D*(y) —n~tmY?h =25 (y)| > n—<1/2)—5h—3/2} =0(mn™™).
lyl=C

Thus, in place of (4.9) and the second part of (4.10) we may write
(f*) (xo + hy) = (nh®) 2 {E(y) + 0, (D} + hyf" ()
= [0+ hy) + 0pl(nh® "2,

uniformly in |y| < C. The argument in Section 4.4 may now be used to show that
the probability conditional on’, that the number of downcrossings of 0 G*)’
equals the number of downcrossings of Ojbgonvergesto 1 as— oo. Likewise,

the unconditional probability that the number of downcrossings of § bguals

the number of downcrossings of 0 By converges to 1. Part (a) of Theorem 3.2
follows from these properties, and part (b) may be derived similarly.

5. Proofsof Theorems3.3 and 3.4.

5.1. Proof of Theorem 3.3. First we showHat, under ondition (Cy), the
density f, has just two modes, one local minimum and no shoulders on its
support, for all sufficiently smalty; call this property (P). It will follow thatV is
asymptotically correct if it concludes (with probability converging to kas o)
that f and f,, have just one and two modes, respectively.

In view of the definition of f;,, any turning point off,, on (a, b) that is not
identical toxg must converge ta1 asn — oo. Assume without loss of generality
that f””(x1) > 0, and note that

L+ hD f1(x1 +h1y) = /(1 + hay) + b3y (v)
= R2{3 " @D y? + ' () + 0(D))

as h1 — oo, uniformly in |y| < C for any C > 0. These formulas, and the
assumption [part ofCy, )] that the equation

(5.1) Dy =1 )l

has a unique solutiomg in (0, co), imply that any turning pointy of f, that
converges ta1 asn — oo, and is not identical ta;, must satisfy

(5.2) y1=x1+h1yo+o(hy),

whereys is the solution of (5.1). Moreover, singg’(x1) yo+v" (yo) # 0, again by
virtue of (Cy), then the equationf’ (x1 + h1y) + h%w’(y) = 0 can have no more
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than one solutiory; satisfying (5.2). It follows thaty; must represent a unique
local minimum betweemg andx1, and that (P) holds.

We may viewN as a rule for discriminating betweefiand f,,, determining
that then-sample from which¥ is computed comes frory, if &' =2 and comes
from f otherwise. IfP;(N =1) — 1 and Py, (N = 2) — 1, thenV provides
asymptotically perfect discrimination, and so, by the Neyman—Pearson lemma, the
likelihood ratio rule also provides perfect discrimination. It suffices to show that
the latter property implies?"h1 — oo.

We shall argue by contradiction and show that¥t’% is bounded ag — oo
through some infinite sequencd, say, then the likelihood ratio rule does not
provide asymptotically perfect discrimination along the sequence. It may be
assumed without loss of generality that — oo asn — oo through 4, since
otherwise a simple subsidiary argument produces a contradiction.

Observe that, in view of the compact suppori/qf

4 Jn(x) 3 1 X —Xx1
1 h =1+h ,
)7 = 1f<x>‘/’( n )

uniformly in x € (a, b), asn — oo through values in4. The log-likelihood ratio
is therefore

LR= ) _log{fu(X1)/f (X))

i=1

lz{ﬂX) (X.h_lm) _hl}

1h6 {f&)w(x"h_lxl)}2+0p<1>

1
— (nh{)l/zaz — Enh{az +0,(1),

where 62 = ([ ¥?)/f(x1), the random variableZ is asymptotically standard
normal, and the remainders are of the stated orders as oo through 4.
ThereforedLlR= 0,(1) asn — oo through values im, and so it is not possible for
the likelihood-ratio test to discriminate, with asymptotic probability 1, agafist
for data fromf asn — oo througha.

5.2. Outline proof of Theorem 3.4. We shall derive only the first, uncondi-
tional limit theorem; the second, conditional bootstrap result may be proved simi-
larly. At a key pointin the latter proof, where the bootstrap fdf§ of a Brownian
bridge is used in the form of a function of the empirical distribution function
(cf. Section 4.2), we may replaae /2w (F) by n=Y/2Wg(F) and incur an error
of only 0,(n=*/*logn). This is of smaller order than the error of size?/3 that
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arises if the approximation is subsequently pursued using arguments developed
below, in the nonbootstrap case. In this way it can be seen that the “in distribution”
limits are identical in the two cases.

Using the embedding of Komlds, Major and Tusnady (1976) we may, forrgach
construct a standard Brownian bridgg such that

F(x) = F(x) +n Y2Wo{F(x)} + 0,(n"20),

uniformly in x, wheref = logn. Of course Wo(¢) = B(t) — t B(1) for a standard
Brownian motionB. Puty = n~Y3, write y; = x; + nu; where sup|u;| < C for
some fixedC > 0, and defineV; = Wo{F (x;)} and

W; (1) = (hom) " Y2[B{F (x;) + ront} — N;].

ThenW; is a standard Brownian motion, afty;) = F (x;) + Aonu; + O(n?).
Therefore, using properties of the modulus of continuitypofve deduce that

(5.3)  F() — F(yi) =n"Y2N; + Guon/m)Y2Wi (u;) + 0,(nt/n*?)

uniformly in |u;] < C.

Puts; = nu; and defineA to denote the operator describing the perturbation
arising wheny; is changed to; = x; + §;, for 1 <i < 4, small|§;| andi = Ag
held fixed. For examplen,; F (x;) = F(x; + ;) — F(x;). Then, since eaclf (x;)
equalsio, A{F(x;) — Aox;} = 382f'(x;) + o(n?). From this result and (5.3) we
deduce that if. = 19 + n%v then

F(i) — F(yj) = Ayi — y))
=F(x;) — F(xj) — Xo(x; — xj) + %le{f/(xi)uiz - f/(x])uﬁ}
+n 2Ny = Nj) + (on/m) Wi (ui) — W (u )}
—n?v(x; — xj) + O, (ntn~ Y2 4 3,

uniformly in |u;], |v| < C. Equivalently, if we define the intervals= (y;, y;) and
Lo= (x]~, x;) then

F(L) = MLl — {F(Lo) — Aol Loll}
=n"Y3(N; = N))
+02[hg AW ) — Wi )+ 2 Gou? — £y — v(xi — x))]
+ OP(nEn_l/z).

Therefore, if LD = (y1, y2), L@ = (ya, ya), L(()l) = (x1,x2) and Léz) =
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(x3, x4) then
2

D AFLY) =LV}

i=1
= E2(ho) +n~*(N2+ Na— N1 — N3)
+ 2 [rg A Walu2) + Wa(ua) — Wilur) — Wa(ug))
+ 3 us + f ayuf — f(xpuf — f'(x3)u3)
—v(x2+ x4 — x1 — x3)] + 0,(1n?).

Taking the supremum over, ..., u4, and noting that in the boundu;| < C is
an arbitrary although fixed number, we deduce that

E2(A) = E2(h0) +n~Y2(Na 4+ Ny — N1 — Na)
1/2 4
(5.4) + 12252 sud B; (u) — bu?)
i=1 Y
2 2
—nv(x2+ x4 —x1—x3) +0,(N°),

where B; () = (—1)'W;(u) is a standard Brownian motion process, and=
(=11 (x;) > 0. Strictly speakingfz(x) on the left-hand side and the
supremum on the right-hand side are defined with the suprema taken only over
lu;| < C. However a subsidiary argument shows that (5.4) holds when the suprema
are interpreted over the whole real line.

Similarly,

E1(A) = E1(ho) +n~Y2(Npy — Np)
(5.5) 42 2[sup[321<u> ~ byyu?) + supl Ba(u) — bluz}]

— nPu(xas — x1) + 0, (12,
whereJ =1 or 2 according as
SUP(Ba () — bou®} > SU Ba(u) — bau’)
is true or false. Subtracting (5.5) from (5.4), taking the supremum ovand
writing 7 =3 — J, we deduce that
(5.6) Ap = Ap+n"Y23(Nos — N3) + 0, ().

[Much as in the cases of (5.4) and (5.5), a subsidiary argument shows that the
suprema ovetw may be taken over the whole positive real line, not just over
v <C.]
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We may writebil/ 3Bi (u) =&;(t) wherer = p?/3

l
Brownian motion. In this notatiorB; (u) — bju? =
or 2 accordingly as

u andg; is, like B;, a standard
_1/3{& (t) 2}, andsol =1

suplé(w) —u?} | f'(x2) |2

SUPEaGu) —u?) | f7(xa)
is true or false, respectively. The vanabng, N3, and N4 have a joint Normal
distribution with zero mean and covariances given by NarN;) = F(x;){1 —
F(x;)} for i < j. Furthermore, theV;’s are asymptotically independent of the
processes§;. The theorem follows from these properties and (5.6).

APPENDIX A

Description of data sharpening for constraining excessmass. The method
is based on a density estimator, which we shall denot¢ bhis can be either a
conventional estimatorf, computed from;, and which we could denote b
to indicate that fact or an estimator computed afierhas been sharpened to

={Z1,...,Z,}, say. In this case we denote the estimatorfhy The datase¥
mlght be chosen so that; has a given number of modes. See the next paragraph
for further discussion. Of course, the cabe: fz subsumey = fx as a special,
degenerate case, so we may tgke fz below.

If one of our aims is to ensure thgk, has justm (say) modes, where: is
different from the number of modes @, then we might proceed as follows. First,
choose a bandwidth for the density estimator (usually by employing a standard
method applied to the original dataset), and d&t, -) denote a nonnegative
measure of distance on the real line. It need not be a metric, but for ease of
interpretation it should be symmetric. For examplgy, y) = (x — y)2 is a
possibility. Putd(X, Z) = Y_,d(X;, Z;), and chooseZ to minimise d(X, Z)
subject to the constraint that, just hasm modes. [See Hall and Kang (2002)
for discussion.]

The mth mode will in fact be a shoulder, but can be made more pronounced
(once the shoulder is achieved) by transferring the constraint to one on excess
mass, rather than on the number of modes. Specifically, once the estifaator
with just m modes is attained, sharpehto ¥ by minimizing d(Z y) subject
to fy havmg an increased value of excess mass; thaA,;sgfy) A, where

A > A, (fz) would typically be chosen to be an estimator of a quantile of the
distribution of A,,, (f).

In each case the constraints may be imposed using methods based on simulated
annealing; this approach is elementary in terms of code, although lengthy from the
viewpoint of computing time. The algorithm is described in Appendix B.

For example, if we wished to use = 3 in the algorithm discussed above, but
the estimatorfx had only one mode, the first step would generally be to sharpen
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X to Z so thatfz had three modes. Nevertheless, although the valwe ofuld

be greater or less than the actual number of mode&ofisually it would be less

than that number, reflecting the fact that standard kernel density estimators (with
appropriately chosen bandwidths) tend to have more, not fewer, modes than the
true density. Note too that perhaps not all the modes will be substantial, in the

sense of excess mass (see Section 2.2).

APPENDIX B

Algorithm for data sharpening subject to constraintson excessmass. Let
the “starting” dataset b& = {Z,, ..., Z,}, and denote b Aﬁ,‘,") our bootstrap
estimator of thex-level quantile of the excess mass distribution. Let the sharpened
dataset beYy = {Y1,...,Y,} and define the distance betweéh and Y to
be D(Z,Y) = > ;(Zi — Y2, We seekyY to minimize D(Z,Y) subject to
Am(fy):ﬁ,(,‘j‘). This problem is solved by a standard simulated annealing
algorithm, the perturbations of which (within the annealing loop) are generated
as follows.

Let f denote the density estimatgg, and write fmax for its maximum value.
At the next step of the algorithm we decide whether we wish to make the data
less or more “diffuse,” based on whether the current excess-mass slza);ﬁtﬁg)

is less than or greater than the target vahf@, respectively. For a given data
pointy;, where 1< i < n, we generate a move as

(B.1) Vi < yi + 5z expl—f(31)/ fmaxt
if we wish to make the data less diffuse or
(B.2) i < yi + sz eXp{f (3) — fmax}/ fmaxl

if we wish to make them more diffuse. Hereis a constant equal to the range
of Z divided by 1000 (a value which was chosen by trial and error), ansl a
number drawn randomly from the standard Normal distribution. Using formulas
(B.1) and (B.2) to govern the perturbations was found to give better convergence
rates than employing a naive perturbation formula.

The perturbation of indicated by (B.1) or (B.2), for ¥ i < n, was ignored if
it took Am(fy) further from the target valuﬁf,‘j‘). The algorithm was terminated

when Am(fy) got within s of Kﬁ,‘i‘). We repeated this procedure 100 times and
selected as the solution the configuration with the lowest valug(@f, ¥ ;).

In practice, this algorithm always converged. In numerical experiments, to
check whether the limit was significantly affected by early steps taken by the
algorithm, we sometimes started it from small perturbations,djut nevertheless
reached the same limit.
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