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ON OPTIMAL SPATIAL SUBSAMPLE SIZE FOR
VARIANCE ESTIMATION1

BY DANIEL J. NORDMAN AND SOUMENDRA N. LAHIRI

University of Wisconsin–La Crosse and Iowa State University

We consider the problem of determining the optimal block (or subsam-
ple) size for a spatial subsampling method for spatial processes observed on
regular grids. We derive expansions for the mean square error of the sub-
sampling variance estimator, which yields an expression for the theoretically
optimal block size. The optimal block size is shown to depend in an intricate
way on the geometry of the spatial sampling region as well as characteris-
tics of the underlying random field. Final expressions for the optimal block
size make use of some nontrivial estimates of lattice pointcounts in shifts
of convex sets. Optimal block sizes are computed for sampling regions of a
number of commonly encountered shapes. Numerical studies are performed
to compare subsampling methods as well as procedures for estimating the
theoretically best block size.

1. Introduction. In this article, the problem of choosing subsample sizes is
examined to maximize the performance of subsampling methods for variance
estimation. The data at hand are viewed as realizations of a stationary, weakly
dependent spatial lattice process. We consider the common scenario of sampling
from sites of regular distance (e.g., indexed by the integer latticeZd ), lying
within some regionRn embedded inRd . Such lattice data appear often in time
series, agricultural field trials, and remote sensing and image analysis (medical
and satellite image processing).

Consider estimating the variance of a statisticθ̂n from Rn. For variance
estimation via subsampling, the basic idea is to construct several “scaled-down”
copies (subsamples) of the sampling regionRn that fit insideRn, evaluate the
analog ofθ̂n on each of these subregions, and then compute a properly normalized
sample variance from the resulting values. TheRn-sampling scheme is essentially
recreated at the level of the subregions. Two subsampling designs are most typical:
Subregions can be maximally overlapping (OL) or devised to be nonoverlapping
(NOL). The accuracy (e.g., variance and bias) of subsample-based estimators
depends crucially on the choice of subsample size.
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To place our work into perspective, we briefly outline previous research in
variance estimation with subsamples and theoretical size considerations. Variance
estimation through subsampling originated from analysis of weakly dependent,
stationary time processes. Supposeθ̂n is an estimator of a parameter of interestθ

based on{Z(1), . . . ,Z(n)} from a stationary temporal process{Z(i)}i≥1. To obtain
subsamples for̂θn-variance estimation, Carlstein (1986) first proposed the use of
NOL blocks of lengthm ≤ n: {Z(1 + (i − 1)m), . . . ,Z(im)}, i = 1, . . . , �n/m�,
while the sequence of subseries{Z(i), . . . ,Z(i + m − 1)}, i = 1, . . . , n − m + 1,
provides OL subsamples of lengthm [cf. Künsch (1989) and Politis and Romano
(1993b)]. Here,�x� denotes the integer part of a real numberx. In each respective
subsample collection, evaluations of an analog statisticθ̂i are made for each
subseries and a normalized sample variance is calculated to estimate the parameter
nVar(θ̂n),

J∑
i=1

m(θ̂i − θ̃ )2

J
, θ̃ =

J∑
i=1

θ̂i

J
,

whereJ = �n/m� (J = n − m+ 1) for the NOL (OL) subsample-based estimator.
Carlstein (1986) and Fukuchi (1999) established theL2 consistency of the NOL
and OL estimators, respectively, for the variance of a general (not necessarily
linear) statistic. Politis and Romano (1993b) determined asymptotic orders of the
varianceO(m/n) and biasO(1/m) of the subsample variance estimators for linear
statistics. For mixing time series, they found that a subsample sizem proportional
to n1/3 is optimal in the sense of minimizing the mean square error (MSE) of
variance estimation, concurring also with optimal block order for the moving block
bootstrap variance estimator [Hall, Horowitz and Jing (1995) and Lahiri (1996)].

Cressie [(1991), page 492] conjectured the recipe for extending Carlstein’s
variance estimator to the general spatial setting, obtaining subsamples by tiling
the sample regionRn with disjoint “congruent” subregions. Politis and Romano
(1993a, 1994) have shown the consistency of subsample-based variance estimators
for rectangular sampling or subsampling regions inRd when the sampling sites
are observed onZd ∩∏d

i=1[1, ni] and integer translates of
∏d

i=1[1,mi] yield the
subsamples. Garcia-Soidan and Hall (1997) and Possolo (1991) proposed similar
estimators under an identical sampling scenario. For linear statistics, Politis and
Romano (1993a) determined that a subsampling scaling choice

d∏
i=1

mi = C

{
d∏

i=1

ni

}d/(d+2)

,

for some unknownC, minimizes the order of a variance estimator’s asymptotic
MSE. Sherman and Carlstein (1994) and Sherman (1996) proved the MSE-
consistency of NOL and OL subsample estimators, respectively, for the variance of
general statistics inR2. Their work allowed for a more flexible sampling scheme:
the “inside” of a simple closed curve defines a setD ⊂ [−1,1]2, Z2 ∩ nD (using
a scaled-up copy ofD) constitutes the set of sampling sites, and translates of



OPTIMAL SPATIAL SUBSAMPLE SIZE 1983

mD within nD form subsamples. Sherman (1996) minimized a bound on the
asymptotic order of the OL estimator’s MSE to argue that the best size choice
for OL subsamples involvesm = O(n1/2) [coinciding with the above findings of
Politis and Romano (1993a) for rectangular regions inR2]. Politis and Sherman
(2001) have developed consistent subsampling methods for variance estimation
with marked point process data [cf. Politis, Romano and Wolf (1999), Chapter 6].

Few theoretical and numerical recommendations for choosing subsamples
have been offered in the spatial setting, especially with the intent of variance
estimation. As suggested in the literature, an explicit theoretical determination of
optimal subsample size or scaling requires calculation of an order and associated
proportionality constant for a given sampling regionRn. Even for the few sampling
situations where the order of optimal subsample size has been established, the
exact adjustments to these orders are unknown and, quoting Politis and Romano
(1993a), “important (and difficult) in practice.” Beyond the time series case with
the univariate sample mean, the influence of the geometry and dimension ofRn, as
well as the structure of̂θn, on precise subsample selection has not been explored.
We attempt here to advance some ideas on the best size choice, both theoretically
and empirically, for subsamples.

We work under the “smooth function” model of Hall (1992), where the statistic
of interestθ̂n can be represented as a function of sample means. We formulate
a framework for sampling inRd where the sampling regionRn is obtained by
“inflating” a prototype set in the unit cube inRd and the subsampling regions are
given by suitable translates of a scaled down copy of the sampling regionRn. We
consider both a nonoverlapping version and a (maximal) overlapping version of
the subsampling method. For each method, we derive expansions for the variance
and the bias of the corresponding subsample estimator of Var(θ̂n). The asymptotic
variance of the spatial subsample estimator for the OL version turns out to be
smaller than that of the NOL version by a constant factorK1 (say) which depends
solely on the geometry of the sampling regionRn. In the time series case, Meketon
and Schmeiser (1984), Künsch (1989), Hall, Horowitz and Jing (1995) and Lahiri
(1996) have shown in different degrees of generality that the asymptotic variance
under the OL subsampling scheme, compared to the NOL one, isK1 = 2

3 times
smaller. Results of this paper show that for rectangular sampling regionsRn in
d-dimensional space, the factorK1 is given by(2

3)d . We list the factorK1 for
sampling regions of some common shapes in Table 1.

TABLE 1
Examples ofK1 for several shapes of the sampling regionRn ⊂ Rd

Shape of Rn Rectangle in Rd Sphere in R3 Circle in R2 Right triangle in R2

K1 (2/3)d 17π/315 π/4− 4/(3π) 1/5
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In contrast, the bias parts of both the OL and NOL subsample variance
estimators are usually asymptotically equivalent and depend on the covariance
structure of the random field as well as on the geometry of the sampling regionRn.
Since the bias term is typically of the same order as the number of lattice points
lying near a subsample’s boundary, determination of the leading bias term involves
some nontrivial estimates of the lattice point counts over translated subregions.
Counting lattice points in scaled-up sets is a hard problem and has received a lot
of attention in analytic number theory and in combinatorics. Even for the case of
the plane (i.e.,d = 2), the counting results available in the literature are directly
applicable to our problem only for a very restricted class of subregions that have
the so-called “smoothly winding border” [cf. van der Corput (1920) and Huxley
(1993, 1996)]. Here explicit expressions for the bias terms are derived for a more
general class of sampling regions using some new estimates on the discrepancy
between the number of lattice points and the volume of theshiftedsubregions in
the plane and in three-dimensional Euclidean space. In particular, our results are
applicable to sampling regions that do not necessarily have “smoothly winding
borders.”

Minimizing the combined expansions for the bias and the variance parts, we
derive explicit expressions for the theoretical optimal block size for sampling
regions of different shapes. To briefly describe the result for a few common shapes:
Suppose the sampling regionRn is obtained by inflating a given setR0 ∈ (−1

2, 1
2]d

by a scaling constantλn asRn = λnR0 and that the subsamples are formed by
considering the translates ofsRn = sλnR0. Then the theoretically optimal choice
of the subsample sizesλn for the OL version is of the form

sλ
opt
n =

(
λd

nB2
0

dK0τ4

)1/(d+2)(
1+ o(1)

)
asn → ∞

for some constantsB0 and K0 (coming from the bias and the variance terms,
respectively) whereτ2 is a population parameter that does not depend on the shape
of the sampling regionRn (see Theorem 5.1 for details). Table 2 lists the constants
B0 andK0 for some shapes ofRn. It follows from Table 2 that, unlike the time

TABLE 2
Examples ofB0, K0 for some sampling regionsRn

∗

Rn Sphere in R3 Cross in R2 Right triangle in R2 ��

K0 34/105 4/9 · 191/192 2/5
B0 3/2

∑
k∈Z3 ‖k‖σ(k) 4/3

∑
k∈Z2 ‖k‖1σ(k) 2

∑
k=(k1,k2)

′∈Z2,signk1=signk2
‖k‖1σ(k)

+ 2
∑

k∈Z2,signk1 
=signk2
‖k‖∞σ(k)

∗Cross and triangle shapes appear in Figure 1; see Section 6 for further details. Autocovariancesσ(·)
and Euclidean,l1, andl∞ norms‖ · ‖, ‖ · ‖1, ‖ · ‖∞ are described in Section 2.3.
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series case, in higher dimensions the optimal block size critically depends on the
shape of the spatial sampling regionRn. It simplifies only slightly for the NOL
subsampling scheme as the constantK0 is unnecessary for computing optimal
NOL subsamples, but the bias constantB0 is often the same for estimators from
each version of subsampling. These expressions may be readily used to obtain
estimates of the theoretical optimal subsample scaling for use in practice.

The rest of the paper is organized as follows. In Section 2 we describe the spatial
subsampling method and state the assumptions used in the paper. In Sections
3 and 4 we, respectively, derive expansions for the variance and the bias parts of the
subsampling estimators. Theoretical optimal subsample scalings (or block sizes)
are derived in Section 5. The results are illustrated with some common examples
in Section 6. Section 7 describes two methods for estimating optimal subsample
scaling. In Section 8 a numerical study of subsample variance estimators and
scaling estimation methods is provided. Proofs of variance and bias results are
separated into Sections 9 and 10, respectively.

2. Variance estimators via subsampling. In Section 2.1 we frame the
sampling design and the structure of the sampling region. Two methods of
subsampling are presented in Section 2.2 along with corresponding nonparametric
variance estimators. Assumptions and conditions used in the paper are given in
Section 2.3.

2.1. The sampling structure.To describe the sampling scheme used, we first
assume all potential sampling sites are located on a translate of the rectangular
integer lattice inRd . For a fixed (chosen) vectort ∈ [−1/2,1/2)d , we identify
the t-translated integer lattice asZd ≡ t + Zd . Let {Z(s) : s ∈ Zd} be a stationary
weakly dependent random field (hereafter r.f.) taking values inRp. [We use bold
font as a standard to denote vectors in the space of samplingRd and normal font
for vectors inRp, includingZ(·).] We suppose that the processZ(·) is observed
at sampling sites lying within the sampling regionRn ⊂ Rd . That is, the collection
of available sampling sites is{Z(s) : s ∈ Rn ∩ Zd}.

To obtain the results in the paper, we assume that the sampling regionRn

becomes unbounded as the sample size increases. This will provide a commonly
used “increasing domain” framework for studying asymptotics with spatial lattice
data [cf. Cressie (1991)]. We next specify the structure of the regionsRn and
employ a formulation similar to that of Lahiri (1999a, 2004).

Let R0 be a Borel subset of(−1/2,1/2]d containing an open neighborhood
of the origin such that for any sequence of positive real numbersan → 0, the
number of cubes of the scaled latticeanZd which intersect the closuresR0 andRc

0
is O((a−1

n )d−1) asn → ∞. Let�n be a sequence ofd ×d diagonal matrices, with
positive diagonal elementsλ(n)

1 , . . . , λ
(n)
d , such that eachλ(n)

i → ∞ asn → ∞. We



1986 D. J. NORDMAN AND S. N. LAHIRI

assume that the sampling regionRn is obtained by “inflating” the template setR0

by the directional scaling factors�n; namely,

Rn = �nR0.

Because the origin is assumed to lie inR0, the sampling regionRn grows outward
in all directions asn increases. Furthermore, if the scaling factors are all equal
(λ(n)

1 = · · · = λ
(n)
d ), the shape ofRn remains the same for different values ofn.

The formulation given above allows the sampling regionRn to have a large
variety of fairly irregular shapes with the boundary condition onR0 imposed to
avoid pathological cases. Some common examples of such regions are convex
subsets ofRd , such as spheres, ellipsoids, polyhedrons, as well as certain
nonconvex subsets with irregular boundaries, such as star-shaped regions. Sherman
and Carlstein (1994) and Sherman (1996) consider a similar class of such regions
in the plane (i.e.,d = 2) where the boundaries of the setsR0 are delineated by
simple rectifiable curves with finite lengths. The border requirements onR0 ensure
that the number of observations near the boundary ofRn is negligible compared to
the totality of data values.

2.2. Subsampling designs and variance estimators.We suppose that the
relevant statistic, whose variance we wish to estimate, can be represented as a
function of sample means. Let̂θn = H(Z̄Nn) be an estimator of the population
parameter of interestθ = H(µ), whereH :Rp → R is a smooth function, EZ(t) =
µ ∈ Rp is the mean of the stationary r.f., andZ̄Nn is the sample mean of theNn

observations withinRn,

Z̄Nn = N−1
n

∑
s∈Zd∩Rn

Z(s).(2.1)

This parameter and estimator formulation is what Hall (1992) calls the “smooth
function” model and it has been used in other scenarios, such as with the moving
block bootstrap (MBB), for studying approximately linear functions of a sample
mean [cf. Lahiri (1996) and Politis, Romano and Wolf (1999)]. By considering
suitable functions of theZ(s)’s, one can represent a wide range of estimators
under the present framework. In particular, these include means, products and
ratios of means, sample moments, spatial correlograms, Yule–Walker estimates
for autoregressive processes [cf. Guyon (1995)] and some pseudo likelihood-based
estimators of process parameters [cf. Ripley (1981)].

The quantity which we seek to estimate nonparametrically is the variance of the
normalized statistic

√
Nnθ̂n, say,τ2

n = NnE(θ̂n − Eθ̂n)
2. In our problem, this goal

is equivalent to consistently estimating the limiting varianceτ2 = limn→∞ τ2
n .
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2.2.1. Overlapping subsamples.Variance estimation with OL subsampling
regions has often been considered in the literature, though in more narrow
sampling situations [cf.R2-sampling regions, Sherman (1996);Rd -rectangular
regions, Politis and Romano (1994); time series data, Politis and Romano (1993a)].

We first consider creating a smaller version ofRn, which will serve as a template
for the OL subsampling regions. To this end, lets�n be ad × d diagonal matrix

with positive diagonal elements,{sλ(n)
1 , . . . , sλ

(n)
d }, such thatsλ

(n)
i /λ

(n)
i → 0 and

sλ
(n)
i → ∞, as n → ∞, for eachi = 1, . . . , d . (The matrix�n represents the

determining scaling factors forRn and s�n shall be factors used to define the
subsamples.) We make the “prototype” subsampling region

sRn = s�nR0,(2.2)

and identify a subset ofZd , sayJOL, corresponding to all integer translates ofsRn

lying within Rn. That is,

JOL = {i ∈ Zd : i + sRn ⊂ Rn}.
The desired OL subsampling regions are precisely the translates ofsRn given by
Ri,n ≡ i + sRn, i ∈ JOL. Note that the origin belongs toJOL and some of these
subregions may clearly overlap.

Let sNn = |Zd ∩ sRn| be the number of sampling sites insRn and let |JOL|
denote the number of available subsampling regions. The number of sampling
sites within each OL subsampling region is the same, namely for anyi ∈ JOL,
sNn = |Zd ∩ Ri,n|. For eachi ∈ JOL, computeθ̂OL

i = H(Zi,n), where

Zi,n = sNn
−1

∑
s∈Zd∩Ri,n

Z(s)

denotes the sample mean of observations within the subregion. We then have the
OL subsample variance estimator ofτ2

n as

τ̂2
n,OL = |JOL|−1

∑
i∈JOL

sNn

(
θ̂OL

i,n − θ̃OL
n

)2
,

θ̃OL
n = |JOL|−1

∑
i∈JOL

θ̂OL
i,n .

2.2.2. Nonoverlapping subsamples.To create NOL subsamples, we adopt a
formulation similar to that of Sherman and Carlstein (1994) and Lahiri (1999a).
The sampling regionRn is first divided into disjoint “cubes.” Lets�n be the
previously describedd × d diagonal matrix from (2.2), which will determine the
“window width” of the partitioning cubes. Let

JNOL = {
i ∈ Zd : s�n

(
i + (−1/2,1/2]d)⊂ Rn

}
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represent the set of all “inflated” subcubes that lie insideRn. Denote its cardinality
as|JNOL|. For eachi ∈ JNOL, define the subsampling regioñRi,n = s�n(i+R0) by
inscribing the translate ofs�nR0 such that the origin is mapped onto the midpoint
of the cubes�n(i+(−1/2,1/2]d). This provides a collection of NOL subsampling
regions, which are smaller versions of the original sampling regionRn that lie
insideRn.

For eachi ∈ JNOL, the functionH(·) is evaluated at the sample mean, sayZ̃i,n,
for a corresponding subsampling regionR̃i,n to obtainθ̂NOL

i,n = H(Z̃i,n). The NOL
subsample estimator ofτ2

n is again an appropriately scaled sample variance,

τ̂2
n,NOL = |JNOL|−1

∑
i∈JNOL

sNi,n
(
θ̂NOL

i,n − θ̃NOL
n

)2
,

θ̃NOL
n = |JNOL|−1

∑
i∈JNOL

θ̂NOL
i,n ,

where sNi,n = |Zd ∩ R̃i,n| denotes the number of sampling sites within a given
NOL subsample.

We note that sNi,n may differ between NOL subsamples, but all such
subsamples will have exactlysNi,n = sNn sites available if the diagonal elements
of s�n are integers.

2.3. Assumptions. For stating the assumptions, we need to introduce some
notation. For a vectorx = (x1, . . . , xd)

′ ∈ Rd , let ‖x‖ and‖x‖1 =∑d
i=1 |xi | denote

the usual Euclidean andl1 norms of x, respectively. Denote thel∞ norm as
‖x‖∞ = max1≤k≤d |xk|. Define dis(E1,E2) = inf{‖x − y‖∞ : x ∈ E1,y ∈ E2} for
two setsE1, E2 ⊂ Rd . We shall use the notation| · | also in two other cases: for
a countable setB, |B| will denote the cardinality of the setB; for an uncountable
setA ⊂ Rd , |A| will refer to the volume (i.e., theRd Lebesgue measure) ofA.

Let FZ(T ) = σ 〈Z(s) : s ∈ T 〉 be the σ -field generated by the variables
{Z(s) : s ∈ T }, T ⊂ Zd . For T1, T2 ⊂ Zd , write α̃(T1, T2) = sup{|P (A ∩ B) −
P (A)P (B)| :A ∈ FZ(T1),B ∈ FZ(T2)}. Then the strong mixing coefficient for
the r.f.Z(·) is defined as

α(k, l) = sup
{
α̃(T1, T2) :Ti ⊂ Zd, |Ti | ≤ l, i = 1,2; dis(T1, T2) ≥ k

}
.(2.3)

Note that the supremum in the definition ofα(k, l) is taken over setsT1, T2 which
are bounded. Ford > 1 this is important. An r.f. on the latticeZd with d ≥ 2 that
satisfies a strong mixing condition of the form

lim
k→∞ sup{α̃(T1, T2) :T1, T2 ⊂ Zd, dis(T1, T2) ≥ k} = 0(2.4)

with supremum taken over possibly unbounded sets necessarily belongs to the
more restricted class ofρ-mixing r.f.’s [cf. Bradley (1989)]. Politis and Romano
(1993a) use moment inequalities based on the mixing condition in (2.4) to
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determine the orders of the bias and variance ofτ̂2
n,OL, τ̂2

n,NOL for rectangular
sampling regions.

For proving the subsequent theorems, Assumptions A.1–A.5 are needed along
with two conditions stated as functions of a positive argumentr ∈ Z+ =
{0,1,2, . . . }. In the following, det(�) represents the determinant of a square ma-
trix �. Forα = (α1, . . . , αp)′ ∈ (Z+)p, let Dα denote theαth order partial differ-
ential operator∂α1+···+αp/∂x

α1
1 · · · ∂x

αp
p and∇ = (∂H(µ)/∂x1, . . . , ∂H(µ)/∂xp)′

be the vector of first-order partial derivatives ofH at µ. Limits in order symbols
are taken lettingn tend to infinity.

ASSUMPTIONS.

A.1. There exists ad × d diagonal matrix�0, det(�0) > 0, such that

1

sλ
(n)
1

s�n → �0.

A.2. For the scaling factors of the sampling and subsampling regions

d∑
i=1

1

sλ
(n)
i

+
d∑

i=1

sλ
(n)
i

λ
(n)
i

+ [det(s�n)](d+1)/d

det(�n)
= o(1),

max
1≤i≤d

λ
(n)
i = O

(
min

1≤i≤d
λ

(n)
i

)
.

A.3. There exist nonnegative functionsα1(·) andg(·) such that limk→∞α1(k) = 0,
lim l→∞ g(l) = ∞ and the strong-mixing coefficientα(k, l) from (2.3)
satisfies the inequality

α(k, l) ≤ α1(k)g(l), k > 0, l > 0.

A.4. sup{α̃(T1, T2) :T1, T2 ⊂ Zd, |T1| = 1, dis(T1, T2) ≥ k} = o(k−d).
A.5. τ2 > 0, whereτ2 =∑

k∈Zd σ (k), σ(k) = Cov(∇′Z(t),∇′Z(t + k)).

CONDITIONS.

Dr . H :Rp → R is r-times continuously differentiable and, for somea ∈ Z+ and
realC > 0,

max{|DνH(x)| :‖ν‖1 = r} ≤ C(1+ ‖x‖a), x ∈ Rp.

Mr . For some 0< δ ≤ 1, 0< κ < (2r − 1− 1/d)(2r + δ)/δ, andC > 0,

E‖Z(t)‖2r+δ < ∞,

∞∑
m=1

m(2r−1)d−1α1(m)δ/(2r+δ) < ∞,

g(x) ≤ Cxκ, x ∈ [1,∞).
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Some comments about the assumptions and the conditions are in order. Assump-
tion A.5 implies a positive, finite asymptotic varianceτ2 for the standardized
estimator

√
Nnθ̂n.

In Assumption A.3 we formulate a conventional bound on the mixing coeffi-
cientα(k, l) from (2.3) that is applicable to many r.f.’s and resembles the mixing
assumption of Lahiri (1999a, 2004). For r.f.’s satisfying Assumption A.3, the “dis-
tance” component of the bound,α1(·), often decreases at an exponential rate while
the function of “set size,”g(·), increases at a polynomial rate [cf. Guyon (1995)].
Examples of r.f.’s that meet the requirements of Assumption A.3 and ConditionMr

include Gaussian fields with analytic spectral densities, certain linear fields with a
moving average or autoregressive (AR) representation (likem-dependent fields),
separable AR(1)× AR(1) lattice processes suggested by Martin (1990) for mod-
eling in R2, many Gibbs and Markov fields, and important time series models
[cf. Doukhan (1995)]. ConditionMr combined with Assumption A.3 also provides
useful moment bounds for normed sums of observations (see Lemma 9.2).

Assumption A.4 permits the CLT in Bolthausen (1982) to be applied to
sums ofZ(·) on sets of increasing domain, in conjunction with the boundary
condition onR0, Assumption A.3 and ConditionMr . This version of the CLT
(Stein’s method) is derived fromα-mixing conditions which ensure asymptotic
independence between a single point and observations in arbitrary sets of
increasing distance [cf. Perera (1997)].

Assumptions A.1 and A.2 set additional guidelines for how sampling and
subsampling design parameters,�n and s�n, may be chosen. The assumptions
provide a flexible framework for handling “increasing domains” of many shapes.
For d = 1, Assumptions A.1 and A.2 are equivalent to the requirements of
Lahiri (1999b) who provides variance and bias expansions for the MBB variance
estimator with weakly dependent time processes.

3. Variance expansions. We now give expansions for the asymptotic vari-
ance of the OL/NOL subsample variance estimatorsτ̂2

n,OL and τ̂2
n,NOL of τ2

n =
Nn Var(θ̂n).

THEOREM 3.1. Suppose that AssumptionsA.1–A.5 and Conditions
D2 andM5+2a hold witha as specified under ConditionD2. Then,

Var(τ̂2
n,OL) = K0 · det(s�n)

det(�n)
[2τ4](1+ o(1)

)
,(a)

Var(τ̂2
n,NOL) = 1

|R0| · det(s�n)

det(�n)
[2τ4](1+ o(1)

)
,(b)

where

K0 = 1

|R0| ·
∫

Rd

|(x + R0) ∩ R0|2
|R0|2 dx
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is an integral with respect to theRd Lebesgue measure.

The constantK0 appearing in the variance expansion of the estimatorτ̂2
n,OL

is a property of the shapeof the sampling templateR0 but not of its exact
embedding in spaceRd or even the scale of the set. Namely,K0 is invariant to
invertible affine transformations applied toR0 and hence can be computed from
either R0 or Rn = �nR0. Values ofK0 for some template shapes are given in
Table 3 and Section 6.

A stationary time sequenceZ(1), . . . ,Z(n) can be obtained within our sampling
formulation by choosingR0 = (−1/2,1/2] and λ

(n)
1 = n on the untranslated

integer latticeZ = Z. In this special sampling case, an application of Theorem 3.1
yields

Var(τ̂2
n,OL) = 2/3 · Var(τ̂2

n,NOL),

Var(τ̂2
n,NOL) = sλ

(n)
1 · [2τ4](1+ o(1)

)
,

a result which is well known for “nearly” linear functionsθ̂n of a time series sample
mean [cf. Künsch (1989)]. Theorem 3.1 implies that, under the “smooth” function
model, the asymptotic variance of the OL subsample-based variance estimator is
always strictly less than the NOL version because

K1 = lim
n→∞

Var(τ̂2
n,OL)

Var(τ̂2
n,NOL)

= K0|R0| < 1.(3.1)

If both estimators have the same bias (which is often the case), (3.1) implies that
variance estimation with OL subsamples is asymptotically more efficient than the
NOL subsample alternative owing to a smaller asymptotic MSE.

Unlike K0, K1 does depend on the volume|R0|, which in turn is constrained
by theR0-template’s geometry. Through|R0| in (3.1), K1 is ultimately bounded
by the amount of space that an object ofR0’s shapecan possibly occupy within
(−1/2,1,2]d [i.e., by how much volume can be filled by a given geometrical body
(e.g., circle) compared to a cube]. The constantsK1 in Table 1 are computed with
templates of prescribed shape and largest possible volume in(−1/2,1/2]d . These
values most accurately reflect the influence ofR0’s (or Rn’s) geometry on the

TABLE 3
Examples ofK0 from Theorem3.1 for several shapes ofR0 ⊂ Rd

R0 Shape Rd Rectangle R3 Ellipsoid R3 Cylinder R2 Ellipse R2 Trapezoid∗

K0 (2/3)d 34/105 2/3(1− 16/(3π2)) 1− 16/(3π2) 2/5(1+ 4c/9)

∗The trapezoid has a 90◦ interior ∠ and parallel sidesb2 ≥ b1; c = (b2/b1 + 1)−2[1+ 2(b2/b1 −
1)/(b2/b1 + 1)].
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large-sample relative performance ofτ̂2
n,OL andτ̂2

n,NOL in terms of variance in (3.1)
and also efficiency (see Section 5).

To conclude this section, we remark that both subsample-based variance
estimators can be shown to be MSE-consistent under Theorem 3.1 conditions,
allowing for more general spatial sampling regions, in both shape and dimension,
than previously considered. Inference on the parameterθ can be made through the
limiting standard normal distribution of

√
Nn(θ̂n − θ)/τ̂n for τ̂n = τ̂n,OL or τ̂n,NOL.

4. Bias expansions. We now try to capture and precisely describe the
leading order terms in the asymptotic bias of each subsample-based variance
estimator, similar to the variance determinations from the previous section. We
first establish and note the order of the dominant component in the bias expansions
of τ̂2

n,OL andτ̂2
n,NOL, which is the subject of the following lemma.

LEMMA 4.1. With Assumptions A.1–A.5, suppose that Conditions
D2 and M2+a hold for d ≥ 2 or that D3 and M3+a hold for d = 1 (wherea is
as specified by the respective ConditionDr ). Then the subsample estimators of
τ2
n = Nn Var(θ̂n) have expectations

E(τ̂2
n,OL) = τ2

n + O
(
1/sλ

(n)
1

)
and E(τ̂2

n,NOL) = τ2
n + O

(
1/sλ

(n)
1

)
.

The lemma shows that, under the smooth function model, the asymptotic bias
of each estimator isO(1/ sλ

(n)
1 ) for all dimensions of sampling. Politis and

Romano (1993a) and Sherman (1996) showed this samesizefor the bias ofτ̂2
n,OL

with sampling regions based on rectanglesR0 = (−1/2,1/2]d or simple closed
curves inR2, respectively. Lemma 4.1 extends these results to a broader class of
sampling regions. However, we would like to precisely identify theO(1/sλ

(n)
1 ) bias

component for̂τ2
n,OL or τ̂2

n,NOL to obtain optimal subsample scaling that accounts
for the geometry ofRn.

To achieve some measure of success in determining the exact bias of the
subsampling estimators, we reformulate the subsampling design slightly so that

sλn ≡ sλ
(n)
1 = · · · = sλ

(n)
d . That is, a common scaling factor in all directions is now

used to define the subsampling regions, as in Sherman and Carlstein (1994) and
Sherman (1996). This constraint will allow us to deal with the counting issues at
the heart of the bias expansion.

Adopting a common scaling factorsλn for the subsamples also is sensible for a
few other reasons at this stage:

1. “Unconstrained” optimum values ofs�n cannot always be found by minimiz-
ing the asymptotic MSE of̂τ2

n,OL or τ̂2
n,NOL, even for variance estimation of

some desirable statistics on geometrically “simple” sampling and subsampling
regions. Consider estimating the variance of a real-valued sample mean over a



OPTIMAL SPATIAL SUBSAMPLE SIZE 1993

rectangular sampling region inRd based onR0 = (−1/2,1/2]d , with observa-
tions onZd = Zd . If Assumptions A.1–A.5 and ConditionM1 hold, the leading
term in the bias expansion can be shown to be

Bias of τ̂2
n,OL =

(
−

d∑
i=1

Li

sλ
(n)
i

)(
1+ o(1)

);
Li = ∑

k∈Zd

k=(k1,...,kd )′

|ki |Cov
(
Z(0),Z(k)

)
.

In using the parenthetical sum above to expand the MSE ofτ̂2
n,OL, one finds

that the resulting MSE cannot be minimized over the permissible, positive
range ofs�n if the signs of theLi values are unequal. That is, ford > 1,
the subsample estimator MSE cannot always be globally minimized to obtain
optimal subsample factorss�n by considering just the leading order bias terms.
An effort to determine and incorporate (into the asymptotic MSE) second- or
third-order bias components quickly becomes intractable, even with rectangular
regions.

2. The diagonal components ofs�n are asymptotically scalar multiples of each
other by Assumption A.1. If so desired, a template choice forR0 could be used
to scale the expansion of the subsampling regions in each direction.

In the continuing discussion, we assume

sRn = sλnR0.(4.1)

We frame the components necessary for determining the biases of the spatial
subsample variance estimators in the next theorem. Let

Cn(k) ≡ ∣∣Zd ∩ sRn ∩ (k + sRn)
∣∣

denote the number of pairs of observations in the subsampling regionsRn

separated by a translatek ∈ Zd .

THEOREM 4.1. Suppose thatd ≥ 2, sRn = sλnR0 and AssumptionsA.1– A.5,
ConditionsD3 and M3+a hold with a as specifiedunder Condition D3. If, in
addition, sλn ∈ Z+ for NOL subsamples and

lim
n→∞

sNn − Cn(k)

(sλn)
d−1 = C(k)(4.2)

exists for allk ∈ Zd , then

E(τ̂2
n ) − τ2

n = −1

sλn|R0|
( ∑

k∈Zd

C(k)σ (k)

)(
1+ o(1)

)
,

whereσ(k) = Cov(∇′Z(t),∇′Z(t + k)) and whereτ̂2
n is eitherτ̂2

n,OL or τ̂2
n,NOL.
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Note that the numerator on the left-hand side of (4.2) is the number ofZd

grid points that lie in the subregionsRn, but not in the translatek + sRn. Hence,
computing the bias above actually requires counting the number of lattice points
inside intersections likesRn ∩ k + sRn, which is difficult in general. To handle
the problem, one may attempt to estimate the countCn(k) with the corresponding
Lebesgue volume,|sRn ∩ k + sRn|, and then quantify the resulting approximation
error. The determination of volumes or areas may not be easy either but hopefully
more manageable. For example, ifR0 is a circle, the area ofsλnR0 can be readily
computed, but the number ofZ2 integers insidesλnR0 is not so simple and was in
fact a famous consideration of Gauss [cf. Krätzel (1988), page 141].

We first note that the boundary condition onR0 provides a general (trivial)
bound on the discrepancy between the countCn(k) and the volume|sRn ∩ k +
sRn| :O(sλn

d−1). However, the size of the numerator in (4.2) is alsoO(sλn
d−1),

corresponding to the order ofZd lattice points “near” the boundary ofsRn.
Consequently, a standardO(sλn

d−1) bound on the volume-count approximation
error is too large to immediately justify the exchange of volumes|sRn|, |sRn ∩ k +
sRn| for countssNn, Cn(k) in (4.2).

Bounds on the difference between lattice point counts and volumes have
received much attention in analytic number theory, which we briefly mention.
Research has classically focused on sets outlined by “smooth” simple closed
curves in the planeR2 and on one question in particular [Huxley (1996)]: When a
curve with interior areaA is “blown up” by a factorb, how large is the difference
between the number ofZ2 integer points inside the new curve and the areab2A?
For convex sets with asmoothly winding border, van der Corput’s (1920) answer
to the posed question above isO(b46/69+ε), while the best answer isO(b46/73+ε)

for curves with sufficiently differentiable radius of curvature[Huxley (1993,
1996)]. These types of bounds, however, are invalid for many convex polygonal
templatesR0 in R2 such as triangles, trapezoids, and so on, where often the
difference between number ofZ2 integer points insRn = sλnR0 and its area is
of exact orderO(sλn) (set also by the boundary condition onR0 or the perimeter
length of sRn). The problem above, as considered by number theorists, does not
directly address counts for intersections between an expanding region and its
vector translates, for example,sRn ∩ k + sRn.

To eventually compute closed-form bias expansions forτ̂2
n,OL, we use approxi-

mation techniques forsubtractedlattice point counts. For eachk ∈ Zd , we:

1. Replace the numerator of (4.2) with the difference of corresponding Lebesgue
volumes.

2. Show the following error term is of sufficiently small ordero(sλn
d−1):(

sNn − Cn(k)
)− (sλn

d |R0| − |sRn ∩ k + sRn|)
= (sNn − sλn

d |R0|) − (
Cn(k) − |sRn ∩ k + sRn|).
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We do approximate the number of lattice points insRn and sRn ∩ k + sRn by
set volumes, though the Lebesgue volume may not adequately capture the lattice
point count in either set. However, thedifferencebetween approximation errors
sNn − sλn

d |R0| andCn(k) − |sRn ∩ k + sRn| can be shown to be asymptotically
small enough, for some templatesR0, to justify replacing counts with volumes
in (4.2) (see Lemma 10.4). That is, these two volume count estimation errors can
cancel to a sufficient extent when subtracted. The above approach becomes slightly
more complicated for NOL subsamples,R̃i,n = s�n(i + R0), which may vary in
number of sampling sitessNi,n. In this case, errors incurred by approximating
counts|Zd ∩ R̃i,n ∩ k + R̃i,n| with volumes|R̃i,n ∩ k + R̃i,n| are shown to be
asymptotically negligible, uniformly ini ∈ JNOL.

In the following theorem, we use this technique to give bias expansions for
a large class of sampling regions inRd , d ≤ 3, which are “nearly” convex. The
sampling regionRn may differ from a convex set possibly only at its boundary, but
sampling sites on the border may be arbitrarily included or excluded fromRn.

Some notation is additionally required. Forα = (α1, . . . , αp)′ ∈ (Z+)p, x ∈ Rp,
write xα = ∏p

i=1 x
αi

i , α! = ∏p
i=1(αi !), andcα = DαH(µ)/α!. Let Z∞ denote a

random vector with a normalN (0,�∞) distribution onRp, where�∞ is the
limiting covariance matrix of the scaled sample mean

√
Nn(Z̄Nn − µ) from (2.1).

Let B◦, B denote the interior and closure ofB ⊂ Rd , respectively.

THEOREM 4.2. SupposesRn = sλnR0 and there exists a convex setB such
that B◦ ⊂ R0 ⊂ B. With Assumptions A.2–A.5, assume Conditions
D5−d and M5−d+a hold for d ∈ {1,2,3} (wherea is as specified by the respec-
tive ConditionDr ). Then

C(k) = V (k) ≡ lim
n→∞

|sRn| − |sRn ∩ (k + sRn)|
(sλn)d−1

, k ∈ Zd,

wheneverV (k) exists and the biasesE(τ̂2
n,OL) − τ2

n , E(τ̂2
n,NOL) − τ2

n are equal to,
for d = 1,

−1

sλn|R0|
(∑

k∈Z

|k|σ(k) + C∞
)(

1+ o(1)
);

for d = 2 or 3,(
− ∑

k∈Zd

|sRn| − |sRn ∩ (k + sRn)|
|sRn| σ(k)

)(
1+ o(1)

)
or

−1

sλn|R0|
( ∑

k∈Zd

V (k)σ (k)

)(
1+ o(1)

)
,
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provided eachV (k) exists, whereσ(k) = Cov(∇′Z(t),∇′Z(t + k)) and

C∞ = Var

( ∑
‖α‖1=2

cα

α!Z
α∞

)
+ 2

∑
‖α‖1=1
‖β‖1=3

cαcβ

β! E(Zα∞Zβ∞)

+ 2
∑

k1,k2∈Z

∑
‖α‖1=1

‖β‖1=1,‖γ ‖1=1

cαc(β+γ )

(β + γ )!

× E
([Z(t) − µ]α[Z(t + k1) − µ]β[Z(t + k2) − µ]γ ).

REMARK 4.1. If ConditionDm holds withC = 0 for somem ∈ {2,3,4}, then
ConditionMm−1 is sufficient in Theorem 4.2.

REMARK 4.2. For eachk ∈ Zd , the numerator inV (k) is O(sλn
d−1) by the

R0-boundary condition which holds for convex templates. We may then expand
the bias of the estimators through the limiting, scaled volume differencesV (k).
For d = 1, with samples and subsamples based on intervals, it can be easily seen
thatV (k) = |k|, which appears in Theorem 4.2.

The functionH(·) needs to be increasingly “smoother” to determine the bias
component of̂τ2

n,OL or τ̂2
n,NOL in lower-dimensional spacesd = 1 or 2. For a real-

valued time series sample meanθ̂n = Z̄n, the well-known bias of the subsample
variance estimators follows from Theorem 4.2 under our sampling framework
R0 = (−1/2,1/2], Z = Z as

−1

sλn

(∑
k∈Z

|k|Cov
(∇′Z(0),∇′Z(k)

))
(4.3)

with ∇ = 1. In general though, terms in the Taylor expansion ofθ̂i,n (aroundµ)
up to fourth order can contribute to the bias ofτ̂2

n,OL and τ̂2
n,NOL when d = 1.

In contrast, the asymptotic bias of the time series MBB variance estimator with
“smooth” model statistics is very different from its subsample-based counterpart.
The MBB variance estimator’s bias is given by (4.3), determined only by the linear
component from the Taylor expansion ofθ̂i,n [cf. Lahiri (1996)].

5. Asymptotically optimal subsample sizes. In the following, we consider
“size” selection for the subsampling regions to maximize the large-sample
accuracy of the subsample variance estimators. For reasons discussed in Section 4,
we examine a theoretically optimal scaling choicesλn for subregions in (4.1).
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5.1. Theoretical optimal subsample sizes.Generally speaking, there is a trade-
off in the effect of subsample size on the bias and variance ofτ̂2

n,OL or τ̂2
n,NOL.

Increasingsλn reduces the bias but increases the variance of the estimators. The
best value ofsλn optimizes the overall performance of a subsample variance
estimator by balancing the contributions from both the estimator’s variance and
bias. An optimalsλn choice can be found by minimizing the asymptotic order of a
variance estimator’s MSE under a given OL or NOL sampling scheme.

Theorem 4.1 implies that the bias of the estimatorsτ̂2
n,OL and τ̂2

n,NOL is of
exact orderO(1/sλn). For a broad class of sampling regionsRn, the leading order
bias component can be determined explicitly with Theorem 4.2. We bring these
variance and bias expansions together to obtain an optimal subsample scaling
factor sλ

opt
n .

THEOREM 5.1. Let sRn = sλnR0. With AssumptionsA.2–A.5, assume Con-
ditions D2 andM5+2a hold if d ≥ 2 or ConditionsD3 andM7+2a hold if d = 1
(wherea is as specified by the respective ConditionDr ). If

B0|R0| ≡
∑

k∈Zd

C(k)σ (k) + I{d=1}C∞ 
= 0,

then

sλ
opt
n,OL =

(
det(�n)(B0)

2

dK0τ
4

)1/(d+2)(
1+ o(1)

)
and

sλ
opt
n,NOL =

(
det(�n)|R0|(B0)

2

dτ4

)1/(d+2)(
1+ o(1)

)
.

REMARK 5.1. If ConditionDm holds withC = 0 for somem ∈ {2,3}, then
ConditionM2m−1 is sufficient.

REMARK 5.2. Theorem 5.1 suggests that optimally scaled OL subsamples
should be larger than the NOL ones by a scalar:(K1)

−1/(d+2) > 1 where
K1 = K0|R0| is the limiting ratio of variances from (3.1).

It is well known in the time series case that the OL subsampling scheme
produces an asymptotically more efficient variance estimator than its NOL
counterpart. We can now quantify the relative efficiency of the two subsampling
procedures ind-dimensional sampling space. With each variance estimator
respectively optimized using (4.1),τ̂2

n,OL is more efficient than̂τ2
n,NOL and the

asymptotic relative efficiency (AREd ) of τ̂2
n,NOL to τ̂2

n,OL depends solely on the
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geometry ofR0,

AREd = lim
n→∞

E(τ̂2
n,OL − τ2

n )2

E(τ̂2
n,NOL − τ2

n )2
= (K1)

2/(d+2) < 1.

Possolo (1991), Politis and Romano (1993a, 1994), Hall and Jing (1996) and
Garcia-Soidan and Hall (1997) have examined subsampling with rectangular re-
gions based essentially onR0 = (−1/2,1/2]d . Using the geometrical character-
istic K1 = (2

3)d for rectangles, we can now examine the effect of the sampling
dimension on theAREd of τ̂2

n,NOL to τ̂2
n,OL for these sampling regions. Although

the AREd decreases as the dimensiond increases, we find the relative improve-
ment of τ̂2

n,OL over τ̂2
n,NOL is ultimately limited and theAREd has a lower bound

of 4/9 for all Rd -rectangular regions.

5.2. Theoretical optimal subsample shapes.We conclude this section by
addressing a question raised by a referee on subsampleshapeselection. Although
not widely considered in the literature, subsample variance estimators are also
possible by using subsamples of a freely chosen shape, rather than scaled-
down copies ofRn. Nordman and Lahiri (2003) discuss comparing variance
estimators, based on differently shaped subsamples, through their asymptotic
relative efficiency. This involves finding MSE expansions for estimators with
OL, NOL subsamples of an arbitrary shape with optimal scaling (e.g., modified
versions of Theorems 3.1, 4.1 and 5.1). However, because both the subsample
geometry and the r.f. covariances influence a subsample estimator’s bias (see
Section 6), a direct comparison of asymptotic MSEs to choose an optimal
subsample shape can become complicated, especially for OL subsamples.

For illustration, consider selecting between circular and rectangular subsamples
for sample meanθ̂n = Z̄Nn ∈ R variance estimation on a rectangular region
Rn ⊂ R2 under a Gaussian isotropic covariogram,

σ(k) = exp(−β‖k‖2), k ∈ Z2.

The value ofβ heavily affects the large sample performances of circles and
rectangles (i.e., scaled-down copies ofRn) as subsamples and makes the choice
of subsample shape difficult. For example, the asymptotic efficiency of circular
to rectangular OL (NOL) subsamples is 0.9259 (1.0274) forβ = 0.2 and 1.0758
(1.1937) forβ = 2. We conducted a small simulation study of the finite sample
efficiencies of these subsample shapes on several rectangularRn to compare
with the asymptotic values. The results in Table 4 indicate that the asymptotic
advantages of a subsample shape may also not be readily apparent in finite
samples due to edge effects. See Nordman and Lahiri (2003) for further details
and examples on the effect of subsample shape for variance estimation.
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TABLE 4
Minimal normalized MSEE(τ̂2

n/τ2
n − 1)2 for OL /NOL subsample estimatorsτ̂2

n of sample mean
varianceτ2

n = Nn Var(Z̄Nn
) onRn ∩ Z2, with σ(k) = exp(−β‖k‖2), k ∈ Z2 (based on1000

simulations). Rectangular(rec.) and circular(cir.) subsamplessλ
opt
n R∗

0 are based

onR∗
0 = (−1/2,1/2]2, {x ∈ R2 :‖x‖ ≤ 1/2} using optimal scalingsλ

opt
n (an integer listed

beside each MSE). Estimated relative efficiencies(RE) of cir. versus rec. subsamples are also listed

rec. subsamples cir. subsamples cir./rec. RE

Rn OL NOL OL NOL OL NOL

β = 0.2
(−5,5]2 0.4295(4) 0.4261(5) 0.4519(2) 0.4286(5) 1.0521 1.0060
(−10,10]2 0.2329(5) 0.2183(5) 0.2418(5) 0.2328(5) 1.0384 1.0661
(−30,30]2 0.0806(10) 0.0842(10) 0.0835(9) 0.0944(9) 1.0355 1.1260
(−50,50]2 0.0482(14) 0.0562(11) 0.0462(15) 0.0601(11) 0.9585 1.0698

β = 2
(−5,5]2 0.0841(2) 0.0978(2) 0.1170(2) 0.1426(1) 1.3890 1.4570
(−10,10]2 0.0436(3) 0.0515(2) 0.0436(3) 0.0641(3) 1.0000 1.2432
(−30,30]2 0.0128(5) 0.0162(4) 0.0138(5) 0.0199(5) 1.0771 1.2260
(−50,50]2 0.0082(6) 0.0111(5) 0.0092(7) 0.0129(5) 1.1139 1.1594

6. Examples. We now provide some examples of the important quantitiesK0,
K1, B0 associated with optimal scalingsλ

opt
n with some common sampling region

templates, determined from Theorems 3.1 and 4.2. For subsamples from (4.1),
the theoretically bestsλ

opt
n can also be formulated in terms of|Rn| = det(�n)|R0|

(sampling region volume),K1 andB0.

6.1. Examples inR2.

EXAMPLE 1. Rectangular regions inR2 (potentially rotated): if

R0 = {(
(l1 cosθ, l2 sinθ)x, (−l1 sinθ, l2 cosθ)x

)′ : x ∈ (−1/2,1/2]2}
for θ ∈ [0, π ], 0 < l1, l2, then

K0 = 4

9
, B0 = ∑

k∈Z2

k=(k1,k2)
′

( |k1 cosθ − k2 sinθ |
l1

+ |k1 sinθ + k2 cosθ |
l2

)
σ(k).

The characteristicsK1, B0 for determining optimal subsamples based on two
rectangular templates, including a diamond-shaped region (i.e.,θ = π/4, l1 = l2 =
1/

√
2 ), are further described in Table 5.

EXAMPLE 2. If R0 is a circle of radiusr ≤ 1/2 centered at the origin, thenK0
appears in Table 3 andB0 = 2/(rπ)

∑
k∈Z2 ‖k‖σ(k).
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TABLE 5
Examples of several shapes ofR0 ⊂ R2 and associatedK1, B0 for sλ

opt
n

R0 K1 B0

(−1/2,1/2]2 4/9
∑

k∈Z2 ‖k‖1σ(k)

Circle of radius 1/2 at origin π/4− 4/(3π) 4/π
∑

k∈Z2 ‖k‖σ(k)

Diamond in Figure 1(i) 2/9 2
∑

k∈Z2 ‖k‖∞σ(k)

Right triangle in Figure 1(ii) 1/5 Table 2
Triangle in Figure 1(iii) 1/5

∑
k∈Z2(|k2| + max{2|k1|, |k2|})σ (k)

Parallelogram in Figure 1(iv) 2/9+ (
√

5− 1)/375 4/
√

5
∑

k∈Z2(|k1 − 2k2|/5+ |k2|)σ (k)

EXAMPLE 3. For any triangle, K0 = 2/5. Two examples are provided in
Tables 2 and 5.

EXAMPLE 4. If R0 is a regular hexagon, centered at the origin and with side
lengthl ≤ 1/2, then

K0 = 37

81
, B0 = 2

√
3

l

∑
k∈Z2

(|k2| + max
{√

3|k1|, |k2|})σ(k).

EXAMPLE 5. For any parallelogram inR2 with interior angleγ and adjacent
sides of ratiob ≥ 1, K0 = 4/9 + 2/15 · b−2|cosγ |(1 − |cosγ |). In particular, if
a parallelogramR0 is formed by two vectors(0, l1)

′, (l2 cosγ, l2 sinγ )′ extended
from a pointx ∈ (−1/2,1/2]2, then

B0 = 1

|sinθ |
∑

k∈Z2

(∣∣k1 · |cosθ | − k2 · |sinθ |∣∣
max{l1, l2} + |k2|

min{l1, l2}
)
σ(k),

γ ∈ (0, π), l1, l2 > 0.

For further bias termB0 calculation tools with more general (nonconvex)

FIG. 1. Examples of templatesR0 ⊂ (−1/2,1/2]2 are outlined by solid lines. Cross-shaped
sampling regionsRn described in Table2 are based onR0 in (v).
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sampling regions and templatesR0 (represented as the union of two approximately
convex sets), see Nordman (2002).

6.2. Examples inRd , d ≥ 3.

EXAMPLE 6. For any sphere,K0 is given in Table 3. The propertiesB0, K1
of the sphere described in Tables 1 and 2 correspond to the template sphereR0 of
radius 1/2 with maximal volume in(−1/2,1/2]3.

EXAMPLE 7. TheK0 value for anyR3 cylinder appears in Table 3. IfR0 is
a cylinder with circular base (parallel to the x–y plane) of radiusr and heighth,
then

B0 = ∑
k∈Z3

k=(k1,k2,k3)
′

( |k3|
h

+ 2
√

k2
1 + k2

2

πr

)
σ(k).

The results of Theorem 4.2 for determining the biasB0 also seem plausible
for convex sampling regions inRd , d ≥ 4, but require further study of lattice
point counting techniques in higher dimensions. However, bias expansions of
the OL and NOL subsample variance estimators are relatively straightforward
for an important class of rectangular sampling regions based on the prototype
R0 = (−1/2,1/2]d , which can then be used in optimal subsample scaling. These
hypercubes have “faces” parallel to the coordinate axes, which simplifies the task
of counting sampling sites, or lattice points, within such regions. We give precise
bias expansions in the following theorem, while allowing for potentially missing
sampling sites at the border of the sampling regionRn.

THEOREM 6.1. Let (−1/2,1/2)d ⊂ �−1
� R0 ⊂ [−1/2,1/2]d , d ≥ 3, for a

d × d diagonal matrix�� with entries0 < �i ≤ 1, i = 1, . . . , d . SupposesRn =
sλnR0 and AssumptionsA.2–A.5, Conditions D2 and M2+a hold with a as
specified under ConditionD2. Then the biasesE(τ̂2

n,OL) − τ2
n , E(τ̂2

n,NOL) − τ2
n are

equal to−sλn
−1B0(1+ o(1)) where

B0 = ∑
k∈Zd

(
d∑

i=1

|ki |
�i

)
σ(k), σ (k) = Cov

(∇′Z(t),∇′Z(t + k)
)
.

EXAMPLE 8. For rectangular sampling regionsRn = �n(−1/2,1/2]d , opti-
mal subsamples (4.1) may be chosen with

sλ
opt
n,NOL =

( |Rn|
dτ4

( ∑
k∈Zd

‖k‖1σ(k)

)2)1/(d+2)(
1+ o(1)

)
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or

sλ
opt
n,OL = sλ

opt
n,NOL

(3
2

)d/(d+2)
,

using the templateR0 = (−1/2,1/2]d .

7. Empirical subsample size determination. This section considers data-
based estimation of the theoretical optimal scaling factorsλ

opt
n for subsamples as

in (4.1). We describe two estimation techniques for this. One approach involves
using “plug-in” estimates and the second involves minimizing an estimated
MSE criterion function. In Section 8 we evaluate both estimation methods for
sλ

opt
n through a simulation study. Inference on “best” subsample scaling closely

resembles the problem of empirically gauging the theoretically optimal block
length with the MBB variance estimator. With time series, estimation rules of
optimal MBB block size have been developed using both plug-in and empirical
MSE methods [cf. Bühlmann and Künsch (1999) and Hall, Horowitz and Jing
(1995)].

Hall and Jing (1996) give a method for estimating optimal subsample scaling
through minimization of an estimated MSE function in the time series case.
Considering OL subsamples first, we adapt this approach (hereafter the HJ method)
for spatial subsampling as follows. We determine the templateR0 as the largest
set of the form�−1

n Rn within (−1/2,1/2]d . Let JOL(λm) denote a collection
of OL subsamples using a scaling factorsλn ≡ λm > 0 in (4.1). Hereλm is a
“smoothing parameter.” We treat each subsample inJOL(λm) as a scaleλmR0
sampling region on which an OL subsample variance estimator, with subsample
scaling sλm < λm, can be computed. Denote the resulting variance estimates as
τ̂2
i,m,OL, i = 1, . . . , |JOL(λm)|. Write τ̂2

n,OL ≡ τ̂2
n,OL(λm) as the variance estimator

computed on the regionRn with subsample scalingλm. An estimate of the MSE
when using subsamples of sizesλmR0 on regions of sizeλmR0 is the average of
the squared differences(τ̂2

i,m,OL − τ̂2
n,OL(λm))2. We then select the value ofsλm,

say ̂sλopt
m , which minimizes this data-based MSE and takê

sλ
opt
n = ̂

sλ
opt
m {|Rn|/|λmR0|}1/(2+d).

We use Theorem 5.1 to appropriately recalibrate an estimatê
sλ

opt
m to estimate

optimal subsample scaling forRn-size regions. For optimal scaling estimation
with NOL subsamples, we replacêτ2

n,OL(λm), τ̂2
i,m,OL with τ̂2

n,NOL(λm), τ̂2
i,m,NOL

above. Garcia-Soidan and Hall (1997) apply a similar empirical MSE selection
procedure with subsample-based distribution estimators on rectangular sampling
regions inR2.

An advantage of a plug-in estimate of scaling is that it is computationally
less demanding than minimization of an estimated MSE. A nonparametric plug-
in (NPI) procedure involves substituting estimates of unknown r.f. parameters
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appearing insλ
opt
n from Theorem 5.1. To do this, we propose using subsample

variance estimators based on two smoothing parameter choices. Letτ̂2
n (sλn) denote

a subsample variance estimator with scalingsλn in (4.1). Using a pilot scalar
sλn

(1) = c1|Rn|1/(d+2), c1 > 0, we estimate the limiting varianceτ2 appearing
in sλ

opt
n with τ̂2

n (sλn
(1)). With a second smoothing parametersλn

(2) = c2|Rn|1/(d+4),
c2 > 0, we estimate the bias componentB0 with B̂0 = 2sλn

(2)[τ̂2
n (2sλn

(2)) −
τ̂2
n (sλn

(2))]. It follows easily from Theorems 3.1–4.1 that the estimatorB̂0 is
consistent when the bias ofτ̂2

n (sλn) is −sλn
−1B0(1+ o(1)). With time seriesd = 1,

Lahiri, Furukawa and Lee (2003) suggest a similar bias estimate for the MBB
variance estimator and show the order ofsλn

(2) above is asymptotically optimal.
Politis and Romano (1995) also consider combining two subsample estimators in
kernel spectral density estimation. We conjecture that the ordersλn

(2) is optimal for
minimizing the asymptotic MSE in estimatingB0 with spatial subsampling (d ≥ 2)
and this can be established for rectangular sampling regions.

For subsample variance estimation of a time series mean, other plug-in rules
for sλ

opt
n are given in Carlstein (1986) [with AR(1) models], Léger, Politis and

Romano (1992) and Politis and Romano (1993b).

8. Numerical studies.

8.1. Performance comparison of subsample types.We conducted a simulation
study to compare the finite sample performances of OL and NOL subsample
variance estimators ofτ2

n = Nn Var(θ̂n), whereθ̂n = Z̄Nn is the real-valued sample
mean over a sampling regionRn ⊂ R2. Rectangular and circular regionsRn of two
different sizes were considered:

Rn := (−7,7] × (−9,9], Rn := (−15,15] × (−21,21],
Rn := {x ∈ R2 :‖x‖ ≤ 9}, Rn := {x ∈ R2 :‖x‖ ≤ 20}.

The smaller (larger) circle contains oneZ2 integer point more (seven less) than the
smaller (larger) rectangle. The rectangular regions have approximately the same
ratio of side lengths.

Using the algorithm of Chan and Wood (1997), we generated mean zero
Gaussian random fields onZ2 with one of the following covariance structures:

Model E(β1, β2) : σ(k) = exp
[−β1|k1| − β2|k2|],

Model G(β1, β2) : σ(k) = exp
[−β1|k1|2 − β2|k2|2],(8.1)

k = (k1, k2)
′ ∈ Z2, β1, β2 > 0.

Models E and G correspond to exponential and Gaussian covariograms, respec-
tively. We consider the values(β1, β2) = (0.5,0.3), (1,1) in both models to obtain
isotropic and anisotropic covariograms exhibiting various rates of decay.
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TABLE 6
Normalized MSEE(τ̂2

n /τ2
n − 1)2 for OL /NOL subsample variance estimatorsτ̂2

n of
τ2
n = Nn Var(Z̄Nn

) on Rn ∩ Z2 (based on10,000simulations). An asterisk(* ) denotes
a minimal MSE

E(0.5,0.3) E(1,1) E(0.5,0.3) E(1,1)

sλn OL NOL OL NOL OL NOL OL NOL

Rn = (−7,7] × (−9,9] Rn = {x ∈ R2 :‖x‖ ≤ 9}
1 0.9074 0.9074 0.5855 0.5855 0.9075 0.9075 0.5871 0.5871
2 0.7645 0.7619 0.3312 0.3298 0.7413 0.7417 0.3303 0.3330
3 0.6367 0.6343 0.2201 0.2264 0.6386 0.6378 0.2252 0.2346∗
4 0.5490 0.5470 0.1926∗ 0.2191∗ 0.5991 0.6177 0.2332 0.2897
5 0.5051 0.5344 0.2106 0.3071 0.5255 0.5627 0.2126∗ 0.3444
6 0.4999∗ 0.4605∗ 0.2533 0.2911 0.5246∗ 0.4978∗ 0.2567 0.3369
7 0.5242 0.4957 0.3086 0.4004 0.5311 0.2925

Rn = (−15,15] × (−21,21] Rn = {x ∈ R2 :‖x‖ ≤ 20}
4 0.5290 0.5285 0.1820 0.1851 0.5849 0.5846 0.1825 0.1866
5 0.4370 0.4329 0.1170 0.1232 0.4743 0.4785 0.1186 0.1332
6 0.3693 0.3601 0.1115 0.1380 0.4180 0.4236 0.1119 0.1358
7 0.3226 0.3132 0.0983∗ 0.1172∗ 0.3698 0.3716 0.1007∗ 0.1257∗
8 0.2931 0.2963 0.1061 0.1453 0.3313 0.3466 0.1055 0.1596
9 0.2777 0.2822 0.1085 0.1613 0.2901 0.3333 0.1119 0.2080

10 0.2734∗ 0.2542∗ 0.1298 0.2247 0.2849 0.3084∗ 0.1254 0.2049
11 0.2779 0.3454 0.1388 0.2824 0.2803∗ 0.3814 0.1397 0.3335
12 0.2891 0.3298 0.1680 0.2889 0.2868 0.3662 0.1596 0.3359

For eachRn and covariance structure, we considered various amounts of
subsample scalingsλn in the estimatorτ̂2

n ≡ τ̂2
n (sλn) based on OL or NOL

subsamples. Here rectangular and circular subsamples correspond to translates
of sλnR0 for R0 = (−1/2,1/2]2, {x ∈ R2 :‖x‖ ≤ 1/2}. We estimated the
normalized MSE, E(τ̂2

n /τ2
n − 1)2, listing results in Table 6 for Model E. (To save

space, we omit similar tables for Model G, where the performance of the estimators
was better.) Estimates of optimal scaling appear in Table 7. From these simulation

TABLE 7
Optimal subsample scalingsλ

opt
n for variance estimation of sample mean

√
NnZ̄Nn

(determined from10,000simulations)

E(0.5,0.3) G(0.5,0.3) E(1,1) G(1,1)

Rn OL NOL OL NOL OL NOL OL NOL

(−7,7] × (−9,9] 6 6 4 4 4 4 3 3
(−15,15] × (−21,21] 10 10 7 6 7 6 5 5
{x ∈ R2 :‖x‖ ≤ 9} 6 6 5 3 5 3 3 3
{x ∈ R2 :‖x‖ ≤ 20} 11 10 7 7 7 7 5 5
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results, we make the following observations:

1. At optimal scaling, the MSEs of OL and NOL subsamples were similar. Under
the strongest r.f. dependence in Model E(0.5,0.3), NOL subsamples performed
better. For the other covariogram models entailing weaker dependence, OL
subsamples were always better.

2. Unlike with OL subsamples, the MSEs with NOL subsamples increased more
rapidly when optimal scaling was not used. This implies estimation ofsλ

opt
n

with OL subsamples is preferable.
3. Table 7 shows that OL and NOL optimal scaling tended to be the same. NOL

subsample scaling becomes clearly smaller in larger sample sizes; see also
Table 4.

4. Optimal subsample scaling also decreased as the r.f. dependence structure
weakened (e.g., faster decay of covariogram). In this case, the performance of
the variance estimators also improved.

8.2. Comparison of scaling estimation methods.We also compared NPI
and HJ estimation methods for scalingsλ

opt
n,OL with OL subsamples, using the

covariogram models and sampling regionsRn from Section 8.1. We again took
the sample mean̂θn = Z̄Nn . For the NPI method, we chose smoothing parameters
c1, c2 ∈ {0.5,1,2}. For eachRn, we used two pilot subsample sizesλm for the
HJ method. As a measure of performance of the NPI and HJ procedures, we
considered the following quantity:

φn = τ̂2
n,OL(

̂
sλ

opt
n,OL) − τ̂2

n,OL(sλ
opt
n,OL)

τ2
n

,(8.2)

where τ̂2
n,OL(sλn) denotes the OL subsample variance estimator using scaling

sλn, ̂
sλ

opt
n,OL represents an estimate of optimal scalings λ

opt
n,OL, and τ2

n is the
variance parameter. Hence,φn measures the relative deviation of an OL subsample
estimator ofτ2

n based on estimated scaling compared to the “best” OL subsample

estimator. Values ofφn near zero would suggest thatτ̂2
n,OL(

̂
sλ

opt
n,OL) performed

nearly as well as the optimal subsample estimatorτ̂2
n,OL(sλ

opt
n ).

From the results reported partially in Table 8, the choices of smoothing
parameters

c2 = 0.5 and c1 ∈ {0.5,1}
gave good results for estimatingsλ

opt
n in the NPI approach. We recommend these

values for implementing the NPI method. The HJ method also tended to perform
better with smaller smoothing parameter choicesλm, which agrees with theλm

selections of Hall and Jing (1996) for time series. (We choseλm so that an
estimated MSE could be maximized over at least five differentsλm arguments.)
Table 9 gives frequency distributions of estimated optimal scalingsλ

opt
n,OL under
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TABLE 8
Values ofE(φ2

n) for NPI and HJ methods(each based on1000simulations), whereφn is as
in (8.2).HJ method uses(λm1, λm2) = (5,10), (7,14), (3,6), (4,8), respectively, on

regionsRn from left to right. Minimal MSE is denoted with an asterisk“* ” for eachRn

and covariogram model

Rn (−7,7] × (−9,9] (−15,15] × (−21,21] {x ∈ R2 :‖x‖ ≤ 9} {x ∈ R2 :‖x‖ ≤ 20}
c1 c2 E(0.5,0.3) G(1,1) E(0.5,0.3) G(1,1) E(0.5,0.3) G(1,1) E(0.5,0.3) G(1,1)

0.5 0.5 0.0022∗ 0.0106 0.0025 0.0075 0.0013 0.0093 0.0015 0.0034
1 0.0654 0.0614 0.0296 0.0288 0.0405 0.0559 0.0139 0.0266
2 0.0703 0.2470 0.1044 0.1000 0.0405 0.2532 0.1628 0.0862

1 0.5 0.0299 0.0031∗ 0.0101 0.0027 0.0118 0.0047∗ 0.0334 0.0011∗
1 0.0065 0.0706 0.0019∗ 0.0206 0.0030 0.0644 0.0006∗ 0.0192
2 0.0412 0.2040 0.0317 0.0968 0.0233 0.2098 0.0600 0.0911

2 0.5 0.0412 0.0352 0.0369 0.0055 0.0212 0.0205 0.0709 0.0029
1 0.0040 0.1081 0.0051 0.0157 0.0010 0.0961 0.0152 0.0133
2 0.0439 0.2582 0.0278 0.1346 0.0255 0.2676 0.0134 0.1206

HJ,λm1 0.0100 0.0098 0.0161 0.0001∗ 0.0001∗ 0.0709 0.0334 0.0288
HJ,λm2 0.0178 0.1766 0.0048 0.0130 0.0069 0.0360 0.0630 0.0337

TABLE 9
Frequency distribution of estimated optimal OL subsample scaling with NPI and HJ methods

(based on1000simulations). Along withc2 = 0.5, NPI1 and NPI2 usec1 = 0.5 and1,
respectively. True optimal scaling valuessλ

opt
n,OL are given in Table7

Estimates
̂

sλ
opt
n,OL of optimal scaling sλ

opt
n,OL

Rn/Model Method 2 3 4 5 6 7 8 9 10

(−7,7] × (−9,9] NPI1 98 901 1
E(1,1) NPI2 307 686 7

HJ,λm = 5 150 850

{x ∈ R2 :‖x‖ ≤ 9} NPI1 7 993
G(0.5,0.3) NPI2 876 124

HJ,λm = 3 963 37

(−15,15] × (−21,21] NPI1 2 9 62 276 450 192 9
E(1,1) NPI2 1 14 241 726 18

HJ,λm = 7 1 856 143

{x ∈ R2 :‖x‖ ≤ 20} NPI1 2 21 272 590 115
G(0.5,0.3) NPI2 2 134 864

HJ,λm = 4 723 277
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other covariogram models and regionsRn. Table 7 lists values ofsλ
opt
n,OL. These

results indicate that the NPI and HJ procedures exhibit good finite sample
properties in estimatingsλ

opt
n and are competitive.

9. Proofs for variance expansions. For the proofs, we useC to denote
generic positive constants that do not depend onn or any Zd integers (orZd

lattice points). The real numberr , appearing in some proofs, always assumes
the value stated under ConditionMr with respect to the lemma or theorem under
consideration. Unless otherwise specified, limits in order symbols are taken letting
n tend to infinity.

In the following, we denote the indicator function asI{·} (i.e., I{·} ∈ {0,1} and
I{A} = 1 if and only if an eventA holds). For two sequences{sn} and {tn} of
positive real numbers, we writesn ∼ tn if sn/tn → 1 asn → ∞. We writeλmax

n and

sλ
max
n for the largest diagonal entries of�n ands�n, respectively, whilesλ

(n)
min ≥ 1

will denote the smallest diagonal entry ofs�n.
We require a few lemmas for the proofs.

LEMMA 9.1. SupposeT1, T2 ⊂ Zd ≡ t + Zd are bounded. Letp,q > 0 where
1/p + 1/q < 1. If X1, X2 are random variables, with Xi measurable with respect
to FZ(Ti), i = 1,2, then

|Cov(X1,X2)| ≤ 8(E|X1|p)1/p(E|X2|q)1/qα

(
dis(T1, T2); max

i=1,2
|Ti |

)1−1/p−1/q

,

provided expectations are finite anddis(T1, T2) > 0.

The proof follows from Theorem 3, Doukhan [(1994), page 9].

LEMMA 9.2. Let r ∈ Z+. Under AssumptionA.3 and ConditionMr , for
1 ≤ m ≤ 2r and anyT ⊂ Zd ≡ t + Zd ,

E

∥∥∥∥∥∑
s∈T

(
Z(s) − µ

)∥∥∥∥∥
m

≤ C(α)|T |m/2;

C(α) is a constant that depends only on the coefficientsα(k, l), l ≤ 2r, and
E‖Z(t)‖2r+δ .

The proof follows from Theorem 1, Doukhan [(1994), pages 26–31] and Jensen’s
inequality.

We next determine the asymptotic sizes of important sets relevant to the
sampling or subsampling designs.

LEMMA 9.3. Under AssumptionsA.1 andA.2, the number of sampling sites
within:



2008 D. J. NORDMAN AND S. N. LAHIRI

(a) the sampling regionRn: Nn = |Rn ∩ Zd | ∼ |R0| · det(�n);
(b) an OL subsample, Ri,n, i ∈ JOL : sNn ∼ |R0| · det(s�n);
(c) a NOL subsample, R̃i,n, i ∈ JNOL : sNi,n ∼ |R0| · det(s�n).

The number of:
(d) OL subsamples withinRn : |JOL| ∼ |R0| · det(�n);
(e) NOL subsamples withinRn : |JNOL| ∼ |R0| · det(�n) · det(s�n)

−1;
(f) sampling sites near the border of a subsample, Ri,n or R̃i,n, is less than

sup
i∈Zd

∣∣{j ∈ Zd :T j ∩ Ri,n 
= ∅, T j ∩ Rc
i,n 
= ∅ for T j = j + [−2,2]d}∣∣

≤ C(sλ
max
n )d−1.

Results follow from the boundary condition onR0; see Nordman (2002) for more
details.

We require the next lemma for counting the number of subsampling regions
which are separated by an appropriately “small” integer translate; we shall apply
this lemma in the proof of Theorem 3.1. Fork = (k1, . . . , kd)′ ∈ Zd , define the
following sets:

Jn(k) = |{i ∈ JOL : i + k + s�nR0 ⊂ Rn}|,
En = {

k ∈ Zd : |kj | ≤ sλ
(n)
j , j = 1, . . . , d

}
.

LEMMA 9.4. Under AssumptionA.2,

max
k∈En

∣∣∣∣1− Jn(k)

|JOL|
∣∣∣∣= o(1).

PROOF. Fork ∈ En, write the setJ ∗
n (k) and bound its cardinality

J ∗
n (k) = ∣∣{i ∈ JOL : (i + k + s�nR0) ∩ �nR

c
0 
= ∅

}∣∣
≤ ∣∣{i ∈ Zd :T i ∩ �nR

c
0 
= ∅, T i ∩ �nR0 
= ∅; T i = i + sλ

max
n [−2,2]d}∣∣

≤ Csλ
max
n (λmax

n )d−1

by the boundarycondition onR0. We have then that for allk ∈ En,

|JOL| ≥ Jn(k) = |JOL| − J ∗
n (k) ≥ |JOL| − Csλ

max
n (λmax

n )d−1.

By Assumption A.2 and the growth rate of|JOL| from Lemma 9.3, the proof is
complete. �

We now provide a theorem which captures the main contribution to the
asymptotic variance expansion of the OL subsample variance estimatorτ̂2

n,OL from
Theorem 3.1.
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THEOREM 9.1. For i ∈ Zd , let Yi,n = ∇′(Zi,n − µ). Under the assumptions
and conditions of Theorem3.1

sNn

∑
k∈En

Cov(Y 2
0,n, Y

2
k,n) = K0 · [2τ4](1+ o(1)

)
,

where the constantK0 is defined in Theorem3.1.

PROOF. We give only a sketch of the important features; for more details, see
Nordman (2002). For a setT ⊂ Rd , define the function�(·) as

�(T ) = ∑
s∈Zd∩T

∇′(Z(s) − µ
)
.

With the set intersectionR(I)
k,n = sRn ∩ (k + sRn), k ∈ Zd , write functions

H1n(k) = �
(
Rk,n \ R

(I)
k,n

)
,

H2n(k) = �
(
R0,n \ R

(I)
k,n

)
,

H3n(k) = �
(
R

(I)
k,n

)
.

These represent, respectively, sums over sites inRk,n but notR0,n = sRn, R0,n but
notRk,n and bothR0,n andRk,n. Then definehn(·) :Zd → R as

hn(k) = E[H 2
1n(k)]E[H 2

2n(k)] + E[H 2
1n(k)]E[H 2

3n(k)]
+ E[H 2

2n(k)]E[H 2
3n(k)] + E[H 4

3n(k)] − (sNn)
4[E(Y 2

0,n)]2.
We will make use of the following proposition.

PROPOSITION9.1. Under the assumptions and conditions of Theorem3.1,

max
k∈En

∣∣(sNn)
2 Cov(Y 2

0,n, Y
2
k,n) − (sNn)

−2hn(k)
∣∣= o(1).

The proof of Proposition 9.1 can be found in Nordman (2002) and involves cutting
out Zd lattice points near the borders ofR0,n andRk,n, say,B0,n andBk,n with

�n = ⌊(
sλ

(n)
min

)e⌋
,

(9.1)
Bj,n = {

i ∈ Zd : i ∈ Rj,n,
(
i + �n(−1,1]d)∩ Rc

j,n 
= ∅
}
, j ∈ Zd,

where e = (κδ/{(2r + δ)(2r − 1 − 1/d)} + 1)/2 < 1 from Condition Mr .
Here �n → ∞, �n = o(sλ

(n)
min) is chosen so that the remaining observations

in R0,n,Rk,n,R
(I)
k,n are nearly independent upon removingB0,n,Bk,n points

and, using theR0-boundary condition, the set cardinalities|B0,n|, |Bk,n| ≤
C�n(sλ

max
n )d−1 are of smaller order thansNn (namely, these sets are asymptotically

negligible in size).
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By Proposition 9.1 and|En| = O(sNn), we have∣∣∣∣∣sNn

∑
k∈En

Cov(Y 2
0,n, Y

2
k,n) − (sNn)

−3
∑

k∈En

hn(k)

∣∣∣∣∣= o(1).(9.2)

Consequently, we need only focus on(sNn)
−3∑

k∈En
hn(k) to complete the

proof of Theorem 9.1.
For measurability reasons, we create a set defined in terms of theRd Lebesgue

measure,

E+ ≡ (0,1) ∩
{
ε <

det(�0)|R0|
2

:

∣∣{x ∈ Rd : |(x + �0R0) ∩ �0R0| = ε or det(�0)|R0| − ε
}∣∣= 0

}
.

Note the set(0,1) ∩ (0,det(�0)|R0|/2) \ E+ is at most countable [cf. Billingsley
(1986), Theorem 10.4]. Forε ∈ E+, define a new set as a function ofε andn:

R̃ε,n = {
k ∈ Zd :

∣∣R(I)
k,n

∣∣> ε
(
sλ

(n)
1
)d

,
∣∣
sRn \ R

(I)
k,n

∣∣> ε
(
sλ

(n)
1
)d}

.

HereR̃ε,n ⊂ En becausek /∈ En impliesR
(I)
k,n = ∅.

We now further simplify(sNn)
−3∑

k∈En
hn(k) using the following proposition

involving R̃ε,n.

PROPOSITION 9.2. There existN ∈ Z+ and a functionb(·): E+ → (0,∞)

such thatb(ε) ↓ 0 asε ↓ 0 and

(sNn)
−3

∣∣∣∣∣ ∑
k∈En

hn(k) − ∑
k∈R̃ε,n

hn(k)

∣∣∣∣∣≤ C
(
ε + (

sλ
(n)
1

)−1 + [b(ε)]d ),(9.3)

whereC > 0 does not depend onε ∈ E+ or n ≥ N.

The proof of Proposition 9.2 is tedious and given in Nordman (2002). The
argument involves bounding the sum ofhn(·) over two separate sets inEn: those
integers inEn that are either “too large” or “too small” in magnitude to be included
in R̃ε,n.

To finish the proof, our approach (for an arbitraryε ∈ E+) will be to write
(sNn)

−3∑
k∈R̃ε,n

hn(k) as an integral of a step functionfε,n(x) with respect to
the Lebesgue measure, then show limn→∞ fε,n(x) exists almost everywhere (a.e.)
on Rd , and apply the Lebesgue dominated convergence theorem (LDCT). By
letting ε ↓ 0, we will obtain the limit ofsNn

∑
k∈En

Cov(Y 2
0,n, Y

2
k,n).

Fix ε ∈ E+. With counting arguments based on the boundary condition ofR0
and the definition ofR̃ε,n, it holds that for some Nε ∈ Z+ and all k ∈ R̃ε,n:
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|R(I)
k,n ∩ Zd | ≥ 1 and sNn − |R(I)

k,n ∩ Zd | ≥ 1 when n ≥ Nε. We can rewrite

(sNn)
−2hn(k), k ∈ R̃ε,n, in the well-defined form (forn ≥ Nε)

hn(k)

(sNn)2
= E

[
H 2

1n(k)

sNn − |R(I)
k,n ∩ Zd |

]
E

[
H 2

2n(k)

sNn − |R(I)
k,n ∩ Zd |

](
1− |R(I)

k,n ∩ Zd |
sNn

)2

+
2∑

j=1

E

[
H 2

jn(k)

sNn − |R(I)
k,n ∩ Zd |

]
E

[
H 2

3n(k)

|R(I)
k,n ∩ Zd |

]

×
(

1− |R(I)
k,n ∩ Zd |

sNn

)( |R(I)
k,n ∩ Zd |

sNn

)

+ E

[
H 4

3n(k)

|R(I)
k,n ∩ Zd |2

]( |R(I)
k,n ∩ Zd |

sNn

)2

− [sNnE(Y 2
0,n)]2.

For x = (x1, . . . , xd)
′ ∈ Rd , write �x� = (�x1�, . . . , �xd�)′ ∈ Zd and xn =

�sλ
(n)
1 x�. Let fε,n(x) :Rd → R be the step function defined as

fε,n(x) = (sNn)
−2I{xn∈R̃ε,n}hn(xn).

We have then that (with the same fixedε ∈ E+)

1

sNn

∑
k∈R̃ε,n

(sNn)
−2hn(k) = (sλ

(n)
1 )d

sNn

∫
Rd

fε,n(x) dx.(9.4)

We focus on showing

lim
n→∞fε,n(x) = fε(x)

(9.5)
≡ I{x∈R̃ε}[2τ4]

( |(x + �0R0) ∩ �0R0|
det(�0)|R0|

)2

a.e.x ∈ Rd,

with R̃ε = {x ∈ Rd : |(x + �0R0) ∩ �0R0| > ε, |�0R0 \ (x + �0R0)| > ε} a Borel
measurable set.

To establish (9.5), we begin by showing convergence of indicator functions

I{xn∈R̃ε,n} → I{x∈R̃ε} a.e.x ∈ Rd .(9.6)

Define the setsAn(x) = (sλ
(n)
1 )−1{(xn + sRn) ∩ sRn}, Ãn(x) = {(sλ(n)

1 )−1
sRn} \

An(x) as a function ofx ∈ Rd . The LDCT can be applied to show that for each
x ∈ Rd , |An(x)| → |(x + �0R0) ∩ �0R0| and |Ãn(x)| → |�0R0 \ (x + �0R0)|.
Thus, ifx ∈ R̃ε, then

|An(x)| → |(x + �0R0) ∩ �0R0| > ε,
(9.7) |Ãn(x)| → |�0R0 \ (x + �0R0)| > ε,
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implying further that 1= I{xn∈R̃ε,n} → I{x∈R̃ε} = 1 asn → ∞. Now considerR̃c
ε .

If x /∈ R̃ε such that|(x + �0R0) ∩ �0R0| < ε [or |�0R0 \ (x + �0R0)| < ε],
then |An(x)| < ε [or |Ãn(x)| < ε] eventually for largen and 0= I{xn∈R̃ε,n} →
I{x∈R̃ε} = 0 in this case. Finally,ε ∈ E+ implies that a last possible subset ofR̃c

ε

has Lebesgue measure zero; namely,|{x ∈ R̃c
ε : |(x + �0R0) ∩ �0R0| = ε or

|�0R0 \ (x + �0R0)| = ε}| = 0. We have now proven (9.6).
We next establish a limit for(sNn)

−2hn(xn), x ∈ R̃ε. We wish to show

|R(I)
xn,n ∩ Zd |

sNn

→ |(x + �0R0) ∩ �0R0|
det(�0)|R0| , x ∈ R̃ε.(9.8)

Using the bound| |R(I)
xn,n| − |R(I)

xn,n ∩ Zd || ≤ C(sλ
max
n )d−1 from theR0-boundary

condition and noting the limit in (9.7) for(sλ
(n)
1 )−d |R(I)

xn,n| = |An(x)|, we

find (sλ
(n)
1 )−d |R(I)

xn,n ∩ Zd | → |(x + �0R0) ∩ �0R0|, x ∈ R̃ε . By this and

(sλ
(n)
1 )d/sNn → (det(�0)|R0|)−1, (9.8) follows.
We can also establish: for eachx ∈ R̃ε, j = 1 or 2,

E

[
H

2j
3n (xn)

|R(I)
xn,n ∩ Zd |j

]
→ E([∇′Z∞]2j ),

(9.9)

E

[
H 2

jn(xn)

sNn − |R(I)
xn,n ∩ Zd |

]
, sNnE(Y 2

0,n) → E([∇′Z∞]2),

where ∇′Z∞ is a normalN (0, τ2) random variable and so it follows that
E([∇′Z∞]2j ) = (2j − 1)τ2j , j = 1,2. The limits in (9.9) follow essentially from
the central limit theorem (CLT) of Bolthausen (1982), after verifying that the CLT
can be applied; see Nordman (2002) for more details.

Putting (9.6), (9.8) and (9.9) together, we have shown the (a.e.) convergence of
the univariate functionsfε,n(x) as in (9.5). Fork ∈ En andn ≥ Nε, Lemma 9.2
ensures:(sNn)

−2|hn(k)| ≤ C, implying that forx ∈ Rd : |fε,n(x)| ≤ CI{x∈[−c,c]d}
for somec > 0 by Assumption A.1. With this uniform bound onfε,n(·) and the
limits in (9.5), we can apply the LDCT to get

lim
n→∞

∫
Rd

fε,n(x) dx =
∫

Rd
fε(x) dx, ε ∈ E+.(9.10)

Let {εm}∞m=1⊂ E+ whereεm ↓ 0. ThenR̃εm ⊂ �0[−1,1]d and limm→∞I{x∈R̃εm} →
I{x∈R̃0} for x 
= 0 ∈ Rd , with R̃0 = {x ∈ Rd : 0 < |(x + �0R0) ∩ �0R0| <

det(�0)|R0|}. Hence, by the LDCT,

lim
m→∞

∫
Rd

fεm(x) dx =
∫

Rd
f0(x) dx,

(9.11)

f0(x) ≡ I{x∈R̃0}[2τ4]
( |(x + �0R0) ∩ �0R0|

det(�0)|R0|
)2

.
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From (9.2)–(9.4), (9.10) and (9.11) and(sλ
(n)
1 )d/sNn → (det(�0)|R0|)−1, we have

that

lim sup
n→∞

∣∣∣∣∣sNn

∑
k∈En

Cov(Y 2
0,n, Y

2
k,n) − 1

det(�0)|R0|
∫

Rd
f0(x) dx

∣∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣∣sNn

∑
k∈En

Cov(Y 2
0,n, Y

2
k,n) − (sλ

(n)
1 )d

sNn

∫
Rd

fεm,n(x) dx

∣∣∣∣∣
+ 1

det(�0)|R0|
∣∣∣∣∫

Rd
fεm(x) − f0(x) dx

∣∣∣∣
+ lim sup

n→∞

∣∣∣∣ (sλ(n)
1 )d

sNn

∫
Rd

fεm,n(x) dx − 1

det(�0)|R0|
∫

Rd
fεm(x) dx

∣∣∣∣
≤ C

(
εm + [b(εm)]d )+ 1

det(�0)|R0|
∣∣∣∣∫

Rd
fεm(x) − f0(x) dx

∣∣∣∣
→ 0 asεm ↓ 0.

Finally,

1

det(�0)|R0|
∫

Rd
f0(x) dx = 2τ4

|R0|
∫

Rd

|(y + R0) ∩ R0|2
|R0|2 dy,

using a change of variablesy = �−1
0 x. This completes the proof of Theorem 9.1.

�

For clarity of exposition, we will prove Theorem 3.1, parts (a) and (b),
separately for the OL and NOL subsample variance estimators.

9.1. Proof of Theorem3.1(a). Fori ∈ JOL, we use a Taylor expansion ofH(·)
(aroundµ) to rewrite the statistiĉθOL

i,n = H(Zi,n),

θ̂OL
i,n = H(µ) + ∑

‖α‖1=1

cα(Zi,n − µ)α

(9.12) + 2
∑

‖α‖1=2

(Zi,n − µ)α

α!
∫ 1

0
(1− ω)DαH

(
µ + ω(Zi,n − µ)

)
dω

≡ H(µ) + Yi,n + Qi,n.

We also have

θ̃OL
n = H(µ) + |JOL|−1

∑
i∈JOL

Yi,n + |JOL|−1
∑

i∈JOL

Qi,n ≡ H(µ) + Ȳn + Q̄n.
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Then

τ̂2
n,OL = sNn

[
1

|JOL|
∑

i∈JOL

Y 2
i,n + 1

|JOL|
∑

i∈JOL

Q2
i,n

+ 2

|JOL|
∑

i∈JOL

Yi,nQi,n − Ȳ 2
n − Q̄2

n − 2(Ȳn)(Q̄n)

]
.

We establish Theorem 3.1(a) in two parts by showing

(a) Var

(
sNn

|JOL|
∑

i∈JOL

Y 2
i,n

)
= K0 · det(s�n)

det(�n)
· [2τ4](1+ o(1)

)
,

(b)

∣∣∣∣∣Var(τ̂2
n,OL) − Var

(
sNn

|JOL|
∑

i∈JOL

Y 2
i,n

)∣∣∣∣∣= o

(
det(s�n)

det(�n)

)
.

(9.13)

We will begin with proving (9.13)(a). Fork ∈ Zd , let σn(k) = Cov(Y 2
0,n, Y

2
k,n). We

write

(sNn)
2

|JOL|2 Var

( ∑
i∈JOL

Y 2
i,n

)
= (sNn)

2

|JOL|2
(∑

k∈En

Jn(k)σn(k) + ∑
k∈Zd\En

Jn(k)σn(k)

)

≡ W1n + W2n.

By stationarity and Lemma 9.2, we bound|σn(k)| ≤ E(Y 4
0,n) ≤ C(sNn)

−2,

k ∈ Zd . Using this covariance bound, Lemmas 9.3 and 9.4 and|En| ≤ 3d det(s�n),∣∣∣∣∣(sNn)
2

|JOL|
∑

k∈En

σn(k) − W1n

∣∣∣∣∣ ≤ C
|En|
|JOL| · max

k∈En

∣∣∣∣1− Jn(k)

|JOL|
∣∣∣∣

(9.14)

= o

(
det(s�n)

det(�n)

)
.

Then applying Theorem 9.1 and Lemma 9.3,

(sNn)
2

|JOL|
∑

k∈En

σn(k) = K0 · det(s�n)

det(�n)
· [2τ4](1+ o(1)

)
.(9.15)

By (9.14) and (9.15), we need only show thatW2n = o (det(s�n)/det(�n)) to
finish the proof of (9.13)(a).

For i ∈ Zd , denote a set of lattice points within a translated rectangular region:

Fi,n =
(

i +
d∏

j=1

(−⌈sλ(n)
j

⌉
/2,

⌈
sλ

(n)
j

⌉
/2
])∩ Zd,

where �·� represents the “ceiling” function. Note that fork = (k1, . . . , kd)′ ∈
Zd \En, there existsj ∈ {1, . . . , d} such that|kj | > sλj

(n), implying dis(R0,n∩ Zd,
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Rk,n ∩Zd) ≥ dis(F0,n,Fk,n) ≥ 1. Hence, sequentially using Lemmas 9.1 and 9.2,
we may bound the covariancesσn(k), k ∈ Zd \ En, with the mixing coeffi-
cientα(·, ·),

|σn(k)| ≤ 8
[
E
(
Y

2(2r+δ)/r
0,n

)]2r/(2r+δ)
α
(
dis(R0,n ∩ Zd,Rk,n ∩ Zd), sNn

)δ/(2r+δ)

≤ C(sNn)
−2α

(
dis(F0,n,Fk,n), sNn

)δ/(2r+δ)
.

From the above bound andJn(k)/|JOL| ≤ 1, k ∈ Zd , we have

|W2n| ≤ C|JOL|−1
∞∑

x=1

(
d∑

j=1

C(x,j,n)

)
α(x, sNn)

δ/(2r+δ),

(9.16)
C(x,j,n) = ∣∣{i ∈ Zd : dis(F0,n,Fi,n) = x

= inf{|vj − wj | : v ∈ F0,n,w ∈ Fi,n}}∣∣.
The functionC(x,j,n) counts the number of translated rectanglesFi,n that lie a
distance ofx ∈ Z+ from the rectangleF0,n, where this distance is realized in the
j th coordinate direction forj = 1, . . . , d . For i ∈ Zd , x ≥ 1 andj ∈ {1, . . . , d},
if dis(F0,n,Fi,n) = x = inf{|vj − wj | : v ∈ F0,n,w ∈ Fi,n}, then |ij | = �sλ

(n)
j � +

x − 1 with the remaining components ofi, namelyim for m ∈ {1, . . . , d} \ {j},
constrained by|im| ≤ sλ

(n)
m +x. We use this observation to further bound the right-

hand side of (9.16) by

C|JOL|−1
∞∑

x=1

(
d∑

j=1

d∏
m=1,j 
=m

3
(
sλ

(n)
m + x

))
α(x, sNn)

δ/(2r+δ)

≤ C
det(s�n)

|JOL|
d∑

j=1

(
sλ

(n)
min

)−j

[
�n∑

x=1

xj−1 +
∞∑

x=�n+1

xj−1[α1(x)g(sNn)]δ/(2r+δ)

]

≤ C
det(s�n)

|JOL|
[

d�n

sλ
(n)
min

+ {�1/e
n }dκδ/(2r+δ)

�2rd−d
n

∞∑
x=�n+1

x2rd−d−1α1(x)δ/(2r+δ)

]

= o

(
det(s�n)

det(�n)

)
,

using Assumptions A.1, A.3, ConditionMr and�n = o(sλ
(n)
min) with e from (9.1).

This completes the proof of (9.13)(a).
To establish (9.13)(b), first note that∣∣∣∣∣Var(τ̂2

n,OL) − Var

(
sNn

|JOL|
∑

i∈JOL

Y 2
i,n

)∣∣∣∣∣
≤ 4

( 5∑
j=1

A
1/2
jn

)( 5∑
j=1

A
1/2
jn + Var1/2

(
sNn

|JOL|
∑

i∈JOL

Y 2
i,n

))
,
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where A1n = Var(sNnȲ
2
n ), A2n = Var(|JOL|−1

sNn

∑
i∈JOL

Q2
i,n), A3n =

Var(sNnQ̄
2
n), A4n = Var(|JOL|−1

sNn

∑
i∈JOL

Yi,nQi,n), A5n = Var(sNnȲnQ̄n).
By (9.13)(a), it suffices to show thatAjn = o(det(s�n)/det(�n)) for each

j = 1, . . . ,5. We handle only two terms for illustration:A1n, A4n.
ConsiderA1n. For s ∈ Rn ∩ Zd , let ω(s) = [2d det(s�n)]−1|{i ∈ JOL : s ∈ i +

s�nR0}| so that 0≤ ω(s) ≤ 1. By ConditionMr and Theorem 3 [Doukhan (1994),
page 31] (similar to Lemma 9.2),

A1n ≤ E(Ȳ 4
n )

= (2d det(s�n))
4

|JOL|4(sNn)2
E

([ ∑
s∈Rn∩Zd

ω(s)∇′(Z(s) − µ
)]4)

(9.17)

≤ C
(Nn)

2(det(s�n))
4

|JOL|4(sNn)2
.

ThenA1n = o(det(s�n)/det(�n)) follows from Lemma 9.3.
To handleA4n, write σ1n(k) = Cov(Y0,nQ0,n, Yk,nQk,n), k ∈ Zd . Then

A4n = (sNn)
2

|JOL|2
∑

k∈Zd

Jn(k)σ1n(k)

≤ (sNn)
2

|JOL|
(∑

k∈En

|σ1n(k)| + ∑
k∈Zd\En

|σ1n(k)|
)

≡ A4n(En) + A4n(E
c
n).

For k ∈ En, note |σ1n(k)| ≤ C(sNn)
−3 using |Y0,nQ0,n| ≤ C‖Z0,n − µ‖3(1 +

‖Z0,n − µ‖a) (from ConditionD) with Lemmas 9.1 and 9.2. From this bound,
Lemma 9.3 and|En| ≤ 3d det(s�n), we findA4n(En) = o(det(s�n)/det(�n)). We
next bound the covariancesσ1n(k), k ∈ Zd \ En:

|σ1n(k)| ≤ 8
[
E
(|Y0,nQ0,n|(2r+δ)/r

)]2r/(2r+δ)

× α
(
dis(R0,n ∩ Zd,Rk,n ∩ Zd), sNn

)δ/(2r+δ)

≤ C(sNn)
−3α

(
dis(F0,n,Fk,n), sNn

)δ/(2r+δ)

by the stationarity of the random fieldZ(·) and Lemmas 9.1 and 9.2. Using this
inequality and repeating the same steps used to majorize “W2n” from the proof
of (9.13)(a) [see (9.16)], we haveA4n(E

c
n) = o(det(s�n)/det(�n)). The proof of

Theorem 3.1(a) is complete.
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9.2. Proof of Theorem3.1(b). To simplify the counting arguments, we assume
here integer-valueds�n ∈ Z+, implying sNi,n = sNn, i ∈ Zd . The more general
case, in which the NOL subregions may differ in the number of sampling sites, is
treated in Nordman (2002).

For each NOL subregioñRi,n, we denote the corresponding sample meanZ̃i,n =
(sNi,n)

−1∑
s∈R̃i,n∩Zd Z(s). The subsample evaluations of the statistic of interest,

θ̂NOL
i,n , i ∈ JNOL, can be expressed through a Taylor expansion ofH(·) aroundµ,

substitutingZ̃i,n for Zi,n in (9.12):θ̂NOL
i,n = H(Z̃i,n) = H(µ) + Ỹi,n + Q̃i,n.

We will complete the proof of Theorem 3.1(b) in two parts by showing

(a) Var

(
sNn

|JNOL|
∑

i∈JNOL

Ỹ 2
i,n

)
= det(s�n)

det(�n)|R0| · [2τ4](1+ o(1)
)
,

(b)

∣∣∣∣∣Var(τ̂2
n,NOL) − Var

(
sNn

|JNOL|
∑

i∈JNOL

Ỹ 2
i,n

)∣∣∣∣∣= o

(
det(s�n)

det(�n)

)
.

(9.18)

We will begin with showing (9.18)(a). Fork ∈ Zd , let J̃n(k) = {i ∈ JNOL : i + k ∈
JNOL} andσ̃n(k) = Cov(Ỹ 2

0,n, Ỹ
2
k,n). Then we may express the variance,

Var

(
sNn

|JNOL|
∑

i∈JNOL

Ỹ 2
i,n

)

= (sNn)
2

|JNOL|2
( ∑

k∈Zd ,0<‖k‖∞≤1

J̃n(k)σ̃n(k)

(9.19)

+ ∑
k∈Zd ,‖k‖∞>1

J̃n(k)σ̃n(k) + |JNOL|σ̃n(0)

)

≡ U1n + U2n + |JNOL|−1(sNn)
2σ̃n(0).

We first proveU2n = o(|JNOL|−1), noting that det(s�n)/det(�n) = O(|JNOL|−1)

from Lemma 9.3.
Whenk = (k1, . . . , kd)′ ∈ Zd , ‖k‖∞ > 1, then for some 1≤ mk ≤ d ,

dis(R̃0,n ∩ Zd, R̃k,n ∩ Zd) ≥ max
1≤j≤d

(|kj | − 1)sλ
(n)
j

≡ (∣∣kmk

∣∣− 1
)
sλ

(n)
mk

.

If j ∈ {1, . . . , d}, j 
= mk , we have

|kj | ≤ (sλ(n)
j

)−1(∣∣kmk

∣∣− 1
)
sλ

(n)
mk

+ 1.

Note also ifk ∈ Zd , ‖k‖∞ > 1, then

|σ̃ (k)| ≤ C(sNn)
−2α

((∣∣kmk

∣∣− 1
)
sλ

(n)
mk

, sNn

)
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by Lemmas 9.1 and 9.2. Hence, we have

|U2n| ≤ C

|JNOL|
∞∑

x=1

[
d∑

j=1

d∏
i=1,i 
=j

(
sλ

(n)
i x + sλ

(n)
j

)
/sλ

(n)
i

]

× α
(
sλ

(n)
minx, sNn

)δ/(2r+δ)

≤ C

|JNOL|
∞∑

x=1

xd−1
(

sλ
max
n

sλ
(n)
min

)d−1

α
(
sλ

(n)
minx, sNn

)δ/(2r+δ)

≤ C

|JNOL|
{det(s�n)}κδ/(2r+δ)

(sλ
(n)
min)

2rd−d−1

∞∑
x=1

(
sλ

(n)
minx

)2rd−d−1
α1
(
sλ

(n)
minx

)δ/(2r+δ)

= o

(
1

|JNOL|
)

by Assumptions A.1, A.3 and ConditionMr .
We now show thatU1n = o(|JNOL|−1). For k ∈ Zd , 0 < ‖k‖∞ ≤ 1, define the

set

T
j

k,n =:


{
x ∈ Rd : 1/2 · sλ

(n)
j < xj ≤ 1/2 · sλ

(n)
j + �n

}
, if kj = 1,{

x ∈ Rd :−1/2 · sλ
(n)
j − �n < xj ≤ −1/2 · sλ

(n)
j

}
, if kj = −1,

∅, if kj = 0,

for each coordinate directionj = 1, . . . , d . Let Tk,n =⋃d
j=1T

j
k,n. We decompose

the sum:sNnỸk,n = �(R̃k,n \ Tk,n) + �(R̃k,n ∩ Tk,n) ≡ S̃k,n + S̃∗
k,n. Then,U1n =

o(|JNOL|−1) follows from 1–4 below:

1. |E(Ỹ 2
0,nS̃k,nS̃

∗
k,n)| ≤ [E(Ỹ 6

0,n)E(|S̃k,n|3)E(|S̃∗
k,n|3)]1/3 = o(1), using Lemma 9.2

and

|R̃k,n ∩ Tk,n ∩ Zd | ≤
d∑

j=1

|R̃k,n ∩ T
j

k,n ∩ Zd | ≤ �n det(s�n)

d∑
j=1

(
sλ

(n)
j

)−1

= o
(
sλ

(n)
min

)
.

2. Likewise, E(Ỹ 2
0,nS̃

∗2
k,n) ≤ [E(Ỹ 4

0,n)E(S̃∗4
k,n)]1/2 = o(1).

3. |sNnE(Ỹ 2
k,n)−(sNn)

−1E(S̃2
k,n)| ≤ 4(sNn)

−1 max{[E(S̃2
k,n)E(S̃∗2

k,n)]1/2,E(S̃∗2
k,n)} =

o(1).
4. |Cov(Ỹ 2

0,n, S̃
2
k,n)| ≤ Cα(�n, sNn)

δ/(2r+δ) = o(1) by applying Lemmas 9.1

and 9.2, Assumption A.3, and ConditionMr with dis(R̃k,n ∩ Zd \ Tk,n,

sRn ∩ Zd) ≥ �n.
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Sinceσ̃n(0) = Var(Y 2
0,n), the remaining quantity in (9.19) can be expressed as

(sNn)
2

|JNOL| σ̃n(0) = 1

|JNOL| Var([∇′Z∞]2)(1+ o(1)
)

= det(s�n)

det(�n)|R0| · [2τ4](1+ o(1)
)

by applying the CLT [as in (9.9)] and Lemma 9.3. We have now estab-
lished (9.18)(a).

We omit the proof of (9.18)(b), which resembles the one establishing (9.13)(b)
and incorporates arguments used to boundU1n,U2n; Nordman (2002) provides
more details.

10. Proofs for bias expansions. We will use the following lemma concern-
ing τ2

n = Nn Var(θ̂n) to prove the theorems pertaining to bias expansions of
τ̂2
n,OL andτ̂2

n,NOL.

LEMMA 10.1. Under the assumptions and conditions of Theorem3.1,

τ2
n = τ2 + O

([det(�n)]−1/max{2,d}).
PROOF. By a Taylor expansion aroundµ: θ̂n = H(Z̄Nn) = H(µ)+ ȲNn +Q̄Nn

[replacingZ̄Nn for Zi,n in (9.12)] and soNn Var(θ̂n) = Nn Var(ȲNn + Q̄Nn). For

k ∈ Zd , let Nn(k) = |{i ∈ Rn ∩ Zd : i + k ∈ Rn}|. It holds thatNn(k) ≤ Nn and

Nn ≤ Nn(k) + ∣∣{i ∈ Zd :T i ∩ Rn 
= ∅, T i ∩ Rc
n 
= ∅;

T i = i + ‖k‖∞[−1,1]d}∣∣(10.1)

≤ Nn(k) + C‖k‖d∞(λmax
n )d−1

by the boundary condition onR0. Also, by Lemma 9.1 and stationarity, for each
k 
= 0 ∈ Zd ,

|σ(k)| ≤ Cα1(‖k‖∞)δ/(2r+δ), k ∈ Zd.(10.2)

Using |{k ∈ Zd :‖k‖∞ = x}| ≤ Cxd−1, x ≥ 1, the covariances are absolutely
summable overZd :

∑
k∈Zd

|σ(k)| ≤ |σ(0)| + C
∞∑

x=1

xd−1α1(x)δ/(2r+δ) < ∞.(10.3)
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From (10.1)–(10.3), we find

Nn Var(ȲNn) = 1

Nn

∑
k∈Zd

Nn(k)σ (k) = τ2 + In,(10.4)

|In| ≤ 1

Nn

∑
k∈Zd

|Nn − Nn(k)| · |σ(k)|

(10.5) ≤ C · (λmax
n )d−1

Nn

∞∑
x=1

x2d−1α1(x)δ/(2r+δ)

= O
([det(�n)]−1/d

)
.

By ConditionD and Lemma 9.2, it follows thatNn Var(Q̄Nn) = O([det(�n)]−1).
Finally, with bounds on the variance ofȲNn andQ̄Nn , we apply the Cauchy–

Schwarz inequality to the covarianceNn|Cov(ȲNn, Q̄Nn)| = O([det(�n)]−1/2),
setting the order on the difference|Nn Var(θ̂n) − τ2|. �

We give a few lemmas which help compute the bias of the estimators
τ̂2
n,OL andτ̂2

n,NOL.

LEMMA 10.2. Let Ỹi,n = (sNi,n)
−1∑

s∈Zd∩R̃i,n
∇′(Z(s)−µ), i ∈ Zd . Suppose

AssumptionsA.1–A.5 and ConditionsD2 and M2+a hold with d ≥ 2 with a as
specified under ConditionD2. Then

E(τ̂2
n,OL) − sN0,nE(Ỹ 2

0,n),E(τ̂2
n,NOL) − |JNOL|−1

∑
i∈JNOL

sNi,nE(Ỹ 2
i,n)

=: O([det(s�n)]−1/2)+ o
([det(s�n)]−1/d

)
.

PROOF. We consider here only E(τ̂2
n,OL). For integers�n, the arguments for

E(τ̂2
n,NOL) are essentially the same; more details are provided in Nordman (2002).

By stationarity and an algebraic expansion as in (9.12),

E(τ̂2
n,OL) = sNn

[
E(Y 2

0,n) + E(Q2
0,n)

+ 2E(Y0,nQ0,n) − E(Ȳ 2
n ) − E(Q̄2

n) − 2E(ȲnQ̄n)
]
.

With the moment arguments based on Lemma 9.2 and ConditionDr , we have

sNnE(Y 2
0,n) ≤ C,

sNnE(Ȳ 2
n ) ≤ CsNn(Nn)

−1,(10.6)

sNnE(Q2
0,n), sNnE(Q̄2

n) ≤ C(sNn)
−1,
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where the bound onsNnE(Ȳ 2
n ) follows from (9.17). By Hölder’s inequality and

Assumption A.2,

E(τ̂2
n,OL) = sNnE(Y 2

0,n) + O
(
(sNn)

−1/2)+ O
(
sNn(Nn)

−1).
Note that E(Y 2

0,n) = E(Ỹ 2
0,n), sNn = sN0,n. Hence, applying Lemma 9.3 and

Assumption A.2, we establish Lemma 10.2 forτ̂2
n,OL. �

The next lemma provides a small refinement to Lemma 10.2 made possible
when the functionH(·) is smoother. We shall make use of this lemma in bias
expansions of̂τ2

n,OL andτ̂2
n,NOL in lower sampling dimensions, namelyd = 1 or 2.

LEMMA 10.3. Assumed = 1 or 2. In addition to AssumptionsA.1–A.5,sup-
pose that ConditionsD3 andM3+a hold witha as specified under ConditionD3.
Then

E(τ̂2
n,OL) − sN0,nE(Ỹ 2

0,n),E(τ̂2
n,NOL) − |JNOL|−1

∑
i∈JNOL

sNi,nE(Ỹ 2
i,n)

=:
O

([det(s�n)]−1), if d = 1,

o
([det(s�n)]−1/2), if d = 2.

PROOF. We again consider onlŷτ2
n,OL. For i ∈ JOL, we use a third-order

Taylor expansion of each subsample statistic aroundµ: θ̂i,n = H(µ) + Yi,n +
Qi,n + Ci,n, whereYi,n = ∇′(Zi,n − µ),

Qi,n = ∑
‖α‖1=2

cα

α! (Zi,n − µ)α,

Ci,n = 3
∑

‖α‖1=3

cα

α! (Zi,n − µ)α
∫ 1

0
(1− ω)2DαH

(
µ + ω(Zi,n − µ)

)
dω.

Here Ci,n denotes the remainder term in the Taylor expansion andQi,n is
defined a little differently here compared to (9.12). Write the sample means
for the Taylor terms:Ȳn, Q̄n as before,C̄n = |JOL|−1∑

i∈JOL
Ci,n. The moment

inequalities in (10.6) are still valid and, by Lemma 9.2 and ConditionD, we can
produce boundssNnE(C2

0,n), sNnE(C̄2
n) ≤ C(sNn)

−2. By Hölder’s inequality and
the scaling conditions from Assumptions A.1 and A.2, we then have

E(τ̂2
n,OL) = sNn[E(Y 2

0,n) + 2E(Y0,nQ0,n)] +
O

([det(s�n)]−1), if d = 1,

o
([det(s�n)]−1/2), if d = 2.
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SincesNnE(Y 2
0,n) = sN0,nE(Ỹ 2

0,n), Lemma 10.3 for̂τ2
n,OL will follow by showing

sNnE(Y0,nQ0,n)

= sNn

p∑
i,j,k=1

ciaj,kE[(Zi,0,n − µ)(Zj,0,n − µ)(Zk,0,n − µ)](10.7)

= O
([det(s�n)]−1),

whereZ0,n = (Z1,0,n, . . . ,Zp,0,n)
′ ∈ Rp is a vector of coordinate sample means,

ci = ∂H(µ)/∂xi ; aj,k = 1/2 · ∂2H(µ)/∂xj ∂xk .
Denote the observationZ(s) = (Z1(s), . . . ,Zp(s))′ ∈ Rd , s ∈ Zd . Fix i, j, k ∈

{1, . . . , p} and w.l.o.g. assumeµ = 0. Then sNn|E(Zi,0,nZj,0,nZk,0,n)| =
|(sNn)

−1E(Zi(t)Zj (t)Zk(t)) + L
ijk
1n + L

ijk
2n | where

L
ijk
1n = (sNn)

−2
∑

u,v,w∈Zd∩sRn
u 
=v 
=w

E[Zi(u)Zj (v)Zk(w)],

L
ijk
2n = (sNn)

−2
∑

u,v∈Zd∩sRn
u 
=v

E
[
Zi(u)Zj (u)Zk(v)

+ Zi(u)Zj (v)Zk(u) + Zi(v)Zj (u)Zk(u)
]
.

By Lemma 9.1, Assumption A.3 and ConditionMr ,

|Lijk
2n | ≤ C

sNn

∞∑
x=1

xd−1α(x,1)δ/(2r+δ) = O
([det(s�n)]−1),

similarly to (10.3). For y1,y2,y3 ∈ Rd, define dis3({y1,y2,y3}) =
max1≤i≤3 dis({yi}, {y1,y2,y3} \ {yi}). If x ≥ 1 ∈ Z+, then |{(y1,y2) ∈ (Zd)2 :
dis3({y1,y2,0}) = x}| ≤ Cx2d−1 from Theorem 4.1, Lahiri (1999a). Thus,

|Lijk
1n | ≤ C

sNn

∞∑
x=1

x2d−1α(x,2)δ/(2r+δ) = O
([det(s�n)]−1).

This establishes (10.7), completing the proof of Lemma 10.3 forτ̂2
n,OL. �

We use the next lemma in the proof of Theorem 4.2. It allows us to approximate
lattice point counts with Lebesgue volumes, inR2 or R3, to a sufficient degree of
accuracy.

LEMMA 10.4. Let d = 2,3 and R0 ⊂ (−1/2,1/2]d such thatB◦ ⊂ R0 ⊂ B

for a convex setB. Let {bn}∞n=1 be a sequence of positive real numbers such that
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bn → ∞. If k ∈ Zd , then there existNk ∈ Z+ and Cd > 0 such that forn ≥ Nk,
i ∈ Zd , ∣∣(|bnR0| − |Zd ∩ bn(i + R0)|)

− (|bnR0 ∩ k + bnR0| − |Zd ∩ bn(i + R0) ∩ k + bn(i + R0)|)∣∣
≤
C2‖k‖2∞, if d = 2,

C3‖k‖4∞(b
5/3
n + ξk,nb

2
n), if d = 3,

where{ξk,n}∞n=1 ⊂ R is a nonnegative sequence( possibly dependent onk) such
that ξk,n → 0.

The proof is provided in Nordman and Lahiri (2002).
To establish Lemma 4.1, we require some additional notation. Fori,k ∈ Zd , and

let sNi,n(k) = |Zd ∩ R̃i,n ∩ k + R̃i,n| denote the number of sampling sites (lattice
points) in the intersection of a NOL subregion with itsk-translate. NotesNi,n(k)

is a subsample version ofNn(k) from (10.1).

PROOF OFLEMMA 4.1. We start with bounds

sup
i∈Zd

|sNn − sNi,n| ≤ C(sλ
max
n )d−1,(10.8)

|sNi,n − sNi,n(k)|
≤ ∣∣{j ∈ Zd :T j ∩ sRn 
= ∅, T j ∩ sRc

n 
= ∅; T j = j + ‖k‖∞[−2,2]d}∣∣(10.9)

≤ C‖k‖d∞(sλ
max
n )d−1,

by the boundarycondition onR0 (cf. Lemma 9.3) and infj∈Zd ‖s�ni − j‖∞ ≤ 1/2.

Modify (10.4) by replacing Nn,Nn(k), ȲNn with sNi,n, sNi,n(k), Ỹi,n =
∇′(Z̃i,n − µ) (i.e., use a NOL subregion in place of the sampling region), and
replaceNn,�n,λ

max
n with the subsample analogssNi,n, s�n, sλ

max
n in (10.5). We

then find, using (10.3), for eachi ∈ Zd ,

sNi,nE(Ỹ 2
i,n) − τ2 = 1

sNi,n

∑
k∈Zd

(
sNi,n(k) − sNi,n

)
σ(k) ≡ sIi,n,(10.10)

sup
i∈Zd

|sIi,n| ≤ sup
i∈Zd

{
1

sNi,n

∑
k∈Zd

|sNi,n(k) − sNi,n| · |σ(k)|
}

≤ C · (sλ
max
n )d−1

sNn − C(sλ
max
n )d−1

∞∑
x=1

x2d−1α1(x)δ/(2r+δ)(10.11)

= O
([det(s�n)]−1/d

)
,
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from (10.8), (10.9) and Assumption A.1. Now applying Lemma 10.1 and
Assumption A.2 with Lemma 10.2 ford ≥ 2 or Lemma 10.3 ford = 1, Lemma 4.1
follows. �

PROOF OF THEOREM 4.1. HeresNi,n = sNn, sNi,n(k) = Cn(k), E(Ỹi,n) =
E(Ỹ0,n) for eachi,k ∈ Zd (sincesλn ∈ Z+ for NOL subsamples) and det(s�n) =
sλn

d . Applying Lemma 10.2 ford ≥ 3 and Lemma 10.3 ford = 2, Lemma 10.1,
Assumption A.2 and (10.11),

E(τ̂2
n ) − τ2

n = −1

sλn|R0|
∑

k∈Zd

gn(k) + o(sλn
−1),

gn(k) ≡ sNn − Cn(k)

sλn
d−1 · sλn

d |R0|
sNn

· σ(k).

From (10.11) and Lemma 9.3, it follows that
∑

k∈Zd |gn(k)| ≤ C, n ∈ Z+, and
that gn(k) → C(k)σ (k) for k ∈ Zd . By the LDCT, the proof of Theorem 4.1 is
complete. �

To establish Theorem 4.2, we require some additional notation. Fori,k ∈ Zd ,
denote the difference between two Lebesgue volume-for-count approximations as

Di,n(k) = (|R̃i,n| − sNi,n) − (|R̃i,n ∩ k + R̃i,n| − sNi,n(k)
)

= (|sRn| − sNi,n) − (|sRn ∩ k + sRn| − sNi,n(k)
)
.

PROOF OFTHEOREM 4.2. We handle here the casesd = 2 or 3. Details on
the proof ford = 1 are given in Nordman (2002). We note first that ifV (k) exists
for eachk ∈ Zd then Lemma 10.4 impliesC(k) = V (k).

Considerτ̂2
n,NOL. Applying Lemma 10.2 ford = 3, and Lemma 10.3 ford = 2,

with (10.8), (10.10) and (10.11) gives

E(τ̂2
n,NOL) − τ2

n = |JNOL|−1
∑

i∈JNOL

sNi,n

|sRn| sIi,n + o(sλn
−1).

Then, using (10.3), we can arrange terms to write

|JNOL|−1
∑

i∈JNOL

sNi,n

|sRn| sIi,n = �n + ∑
k∈Zd

Gn(k)

sλn|R0| ;

Gn(k) = ∑
i∈JNOL

Di,n(k)σ (k)

sλn
d−1|JNOL|

for �n = −∑k∈Zd |sRn|−1(|sRn| − |sRn ∩ k + sRn|)σ (k). SinceR0 is convex, the
boundary condition is valid and it holds that for alli,k ∈ Zd ,∣∣

sNi,n(k) − |sRn ∩ k + sRn|
∣∣≤ C(sλ

max
n )d−1,

(10.12) ∣∣|sRn| − |sRn ∩ k + sRn|
∣∣≤ C‖k‖d∞(sλ

max
n )d−1
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from Lemma 9.3 and (10.9). Then (10.3), Lemma 10.4 and (10.12) give∑
k∈Zd |Gn(k)| ≤ C, n ∈ Z+; Gn(k) → 0 for k ∈ Zd and sλn�n = O(1). By the

LDCT, we establish∑
k∈Zd

Gn(k)

sλn|R0| = o(sλn
−1), E(τ̂2

n,NOL) − τ2
n = �n

(
1+ o(1)

)
,

representing the formulation of Theorem 4.2 in terms of�n. If V (k) exists for
eachk ∈ Zd , then (10.3) and (10.12) imply that we can use the LDCT again to
produce

�n = −1

sλn|R0|
(∑

k∈Zd

V (k)σ (k)

)(
1+ o(1)

)
.(10.13)

The proof of Theorem 4.2 for̂τ2
n,NOL is now complete.

Considerτ̂2
n,OL. We can repeat the same steps as above to find

E(τ̂2
n,OL) − τ2

n = �n + ∑
k∈Zd

G∗
n(k)

sλn|R0| + o(sλn
−1), G∗

n(k) = D0,n(k)σ (k)

sλn
d−1 .

The same arguments forGn apply toG∗
n and (10.13) remains valid when each

V (k) exists,k ∈ Zd , establishing Theorem 4.2 forτ̂2
n,OL. Note as well that ifV (k)

exists for eachk ∈ Zd , then Lemma 10.4 and Lemma 4.1 also imply the second
formulation of the bias in Theorem 4.2.�

PROOF OF THEOREM 5.1. This follows from Theorems 3.1 and 4.1 and
simple arguments from calculus involving minimization of a smooth function of a
real variable. �

PROOF OF THEOREM 6.1. For a rectangleT , where
∏d

j=1(cj , c̃j ) ⊂ T ⊂∏d
j=1[cj , c̃j ], cj , c̃j ∈ R, define the borderZd -point set: B{T } = ⋃d

j=1{s =
(s1, . . . , sd)

′ ∈ Zd ∩ T : sj ∈ {cj , c̃j }}.
It holds that, fork 
= 0, there existC > 0, Nk ∈ Z+, such thatn ≥ Nk,

|Di,n(k)| ≤ C‖k‖d−1∞ sλn
d−2, i ∈ Zd .(10.14)

This can be shown easily by considering only volume approximations for those
Zd lattice point counts associated with the interior setR◦

0 [i.e., treatingR◦
0 asR0

in |Di,n(k)|] because the subtracted lattice point counts on the borders ofR̃i,n and
R̃i,n ∩ k + R̃i,n are negligible:∣∣B{sλn(i + R0)}

∣∣− ∣∣B{sλn(i + R0) ∩ k + sλn(i + R0)}
∣∣

≤ C‖k‖∞sλn
d−2, i ∈ Zd .

See Nordman (2002) for more details.
Applying (10.14) in place of Lemma 10.4, the same proof for Theorem 4.2

establishes Theorem 6.1.�



2026 D. J. NORDMAN AND S. N. LAHIRI

Acknowledgments. The authors thank the referees and an Associate Editor
for a number of constructive comments and suggestions that significantly improved
an earlier draft of this paper.

REFERENCES

BILLINGSLEY, P. (1986).Probabilityand Measure, 2nd ed. Wiley, New York.
BOLTHAUSEN, E. (1982). On the central limit theorem for stationary mixing random fields.Ann.

Probab.10 1047–1050.
BRADLEY, R. C. (1989). A caution on mixing conditions for random fields.Statist. Probab. Lett.8

489–491.
BÜHLMANN , P. and KÜNSCH, H. R. (1999). Block length selection in the bootstrap for time series.

Comput. Statist. Data Anal.31 295–310.
CARLSTEIN, E. (1986). The use of subseries values for estimating the variance of a general statistic

from a stationary time series.Ann. Statist.14 1171–1179.
CHAN, G. and WOOD, A. T. A. (1997). Algorithm AS 312: An algorithm for simulating stationary

Gaussian random fields.Appl. Statist.46 171–181.
CRESSIE, N. (1991).Statistics for Spatial Data. Wiley, New York.
DOUKHAN, P. (1994).Mixing: Properties and Examples. Lecture Notes in Statist.85. Springer, New

York.
FUKUCHI, J.-I. (1999). Subsampling and model selection in time series analysis.Biometrika86

591–604.
GARCIA-SOIDAN, P. H. and HALL , P. (1997). On sample reuse methods for spatial data.Biometrics

53 273–281.
GUYON, X. (1995).Random Fields on a Network: Modelling, Statistics and Applications. Springer,

New York.
HALL , P. (1992).The Bootstrap and Edgeworth Expansion. Springer, New York.
HALL , P., HOROWITZ, J. L. and JING, B.-Y. (1995). On blocking rules for the bootstrap with

dependent data.Biometrika82 561–574.
HALL , P. and JING, B.-Y. (1996). On sample reuse methods for dependent data.J. Roy. Statist. Soc.

Ser. B58 727–737.
HUXLEY, M. N. (1993). Exponential sums and lattice points. II.Proc. London Math. Soc. (3)66

279–301.
HUXLEY, M. N. (1996).Area, Lattice Points, and Exponential Sums. Oxford Univ. Press, New York.
KRÄTZEL, E. (1988).Lattice Points. Deutscher Verlag Wiss., Berlin.
KÜNSCH, H. R. (1989). The jackknife and the bootstrap for general stationary observations.Ann.

Statist.17 1217–1241.
LAHIRI , S. N. (1996). On empirical choice of the optimal block size for block bootstrap methods.

Preprint, Dept. Statistics, Iowa State Univ.
LAHIRI , S. N. (1999a). Asymptotic distribution of the empirical spatial cumulative distribution

function predictor and prediction bands based on a subsampling method.Probab. Theory
Related Fields114 55–84.

LAHIRI , S. N. (1999b). Theoretical comparisons of block bootstrap methods.Ann. Statist.27
386–404.

LAHIRI , S. N. (2004). Central limit theorems for weighted sums of a spatial process under a class of
stochastic and fixed designs.Sankhy¯a. To appear.

LAHIRI , S. N., FURUKAWA, K. and LEE, Y.-D. (2003). A nonparametric plug-in rule for selecting
optimal block lengths for block bootstrap methods. Preprint, Dept. Statistics, Iowa State
Univ.



OPTIMAL SPATIAL SUBSAMPLE SIZE 2027

LÉGER, C., POLITIS, D. N. and ROMANO, J. P. (1992). Bootstrap technology and applications.
Technometrics34 378–399.

MARTIN, R. J. (1990). The use of time-series models and methods in the analysis of agricultural
field trials.Comm. Statist. Theory Methods19 55–81.

MEKETON, M. S. and SCHMEISER, B. (1984). Overlapping batch means: Something for nothing? In
Proc. 16th Conference on Winter Simulation Conf.(S. Sheppard, U. Pooch and D. Pegden,
eds.) 227–230. IEEE, Piscataway, NJ.

NORDMAN, D. J. (2002). On optimal spatial subsample size for variance estimation. Ph.D.
dissertation, Dept. Statistics, Iowa State Univ.

NORDMAN, D. J. and LAHIRI , S. N. (2002). On the approximation of differenced lattice point
counts with application to statistical bias expansions. Preprint, Dept. Statistics, Iowa State
Univ.

NORDMAN, D. J. and LAHIRI , S. N. (2003). On optimal variance estimation under different
spatial subsampling schemes. InRecent Advances and Trends in Nonparametric Statistics
(M. G. Akritas and D. N. Politis, eds.). North-Holland, Amsterdam.

PERERA, G. (1997). Geometry ofZd and the central limit theorem for weakly dependent random
fields.J. Theoret. Probab.10 581–603.

POLITIS, D. N. and ROMANO, J. P. (1993a). Nonparametric resampling for homogeneous strong
mixing random fields.J. Multivariate Anal.47 301–328.

POLITIS, D. N. and ROMANO, J. P. (1993b). On the sample variance of linear statistics derived from
mixing sequences.Stochastic Process. Appl.45 155–167.

POLITIS, D. N. and ROMANO, J. P. (1994). Large sample confidence regions based on subsamples
under minimal assumptions.Ann. Statist.22 2031–2050.

POLITIS, D. N. and ROMANO, J. P. (1995). Bias-corrected nonparametric spectral estimation.J. Time
Ser. Anal.16 67–103.

POLITIS, D. N., ROMANO, J. P. and WOLF, M. (1999).Subsampling. Springer, New York.
POLITIS, D. N. and SHERMAN, M. (2001). Moment estimation for statistics from marked point

processes.J. R. Stat. Soc. Ser. B Stat. Methodol.63 261–275.
POSSOLO, A. (1991). Subsampling a random field. InSpatial Statistics and Imaging(A. Possolo,

ed.) 286–294. IMS, Hayward, CA.
RIPLEY, B. D. (1981).Spatial Statistics. Wiley, New York.
SHERMAN, M. (1996). Variance estimation for statistics computed from spatial lattice data.J. Roy.

Statist. Soc. Ser. B58 509–523.
SHERMAN, M. and CARLSTEIN, E. (1994). Nonparametric estimation of the moments of a general

statistic computed from spatial data.J. Amer. Statist. Assoc.89 496–500.
VAN DER CORPUT, J. G. (1920). Über Gitterpunkte in der Ebene.Math. Ann.81 1–20.

MATHEMATICS DEPARTMENT

UNIVERSITY OF WISCONSIN–LA CROSSE

LA CROSSE, WISCONSIN54601
USA
E-MAIL : nordman.dani@uwlax.edu

DEPARTMENT OFSTATISTICS

IOWA STATE UNIVERSITY

AMES, IOWA 50011
USA
E-MAIL : snlahiri@iastate.edu


