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ON OPTIMAL SPATIAL SUBSAMPLE SIZE FOR
VARIANCE ESTIMATION?
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We consider the problem of determining the optimal block (or subsam-
ple) size for a spatial subsampling method for spatial processes observed on
regular grids. We derive expansions for the mean square error of the sub-
sampling variance estimator, which yields an expression for the theoretically
optimal block size. The optimal block size is shown to depend in an intricate
way on the geometry of the spatial sampling region as well as characteris-
tics of the underlying random field. Final expressions for the optimal block
size make use of some nontrivial eséites of lattice pointounts in shifts
of convex sets. Optimal block sizes are computed for sampling regions of a
number of commonly encountered shapes. Numerical studies are performed
to compare subsampling methods as well as procedures for estimating the
theoretically best block size.

1. Introduction. In this article, the problem of choosing subsample sizes is
examined to maximize the performance of subsampling methods for variance
estimation. The data at hand are viewed as realizations of a stationary, weakly
dependent spatial lattice process. We consider the common scenario of sampling
from sites of regular distance (e.g., indexed by the integer lafite lying
within some regionk,, embedded irR¢. Such lattice data appear often in time
series, agricultural field trials, and remote sensing and image analysis (medical
and satellite image processing).

Consider estimating the variance of a statiglic from R,. For variance
estimation via subsampling, the basic idea is to construct several “scaled-down”
copies (subsamples) of the sampling regi®n that fit inside R,,, evaluate the
analog ofJ, on each of these subregions, and then compute a properly normalized
sample variance from the resulting values. yesampling scheme is essentially
recreated at the level of the subregions. Two subsampling designs are most typical:
Subregions can be maximally overlapping (OL) or devised to be nonoverlapping
(NOL). The accuracy (e.g., variance and bias) of subsample-based estimators
depends crucially on the choice of subsample size.
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To place our work into perspective, we briefly outline previous research in
variance estimation with subsamples and theoretical size considerations. Variance
estimation through subsampling originated from analysis of weakly dependent,
stationary time processes. Suppésés an estimator of a parameter of interést
basedofZ(1), ..., Z(n)} from a stationary temporal procelss(i)};>1. To obtain
subsamples fof,-variance estimation, Carlstein (1986) first proposed the use of
NOL blocks of lengthn <n: {Z(1+ ( — Dm), ..., Z(im)},i=1,..., |n/m],
while the sequence of subserigg(i), ..., Zi+m—1},i=1,....n —m + 1,
provides OL subsamples of lengih[cf. Klinsch (1989) and Politis and Romano
(1993b)]. Here| x| denotes the integer part of a real numben each respective
subsample collection, evaluations of an analog statgtiare made for each
subseries and a normalized sample variance is calculated to estimate the parameter
n Var(9,),

Lom@G -6
,-:X; ;o= Z J’
whereJ = |n/m] (J =n —m + 1) for the NOL (OL) subsample-based estimator.
Carlstein (1986) and Fukuchi (1999) established theconsistency of the NOL
and OL estimators, respectively, for the variance of a general (not necessarily
linear) statistic. Politis and Romano (1993b) determined asymptotic orders of the
varianceO(m/n) and biagO(1/m) of the subsample variance estimators for linear
statistics. For mixing time series, they found that a subsamplers@®portional
to n1/2 is optimal in the sense of minimizing the mean square error (MSE) of
variance estimation, concurring also with optimal block order for the moving block
bootstrap variance estimator [Hall, Horowitz and Jing (1995) and Lahiri (1996)].

Cressie [(1991), page 492] conjectured the recipe for extending Carlstein’s
variance estimator to the general spatial setting, obtaining subsamples by tiling
the sample regioR,, with disjoint “congruent” subregions. Politis and Romano
(19934, 1994) have shown the consistency of subsample-based variance estimators
for rectangular sampling or subsampling region®thwhen the sampling sites
are observed o? N 1"[;”:1[1, n;] and integer translates 6{;”:1[1, m;] yield the
subsamples. Garcia-Soidan and Hall (1997) and Possolo (1991) proposed similar
estimators under an identical sampling scenario. For linear statistics, Politis and
Romano (1993a) determined that a subsampling scaling choice

d d d/(d+2)
l_[ m; =C { H n; }
i=1 i=1
for some unknowrC, minimizes the order of a variance estimator’s asymptotic
MSE. Sherman and Carlstein (1994) and Sherman (1996) proved the MSE-
consistency of NOL and OL subsample estimators, respectively, for the variance of
general statistics iiR2. Their work allowed for a more flexible sampling scheme:
the “inside” of a simple closed curve defines a Bet [—1, 112, Z2 N nD (using
a scaled-up copy oD) constitutes the set of sampling sites, and translates of

’
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mD within nD form subsamples. Sherman (1996) minimized a bound on the
asymptotic order of the OL estimator's MSE to argue that the best size choice
for OL subsamples involves = 0 (n1/?) [coinciding with the above findings of
Politis and Romano1@93a) for rectangular regions ®&?]. Politis and Sherman
(2001) have developed consistent subsampling methods for variance estimation
with marked point process data [cf. Politis, Romano and Wolf (1999), Chapter 6].

Few theoretical and numerical recommendations for choosing subsamples
have been offered in the spatial setting, especially with the intent of variance
estimation. As suggested in the literature,explicit theoretical determination of
optimal subsample size or scaling requires calculation of an order and associated
proportionality constant for a given sampling regi®n Even for the few sampling
situations where the order of optimal subsample size has been established, the
exact adjustments to these orders anknown and, quotingdfitis and Romano
(1993a), “important (and difficult) in practice.” Beyond the time series case with
the univariate sample mean, the influence of the geometry and dimensktgnad
well as the structure af,, on precise subsample selection has not been explored.
We attempt here to advance some ideas on the best size choice, both theoretically
and empirically, for subsamples.

We work under the “smooth function” model of Hall (1992), where the statistic
of interestd, can be represented as a function of sample means. We formulate
a framework for sampling ilR? where the sampling regioR,, is obtained by
“inflating” a prototype set in the unit cube iR? and the subsampling regions are
given by suitable translates of a scaled down copy of the sampling ré&yiowe
consider both a nonoverlapping version and a (maximal) overlapping version of
the subsampling method. For each method, we derive expansions for the variance
and the bias of the corresponding subsample estimator of,yai he asymptotic
variance of the spatial subsample estimator for the OL version turns out to be
smaller than that of the NOL version by a constant fa&@r(say) which depends
solely on the geometry of the sampling regi®n In the time series case, Meketon
and Schmeiser (1984), Kiinsch (1989), Hall, Horowitz and Jing (1995) and Labhiri
(1996) have shown in different degrees of generality that the asymptotic variance
under the OL subsampling scheme, compared to the NOL orfé; is % times
smaller. Results of this paper show that for rectangular sampling re@ipns
d-dimensional space, the factdr;, is given by(%)d. We list the factorK, for
sampling regions of some common shapes in Table 1.

TABLE 1
Examples of 1 for several shapes of the sampling regign c RY

Shapeof R, RectangleinR? SphereinR3  CircleinR2  Right trianglein R?

K1 (2/3)4 177/315  w/4—4/(3n) 1/5
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In contrast, the bias parts of both the OL and NOL subsample variance
estimators are usually asymptotically equivalent and depend on the covariance
structure of the random field as well as on the geometry of the sampling rBgion
Since the bias term is typically of the same order as the number of lattice points
lying near a subsample’s boundary, determination of the leading bias term involves
some nontrivial estimates of the lattice point counts over translated subregions.
Counting lattice points incaled-up sets is a hard preloh and has received a lot
of attention in analytic number theory and in combinatorics. Even for the case of
the plane (i.e.d = 2), the counting results available in the literature are directly
applicable to our problem only for a very restricted class of subregions that have
the so-called “smoothly winding border” [cf. van der Corput (1920) and Huxley
(1993, 1996)]. Here explicit expressions for the bias terms are derived for a more
general class of sampling regions using some new estimates on the discrepancy
between the number of lattice points and the volume ofstii#gedsubregions in
the plane and in three-dimensional Euclidean space. In particular, our results are
applicable to sampling regions that do not necessarily have “smoothly winding
borders.”

Minimizing the combined expansions for the bias and the variance parts, we
derive explicit expressions for the theoretical optimal block size for sampling
regions of different shapes. To briefly describe the result for a few common shapes:
Suppose the sampling regid; is obtained by inflating a given s@ e (—3, 31¢
by a scaling constant,, as R, = A, Ro and that the subsamples are formed by
considering the translates gR,, = A, Ro. Then the theoretically optimal choice
of the subsample sizg.,, for the OL version is of the form

opt_ ( )\ng )1/(d+2)
s dKor#

for some constant®; and Ko (coming from the bias and the variance terms,
respectively) where? is a population parameter that does not depend on the shape
of the sampling regio®,, (see Theorem 5.1 for details). Table 2 lists the constants
Bo and K for some shapes ak,,. It follows from Table 2 that, unlike the time

(14 0(D) asn — 0o

TABLE 2
Examples oBg, K for some sampling regiong,*

R Spherein R3 Crossin R? [} Right trianglein R2 [\

Ko 34/105 49.191/192 5
By 3/2% yepalkllok)  4/33 cz2 [Kllao(K) 23 iy kp) €72, signiy =signk, IKll10 (K)
+ 22 kez2 signki £signk, 1Kllooo (K)

*Cross and triangle shapes appear in Figure 1; see Section 6 for further details. Autocovarignces
and Euclidean!, and/® norms|| - ||, || - [l1, || - [l are described in Section 2.3.
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series case, in higher dimensions the optimal block size critically depends on the
shape of the spatial sampling regi@). It simplifies only slightly for the NOL
subsampling scheme as the const&gtis unnecessary for computing optimal
NOL subsamples, but the bias const®gtis often the same for estimators from
each version of subsampling. These expressions may be readily used to obtain
estimates of the theoretical optimal subsample scaling for use in practice.

The rest of the paper is organized as follows. In Section 2 we describe the spatial
subsampling method and state the assumptions used in the paper. In Sections
3 and 4 we, respectively, derive expansions for the variance and the bias parts of the
subsampling estimators. Theoretical optimal subsample scalings (or block sizes)
are derived in Section 5. The results are illustrated with some common examples
in Section 6. Section 7 describes two methods for estimating optimal subsample
scaling. In Section 8 a numerical study of subsample variance estimators and
scaling estimation methods is provided. Proofs of variance and bias results are
separated into Sections 9 and 10, respectively.

2. Variance estimators via subsampling. In Section 2.1 we frame the
sampling design and the structure of the sampling region. Two methods of
subsampling are presented in Section 2.2 along with corresponding nonparametric
variance estimators. Assumptions and conditions used in the paper are given in
Section 2.3.

2.1. The sampling structure.To describe the sampling scheme used, we first
assume all potential sampling sites are located on a translate of the rectangular
integer lattice inR¢. For a fixed (chosen) vectdre [—1/2, 1/2)¢, we identify
thet-translated integer lattice &' =t + Z¢. Let {Z(s) :s e Z¢} be a stationary
weakly dependent random field (hereatfter r.f.) taking valué®/in[We use bold
font as a standard to denote vectors in the space of sanipfirand normal font
for vectors inR?, including Z(-).] We suppose that the proceZs.) is observed
at sampling sites lying within the sampling regin c R¢. That s, the collection
of available sampling sites {Z(s):se R, N Z%}.

To obtain the results in the paper, we assume that the sampling r&gion
becomes unbounded as the sample size increases. This will provide a commonly
used “increasing domain” framework fauslying asymptotics with spatial lattice
data [cf. Cressie (1991)]. We next specify the structure of the regipnand
employ a formulation similar to that of Lahiri (1999a, 2004).

Let Ro be a Borel subset of—1/2, 1/2]¢ containing an open neighborhood
of the origin such that for any sequence of positive real numbgrs- 0, the
number of cubes of the scaled lattigeZ? which intersect the closurég andR_g
is 0 ((a; 1?41y asn — oo. Let A, be a sequence afx d diagonal matrices, with
positive diagonal eIemenLé_”), o Afj”), such that eachg”) — oo asn — oo. We
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assume that the sampling regip is obtained by “inflating” the template s&
by the directional scaling factows,,; namely,

R, = A, Ro.

Because the origin is assumed to lieRy, the sampling regio®,, grows outward
in all directions as: increases. Furthermore, if the scaling factors are all equal
(A(l”) == Aé")), the shape oR,, remains the same for different valuesof

The formulation given above allows the sampling regidnto have a large
variety of fairly irregular shapes with the boundary condition Rhnimposed to
avoid pathological cases. Some common examples of such regions are convex
subsets ofR?, such as spheres, ellipsoids, polyhedrons, as well as certain
nonconvex subsets with irregular boundaries, such as star-shaped regions. Sherman
and Carlstein (1994) and Sherman (1996) consider a similar class of such regions
in the plane (i.e.d = 2) where the boundaries of the s&gs are delineated by
simple rectifiable curves with finite lengths. The border requiremeniy@nsure
that the number of observations near the boundam;,a negligible compared to
the totality of data values.

2.2. Subsampling designs and variance estimatoe suppose that the
relevant statistic, whose variance we wish to estimate, can be represented as a
function of sample means. Lé}, = H(Zy,) be an estimator of the population
parameter of interest= H (1), whereH :R?” — R is a smooth function, E(t) =
u € R? is the mean of the stationary r.f., adq,, is the sample mean of thg,
observations withirr,,,

(2.1) Zy,=N,* Y Z(9.
seZ4NR,

This parameter and estimator formulation is what Hall (1992) calls the “smooth
function” model and it has been used in other scenarios, such as with the moving
block bootstrap (MBB), for studying approximately linear functions of a sample
mean [cf. Lahiri (1996) and Politis, Romano and Wolf (1999)]. By considering
suitable functions of theZ(s)’s, one can represent a wide range of estimators
under the present framework. In particular, these include means, products and
ratios of means, sample moments, spatial correlograms, Yule—Walker estimates
for autoregressive processes [cf. Guyon (1995)] and some pseudo likelihood-based
estimators of process parameters [cf. Ripley (1981)].

The quantity which we seek to estimate norgraetrically is the variance of the
normalized statistia/N,6,, say,t2 = N,E(6, — Ef,)2. In our problem, this goal
is equivalent to consistently estimating the limiting varianée= lim,,_, o Tnz_



OPTIMAL SPATIAL SUBSAMPLE SIZE 1987

2.2.1. Overlapping subsamplesVariance estimation with OL subsampling
regions has often been considered in the literature, though in more narrow
sampling situations [cfR2-sampling regions, Sherman (199&¢-rectangular
regions, Politis and Romano (1994); time series data, Politis and Romano (1993a)].

We first consider creating a smaller versioripf which will serve as a template

for the OL subsampling regions. To this end, Jat, be ad x d diagonal matrix
with positive diagonal element§, 1", ..., A%}, such thata™ /A" — 0 and
sk}”) — 00, asn — oo, for eachi = 1,...,d. (The matrixA,, represents the

determining scaling factors foR,, and A, shall be factors used to define the
subsamples.) We make the “prototype” subsampling region

(22) sRn = sAuRo,

and identify a subset &t¢, sayJo, , corresponding to all integer translates &,
lying within R,,. That is,

JoL=1{i € Z%:i+ R, C R,).

The desired OL subsampling regions are precisely the translaié, @fiven by
Rin =1+ sRy, 1 € JoL. Note that the origin belongs tdp. and some of these
subregions may clearly overlap.

Let N, = |Z? N 4R,| be the number of sampling sites jiR, and let|Jo |
denote the number of available subsampling regions. The number of sampling
sites within each OL subsampling region is the same, namely for anyo, ,
sN, =129 N R; ,|. For eachi € Joi, computed®- = H(Zi ), where

Zin=sN,1 > Z(9)

SezdﬂRivn

denotes the sample mean of observations within the subregion. We then have the
OL subsample variance estimatorxffas

) -1 AOL  50L\2
teoL=IJoLl™" D sNa(Or —6,70)°,
ieJoL
5OL -1 A0L
6, =IJoLl™t Y. 65

ieJoL

2.2.2. Nonoverlapping subsamplesTo create NOL subsamples, we adopt a
formulation similar to that of Sherman and Carlstein (1994) and Lahiri (1999a).
The sampling regiorR,, is first divided into disjoint “cubes.” LetA,, be the
previously described x d diagonal matrix from (2.2), which will determine the
“window width” of the partitioning cubes. Let

InoL = {i € Z4: A (i + (—1/2,1/21%) C Ry}
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represent the set of all “inflated” subcubes that lie indtgeDenote its cardinality
as|Jnov|. For each € JyoL, define the subsampling regiaﬁun = A, (i+ Ro) by
inscribing the translate giA,, Ry such that the origin is mapped onto the midpoint
ofthe cubg A, (i+(—1/2, 1/2]%). This provides a collection of NOL subsampling
regions, which are smaller versions of the original sampling redgiprihat lie
insideR,,.

For each € JyoL, the functionH (+) is evaluated at the sample mean, i@y,
for a corresponding subsampling regién,, to obtainéi’j‘nOL = H(Zi,,,). The NOL
subsample estimator of is again an appropriately scaled sample variance,

~2 -1 ANOL FNOL\2
Tu,NOL = |JNO|-| 2 : SNi»n(ei,n - en ) ’
ieJnoL

ANOL -1 ANOL
Ot = 1oLl ™t Y. O

ieJnoL

where N , = |Z¢ N R, | denotes the number of sampling sites within a given
NOL subsample.

We note that;N;, may differ between NOL subsamples, but all such
subsamples will have exactlyv; , = ¢N, sites available if the diagonal elements
of (A, are integers.

2.3. Assumptions. For stating the assumptions, we need to introduce some
notation. For a vector = (x4, ..., xg)’ € R?, let ||x|| and||x||1 = Zle |x;| denote
the usual Euclidean antt norms ofx, respectively. Denote th&® norm as
IXlloo = MaXi<k<q |xk|. Define digE1, E2) = inf{||X — Y|loc :X € E1,y € Eo} for
two setsE1, E» ¢ R?. We shall use the notation | also in two other cases: for
a countable seB, | B| will denote the cardinality of the sd&; for an uncountable
setA c R?, |A| will refer to the volume (i.e., th®&“ Lebesgue measure) df.

Let £2(T) = o(Z(s):se T) be the o-field generated by the variables
(Z(5):se T}, T cZ% For Ty, T» C Z¢, write &(T1, T>) = sup{|P(A N B) —
P(A)P(B)|:A € ¥7(T1), B € ¥7(T»)}. Then the strong mixing coefficient for
the r.f. Z(-) is defined as

(2.3) a(k,l) =supa(T1, T2):T; c 2%, |T;| <1, i =1, 2; dis(T1, T2) > k}.

Note that the supremum in the definitionafk, [) is taken over set%;, T> which
are bounded. Faf > 1 this is important. An r.f. on the lattic&? with d > 2 that
satisfies a strong mixing condition of the form

(2.4) Jim_ SUpa (Ty, T2) : 1. To € z4, dis(T1, T2) = k} =0
—00
with supremum taken over possibly unbounded sets necessarily belongs to the

more restricted class qf-mixing r.f.’s [cf. Bradley (1989)]. Politis and Romano
(1993a) use moment inequalities based on the mixing condition in (2.4) to
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determine the orders of the bias and variancef,l%?(gL, f,iNOL for rectangular
sampling regions.

For proving the subsequent theorems, Assumptions A.1-A.5 are needed along
with two conditions stated as functions of a positive argumert Z, =
{0,1,2,...}. In the following, detA) represents the determinant of a square ma-
trix A. Fora = (a1, ...,ap) € (Z4)P, let D* denote thexth order partial differ-
ential operatop*2* e /gx7t - - axgp andV = (0H (n)/0x1, ..., 0H (1) /9x,)
be the vector of first-order partial derivatives Efat . Limits in order symbols
are taken letting tend to infinity.

ASSUMPTIONS
A.1l. There exists d x d diagonal matrixAg, det{(Ag) > 0, such that

By,

A.2. For the scaling factors of the sampling and subsampling regions

do1 E " [det,A,)@tD/d

2w LT detay o

max Al@”) = O( min )ﬁ”)).

1<i<d 1<i<d

A.3. There exist nonnegative functioms(-) andg(-) such that lim_, o1 (k) =0,
lim; - g(l) = oo and the strong-mixing coefficient(k,l) from (2.3)
satisfies the inequality

atk,) <ai(k)g(), k>0,1>0.
A4. suda(Ty, T2):T1, T2 C Z%, |T1| =1, dis(T1, T2) > k} = o(k™).
A5. 12> 0, wherer? = Y za 0 (K), o (K) = CoU(V' Z(t), V'Z(t +K)).
CONDITIONS.

D,. H:R? — R isr-times continuously differentiable and, for some Z, and
realC > 0,

max{|D”HX)|: [[vl1 =7} < C(1+ [X]|), x e RP.
M,. Forsome <5 <1,0<kx<(2r—1—-1/d)(2r +6)/5,andC > 0,
EIIZ®)]7 T < oo,

0
Z m@ DAL, )3/ @+ _ o

m=1

glx) < Cx~, x €[1, 00).
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Some comments about the assumptions and the conditions are in order. Assump-
tion A.5 implies a positive, finite asymptotic variancé for the standardized
estimatory/N,,6,.

In Assumption A.3 we formulate a conventional bound on the mixing coeffi-
cienta(k, ) from (2.3) that is applicable to many r.f.'s and resembles the mixing
assumption of Lahiri (1999a, 2004). For r.f.’s satisfying Assumption A.3, the “dis-
tance” component of the boungh (-), often decreases at an exponential rate while
the function of “set size,z(-), increases at a polynomial rate [cf. Guyon (1995)].
Examples of r.f.’s that meet the requirements of Assumption A.3 and Condition
include Gaussian fields with analytic spectral densities, certain linear fields with a
moving average or autoregressive (AR) representation glildependent fields),
separable AR(1x AR(1) lattice processes suggested by Martin (1990) for mod-
eling in R?, many Gibbs and Markov fields, and important time series models
[cf. Doukhan (1995)]. Conditiot, combined with Assumption A.3 also provides
useful moment bounds for normed sums of observations (see Lemma 9.2).

Assumption A.4 permits the CLT in Bolthausen (1982) to be applied to
sums of Z(-) on sets of increasing domain, in conjunction with the boundary
condition onRy, Assumption A.3 and Conditio,. This version of the CLT
(Stein’s method) is derived fromx-mixing conditions which ensure asymptotic
independence between a single point and observations in arbitrary sets of
increasing distance [cf. Perera (1997)].

Assumptions A.1 and A.2 set additional guidelines for how sampling and
subsampling design parameters, andA,, may be chosen. The assumptions
provide a flexible framework for handling “increasing domains” of many shapes.
For d = 1, Assumptions A.1 and A.2 are equivalent to the requirements of
Lahiri (1999b) who provides variance and bias expansions for the MBB variance
estimator with weakly dependent time processes.

3. Variance expansions. We now give expansions for the asymptotic vari-
ance of the OL/NOL subsample variance estimaftfrs, and £? o, of r2 =

N, Var®,).

THEOREM 3.1. Suppose that Assumptiond.1-A.5 and Conditions
D> and M5, 2, hold witha as specified under ConditiaD,. Then

det(;An)

(a) Var(t? o) = Ko- M[ZT4](1+ o(1)),
"2 _ 1 detsAn) ., 4

(b) Var(t2 o) = Rl deta) [2t4(1+ 0(D)),

where

1 X + Rg) N Rol?
Ko /d|(+ 0) N Ro| Jx
R

~ |Ro| |Ro|?
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is an integral with respect to thR¢ Lebesgue measure

The constantKg appearing in the variance expansion of the esﬂmqftg,_
is a property of the shapeof the sampling templat®y but not of its exact
embedding in spacR‘ or even the scale of the set. Namek, is invariant to
invertible affine transformations applied Ry and hence can be computed from
either Rg or R, = A, Rp. Values of Ko for some template shapes are given in
Table 3 and Section 6.

A stationary time sequenci(1), ..., Z(n) can be obtained within our sampling
formulation by choosingRg = (—1/2,1/2] and A(l”) = n on the untranslated
integer latticeZ = Z. In this special sampling case, an application of Theorem 3.1
yields

Var(£2 oo = 544" - [2041(1+ 0(D)),

aresult which is well known for “nearly” linear functiofis of a time series sample
mean [cf. Kiinsch (1989)]. Theorem 3.1 implies that, under the “smooth” function
model, the asymptotic variance of the OL subsample-based variance estimator is
always strictly less than the NOL version because
A2
(3.1) K= lim M — Ko|Ro| < L.
n—>00 Var(rn NoL)

If both estimators have the same bias (which is often the case), (3.1) implies that
variance estimation with OL subsamples is asymptotically more efficient than the
NOL subsample alternative owing to a smaller asymptotic MSE.

Unlike Ko, K1 does depend on the volumg&g|, which in turn is constrained
by the Ro-template’s geometry. ThrougiRp| in (3.1), K1 is ultimately bounded
by the amount of space that an object®yfs shapecan possibly occupy within
(—1/2, 1, 2]4 [i.e., by how much volume can be filled by a given geometrical body
(e.q., circle) compared to a cube]. The constdatsn Table 1 are computed with
templates of prescribed shape and largest possible volurelif?, 1/2]¢. These
values most accurately reflect the influenceRpfs (or R,’s) geometry on the

TABLE 3
Examples oK from Theoren8.1for several shapes atg C R4

Ro Shape R4 Rectangle R3 Ellipsoid  R3 Cylinder R2 Ellipse  R? Trapezoid*

Ko 2/3)¢ 34/105  2/3(1—16/(372)) 1-—16/(372) 2/5(1+ 4c/9)

*The trapezoid has a 90nterior 2 and parallel sidesy > b1; ¢ = (ba/b1 + 1)~ 2[1+ 2(by /b1 —
1)/(b2/b1 + D]
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large-sample relative performancefgifOL andf,iNOL in terms of variance in (3.1)
and also efficiency (see Section 5).

To conclude this section, we remark that both subsample-based variance
estimators can be shown to be MSE-consistent under Theorem 3.1 conditions,
allowing for more general spatial sampling regions, in both shape and dimension,
than previously considered. Inference on the paranfetan be made through the
limiting standard normal distribution Qf'N,, (6, — ) /%, for £, = £,.0L O T,.NOL-

4. Bias expansions. We now try to capture and precisely describe the
leading order terms in the asymptotic bias of each subsample-based variance
estimator, similar to the variance determinations from the previous section. We
first establish and note the order of the dominant component in the bias expansions
of 22, and??2, ., which is the subject of the following lemma.

LEMmMA 4.1. With Assumptions A.1-A.5, suppose that Conditions
D> and M»., hold for d > 2 or that D3 and M3, hold ford =1 (wherea is
as specified by the respective Conditibp). Then the subsample estimators of

rnz = N, Var(9,) have expectations
Et2o0) =2+ 0(1/2)") and E(#2yop) =12+ O(1/A)").

The lemma shows that, under the smooth function model, the asymptotic bias
of each estimator isO(l/Sk(ln)) for all dimensions of sampling. Politis and
Romano (1993a) and Sherman (1996) showed this ssigedor the bias off,iOL
with sampling regions based on rectangls= (—1/2, 1/2]¢ or simple closed
curves inR?, respectively. Lemma 4.1 extends these results to a broader class of
sampling regions. However, we would like to precisely identifyd]‘(&/sk(ln)) bias
component forf? 5, or £2, to obtain optimal subsample scaling that accounts
for the geometry oR,,.

To achieve some measure of success in determining the exact bias of the
subsampling estimators, we reformulate the subsampling design slightly so that
sAn = Sk(l”) =...= Skfl,”). That is, a common scaling factor in all directions is now
used to define the subsampling regions, as in Sherman and Carlstein (1994) and
Sherman (1996). This constraint will allow us to deal with the counting issues at
the heart of the bias expansion.

Adopting a common scaling factgk,, for the subsamples also is sensible for a
few other reasons at this stage:

1. “Unconstrained” optimum values Q#\,, cannot always be found by minimiz-
ing the asymptotic MSE of2, or £2, , even for variance estimation of
some desirable statistics on geometrically “simple” sampling and subsampling
regions. Consider estimating the variance of a real-valued sample mean over a
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rectangular sampling region IR? based orRg = (—1/2, 1/2]¢, with observa-
tions onz¢ = Z¢. If Assumptions A.1-A.5 and Conditiolf1 hold, the leading
term in the bias expansion can be shown to be

d
, . L
Bias of 7 o, = (— > ND) ) (14 0(D);

i=1sN;

Li= Y [|k|Cov(Z(0), Z(k)).
kezd
k=(kq,....kg)’
In using the parenthetical sum above to expand the MSE?gf , one finds
that the resulting MSE cannot be minied over the permissible, positive
range ofA, if the signs of theL; values are unequal. That is, fdr> 1,
the subsample estimator MSE cannot always be globally minimized to obtain
optimal subsample factoga,, by considering just the leading order bias terms.
An effort to determine and incorporate (into the asymptotic MSE) second- or
third-order bias components quickly becomes intractable, even with rectangular
regions.
2. The diagonal components gh, are asymptotically scalar multiples of each
other by Assumption A.1. If so desired, a template choicefpcould be used
to scale the expansion of the subsampling regions in each direction.

In the continuing discussion, we assume
(41) sRn = s)\n RO'

We frame the components necessary for determining the biases of the spatial
subsample variance estimators in the next theorem. Let

Co(K) =127 N Ry N (K + 4Ry

denote the number of pairs of observations in the subsampling regipn
separated by a translates Z<.

THEOREM4.1. Supposethal > 2, R, = ;A, Rgp and Assumption&.1—- A.5,
Conditions D3 and M3, hold with a as specifiedunder Condion Ds. If, in
addition, ;A, € Z, for NOL subsamples and
(4.2) lim 2

exists for allk € Z4, then

22—l
B~ = (kEXZjd C(k)a(k)) (1+0(D).

whereo (k) = Cow(V'Z(t), V' Z(t + k)) and wheret? is eithert? , or £7 o, -
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Note that the numerator on the left-hand side of (4.2) is the numb&?of
grid points that lie in the subregiqR,,, but not in the translatk + ;R,,. Hence,
computing the bias above actually reqgilunting the number of lattice points
inside intersections likgR,, N k + ¢R,, which is difficult in general. To handle
the problem, one may attempt to estimate the caijik) with the corresponding
Lebesgue volumé;R,, Nk + (R, |, and then quantify the resulting approximation
error. The determination of volumes or areas may not be easy either but hopefully
more manageable. For exampleRi is a circle, the area g, Rop can be readily
computed, but the number @F integers insidei,, Rg is not so simple and was in
fact a famous consideration of Gauss [cf. Kratzel (1988), page 141].

We first note that the boundary condition &g provides a general (trivial)
bound on the discrepancy between the catintk) and the volume,R, Nk +
sRnl: 02,9~ 1). However, the size of the numerator in (4.2) is ai3ax,¢ 1),
corresponding to the order @& lattice points “near” the boundary qfR,.
Consequently, a standar@(,1,4~1) bound on the volume-count approximation
error is too large to immediately justify the exchange of volum®s|, | R, Nk +
sR,| for counts;N,, C,,(K) in (4.2).

Bounds on the difference between lattice point counts and volumes have
received much attention in analytic number theory, which we briefly mention.
Research has classically focused on sets outlined by “smooth” simple closed
curves in the plan&?2 and on one question in particular [Huxley (1996)]: When a
curve with interior ared is “blown up” by a factorb, how large is the difference
between the number &?2 integer points inside the new curve and the dre4?
For convex sets with amoothly winding bordewan der Corput’s (1920) answer
to the posed question abovedgs*9/6%t¢) while the best answer i@ (b*%/73+¢)
for curves with sufficiently differentiable radius of curvatur@Huxley (1993,
1996)]. These types of bounds, however, are invalid for many convex polygonal
templatesRg in R? such as triangles, trapezoids, and so on, where often the
difference between number @® integer points in,R, = ;A,Ro and its area is
of exact orderO (;A,,) (set also by the boundary condition &y or the perimeter
length of R,,). The problem above, as considered by number theorists, does not
directly address counts for intersections between an expanding region and its
vector translates, for examplgr,, Nk + R,,.

To eventually compute closed-form bias expansions?fgg,_, we use approxi-

mation techniques fosubtractedattice point counts. For eadhe Z¢, we:

1. Replace the numerator of (4.2) with the difference of corresponding Lebesgue
volumes.
2. Show the following error term is of sufficiently small ordegid—1):

(sNp — Cn(K)) — (A% Ro| — [sRy NK 4 sRy])
= (sNy — 2% Rol) — (Co(K) — [sRy NK + sRy ).
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We do approximate the number of lattice points R, andR, Nk + (R,, by
set volumes, though the Lebesgue volume may not adequately capture the lattice
point count in either set. However, thdifferencebetween approximation errors
sNu — 24| Ro| and C, (k) — |sR, NK + 4R,| can be shown to be asymptotically
small enough, for some templat&y, to justify replacing counts with volumes
in (4.2) (see Lemma 10.4). That is, these two volume count estimation errors can
cancel to a sufficient extent when subtracted. The above approach becomes slightly
more complicated for NOL subsamplefsm = A, (i + Rg), which may vary in
number of sampling sitegV; ,. In this case, errors incurred by approximating
counts|Z¢ N R;, Nk + Ri | with volumes|R;, Nk + R; | are shown to be
asymptotically negligible, uniformly imne JyoL.

In the following theorem, we use this technique to give bias expansions for
a large class of sampling regionstf, d < 3, which are “nearly” convex. The
sampling regiork,, may differ from a convex set possibly only at its boundary, but
sampling sites on the border may be arbitrarily included or excluded Rpm

Some notation is additionally required. FoE (g, .. ., ap)/ €(Z4+)P,xeRP,
write x* = [17_; x{", a! = [17_;(e)), andcy = D*H (1) /a!. Let Z denote a
random vector with a normad (0, X,) distribution onR?, where X, is the
limiting covariance matrix of the scaled sample mgaN,, (Zy, — 1) from (2.1).
Let B°, B denote the interior and closure Bfc RY, respectively.

THEOREM 4.2. SupposeR, = ;A, Ro and there exists a convex sBtsuch
that B° c Ro C B. With AssumptionsA.2—-A.5, assume Conditions
Ds_4 and Ms5_44, hold ford € {1, 2, 3} (wherea is as specified by the respec-
tive ConditionD,). Then

lsRn| = |sRn N (K + sRy)|

, k ez,
(shn)d-1

Co =V = lim

whenevelV (k) exists and the biasé&(#? ;) — 72, E(? o) — 72 are equal to
ford =1,

1 (Z k|o (k) + Coo)(1+0(1));

shn|Rol

keZ

ford =2or 3,

sRn - San k—J’_SRn

(—Zl = R( )lo(k))(1+0(1))
kGZd |S Vll

or

-1

V(K)o k) ) (1+0(D)),



1996 D. J. NORDMAN AND S. N. LAHIRI

provided eachV (k) exists whereo (k) = Cow(V'Z(t), V'Z(t + k)) and

COO :Var( Z C_O;Zﬁo) +2 Z Co(c'.ﬁ E(Zgozgo)
loe1=2 =* la]l1=1 :
1B12=3
CaC(B+y)
+2 > > Cal(pty)
k1,koeZ llalli=1 (ﬂ + )/)!
1Bll1=1.llyll1=1

x E([Z(t) — nI*[Z(t + k1) — ulP[Z(t 4 ko) — u”).

REMARK 4.1. If ConditionD,, holds withC = 0 for somen € {2, 3, 4}, then
ConditionM,,_1 is sufficient in Theorem 4.2.

REMARK 4.2. For eaclk € Z¢, the numerator irV (k) is O (;1,%~1) by the
Ro-boundary condition Wwich holds for convex templates. We may then expand
the bias of the estimators through the limiting, scaled volume differencks.

Ford = 1, with samples and subsamples based on intervals, it can be easily seen
that vV (k) = |k|, which appears in Theorem 4.2.

The functionH (-) needs to be increasingly “smoother” to determine the bias
component of? ,, or £2 ., in lower-dimensional spaces= 1 or 2. For a real-
valued time series sample me@n= Z,, the well-known bias of the subsample
variance estimators follows from Theorem 4.2 under our sampling framework
Ro=1(-1/2,1/2],Z=7Z as

(4.3) _—1<Z k| Cov(V'Z(0), V/Z(k)))

ST \keZ

with V = 1. In general though, terms in the Taylor expansio@igf (aroundp)

up to fourth order can contribute to the bias#ffo, and £\, whend = 1.

In contrast, the asymptotic bias of the time series MBB variance estimator with
“smooth” model statistics is very different from its subsample-based counterpart.
The MBB variance estimator’s bias is given by (4.3), determined only by the linear
component from the Taylor expansionép,ﬁ [cf. Lahiri (1996)].

5. Asymptotically optimal subsample sizes. In the following, we consider
“size” selection for the subsampling regions to maximize the large-sample
accuracy of the subsample variance estimators. For reasons discussed in Section 4,
we examine a theoretically optimal scaling chaojgg for subregionsin (4.1).
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5.1. Theoretical optimal subsample size$senerally speaking, there is a trade-
off in the effect of subsample size on the bias and variancg?gf or 2\, -
Increasing,A,, reduces the bias but increases the variance of the estimators. The
best value of;A, optimizes the overall performance of a subsample variance
estimator by balancing the contributions from both the estimator’s variance and
bias. An optimal,, choice can be found by minimizing the asymptotic order of a
variance estimator's MSE under a given OL or NOL sampling scheme.

Theorem 4.1 implies that the bias of the estimatgfs, and £2q, is of
exact ordero (1/,1,). For a broad class of sampling regiaRs, the leading order
bias component can be determined explicitly with Theorem 4.2. We bring these
variance and bias expansions together to obtain an optimal subsample scaling
factor ASP",

THEOREM5.1. Let R, = (A, Ro. With Assumption&.2—-A.5, assume Con-
ditions D> and M5, 2, hold if d > 2 or ConditionsD3 and M7, hold if d =1
(wherea is as specified by the respective Conditiap). If

Bo|Rol= ) C(K)o (k) + I1g=1)Coo0 # 0,

kezd
then
a0 <de‘(A"7w°)2)l/(d+2)(1 +o(D)
i dKot?
and

(1+o0(D).

opt _ (deA,)|Ro|(Bp)?\ Y@+
S)‘n,NOL_ dl’4

REMARK 5.1. If ConditionD,, holds with© = 0 for somem € {2, 3}, then
Condition M5, is sufficient.

REMARK 5.2. Theorem 5.1 suggests that optimally scaled OL subsamples
should be larger than the NOL ones by a scalafk1)~Y/@*2 >~ 1 where
K1 = Kp|Ro| is the limiting ratio of variances from (3.1).

It is well known in the time series case that the OL subsampling scheme
produces an asymptotically more efficient variance estimator than its NOL
counterpart. We can now quantify the relative efficiency of the two subsampling
procedures ind-dimensional sampling space. With each variance estimator
respectively optimized using (4-1%12,0L is more efficient thaﬁ,iNOL and the

asymptotic relative efficiencyARE;) of f,iNOL to fnz,O,_ depends solely on the
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geometry ofRy,

~2 2\2
T —‘L'
ARE; = lim (oL = %)

K 2/d+2) _ 1
n—00 E(-L—n NOL — 1—2)2 = (K1)

Possolo (1991), Politis and Romano (1993a, 1994), Hall and Jing (1996) and
Garcia-Soidan and Hall (1997) have examined subsampling with rectangular re-
gions based essentially dty = (—1/2, 1/2]¢. Using the geometrical character-
istic K1 = (%)d for rectangles, we can now examine the effect of the sampling
dimension on thé\RE; of £7 o, to 2, for these sampling regions. Although
the ARE; decreases as the dimensidnncreases, we find the relative improve-
ment of £2 5 overi?, o, is ultimately limited and theARE; has a lower bound

of 4/9 for all R¢-rectangular regions.

5.2. Theoretical optimal subsample shape$V/e conclude this section by
addressing a question raised by a referee on subsan@peselection. Although
not widely considered in the literature, subsample variance estimators are also
possible by using subsamples of a freely chosen shape, rather than scaled-
down copies ofR,. Nordman and Lahiri (2003) discuss comparing variance
estimators, based on differently shaped subsamples, through their asymptotic
relative efficiency. This involves finding MSE expansions for estimators with
OL, NOL subsamples of an arbitrary shape with optimal scaling (e.g., modified
versions of Theorems 3.1, 4.1 and 5.1). However, because both the subsample
geometry and the r.f. covariances influence a subsample estimator's bias (see
Section 6), a direct comparison of asymptotic MSEs to choose an optimal
subsample shape can become complicated, especially for OL subsamples.

For illustration, con3|der selecting megen circular and rectangular subsamples
for sample mear¥, = Zy, € R variance estimation on a rectangular region
R, C R? under a Gaussian isotropic covariogram,

o(k)=exp—gIklI?, keZ?

The value of 8 heavily affects the large sample performances of circles and
rectangles (i.e., scaled-down copiesRyf) as subsamples and makes the choice

of subsample shape difficult. For example, the asymptotic efficiency of circular
to rectangular OL (NOL) subsamples is 0.9259 (1.0274)fet 0.2 and 1.0758
(1.1937) forg = 2. We conducted a small simulation study of the finite sample
efficiencies of these subsample shapes on several rectangulés compare

with the asymptotic values. The results in Table 4 indicate that the asymptotic
advantages of a subsample shape may also not be readily apparent in finite
samples due to edge effects. See Nordman and Lahiri (2003) for further details
and examples on the effect of subsample shape for variance estimation.
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TABLE 4
Minimal normallzed MSEE(£2/72 — )2 for OL/NOL subsample estimatofg of sample mean
variancer? = N,, Var(Zy, ) on R, N Z?, with o (k) = exp(— Bk [|?), k € Z? (based orL000
simulation$. Rectangular(rec.) and C|rcular(C|r)subsample%n tR0 are based
on R} = (—1/2,1/212, {x e R?: |x|| < 1/2} using optimal scaling,, OP (an integer listed
beside each MSE Estimated relative efficienci¢RE) of cir. versus recsubsamples are also listed

rec. subsamples cir. subsamples cir./rec. RE

R, oL NOL oL NOL oL NOL
B=02

(-5,5)2 0.4295(4)  0.4261(5) 0.4519(2)  0.4286(5) 1.0521 10060

(—-10, 10]2 0.2329(5) 0.2183(5) 0.2418(5) 0.2328(5) 1.0384 10661
(=30, 30]2 0.0806(10) 0.0842(10) 0.0835(9) 0.0944(9) 1.0355 11260
(=50, 502 0.0482(14) 0.0562(11) 0.0462(15 0.0601(11) 0.9585 10698
p=2
(=5, 512 0.0841(2) 0.0978(2) 0.1170(2) 0.1426(1) 1.3890 14570
(—=10, 10]2 0.0436(3) 0.0515(2) 0.0436(3) 0.0641(3) 1.0000 12432
(—30, 302 0.0128(5) 0.0162(4) 0.0138(5) 0.0199(5) 10771 12260
(=50, 50]2 0.0082(6) 0.0111(5) 0.0092(7) 0.0129(5) 11139 11594

6. Examples. We now provide some examples of the important quantKigs
K1, Bg associated with optimal scalingy” " with some common sampling region
templates, determined from Theorems 3.1 and 4.2. For subsamples from (4.1),
the theoretically best.o” " can also be formulated in terms &R, | = det(A,)|Rol
(sampling region volume); and Bg.

6.1. Examples irR2.

ExAMPLE 1. Rectangular regions iR? (potentially rotated): if
Ro = {((l1cosh, I2SiNO)X, (—I1Sinb, I cos@)x)/:x € (—1/2, 1/2]2}
for6 € [0, 7], 0<!4, I, then

4 k1 €0SH — ko Sind k1 SIiNO + ko cOSH
Ko= 2. Bo= (I 1 2 |+| 1 2 l)o(k).
9 Ke? 11 Io
k=(ky,k2)’

The characteristicK'1, Bo for determining optimal subsamples based on two
rectangular templates, including a diamond-shaped regionkex /4,11 =lo =
1/+/2), are further described in Table 5.

EXAMPLE 2. If Rgis acircle of radiug < 1/2 centered at the origin, thetpy
appears in Table 3 anBp = 2/(rm) Y i cz2 IKllo (K).
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TABLE 5

Examples of several shapesryf C R? and associated 1, Bo for SA,?pt
Ro K1 By
(—1/2,1/2)? 4/9 Ykezz IKl1o (k)
Circle of radius }2 at origin w/4—4/3r) 47 Yy ez2 IKllo (k)
Diamond in Figure 1(i) 29 23 w72 IKllooo (K)
Right triangle in Figure 1(ii) 15 Table 2
Triangle in Figure 1(iii) 15 >kez2 (k2| + max{2|ks], [k2|Ho (k)

Parallelogram in Figure 1(iv) B+ (v/5-1)/375 4/\/§Zk622(|k1 — 2k2|/5+ |k2|)o (k)

ExamMPLE 3. Forany triangle, Ko = 2/5. Two examples are provided in
Tables 2 and 5.

EXAMPLE 4. If Rgis a regular hexagon, centered at the origin and with side
lengthl < 1/2, then

37 23

Ko==5.  Bo (Ik2| + max{~/3 |k, Ik2|})o (K).

kez?

EXAMPLE 5. For any parallelogram iRR? with interior angley and adjacent
sides of ratiob > 1, Ko = 4/9 + 2/15- b—2| cosy |(1 — | cosy|). In particular, if
a parallelogranRy is formed by two vectors0, /1)’, (I2cosy, l2siny)’ extended
from a pointx € (—1/2, 1/2]?, then

1 |k1-|cosd| — kz - | sind|| lko|
Bo= = 3 .
| Sing| max{l1, [} min{l4, I}

kez?

)a<k>,

y € (0,m), I1,lo>0.

For further bias termBg calculation tools with more general (nonconvex)

Fic. 1. Examples of templateRg C (—1/2, 1/2]2 are outlined by solid linesCross-shaped
sampling regionsR,, described in Tabl@ are based orRg in (V).



OPTIMAL SPATIAL SUBSAMPLE SIZE 2001

sampling regions and templat®g (represented as the union of two approximately
convex sets), see Nordman (2002).

6.2. ExamplesiR?, d > 3.

EXAMPLE 6. For any sphereky is given in Table 3. The propertigy, K1
of the sphere described in Tables 1 and 2 correspond to the template Rplwdre
radius 72 with maximal volume in—1/2, 1/2]°.

EXAMPLE 7. TheKq value for anyR?® cylinder appears in Table 3. Rg is
a cylinder with circular base (parallel to the x—y plane) of radiwnd heightx,
then

h

2./k? + k2
Bo= Y (Ml TR .
Tr

kez3
k=(k1,ko.k3)’

The results of Theorem 4.2 for determining the bisalso seem plausible
for convex sampling regions iR, d > 4, but require further study of lattice
point counting techniques in higher dimensions. However, bias expansions of
the OL and NOL subsample variance estimators are relatively straightforward
for an important class of rectangular sampling regions based on the prototype
Ro = (—1/2,1/2]¢, which can then be used in optimal subsample scaling. These
hypercubes have “faces” parallel to the coordinate axes, which simplifies the task
of counting sampling sites, or lattice points, within such regions. We give precise
bias expansions in the following theorem, while allowing for potentially missing
sampling sites at the border of the sampling regign

THEOREM 6.1. Let (—=1/2,1/2)% ¢ A;*Ro C [-1/2,1/2)%, d > 3, for a
d x d diagonal matrixA, with entriesO < ¢; <1,i =1,...,d. SUPpOSER, =
sinRo and Assumption#\.2—A.5, Conditions D, and M», hold with a as
specified under Conditio,. Then the biaseB(£? o) — 12, E(12 o) — 72 are
equal to—A,; 1 Bo(1+ o(1)) where

d k.
Bo= Y (Z %)g(k), o(k)=CouV'Z(t), V'Z(t +k)).

kezd \i=1 ™!

EXAMPLE 8. For rectangular sampling regiois = A, (—1/2, 1/2]¢, opti-
mal subsamples (4.1) may be chosen with

IR, 2\ 1/(d+2)
oL = (d—rn4< > ||k||10(k)) ) (1+0()

kezd



2002 D. J. NORDMAN AND S. N. LAHIRI

or

opt _ ,opt (3\d/(d+2)
shuoL = shpnoL(3) :

using the templat®o = (—1/2, 1/2)¢.

7. Empirical subsample size determination. This section considers data-
based estimation of the theoretical optimal scaling fa;:)tﬁ'?‘t for subsamples as
in (4.1). We describe two estimation techniques for this. One approach involves
using “plug-in” estimates and the second involves minimizing an estimated
MSE criterion function. In Section 8 we evaluate both estimation methods for
2o through a simulation study. Inference on “best” subsample scaling closely
resembles the problem of empirically gauging the theoretically optimal block
length with the MBB variance estimator. With time series, estimation rules of
optimal MBB block size have been developed using both plug-in and empirical
MSE methods [cf. Buhlmann and Kiinsch (1999) and Hall, Horowitz and Jing
(1995)].

Hall and Jing (1996) give a method for estimating optimal subsample scaling
through minimization of an estimated MSE function in the time series case.
Considering OL subsamples first, we adapt this approach (hereafter the HJ method)
for spatial subsampling as follows. We determine the tematas the largest
set of the formA;an within (—1/2,1/2]¢. Let JoL(A») denote a collection
of OL subsamples using a scaling factay, = 1, > 0 in (4.1). Herea,, is a
“smoothing parameter.” We treat each subsamplddn(1,,) as a scale.,, Rg
sampling region on which an OL subsample variance estimator, with subsample
scaling A, < A, can be computed. Denote the resulting variance estimates as
22, 00 i =1 ... [JoL(km)|. Write 22, = £2 (A,) as the variance estimator
computed on the regioR,, with subsample scaling,,. An estimate of the MSE
when using subsamples of size, Rg on regions of size.,, Rg is the average of
the squared difference$?, o — £/ oL (2n))?. We then select the value ¢f,,,

say,A9P' which minimizes this data-based MSE and take

t  ~opt
ot = A U R/ |Am Rol} Y F.

We use Theorem 5.1 to appropriately recalibrate an estiméifé to estimate
optimal subsample scaling fak,-size regions. For optimal scaling estimation
with NOL subsamples, we replagg o, (Am), t2, oL With 2oL (Am). T2, noL
above. Garcia-Soidan and Hall (1997) apply a similar empirical MSE selection
procedure with subsample-based distribution estimators on rectangular sampling
regions inR2.

An advantage of a plug-in estimate of scaling is that it is computationally
less demanding than minimization of an estimated MSE. A nonparametric plug-
in (NPI) procedure involves substituting estimates of unknown r.f. parameters
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appearing inAS"" from Theorem 5.1. To do this, we propose using subsample
variance estimators based on two smoothing parameter choicéﬁ(pe,t) denote
a subsample variance estimator with scalipg in (4.1). Using a pilot scalar
MY = c1|R, Y@+ 1> 0, we estimate the limiting variance? appearing
in AP with £2(A0). With a second smoothing paramete?) = co|R,,|Y/@+4),
c2>0, we estimate the bias componeBb with By = 22 [t2(2,A?) —
22(;02)]. It follows easily from Theorems 3.1-4.1 that the estimaRy is
consistent when the bias 8f(;A,) is —sAn 1 Bo(1+ o(1)). With time series/ = 1,
Lahiri, Furukawa and Lee (2003) suggest a similar bias estimate for the MBB
variance estimator and show the order,gf above is asymptotically optimal.
Politis and Romanol©95) also consider combining two subsample estimators in
kernel spectral density estimation. We conjecture that the gk{feiis optimal for
minimizing the asymptotic MSE in estimatirigp with spatial subsampling/(> 2)
and this can be established for rectangular sampling regions.

For subsample variance estimation of a time series mean, other plug-in rules
for (297" are given in Carlstein (1986) [with AR(1) models], Léger, Politis and
Romano (1992) and Politis and Romano (1993b).

8. Numerical studies.

8.1. Performance comparison of subsample typ&&e conducted a simulation
study to compare the finite sample performances of OL and NOL subsample
variance estimators c;,z = N, Var®,), whered,, = Z N, is the real-valued sample
mean over a sampling regidt), C R?. Rectangular and circular regiofg of two
different sizes were considered:

R, :=(—7,7] x (—9,9], R, :=(—15,15] x (—21, 21],
Ry:={XeR? x| <9},  R,:={xeR?:|x| <20}

The smaller (larger) circle contains ofié integer point more (seven less) than the
smaller (larger) rectangle. The rectangular regions have approximately the same
ratio of side lengths.

Using the algorithm of Chan and Wood (1997), we generated mean zero
Gaussian random fields &f with one of the following covariance structures:

Model E(81, 82) : o (k) = exp[—plk1| — Balkal],
(8.1) Model G(81, B2) : o (K) = exp[—Bulk1|? — Bzlkal?],
k = (kq, ko) € ZZ, B1, B2 > 0.

Models E and G correspond to exponential and Gaussian covariograms, respec-
tively. We consider the valug$1, 82) = (0.5, 0.3), (1, 1) in both models to obtain
isotropic and anisotropic covariograms exhibiting various rates of decay.
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TABLE 6

Normalized MSEE(#2/zZ — 1)? for OL/NOL subsample variance estimatdsof
72 = N, Var(Zy,) on R, N Z? (based orL0,000simulation$. An asterisk*) denotes
a minimal MSE

E(0.5,0.3) E1,1 E(0.5,0.3) E@,1
shn oL NOL oL NOL oL NOL oL NOL
Ry = (=77 x (=9,9] Ry = {xeR?:|Ix| <9}
1 0.9074 Q9074 05855 05855 Q9075 Q9075 05871 05871
2 0.7645 Q7619 03312 03298 Q7413 Q7417 03303 03330
3 0.6367 06343 02201 02264 06386 06378 02252 02346
4 0.5490 Q5470 01926° 0.219r 0.5991 06177 02332 02897
5 0.5051 05344 02106 Q3071 05255 05627 021268¢ 0.3444
6 04999 0.4605 0.2533 02911 05246¢ 0.4978 0.2567 03369
7 0.5242 Q4957 03086 Q4004 05311 02925
R, = (—15,15] x (—21,21] R, = {x e R?: |x|| <20}
4 0.5290 05285 01820 01851 05849 05846 01825 01866
5 0.4370 04329 01170 01232 Q4743 04785 01186 01332
6 0.3693 03601 01115 01380 04180 04236 01119 01358
7 0.3226 03132 00983 0.1172 0.3698 03716 01007 0.125%
8 0.2931 02963 01061 01453 03313 03466 01055 01596
9 0.2777 02822 01085 01613 02901 03333 01119 02080
10 02734 0.2542 0.1298 02247 02849 03084 0.1254 02049
11 02779 03454 01388 02824 02803 0.3814 01397 03335
12 02891 03298 01680 02889 02868 03662 01596 03359

For eachR, and covariance structure, we considered various amounts of
subsample scalingr,, in the estimatorfn2 = fnz(skn) based on OL or NOL
subsamples. Here rectangular and circular subsamples correspond to translates
of A,Ro for Ro = (—=1/2,1/2)?, {x € R?:||x|| < 1/2}. We estimated the
normalized MSE, E?2/72 — 1), listing results in Table 6 for Model E. (To save
space, we omit similar tables for Model G, where the performance of the estimators
was better.) Estimates of optimal scaling appear in Table 7. From these simulation

TABLE 7

Optimal subsample scalingﬂpt for variance estimation of sample meaﬁTnZNn
(determined fron10,000simulation$

E(0.5, 0.3) G(0.5,0.3) E(,1) G(1,1)

R OL NOL OL NOL OL NOL OL NOL
(7,71 x (—9,9] 6 6 4 4 4 4 3 3
(—15,15] x (—21, 21] 10 10 7 6 7 6 5 5
(xeR2:|x|| <9} 6 6 5 3 5 3 3 3
{x e R2:||x|| < 20} 11 10 7 7 7 7 5 5
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results, we make the following observations:

1. At optimal scaling, the MSEs of OL and NOL subsamples were similar. Under
the strongestr.f. dependence in Modé0b, 0.3), NOL subsamples performed
better. For the other covariogram models entailing weaker dependence, OL
subsamples were always better.

2. Unlike with OL subsamples, the MSEs with NOL subsamples increased more
rapidly when optimal scaling was not used. This implies estimatiog
with OL subsamples is preferable.

3. Table 7 shows that OL and NOL optimal scaling tended to be the same. NOL
subsample scaling becomes clearly smaller in larger sample sizes; see also
Table 4.

4. Optimal subsample scaling also decreased as the r.f. dependence structure
weakened (e.qg., faster decay of covariogram). In this case, the performance of
the variance estimators also improved.

8.2. Comparison of scaling estimation method$Ve also compared NPI
and HJ estimation methods for scallpgn oL With OL subsamples, using the
covariogram models and sampling regiaRs from Section 8.1. We again took
the sample meaf), = Zy, . For the NPI method, we chose smoothing parameters
c1,¢c2 € {0.5,1, 2}. For eachR,,, we used two pilot subsample sizeg for the
HJ method. As a measure of performance of the NPl and HJ procedures, we
considered the following quantity:

~2 opt ~2 opt
rn,OL(S)‘n,OL) - Tn,OL(S)‘n,OL)

2
Tn

(8.2) O =

’

where fZOL(S/\ ) denotes the OL subsample variance estimator using scaling

sAns sknpéL represents an estimate of optimal SC&|Iﬁg, oL, and 72 is the
variance parameter Hengg, measures the relative deviation of an OL subsample
estimator ofrn based on estimated scaling compared to the “best” OL subsample

estimator. Values of, near zero would suggest thaf o, (A7

nearly as well as the optimal subsample estlma,quL(s OIDt)
From the results reported partially in Table 8, the choices of smoothing
parameters

oL) performed

c2=05 and c¢1€{05,1}

gave good results for estimatirgfzg,?pt in the NPI approach. We recommend these
values for implementing the NPl method. The HJ method also tended to perform
better with smaller smoothing parameter choizgs which agrees with the,,
selections of Hall and Jing (1996) for time series. (We chbgeso that an
estimated MSE could be maximized over at least five diffefgptarguments.)

Table 9 gives frequency distributions of estimated optimal scauﬁﬁgl_ under
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TABLE 8
Values 01E(¢,§) for NP1l and HJ methodéach based ot000simulation3, whereg, is as
in (8.2).HJ method use6\,,, Am,) = (5, 10), (7, 14), (3, 6), (4, 8), respectivelyon
regionsR,, from left to right Minimal MSE is denoted with an asterisk” for eachR,
and covariogram model

Ry (=7,71x(=9,9] (=15,15] x (-21,21] {xeR2:|x|| <9} {xeR2:|x|| <20}
c1 ¢ E(0.5,0.3) G(1,1) E(@©.5,03) G(1,1 E(0.5,0.3) G(1,1) E(0.5,0.3) G(1,1)

0.50.5 00022 0.0106 00025 Q0075 00013 Q0093 00015 Q0034
1 0.0654 00614 00296 00288 00405 Q0559 00139 00266
2 0.0703 02470 01044 01000 00405 02532 01628 00862

1 05 Q00299 00031 0.0101 00027 00118 Q0047 0.0334 000171
1 0.0065 00706 00019  0.0206 00030 Q0644 00006 0.0192
2 0.0412 02040 00317 00968 00233 02098 00600 Q0911

2 0.5 00412 Q0352 00369 00055 00212 Q0205 00709 Q0029
1 0.0040 01081 00051 00157 00010 Q0961 00152 Q0133
2 0.0439 02582 00278 01346 00255 02676 00134 01206

HJ, A, 0.0100 Q0098 00161 Q0007* 0.0001* 0.0709 00334 00288
HJ,Au, 0.0178 Q1766 00048 00130 00069 Q0360 00630 Q0337

TABLE 9
Frequency distribution of estimated optimal OL subsample scaling with NPl and HJ methods
(based orlL000simulation. Along withco = 0.5, NPI1 and NPR usec; =0.5and 1,
respectivelyTrue optimal scaling valueg:>f, are given in Tablef

Estimatessxgpgl_ of optimal scaling sxgpgl_

Rn/Modd M ethod 2 3 4 5 6 7 8 9 10
(7,71 x (=9,9] NPI1 98 901 1
E(1L, 1) NPI2 307 686 7

HJ, Am =5 150 850
{x eR2: |x|| <9} NPI1 7 993
G(0.5,0.3) NPI2 876 124

HJ, A =3 963 37
(—15,15] x (—21,21] NPI1 2 9 62 276 450 192 9
E(L, 1) NPI2 1 14 241 726 18

HI A =7 1 856 143
{x e R2:||x|| < 20} NPI1 2 21 272 590 115
G(0.5,0.3) NPI2 2 134 864

H, =4 723 277
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other covariogram models and regioRs. Table 7 lists values oJkOpt These
results indicate that the NPl and HJ procedures exhibit good flnlte sample
properties in estimating.o™ and are competitive.

9. Proofs for variance expansions. For the proofs, we us€® to denote
generic positive constants that do not dependzoor any Z¢ integers (orzZ¢
lattice points). The real numbet, appearing in some proofs, always assumes
the value stated under Conditidd, with respect to the lemma or theorem under
consideration. Unless otherwise specified, limits in order symbols are taken letting
n tend to infinity.

In the following, we denote the indicator function As (i.e., I € {0, 1} and
Iiay = 1 if and only if an eventA holds). For two sequencds,} and {#,} of
positive real numbers, we writg ~ 1, if s, /1, — 1 asn — oco. We writeA"** and

s for the largest diagonal entries af, and;A,,, respectively, whilgkf{]ﬂ)ﬂ >1
will denote the smallest diagonal entry @&, .
We require a few lemmas for the proofs.

LEMMA 9.1. Supposdt, T> C Z¢ =t +Z¢ are boundedLet p, ¢ > 0 where

1/p+1/q <1.1f X1, X2 are random variableswith X; measurable with respect
to F7(T;),i =1, 2,then

’

1 1 _ 1-1/p=1/q
| Cov(X1, X2)| < 8(E|X1|”)Y/P(E|X2|9) /‘fa(dusm, T2); m?>2<|T,-|)
=1,

provided expectations are finite adis(7y, 72) > O.
The proof follows from Theorem 3, Doukhan [(1994), page 9].

LEMMA 9.2. Letr € Z,. Under AssumptioA.3 and ConditionM,., for
1<m<2randanyl c Z¢=t+7¢,

E”Z(Z(s) —
seT

C(x) is a constant that depends only on the coefficients, /), I < 2r, and
ElZt)|2+.

m

< C()|T|"?;

The proof follows from Theorem 1, Doukhan [(1994), pages 26—31] and Jensen’s
inequality.

We next determine the asymptotic sizes of important sets relevant to the
sampling or subsampling designs.

LEMMA 9.3. Under Assumptioné.1 and A.2, the number of sampling sites
within:
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(a) the sampling regioiR,,: N,, = |R, N Z¢| ~ |Ro| - det(A,,);
(b) an OL subsampleR; ,,, i € JoL : sN, ~ |Ro| - det;A,);
(c) a NOL subsampleR; ., i € JnoL :sNi, ~ | Rol - det(;A,,).
The number af
(d) OL subsamples withiR,, : |JoL| ~ |Ro| - det(A,);
(e) NOL subsamples withiR,, : |JnoL| ~ |Rol - det(A,) - det;A,) L
() sampling sites near the border of a subsamgig, or I?i,n, is less than

sup{i € 2. TV NRi, #@, T'NRS, #ofor T =] +[-2,2]%}|
iezd ’

S e(s)\’,[:lnaX)d—l.

Results follow from the boundary condition &p; see Nordman (2002) for more
details.

We require the next lemma for counting the number of subsampling regions
which are separated by an appropriately “small” integer translate; we shall apply
this lemma in the proof of Theorem 3.1. For= (k1, ..., kg)' € Z¢, define the
following sets:

Jn(k) = |{| € JoL ik +sAnRo C Rn}|7

Ey={keZ k| <", j=1,...d}

LEMMA 9.4. Under Assumptioi.2,
Jn (K)
|JoL|

max|1 — =o0(1).

keE,

PrROOF Fork € E,, write the set/* (k) and bound its cardinality
Jik) = |{i e JoL: (i +k+ A,Ro) N ARG # 2}
<|[iez®:T' N AR # 2, T'NARo#@; T' =i + A2, 2]}
< @AM maxyd—1
by the boundargondition onRg. We have then that for all € E,,,
oLl = Ju(K) = JoLl = J; (k) = [JoL| — CAT @),

By Assumption A.2 and the growth rate pfo. | from Lemma 9.3, the proof is
complete. O

We now provide a theorem which captures the main contribution to the
asymptotic variance expansion of the OL subsample variance estifﬁggpfrom
Theorem 3.1.
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THEOREM 9.1. ForieZ4, let Yin = V'(Zi,, — n). Under the assumptions
and conditions of Theorefh1

Na Y Cow¥E,. Y2, = Ko- [2t*(1+ o(D)),
keE,

where the constamty is defined in Theorer®.1.

PROOF.  We give only a sketch of the important features; for more details, see
Nordman (2002). For a s@t c R?, define the functiork (-) as

S(T)= > V(Z(—n).

seZ4nT

With the set intersectioﬁli")n =, R, N(K+Ry), k € Z¢, write functions
H1y(K) = (Rin \ Ri,):
Han(K) =3 (Ros \ R,

Hz, (k) = Z(RY)).

These represent, respectively, sums over sité&jjnbut notRg , = sR,, Ro,, but
not Ry , and bothRg , and Ry ,,. Then defing, (-) :Z¢ — R as

ha(K) = ELHZ, (K)1E[HZ, (K)] + E[HE, (K) |E[HE, (K)]
+ E[HZ,(K)E[HZ,(K)] + E[H3, (K)] — ((N)EYE,)1?.

We will make use of the following proposition.

PROPOSITION9.1. Under the assumptions and conditions of TheoBin
max (,N)? CouYg,,, ¥¢,) = (sNu)~*ha(K)] = 0(D).

The proof of Proposition 9.1 can be found in Nordman (2002) and involves cutting
outZ? lattice points near the borders Bb,, andRy ,,, say,Bo,, and B, with

(n)
by = L( )‘n’:ln) J’
Bj,={ieZ%ieR,, (i+L.(-LU)NR #o},  jeZ,
where e = («6/{(2r + 8)(2r — 1 — 1/d)} + 1)/2 < 1 from Condition M,.
Here ¢, — oo, £, = o(skr(]ﬁi)n) is chosen so that the remaining observations
in Ro,,,,Rk,,,,RIE")n are nearly independent upon removiBy ,, Bk, points
and, using theRp-boundary condition, the set cardinalitie®o |, |Bk..| <

CL, (sAMmaX)d —1 are of smaller order thamv,, (namely, these sets are asymptotically
negligible in size).

(9.1)



2010 D. J. NORDMAN AND S. N. LAHIRI

By Proposition 9.1 andE,,| = O(;N,,), we have

(9:2) N D CouYg,, ¥2,) — ((Na) > 3 ha(K)| = o(D).

keE, keE,

Consequently, we need only focus ¢V, )3 > kek, hn(K) to complete the
proof of Theorem 9.1.

For measurability reasons, we create a set defined in terms Bfthebesgue
measure,
det(Ag)|Rol

Et=(0,1)N
0,1 {e < >
HX eRY: |(X 4+ AgRg) N AgRg| = ¢ or de{Ag)|Ro| — 8}| :O}.

Note the set0, 1) N (0, det(Ag)|Ro|/2) \ ET is at most countable [cf. Billingsley
(1986), Theorem 10.4]. Ferc ET, define a new set as a functionofndn:

Ren={k e Z4: R, > e(24")", |sRa \ RO, | > £(217)7).

HereR,, C E, becausé ¢ E, implies ng,)n =g,
We now further simplify(;N,,) 3 > kek, hn(K) using the following proposition
involving R; .

PROPOSITION9.2. There existN € Z, and a functionb(-): E* — (0, c0)
such thatb(¢) | Oase | 0and

9.3) N3 k) = Ym0 < e+ (1) T+ (o)1),
keE, keﬁg,n

whereC > 0 does not depend ane E* orn > N.

The proof of Proposition 9.2 is tedious and given in Nordman (2002). The
argument involves bounding the sumigf(-) over two separate sets Hj,: those
integers inE,, that are either “too large” or “too small” in magnitude to be included
in R,

To finish the proof, our approach (for an arbitrarye ET) will be to write
(sN,) 3 Zkek” hn(K) as an integral of a step functiofi ,(x) with respect to
the Lebesgue’measure, then show,lim, f: ,(X) exists almost everywhere (a.e.)
on R4, and apply the Lebesgue dominated convergence theorem (LDCT). By
letting £ |, 0, we will obtain the limit of,N,, >z, COM(YE,,. Y2 ).

Fix ¢ € ET. With counting arguments based on the boundary conditioRgof
and the definition ofR, ,, it holds that for some Ne Z, and allk € R, ,:
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|RS}n N z4 >1 and N, — |R|£',)n N Z4 > 1 whenn > N,. We can rewrite
(Ny)"2h, (K), k € 1?8,,[, in the well-defined form (for > N,)

(k) _E[ HZ, (k) H H3, () }(1_ |R&',),,ﬂzdl>2
N)? [Ny — IR, NZ4 ] LN, — IR, N2 sNo

2 2 2
+ZE[ H3, (K) }E[ H2 (k) }
= LiNa— 1RO, nzd ] LIRS, Nz
(1 RO, NZ\ (1RO, Nz

SNVl an

0] di\ 2

H3 (k) IR, NZ%

E|: (|)3 :|< S _[anE(Y&n)]Z.
|Rk,n nzdp sNn

For X = (x1,....xg) € RY, write |x| = (lx1]..... lxq]) € Z¢ and x, =
L+1Vx]. Let f.,(x) : R? — R be the step function defined as

fen ) =GN 2Ly gy n ()

We have then that (with the same fixed E*)

1 T
(9.4) 2 6N o =20 [, fentoax

We focus on showing
n||—>moo fs,n(x) = fe (X)

(9:5) |(X 4+ AgRo) N AgRo|

=1, 5 [2t° <

ek 2T T Gerag) ol
with R, = {x € R?: |(x + AgRg) N AgRo| > &, |AgRo \ (X+ AgRp)| > ¢} a Borel
measurable set.

To establish (9.5), we begin by showing convergence of indicator functions

(9.6) i

2
) aexeR?,

1 aexeR?,

{Xneks,n} {XGRE}

Define the setst, (X) = (A{") "Xy + sRn) N iRy}, A () = {GA]") LR} \
A,(x) as a function ok € R?. The LDCT can be applied to show that for each
x € RY, |A,(X)] = [(X+ AoRo) N AgRo| and|A,(X)| = |AoRo \ (X + AgRo)|.
Thus, ifx € R,, then

[Apn(X)| = [(X+ AgRo) N AgRo| > ¢,

(9.7) i
[A;,(X)] = [AoRo \ (X+ AoRo)| > ¢,
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implying further that 1= Ly k.., xek,) = 1 asn — oo. Now considerﬁg.
If x ¢ R, such that|(X + AgRo) N AgRo| < & [0r |[AgRp \ (X + AgRo)| < €],
then|A,(X)| < ¢ [or |A,(X)| < €] eventually for largen and 0= I —
I{xeRg ~
has Lebesgue measure zero; namély,€ RS :[(X + AgRo) N AgRo| = ¢ or
[AogRo \ (X+ AgRo)| = ¢}| = 0. We have now proven (9.6).

We next establish a limit fof,N,, ) ~2h,,(X,), X € R.. We wish to show
[Rapn NZ9 (X + AoRo) N AgRy| <

— , X € R;.
sNp deKAO)|R0|

Using the bound |Ry) .| — |R\),, N Z4]| < C(;2M@)~1 from the Ro- boundary
condition and noting the limit in (9.7) fo(sk(”)) d|R('),,| = |A,(X)],
find (AR, N Z4 — |(x + AgRo) N AgRol, X € R.. By this and
(A4")4/ 5Ny — (detAo)|RoD) 72, (9.8) follows.

We can also establish: for eagle R., j =1 or 2,

24/'
E[ﬁ} — E([V'Zoo)?),

e

{Xneks,n}
| = 0 in this case. Finallys € E* implies that a last possible subset®f

(9.8)

(9.9)

H2 (Xn) 2 / 2
E[ |R(I)n = ZdJ sNaE(YS,) = E([V' Zx]9),
where V' Z, is a normal & (0, %) random variable and so it follows that
E((V' Zsol¥) = (2j — 1)T%, j =1, 2. The limits in (9.9) follow essentially from

the central limit theorem (CLT) of Bolthausen (1982), after verifying that the CLT
can be applied; see Nordman (2002) for more details.

Putting (9.6), (9.8) and (9.9) together, we have shown the (a.e.) convergence of
the univariate functiong; ,(x) as in (9.5). Fok € E,, andn > N, Lemma 9.2
ensuresi(;N,) 2|k, (k)| < €, implying that forx € R?: | f, ,(X)| < Clixel—c.c)
for somec > 0 by Assumption A.1. With this uniform bound of} ,(-) and the
limits in (9.5), we can apply the LDCT to get
(9.10) lim / Fon()dx = / f.00dx,  &cE".

Rd Rd

n—oo
Let {e,,}°°_, C E* wheree,, |, 0. ThenR,,, C Ao[—1, 11¢ and limy, oo I (xeRe )™

Iyeiy Tor x #0¢ RY, with Rg = {x € R?:0 < |(X + AgRp) N A0R0| <
det(Ag)|Rol}. Hence, by the LDCT,

Him [ o, 0dx= [ for0dx.
(9.11) /Rd /Rd

|(X + AgRo) N AgRo| )2

o
Jo) = Iy [27 ]< det(Ag)|Rol
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From (9.2)—(9.4), (9.10) and (9.11) aqd ")? /N, — (detAo)|Ro|) %, we have
that

1
limsupN, Cov(Y? ,Y2 - X) dX
”—m%s nk;; W Yicn) det(Ao)|Ro| Jrd Jot)
("))d
glimsu%an 3 Cov(an,Ylfn)— / for n(X) dX
n—00 KeE, ’ ’

Aol fo o0 00 = £000 dx’

(m\d
: (29")
+I|msup{ / X) dX —
N Jga Sonn

n—oo

Jew (X) dX

det(Ao)|Ro| Jre

<Cl(em +[b(e )]d)+¥’/ Jen (X) — fo(X) dX
ST detAo) Rol | e T
-0 ase;, | 0.

Finally,

1 _2t* [ |(y+ Ro) N Rol?

detao) Rol Jra 0 = TRol Jpe |Ro[2

9’

using a change of variablgs= AE X. This completes the proof of Theorem 9.1.
O

For clarity of exposition, we will prove Theorem 3.1, parts (a) and (b),
separately for the OL and NOL subsample variance estimators.

9.1. Proof of Theoren3.1(a). A Foii € JoL, we use a Taylor expansion &f(-)
(aroundg) to rewrite the statistié, - = H(Z; ),

éi(?nl‘:H(,LL)"i‘ Z Ca(Zi,n_/‘L)a
lell1=1
(9.12) +2 % M/ (1-w)D*H(n+ o (Zi, — pn)do

lelli=

=H(u)+ Yi,n + Qi,n-
We also have

O =Hw +1JoLl™ Y Yin+1Jol™ Y. Qin=Hw + Y, + On.

ieJoL ieJoL
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3 07,

ieJoL

1

"2

"*OL:SN”[U 2 o |
ocl iz, oL

2 _ _ _ _
+— N Y, Qi,—V?— Q,%—2<Yn)(Qn)]
|JoL| icToL

We establish Theorem 3.1(a) in two parts by showing

<Ny, det;A,)
V. Y2 | =Kq- 2t%(1 + 0(D)),
(@) ar(lj |.§OL ) 0 Gera) 1271 +o)

<deKsAn)>
=0 .
det(A,)

We will begin with proving (9.13)(a). Fdt € Z¢, let o, (k) = Cow(Y§,. ¥2,). We
write

SNn stvn
TJOL?Z (Z ) LN )(Z VASLASESEDY Jn<k>o—n(k>)

ieJoL keE, keZd\E,

(9.13)
(b)

N,
Var(fnz’OL)—Var< SN Y|2n>

Yol S50

= Wy, + Wo,.
By stationarity and Lemma 9.2, we bound, (k)| < E(Yg,) < C(;N,) 7%,
k € Z?. Using this covariance bound, Lemmas 9.3 and 9.4/ &pfi< 3¢ det(,A,,),

2
GND? S = | < 0B mapdp - 180
lJoul ‘% |JoL| keE, |JoL|
(9.14) "
(dei(sAn))
=0 .
det(A,)
Then applying Theorem 9.1 and Lemma 9.3,
an 2 de sAn
(9.15) GV S~ ) = Ko 2882 o114 o(1y).

|JoLl det(A,)

keE,

By (9.14) and (9.15), we need only show tHa&h, = o (det(;A,)/det(A,)) to
finish the proof of (9.13)(a).
Fori e Z¢, denote a set of lattice points within a translated rectangular region:

Fi,= (u + ]‘[ (=[29"7/2, 297 /2]) nz<,

where [-] represents the celllng” function. Note that fer= (k1,...,ky) €
ZY\ E,, there existg € {1,...,d} suchthatk;| > ;»;™, implying dis(Ro ,N Z¢,
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Rk.n nzdy > dis(Fo,.», Fk.n) > 1. Hence, sequentially using Lemmas 9.1 and 9.2,
we may bound the covariances k), k € Z¢ \ E,, with the mixing coeffi-
cienta(-, ),

jow (k)| < B[E(YSZ M)/ (dis(Ro.n N Z%, Rin N Z%), Ny) /@

=< e(an)_za(diS(FO,m Fk,n)7 an)a/(ZH_a)-
From the above bound ani (k)/|JoL| < 1,k € Z¢, we have

00 d
(Waul < ClJoLI ™Y (Z Ca, j,n>)a(x, NV @),

x=1\j=1

(9.16) o
Cix.jmy = |{i € Z% :dis(Fo ., Fip) = x

=inf{lv; —wjl:ve Fyn, We Fi,}}|.

The functionC( ;) counts the number of translated rectangles that lie a
distance ofx € Z. from the rectangleéy ,, where this distance is realized in the
jth coordinate direction foj = 1,...,d. Forie Z¢, x > 1 andj € {1,...,d},

if diS(Fo.i. Fin) = x = inf{jv; — w;|:V € Fon.W € F ). thenlij| = [ +

x — 1 with the remaining components gfnamelyi,, for m € {1,...,d}\ {j},
constrained byi,, | < SA,SZ’) + x. We use this observation to further bound the right-
hand side of (9.16) by

0 d d
ClJoL|™t Z(Z [T 3(:% +x))a<x, NP/ (@)

x=1\j=1m=1, j#m

d NI e .
< @984 Z(Sxﬁ;:gn)-f[zxf—u ) xf-1[a1<x>g<an>]5/(2’+”}

Joul 5 =1 x=l,+1
1

det;A,) | di, {En/e}d"s/(zr+8) - 2rd—d—1 8/(2r+8)
<C ) 2rd—d * 1(%)

|JoLl [ sAmin U x=t,+1

(dei(sAn)>
= 0| — .

det(A,)

using Assumptions A.1, A.3, Conditiai, and¢,, = o(sk,(:]’i)n) with e from (9.1).
This completes the proof of (9.13)(a).
To establish (9.13)(b), first note that

N,
Var(f,lz,oL)—Var< 3 len)

[Joul i 570,

5 5
N,
<o al?) (L aktevenz( 3 02
j=1

j=1 |JOL| ieJoL
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where Ay, = VarGN,Y2), Az = Var(JoL| 4Ny Ticjo, QF,), Az =
Var(;N, 02), Ay =Var(|JoL| " Ny Yic jo, Yiin Qin), Asy = Var(;N, Y, On).

By (9.13)(a), it suffices to show that;, = o(det;A,)/det(A,)) for each
j=1,...,5. We handle only two terms for illustratior:,,, Az;,.

ConsiderAy,. Forse R, N Z4, let w(s) = [2¢ det,A,)] L{i € JoL:sei+
sAn Ro}| sothat O< w(s) < 1. By ConditionM, and Theorem 3 [Doukhan (1994),
page 31] (similar to Lemma 9.2),

A < BT
(24 det;A0))* / 4
(9.17) ZWEQ Y. @V (Z(S)—u)} )

seR,NZ4

- o WNn?(dets,))*
|JOL|4(an)2

ThenAy, = o(det;A,)/ det(A,)) follows from Lemma 9.3.
To handleAy,,, write o1, (K) = Cov(Yo,, Qo.n» Yk.n Qk.n). K € Z¢. Then

(sN)?
= > Ta(K)o1a (k)
|JoL|? ke
(an)2< )
< X lo1a (K)| + o1 (K)|
|JOL| kEXE:n kGZXdiEn

= Ag(Ey) + A4n(E;)-

For k € E,, note o1, (k)| < C(;N,) ™2 using Yo, Qo.n| < CllZow — 1l3(L +

| Zon — 1l|*) (from Condition D) with Lemmas 9.1 and 9.2. From this bound,
Lemma 9.3 andE, | < 3¢ det;A,), we findA4, (E,) = o(det;A,)/ detA,)). We
next bound the covariances, (k), k € Z% \ E,:

r 2r/(2r
|01, (K)| < 8[E(|¥0,0 Qo | @ +O/7)]2 @ +9)

x o(dis(Ro, N Z9, R N Z%), {N,)Y/ @D
_ . 8/(2r+8
= e(an) Sa(d|S(F0,na Fk,n)a an) /&r+d)

by the stationarity of the random field(-) and Lemmas 9.1 and 9.2. Using this
inequality and repeating the same steps used to majolizg™from the proof
of (9.13)(a) [see (9.16)], we havky, (E;) = o(det(;A,)/ det(A,)). The proof of
Theorem 3.1(a) is complete.
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9.2. Proof of Theoren3.1(b). To simplify the counting arguments, we assume
here integer-valuegA, € Z., implying N, = ;N,, i € Z¢. The more general
case, in which the NOL subregions may differ in the number of sampling sites, is
treated in Nordman (2002).

Foreach NOL subregioﬁi’n, we denote the corresponding sample mﬁ@n:
(SNi,,,)‘lstRi nzd Z(s). The subsample evaluations of the statistic of interest,
éi'f‘nOL, i€ JNOL; can be expressed through a Taylor expansioH 0§ aroundu,
substitutingZ; , for Z;, in (9.12):6N%" = H(Z; ,) = H(1) + Yi.n + Qin-

We will complete the proof of Theorem 3.1(b) in two parts by showing

(a) Var( N > ﬁ?n)—m-[h“](l—i-o(l)),

[noLl G ") detlAn)| Rol
(del(sAn)>
=0 .
det(A,)

(9.18)

(b)

N i
Var(f,iNOL)—Var< Ly Y,2n>

[INoul =

We will begin with showing (9.18)(a). Fdr € 7%, let J,(k) ={i e JyoL:i+k e
JnoL} andé, (k) = Cow(¥¢,. ¥2,). Then we may express the variance,

N 3
Var{ =2 Y2
<|JNOL| 2 Y,

ieJnoL

2
=%( DR ACIACS
(9.19) | /Not | kezZd,0<| k|l o<1

+ ) in<k>6n<k>+|JNou6n<0>>
keZ4,|K|loo>1
= U1, + Uz, + |InoL| 2 (:N2)%6,(0).

We first proveUs, = o(|JnoL| 1), noting that detA,)/ det(A,) = O(lInoLl™b)
from Lemma 9.3.
Whenk = (k1, ..., ks) € Z%, |K|lo > 1, then for some k my <d,

dis(Ro,, N Z%, Rk, N Z%) = max (|k;| — 12"
’ ’ 1<j=<d J
= ([kmy | — L)shyy-
If je{d,...,d},j+#m;, we have
-1
|kj| = (s)‘i'n)) (|kmk| - 1)s)‘£:k) +1
Note also ifk € Z4, |k« > 1, then

16001 = 6N 2ar((Jong | — DA o)

mg> S
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by Lemmas 9.1 and 9.2. Hence, we have

d d
z[z i xf">x+sx§">>/sx5")}
=1i=1,

« Ot( )\(n) x, N, )6/(2r+6)

| 2n|
lIN 0|_|

min
C 00 Jo1 )\max d-1 (n) 5)(2r+6)

< S ()
NOLI . —1 )‘mln

C  {def;A,)}<d/(@r+d) 20 5 ) 2rd—d=1 (1) \3/(2r+d)
= |JnoLl ()\(n) )Zrd—d—l (S min ) ( min* )
$%min

x=1
( )
=0

by Assumptions A.1, A.3 and Conditia¥,..
We now show thati1,, = o(|JnoL|~1). Fork € Z9, 0 < ||k||lo < 1, define the
set

{xeRd:l/z-sx§")<x,-51/2- W ), if kj=1,
g’ |f k]=0,

for each coordinate direction=1,...,d. Let Ty , = Ule Tk]n We decompose
the sum; N, Y n = = (Rin \ Tin) + (R N Ticn) = Skon + S, Then, Uy, =
o(|JnoL|~ 1) follows from 1-4 below:

L. [E(YE, SknSk ) < [EQXE DENSkaPE(SE 13173 = 0(1), using Lemma 9.2
and

d d
. ~ ; -1
IRk, N Tk, NZ% < Y R NT, N Z9 < ¢, det;A,) Z(s/\ﬁ"))
j=1 j=1
(n)
( )\r‘:]lln)

2. Likewise, BYZ, S¢2) < [E(Yg,)E(Si4)1Y2 = 0(D).

3. [{NJE(Y2,)— (N T2ESE )1 < 4N, "t max([E(SE ) E(S;2)1Y2, E(S5p2)) =
o(1).

4. |Cow(¥,. S )| < Cally, sNy)*/ @+ = o(1) by applying Lemmas 9.1
and 9.2, Assumption A.3, and Conditiol, with dis(Rx, N Z¢ \ Tk.,.
R,NZY > 4,.
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Sinces, (0) = Var(Y&n), the remaining quantity in (9.19) can be expressed as

(sNn)? _ ', 12
5,(0) = Var([V' Zso]?) (1 + o(1))
|INoL| |JNoL|
. det;A,) . 4
= detaniry 12 T OD)

by applying the CLT [as in (9.9)] and Lemma 9.3. We have now estab-
lished (9.18)(a).

We omit the proof of (9.18)(b), which resembles the one establishing (9.13)(b)
and incorporates arguments used to bolhg, Us,; Nordman (2002) provides
more details.

10. Proofs for bias expansions. We will use the following lemma concern-

ing rnz = N, Var(,) to prove the theorems pertaining to bias expansions of
2, andt?
n,0OL n,NOL"

LEMMA 10.1. Under the assumptions and conditions of Theogin
12 =12+ O([detA,)] Y/ max2d]),
PROOF. By a Taylor expansion around 6, = H(Zy,) = H()+ Y, + O,

[replacingZy, for Z;, in (9.12)] and saN, Var(d,) = N, Var(Yy, + Oy, ). For
keZ letN,(k) =|{i € R, NZ¢:i +k € R,}|. It holds thatN,, (k) < N,, and

Ny <Nk + |{ieZ!:T'NR, # @, T'NERS # 2;
(10.1) T' =i+ |Klloo[—1, 11}
< Nu(K) + €Jlk||9, (amaxyd =1

by the boundary condition oRg. Also, by Lemma 9.1 and stationarity, for each
k#£0eZ4,

(10.2) lo (k)| < Car(Iklle)” @+, kezd.

Using |{k € Z9: |K|loo = x}| < €x¢~1, x > 1, the covariances are absolutely
summable oveZ:

o0
(10.3) Y oK) <o) +e Zxd—lal(x)ﬁ/(Zr—l—zS) - .
kezd x=1
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From (10.1)—(10.3), we find

_ 1
(10.4) NoVar(Yy,) =~ 3~ Nu(K)o (k) = 24+ 1,,

" kezd

1

Il = 5~ >INy = Na ()] - o (K)|
" kezd
d—1

(10.5) <c. ()erlnax) ad xzd_lal(x)S/(zr+8)

B Nn x=1
= O([det(A,)]Y9).

By ConditionD and Lemma 9.2, it follows thav, Vqr(QNn) = O([detA,)]™ D).

Finally, with bounds on the variance &f, and Qy,, we apply the Cauchy—
Schwarz inequality to the covariandé,| Cov(Yy,, On,)| = O([det(A,)]~1/?),
setting the order on the differene®, Var(4,) — t2|. O

We give a few lemmas which help compute the bias of the estimators
22, andz2 o, .

LEMMA 10.2. LetYj, = (;Nj,)~t Ysezing,, V(Z(S) =), i€ 74 . Suppose
Assumption®\.1-A.5 and ConditionsD, and M2+a hold withd > 2 with a as
specified under Conditio®,. Then

E(£2o0) — sNoaE(YE,). EGE2noD) — InoLl ™ D sNiWE(Y3)

ieJnoL

=: O([det(;A,)]"Y?) 4 o([det;A,)]Y9).

PrROOFR We consider here onIy(EﬁOL). For integerA,,, the arguments for
E(f?\oL) are essentially the same; more details are provided in Nordman (2002).
By stationarity and an algebraic expansion as in (9.12),

E(2200) = sNa[E(YE,) + E(Q§ )
+ 2E(Yo,, Qo) — E(Y2) — E(Q7) — 2E(Y, 0)].
With the moment arguments based on Lemma 9.2 and Conditiowe have
NaE(YE,) <,
(10.6) sNAE(Y2) < CN,y (N,
JNaE(Q3,).  sN.E(Q?) < C(Ny) L,
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where the bound omNnE(Ynz) follows from (9.17). By Hdélder’s inequality and
Assumption A.2,

E(£2oL) = sNaE(YE,) + O(GN)™Y2) + O(;Na(N) 7).

Note that EY§,) = E(?&n), sN, = ¢No,. Hence, applying Lemma 9.3 and
Assumption A.2, we establish Lemma 10.2 fﬁf,or

The next lemma provides a small refinement to Lemma 10.2 made possible
when the functionH (-) is smoother. We shall make use of this lemma in bias
expansions of2  and?2 ., in lower sampling dimensions, namely= 1 or 2.

LEMMA 10.3. Assumel =1 or 2. In addition to Assumption&.1-A.5, sup-
pose that Condition®3 and M3, hold witha as specified under Conditiabs.
Then

E(2o0) — sNosE(YE,). EG2noL) — InoLl ™ Y. sNiaE(Y3)

ieJnoL

| o(idets2017h), ifd=1,
| o(idet,A)TY?),  ifd=2.

PROOF We again consider onlg?, . Fori € JoL, we use a third-order
Taylor expansion of each subsample statistic arouna?. n=HWw + Yi,+
Qin + Cin, WhereY , = V'(Zi , — ),

C,
Qin= Y. a—”j(Zi,n — W,

leell1=2

Cn=3 Y. (Zin- u)"‘/(l 2D H (1 + 0 (Zi — ) doo

llerll1=3

Here Ci, denotes the remainder term in the Taylor expansion @ng is
defined a little differently here compared to (9.12). Write the sample means
for the Taylor termsY,, 0, as beforeC, = |JoL| ™ Yic ), Cin- The moment
inequalities in (10.6) are still ial and, by Lemma 9.2 and Conditiah, we can
produce boundsN,E(C3 ). ;N,E(CZ) < C(;N,)~2. By Holder's inequality and

the scaling conditions from Assumptions A.1 and A.2, we then have

E(220,) = (N, [E(Y2,) + 2E(Yo., Qo.n)] + o(ldet,A)1™Y),  ifd=1,
n,0L) = siVn 0,n 0,n¥0,n 0([det(sAn)]_1/2), it J =2
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Since,N,E(Y§,) = sNo.E(YZ,), Lemma 10.3 fort? o will follow by showing

anE(YO,n QO,n)
P
(10.7) =No Y ciaj,El(Zion = 1)(Zjon — ) (Zkon — W]
ij.k=1
= O([det,A,)] ™Y,
whereZo, = (Z1,0,---, Zp,0,n)’ € R is a vector of coordinate sample means,

ci=0H(n)/ox;;aj,=1/2- 82H(,u)/8xj 0Xk.

Denote the observatioAi(s) = (Z1(9), ..., Z,(9) € RY, se Z4. Fix i, j, k €
{1,...,p} and w.l.0.9. assumeu = 0. Then (N,|E(Z;0,Zj0nZk0n)| =
N2 "LE(Zi () Z () Zi (1) + LEF + LY¥| where

L= (N)2 Y EZWZ,WZw)],
u,v,wezZing R,
UAVAW
L;jnk = (s]\/n)_2 Z E[Z,'(U)Zj wZr(v)
u,veZingR,
UV
+ Zi(WZ; (V) Zr () + Z; (V) Zj (U) Zi (W)].

By Lemma 9.1, Assumption A.3 and Conditia#,,

. e X B . 3
LY%< - 3 x4 Ta(x, 1Y/ = o([det, A1 7Y,

ST x=1

similarly to (10.3). For y1,¥2,y3 € RY define dis({y1,y2 Y3} =

maxy<; <3 dis({y:}, {y1, Y2, ya} \ {y:}). If x > 1 € Z,, then|{(y1,y2) € (Z9)?:
diss({y1,Y2,0}) = x}| < Cx21-1 from Theorem 4.1, Lahiri (1999a). Thus,

iy T
LY < — > x# e (x, 2/ = O([det,A)]7Y).

stvn x=1
This establishes (10.7), completing the proof of Lemma 10-35,‘&- O
We use the next lemma in the proof of Theorem 4.2. It allows us to approximate

lattice point counts with Lebesgue volumesiA or R3, to a sufficient degree of
accuracy.

LEMMA 10.4. Letd =2,3and Ry C (—1/2,1/2]¢ such thatB° ¢ Rg C B
for a convex seB. Let {b,}°° ; be a sequence of positive real numbers such that
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b, — oo. If k € Z4, then there exisNy € Z and G; > 0 such that forn > Ny,
+
iezd,
|(1bn Rol — 124 N by (i + Ro)|)
— (IbaRoNK + by Rol — 1Z9 N by (i + Ro) NK + ba(i + Ro)l))|

C2lkIZ, if d =2,

<
Calkl4 (b7 + & ,b?),  ifd=3,

where{& ,}1°° ; C R is a nonnegative sequen¢possibly dependent dk) such
thatég , — 0.

The proof is provided in Nordman and Lahiri (2002).

To establish Lemma4.1, we~require some additional notatiori, kar Z¢, and
let {Nj »(K) = 1Z4n Ri» Nk + R | denote the number of sampling sites (lattice
points) in the intersection of a NOL subregion with ktdranslate. NoteN; , (k)
is a subsample version &f, (k) from (10.1).

PROOF OFLEMMA 4.1. We start with bounds

(10.8) SUP|sNy — sNinl < (AT,
iezd
|sNi,n _sNi,n(k)l
(10.9)  <{iez":T' N R, #2, T'NR; #2; TV =]+ [Klleo[—2, 21}
< ClKII% (AT,

by the boundargondition onRo (cf. Lemma 9.3) and infza [[sAni —jlloo < 1/2.

Modify (10.4) by replacing N, N,(k), Yy, with (N, Ni.(K),Yi, =
V/(Zi’n — w) (i.e., use a NOL subregion in place of the sampling region), and

replaceN,, A,, A\l"® with the subsample analoghi ,, sA,, sAh'®in (10.5). We
then find, using (10.3), for eadte Z¢,

(10.10) ,N;,E(Y?2) — 1= ! > (sNin(K) = sNiw)o (K) = s i s,

st¥in kezd
1
suplsfinl < sUP} —— > [(Nin(K) = (Nipl - o (K)]
iezd iezd | stVl,n kezd
(S)\max)d—l 00
n

(10.11)

-e. 2d-1 ( \8/(2r+5)
=C N e xX::lx ag(x)

= O([det,A )]~ YY),
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from (10.8), (10.9) and Assumption A.1. Now applying Lemma 10.1 and
Assumption A.2 with Lemma 10.2 faf > 2 or Lemma 10.3foil = 1, Lemma 4.1
follows. O

PROOF OF THEOREM 4.1. Here,N; , = ;N,, sNi,(k) = C,(k), E(Y;,) =
E(Yo,,) for eachi, k € Z¢ (sinceyh, € Z, for NOL subsamples) and deh,,) =
sha?. Applying Lemma 10.2 for/ > 3 and Lemma 10.3 fa# = 2, Lemma 10.1,
Assumption A.2 and (10.11),

-1

E()) — 17 = 3 ga () + oA Y,
shn | Rol kezd

Ny — Cu(K)  sAn?|Rol
gn(k) =1 and_"l VS ZNn o (K).

From (10.11) and Lemma 9.3, it follows that, ;. g, (K)| < C, n € Z,, and
that g, (k) — C(k)o (k) for k € Z¢. By the LDCT, the proof of Theorem 4.1 is
complete. O

To establish Theorem 4.2, we require some additional notationi, Kag Z¢,
denote the difference between two Lebesgue volume-for-count approximations as

Din(K) = (IRiul — sNi.n) — (IRin VK + Riy| — sNin(K))
= (|sRn| - sNi,n) - (|sRn Nk +sRn| - sNi,n(k))-

PROOF OFTHEOREM 4.2. We handle here the casés- 2 or 3. Details on
the proof ford = 1 are given in Nordman (2002). We note first thaVifk) exists
for eachk € Z¢ then Lemma 10.4 implie€ (k) = V (k).

Considerf,iNOL. Applying Lemma 10.2 foe/ = 3, and Lemma 10.3 faf = 2,
with (10.8), (10.10) and (10.11) gives

, _ N .
E(22noL) — T2 = [InoL ™t > ﬁsli,n+0(skn b.
ieJnoL 5T

Then, using (10.3), we can arrange terms to write

_ Nj, G (k)
|JNOL| ! Z uin,n=lIJn‘|‘ Z . 5
S IRl Z, ol Rol
Dj (K)o (k)
Gaky= >~ —
icJnoL shn |JNOL|

for U, = — Yy ez |sRn | "2(IsRn| — |sRy NK + R, o (K). SinceRg is convex, the
boundary condition is valid and it holds that for alk € Z¢,
|sNi,n(k) - |sRn Nk+ sRn|| = G(S}V,Tax)d_]',

(10.12) d maxyd—1
llsRul = [sRn MK+ sRul| < ClIKIIS (An™)
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from Lemma 9.3 and (10.9). Then (10.3), Lemma 10.4 and (10.12) give
Skezd |Gn(K)| < C,neZy; Gy(k) — 0 fork € Z¢ andr, ¥, = O(1). By the
LDCT, we establish
Gu(k)
AnlRol

oY, EG@ZnoD) — T = Wa(l+0(D),

kezd S
representing the formulation of Theorem 4.2 in termsigt If V (k) exists for
eachk e Z4, then (10.3) and (10.12) imply that we can use the LDCT again to
produce

(10.13) v, = ( > V(k)a(k)) (1+0(1)).

sl Rol\ 5,
The proof of Theorem 4.2 foi? o, is now complete.

Considerf,iOL. We can repeat the same steps as above to find
Do (K)o (k)

EG2oD) 2=V + > =40l D,  Gik = e
n

kezd 571 s

The same arguments f@¥, apply to G;; and (10.13) remains valid when each
V (k) existsk € Z4, establishing Theorem 4.2 ft7J,;,2 oL- Note as well that ifV’ (k)

exists for eactk € Z¢, then Lemma 10.4 and Lemma 4.1 also imply the second
formulation of the bias in Theorem 4.2[]

PROOF OF THEOREM 5.1. This follows from Theorems 3.1 and 4.1 and
simple arguments from calculus involving minimization of a smooth function of a
real variable. [

PROOF OF THEOREM 6.1. For a rectangld’, Wherel_[?:l(Cj,Ej) cTC
[19_4lc;. &1, cj.¢; € R, define the bordeZ?-point set: B{T} = JI_y{s =

(s1,....82) €Z9NT:sj € {cj, ¢}}
It holds that, fork #£ 0, there exis€ > 0, Nx € Z,, such thak > N,
(10.14) IDin ()] < ClkIG A2, ezl

This can be shown easily by considering only volume approximations for those
Z4 lattice point counts associated with the interior Bgt[i.e., treatingR; as Ro

in | Dj , (k)|] because the subtracted lattice point counts on the bordekg,adnd
Ri., Nk + R; , are negligible:
|°(B{s)\n(i + RO)}| - |°(B{s)\n(| + Ro) N k +s)\n(i + RO)}|
<CllKlloosta® % ieZ’.

See Nordman (2002) for more details.
Applying (10.14) in place of Lemma 10.4, the same proof for Theorem 4.2
establishes Theorem 6.1
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