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AN ADAPTATION THEORY FOR NONPARAMETRIC
CONFIDENCE INTERVALS!

By T. TONY CAI AND MARK G. Low
University of Pennsylvania

A nonparametric adaptation theory is developed for the construction
of confidence intervals for linear functionals. A between class modulus of
continuity captures the expected length of adaptive confidence intervals.
Sharp lower bounds are given for the expected length and an ordered modulus
of continuity is used to construct adaptive confidence procedures which are
within a constant factor of the lasv bounds. In additionminimax theory
over nonconvex parameter spaces is developed.

1. Introduction. The problem of estimating a linear functional occupies a
central position in nonparametric function estimation. It is most complete in the
Gaussian settings:

-1/2 1 1
(1) dY ()= f(tydt +n"Y2dw@®),  -3<r<3
whereW (¢) is standard Brownian motion and
) Y(i)=f(i)+n"Y%,  ieM,

wherez; are i.i.d. standard normal random variables ands a finite or countably
infinite index set. In particular, minimax estimation theory has been well developed
in Ibragimov and Hasminskii (1984), Donoho and Liu (1991) and Donoho (1994).

Confidence sets also play a fundamental role in statistical inference. In the
context of nonparametric function estimation variable size confidence intervals,
bands and balls have received particular attention recently. For any confidence
set there are two main interrelated issues which need to be considered together,
coverage probability and the expected size of the confidence set.

One common technique for constructing confidence bands and intervals is
through the bootstrap. In this context it has been noted that intervals based on
the bootstrap often have poor coverage probability. See, for example, Hall (1992)
and Hardle and Marron (1991). Picard and Tribouley (2000) construct adaptive
confidence intervals for functions at a point using a wavelet method which achieve
optimal coverage accuracy up to a logarithmic factor although in this case the issue
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of optimal expected length is not addressed. On the other hand Li (1989), Beran
and Dimbgen (1998) and Genovese and Wasserman (2002) have constructed
confidence balls which guarantee coverage probability. Closer to the present work,
adaptive confidence bands have been constructed in the special case of shape
restricted functions. In this context Hengartner and Stark (1995) and Dimbgen
(1998) give a variable width confidence band which adapts to local smoothness
while maintaining a given level of coverage probability.

In this paper we focus on the construction of confidence intervals for linear
functionals which adapt to the unknown function. This adaptation problem can be
made precise by considering collections of parameter sgages < J}, whereJ
is some index set. For such a collection of parameter spaces the confidence interval
should have a given coverage probability over the union of the parameter spaces.
Subject to this constraint the goal is to minimize the maximum expected length
simultaneously over each of the parameter spaces.

For example, consider the simple and most easily explained case of two
nested spacesf; € . An adaptive confidence interval must attain optimal
expected length performance over bafi and & while satisfying a given
coverage probability ove# . More specifically writed, # for the collection
of all confidence intervals which cover the linear functioffgl with minimum
coverage probability of at least-2 « over the parameter spade. Denote by
L(Cl, §) = sup¢q Er(L(CI)) the maximum expected length of a confidence
interval Cl over ¢ where L(Cl) is the length of theCl. Then a benchmark for
the evaluation of the maximum expected length a#erfor any CI € {4 # IS
given by

(3) Li(F1, F)= _inf L(CI, F1).

Cledy 7
In particular, whenf; = ¥ setL’(¥) = L} (¥, ¥), which gives the minimax
expected length of confidence intervals of level r over . For convex¥,
Donoho (1994) constructed fixed length intervals centered at affine estimators
which have length within a small constant factorIgf(¥ ).

The major result in the present paper is the construction of confidence
intervals which have expected length within a constant factol pfF;, )
simultaneously over a collection of convex parameter sp&geghere¥ = UF ;.

The construction of such intervals is general and is applicable to collections of
arbitrary convex parameter spaces. It is shown in Cai and Low (2003) that in
particular cases, such as collections of convex functions, the general procedure
can be madified to yield simple and easily implementable procedures.

The main technical tools used in the derivation of the general adaptive
confidence intervals are geometric quantities, the ordered and between class
moduli of continuity which are defined as follows. For a linear functidhand
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parameter spaceg and g there are ordered moduli of continuity(e, ¥, )
associated with the Gaussian models (1) and (2) defined by

4) w(E, F,)=SupTg—Tf:llg— fll2<e; feF,geg},

wherel| - |2 is theL,(—3, 3) function norm in the white noise model (1) and the
sequence norm over the index sétin the Gaussian model (2). As we shall give
a unified treatment of both models it is convenient in the notation used throughout
the paper not to distinguish the function norm and the sequence norm. It is implicit
that for results concerning the white noise model (1) the notdtioffp always
refers to thel, function norm whereas for the sequence model (2) it always refers
to the¢, sequence norm. Wheh= ¥, w(e, £, ) is the modulus of continuity
over¥ introduced by Donoho and Liu (1991) and will be denotedugy, ¥).

For two parameter spaces and ¢ and a given linear functional’, the
between class modulus of continuity is definedase, ¥, $) = maXw (e, ¥, ),
w(e, §, F)}, or equivalently

(5) wi(e, F.§)=Sul|Tg —Tfl:llg - flla<e: feF.geG})

The between class and ordered moduli were first introduced in Cai and Low
(2002) in the context of adaptive estimation under mean squared error where they
were shown to be instrumental in characterizing the possible degree of adaptability
over two convex classeg and§ in the same way that the modulus of continuity
w(e, F) used by Donoho and Liu (1991) and Donoho (1994) captures the minimax
difficulty of estimation over a single convex parameter space

The paper is organized as follows. Section 2 covers adaptation over two convex
parameter space® and %> where the theory is most easily understood. A lower
bound based on the between class modulus as defined in (5) is given(ter, )
whereF = F1 U F5. An adaptive confidence interval attaining this bound is also
constructed by using the ordered moduli as given in (4). Various examples are used
to illustrate the adaptation theory.

More generally le{;, j € J} be a collection of convex parameter spaces with
nonempty intersections and |6t = U¥;. The goal is then to simultaneously
minimize L(Cl, #;) for confidence mtervalstl € l4 5. For each parameter
space¥;, L} (¥, ¥) provides a lower bound on the maximum expected length
over ¥; for any Cl € 4, #. In Section 3 a complete treatment is given for
nested¥;, possibly infinite in number. For any collection of nested convex
parameter spaces a variable length confidence interval is constructed which
for a given level of coverage has expected length within a constant factor of
the minimum expected length simultaneously over all parameter spaces in the
collection.

Section 4 treats the case of a general finite collection of convex parameter
spaces. A more complicated procedure results in an interval which also has
expected length within a constant factor of the minimum expected length although
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the constant factor now depends on the number of parameter spaces in the
collection. Finally in Section 5 it is shown, by example, that the rate of growth

in this constant factor as a function of the number of parameter spaces cannot in
general be avoided. In addition, the adaptation theory developed in this paper is
used to extend the minimax theory to a finite union of convex parameter spaces.
This extension is given in Section 5.

2. Adaptation over two parameter spaces. In this section we consider
adaptation over two parameter spaces. For the development of this theory, it is
convenient for a givea to provide a benchmark for the maximum expected length
over F; of confidence intervals with a given coverage probability of & over
F = F1U ¥, namely to provide a lower bound fdr, (#1, ¥) as defined in (3).

This benchmark is given in Section 2.1 for arbitrary parameter spaces.

We give a complete treatment of adaptation when the two parameter spaces
are convex. In this case adaptive intervals attaining the lower bound given in
Section 2.1 are constructed. The adaptive procedure is given in Section 2.2.
Examples illustrating the theory are given in Section 2.3.

Itis convenientto writey; =< b; whenever O< liminf a;/b; < limsupa; /b; < oo,
wherel ranges over either a continuous or discrete index set.

2.1. Lower bound on the length of confidenceintervals. The following simple
two-point Normal mean problem is the basis for a surprisingly useful general lower
bound on the expected length ofkx level confidence intervals. We shall see later
that the two-point bound is easy to apply for adaptation theory because each point
can be chosen to lie in different parameter spaces. Previous work on confidence
intervals for bounded Normal means as in Pratt (1961), Zeytinoglu and Mintz
(1984) and Stark (1992) is useful for minimax theory but it is not applicable for
general adaptation problems.

Let X ~ N (0, 02 and suppose tha@t e © = {fp, 61} wherebdy < 61. Consider
the following simple statistical decision theory problem: construct confidence
intervals Cl (X) for & which have smallest expected length unégisubject to
the coverage constraint

Py0eCl(X)>1—« forg € ®.

Throughout the paper set, = ®1(1 — «) where ® is the cumulative density
function of a standard Normal distribution. In addition writéCl) for the length
of a confidence intervall .

PROPOSITIONL. Let X ~ N(6, 02) and supposethat 6 € ® = {6, 61} where
0o < 61. Let ClI(X) bea 1 — « level confidenceinterval for 6. Then

(6) Eg, L(CI(X)) 2(91—90)<1_O‘_¢'<01_00 —Za))+

o
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for i =0, 1. Moreover there exists a confidence interval which attains the lower
bounds simultaneously for bothi =0andi = 1.

PrROOF It is clear that it suffices to consider confidence inten@léX) of
three possible formsifg, 611, {60} and {61}. The problem is then to minimize
Poy(CI(X) = [Ap, 61]) subject to the constraint®,,(Cl(X) = {#1}) < « and
Po, (Cl(X) = {6o}) < .

It follows from the Neyman—Pearson lemma that, subject to the constraint that
Po, (Cl(X) = {6o}) < «,

Pio(C1(X) = {60}) < d>(91 ~_ zo,).
Hence
EgoL(C1 (X)) = (61 — 60) Pao(CT (X) = [60. 60])
— (61— 60) (1 — Pao(CI(X) = (6)) — Pap(CI(X) = [6}))

> (01—00)<1—a - <1><91_9° —za)).

o
The bound fow; follows similarly.
It is easy to see that an interval attaining the lower boundd@nd6, is given
by

{90}7 If XSG]_—ZO[O',
Cl(X) =1 [0, 61], if 81 —zq0 <X <09+ 240,
{01}, if X >0+ zq0,
whend; — z,0 < g + z40 . Otherwise set
. 6 0
(o). it x =202,
1(X) =

Cl(X) 6o+ 61

{61}, if X> >

In this case the confidence interval always has zero length and coverage of at
least 1— . [

Based on the two-point bound given in Proposition 1 the following theorem
gives a lower bound for infinite-dimensional Gaussian models.

THEOREM1. LetO<a < % and let 1 C ¥ be two parameter spaces. Then
(7) Li(FLF) > (}—a)w (Z—“ 7 ?)
o 1, sl 2 -+ \/ﬁ’ 1,

where L} (1, ) isdefinedin (3) and w4 (e, #1, F) is the between class modulus
asgivenin (5).
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PrOOF We shall focus on the proof for the white noise with drift model (1).
The proof for the sequence model (2) is analogouseEix0. For anys > 0 there
are functionsf; € #1 and f»> € # such that

&
Tf,—Tfil> —, F1,F|)-$
72~ Thl = 04 5= 71.7)
and such that
&
— < —.
I f2— fill2 = NG
Denote byP; the probability measure associated with the white noise process
1 .
dY () = fi(t)dt + ﬁdW(t), —i<r<3i=12

Let B, = n|lf1 — f2||§. Then a sufficient statistic for the family of measures
{P;:i =1, 2} is given by the log-likelihood ratis,, = log(d P2/d P1) with

2 9
Pn
N > Bn underPs.
An equivalent sufficient statistic is thus given by

0, = THL+Tf L TfZ—Tfl.Sn

N — (ﬁ ﬂ,,) underpPy,
Sn ~

2 Bn
where
_ 2
N(Tfl, (szl‘%fl)) underpPy,
On ~ " 2
N(sz, (sz;%fl)) underPs.

It follows from Proposition 1 that for any confidence inter@l Q,,) based orQ,,,

E{L(CI(QN) = ITf— Tf1|(1— o - ¢(w B Z"‘))+

o

_ TfHo-THl
whereo = T Hence

n

EfL(CHQW) 2 ITfo~ThHI(L1—a—@(Wnllf2— fillz— ),

> (w+(% 71, }‘) . 3)(1 —a— D —20)),-

Letting s — O, it follows that for anys > 0,
&

ﬁ,?l, .?')(1—oe—d>(s—za))+.

L(CI(Qn), ¥1) Zw+<
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By the sufficiency ofQ,,, it follows that for any confidence interval € 4, ¢

&
(®) L(CI, F) > fggm(ﬁ, FLF (L - 0 - 2),.

The theorem follows on taking=z,. O

REMARK 1. Although the primary use of this theorem is for adaptive
confidence intervals, it can also be used to show that from a minimax point of view
there is relatively little to gain by using variable length intervals. In the minimax
setting Donoho 1994) showed that over a given convex parameter sgace
fixed length confidence intervals for a linear functiog with coverage of at
least 1— @ must have maximum length at Iea&b«%, F) and that fixed length

confidence intervals can be centered on affine estimators with maximum length
at most 20(22“/2, F). By taking 1 = #, Theorem 1 yields that the minimax

n
expected length of a 4 « level confidence interval over any parameter space
satisfies

T 1 lo o~
This shows that for any givea < 1/2 the optimal variable length confidence
intervals must have maximum expected length at least a fixed constant factor of the

length of the shortest fixed length confidence interval when the parameter&pace
iS convex.

2.2. Adaptive confidence interval. There are at least two natural ways to
define adaptive confidence intervals over a collection of convex parameter spaces
{Fi,i=1,...,k}. Let F = U{-‘Zl}“,-. Call a confidence intervaCl € 4, #
adaptive over the collectio #;,i =1, ...,k} if, forall 1 <i <k,

(10) L(Cl,mscma)m(z—“,f;,?),
Jn

where C; (@) are constants depending enonly. In other words a confidence
interval which adapts over the parameter spagesttains the lower bound given
in Theorem 1 for each while maintaining coverage ovefr. We shall show that
such adaptive confidence intervals can always be constructedibléimite.

It is also reasonable, in light of the minimax discussion given above, to term a
confidence intervall € {, # adaptive over the collection of parameter spages
if, forall 1 <i <k,

(11) L(Cl, ) < c,-<oe>w(%, ff)

whereC;(«) are constants depending aronly. We shall call such a confidence
interval strongly adaptive. It is clear that a confidence interval which is strongly
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adaptive is also adaptive. However strongly adaptive confidence intervals do not
always exist. Low (1997) has given examples Whefg#1, ) > L} (¥1), in

which case strongly adaptive estimators do not exist. Other examples are given
in Section 2.3 and throughout the paper. On the other hand, WjéR;, ) <

L} (¥1) strongly adaptive estimators do exist and any estimator which is adaptive
is also strongly adaptive.

In this section the focus is on adaptation over two parameter spaces where the
theory is most easily understood. For two parameter spages. ¥, Theorem 1
gives a lower bound for the maximum expected length a@erof confidence
intervals with guaranteed coverage over We now show that the lower bound
can in fact be attained within a constant factor not depending wien #; is
convex andf is the union ofF; and another convex s&b.

Let {#1, #2} be a pair of convex parameter spaces with honempty intersection
and let¥ = F1 U F5. Our first objective is to construct a confidence interval for a
linear functional f which has guaranteed coverage probability ef & over ¥
and has maximum expected length o¥arwithin a constant factor of the lower
bound given in Theorem 1, namely, for a@V € 4, #,

(12) L(Cl, F) > (% - a>w+ (% 71, fr).

The construction of the adaptive confidence interval relies on the ordered
modulusw (¢, F;, ;) as givenin (4). For ki, j < 2, set

20/2 o~ o~
a)i’j:a)<\//y_z,fj,fj).

Cai and Low (2004) give an algorithm for the construction of a linear estinfa,g,or
which has variance bounded by

1
(13) Var(T; ;) < _wzj
01/2
and bias which satisfies
(14) fig}f,i(E(fi,j) —Tf) > -0
and
(15) fseujf(E(Tl D=Tf) < 3.

We shall use the linear estimatafs; to construct a confidence interval which
has guaranteed coverage probability o#eand which also has expected length
over #; within a constant factor of the lower bound given by (26). Fef 1 and 2
define the confidence interval¥’ , by

(16) Cl%, [minz{f, — 3w}, max{TJ,+ 2co,,}}



NONPARAMETRIC CONFIDENCE INTERVALS 1813

The following result shows that the confidence interG{ , attains the lower
bound on the maximum expected length of&rgiven in (7) within a constant
factor not depending on and satisfies the constraint that it has the minimum
coverageof -« forall f € F.

LEMMA 1. Let # and %> be convex parameter spaceswith 1 N % =£ @ and
let F = F1 U F>. Let theinterval Cl ;‘-,a be defined asin (16)for j =1 and 2. Then

Cl% 4 € Lo,7 and CI; , has expected length over F; which satisfies

9 Za/2
+4}a) ( ,fF,fF)
Za/2 \/ﬁ /

Lemma 1 follows from the proof of Proposition 4 given in Section 4.1.

17) L(Clja,fj)s{

REMARK 2. Theorem 1 and Lemma 1 together show that under the conditions
of Lemma 1,

Za/2

N

Although the intervalCl] , has guaranteed coverage probability oferand
optimal expected length ovéi‘l, it may not have optimal expected length ower
because the expected length ov&r is not controlled. On the other hand, by
symmetryCl3 , has guaranteed coverage probability a¥eand optimal expected
length over¥>. By Bonferroni, the confidence intervall; = Cl7 , , N Cl5 , »
also has coverage probability of at least & and soCl, € 4, . Furthermore, it
is easy to see that it has optimal expected length over $pthnd 7> and hence
also over# . In other words the confidence inten@ll}; is a 1— « level adaptive
confidence interval ovef; and .

(18) LE(F1, F) = a)+< , 71, 37).

PROPOSITION 2. Let #1 and %> be convex parameter spaces with 1 N
Fr# @ and let F = F1 U F>. Let the interval Clj be defined as in (16) and

let Cl, =CI1, ,NCl3, 0. ThenClj isal—« level adaptive confidenceinterval
over 1 and . Thatis, CI} € 4, 7 and for both j =1 and 2,

(19) Ly(F;, F) < L(Cl,, ;) < C(a)Ly(F;, F)
where C(«) is a constant depending only on «. Consequently L(Cl}, ;) <
w (2. Fj. F).

REMARK 3. Itis shown in Cai and Low (2004) that the ordered modulus is
concave. It follows that, ib > 1, then for alle > 0,

w4 (be, F,§) =maxXw(be, F, §), o(be, G, F))
(20) <maxbo(e, F,§), bw(e, §, F))
<bwi(s, F.9).
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It then follows from the bounds given in (7) and (17) and inequality (20) that the
constantC(«) in (19) can be taken as

C(a) = M
(1/2 - a)zq

2.3. Discussion. In nonparametric function estimation the goal of adaptive
estimation is often framed in terms of achieving optimality results simultaneously
over a collection of parameter spa¢és}. The benchmark for success is given by
how well one could do if the parameter space is completely specified. We termed
any such confidence interval strongly adaptive.

So far, attention has focused on constructing adaptive confidence procedures
which attain the lower bound on expected length given in Theorem 1. This bound
gives the best one can do in this adaptive confidence interval problem. The lower
bound however may differ quite dramatically from the minimax expected length
if the parameter spacg; is prespecified. In particular suppose, as is common,
that the between class modulus of continuity is Holderian. That is, the modulus
satisfies

a)+(8,$’,-,}‘j):C,-,jeq’F/(l+0(1)), 1<i,j<2,

for some constant€’; ; > 0 and O< ¢g; ; < 1. Such is the case in the examples
given in Section 3.2 and also in many other commonly treated problems. When the
modulusw; (e, ¥, §) is Holderian writeg (¥, ) for the exponent of the modulus.
That s,

wi(e, F,G) = e?F9)

Also setq($) =q(%, ).
Without loss of generality, assung€#1) > g (F2). Throughout the remainder

of the paperC is used to denote a generic constant which may vary from place

to place and seF = F; U #». Note thaty (1, F) = min{g(F1), q(¥F1, F2)} and

q(F)=min{q(F1), q(F2), q(F1, F2)}. In this setup strongly adaptive confidence

intervals exist if and only if (£1, ) = g (1) or equivalentlyy (1) < q(F1, %2).
There are four cases of interest.

Case 1. ¢(F2) < g(F1) < g(F1, F2). In this caseq(F1, F) = g(¥F1) and
strongly adaptive confidence intervals exist. These intervals have maximum
expected length which can attain the same optimal rate of convergence as the
minimax confidence interval over knowf. Specific shape restricted examples
are given in Section 3.2 which illustrate this case and more general theory.



NONPARAMETRIC CONFIDENCE INTERVALS 1815

Case2. q(F1, F2) =q(F2) < q(F1). Inthis casey(F1, F) < g(F1) and thus
strongly adaptive confidence intervals do not exist. Adaptive confidence intervals
of level 1— « over 1 and #> have maximum expected length ov&r which
satisfies

1 Zu
21 LClL,F)>(=- R F ) =n 152,
(21) ( 1)_(2 Oé)w+(ﬁ 1 ) n
In contrast, if it is known thatf € #1, 1 — « level confidence intervals can be
constructed which satisfy
L(Cl, 1) < Cn—1F0/2 < Cn—9%F)/2,

Hence from this point of view the cost of adaptation is substantial. The rate of
convergence of the maximum expected lengtBlobver #; is the same as that for
the maximum expected length over.

ExamMpLE 1. Consider estimating the linear functiondlf = f(0) over
Lipschitz classes based on the Gaussian observations given in (1)<Fgr01
and—% <a<b< % the Lipschitz function class over the interyal 4] is defined
as

F(B, M, [a,b])
={f:[-3. 3] >R If0) - fO < M|x —y|? forx, y €[a, b}

It is also convenient to writé (8, M) for F(B, M, [—3, 31).

(22)

Let 0< B2 < B1 <1, set¥ = F(B;, M) for i =1,2. In this case standard
calculations as, for example, outlined in Cai and Low (2002) showuilat#;) =
Ce?P/ChHD (14 0(1)) andw (e, F1, F2) = Ce2P2/ P41 (1 4 o(1)). Hence

22 261

<qg(F) = .
211 1V 5

q(F1, F) =q(F1, F2) =

Case 3. ¢(F2) < g(F1, F2) < g(F1). In this caseq(F1, F) < q(F1) and
strongly adaptive confidence intervals do not exist. Any & level adaptive
confidence intervall over %1 and %2, must have maximum expected lengthGhf
over ¥, satisfying

(23) L(Cl, F1) > (} - a)a)+ (Z—“ F1, ;t) =n " 10LFD/2 5 yma(FD/2,
2 Jn

The cost of adaptation in this case is that the rate of convergence of the maximum

expected length o€l over 7 is slower than that if it is known that € %1 but

faster than for the maximum expected length a#er An example for this case

can be given as follows.
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EXAMPLE 2. Suppose that the white noise with drift process (1) is observed
and that the linear functiondlf = f(0). Let the Lipschitz clas#' (8, M, [a, b])
be defined as above and I€t be the set of all decreasing functions Dn% %].
Set

Fp(B1, M1, B2, M) = F(B1, M1,[—3,0]) N F (B2, M2, [0, 3]) N D.

Let 1 = Fp(y1, M1, y2, M2) and ¥2 = Fp(B1, N1, B2, N2) with 1 > y1 > yp >
B1 > B2 > 0. Then as in Cai and Low (2002) it is easy to check that

w(e, F1) = CeV @D (14 0(1)),
w(e, F2) = Ce2P/CP+D (1 4 (1)),
w(e, F1, F2) = Ce?2/ @24 (11 0(1),

w (e, Fa, F1) = Ce2V/ @D (14 o(1)).

(24)

Note that in this case (e, 1, £2) # w (e, F2, F1)(1+0(1)). Sincey1 > y», itthen
follows from (24) that

2y2
,-\.,’3:., — r\"r" — .
q(F1, F) =q(F1, F2) a1 1

Hence O< qg(F2) < q(F1, F) <q(F1) < 1.

Case 4. ¢g(F1, F2) < q(F2) < q(F1). In this case, strongly adaptive confi-
dence intervals do not exist and the cost of adaptation is extraordinafyislf
known to be in%;, one can attain the rate of convergenée™/? for the maximum
expected length of the optimaH.« level confidence interval ovef;. Without the
information 1— « level adaptive confidence intervals ov&r and > must have
maximum expected length ovét at least of orden—4F1.¥2/2_ An example is
given below.

ExamMPLE 3. Once again consider the white noise model vith= £ (0).
Let

and consider < y» <y <1 and O< B1 < B2 < 1. SetF1 = F(y1, M1, y2, M>)
and #> = F(B1, N1, B2, N»). Standard calculations show thaé(e, 1) =

Ce2/@itD (1 4 0(1)) and w(e, F2) = Ce?P2/PtD (1 4 o(1)). The between
class modulus is given as

(25) w(e, F1, F2) = Ce?/ 2D (14 0(1))

wherep = maxmin(yz, 1), min(y2, B2)).
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Wheny1 > B2 > B1 > y», the quantityp in (25) equals3; and hence
__2h

21+ 1
Therefore in this casg(F1, £2) < min(g(F1), g(F2)).

q(F1, F2)

3. Adaptation over nested parameter spaces. Section 2 gave the adaptation
theory for two convex parameter spaces. This theory can be extended to more
general collections of parameter spaces. In this section the focus is on adaptation
over a collection of a finite or countably infinite number of nested convex
parameter space$; C > C --- C F, where in the case &f = oo, F5, denotes
U241 . The objective is, for a given linear function&lf, to construct variable
length confidence intervals which have coverage probability of at leasix1
over ¥, and which simultaneously minimize the expected length over each of the
parameter spaces;. A target for these expected lengths has been provided by the
lower bound given in Theorem 1, namely

(26) Lo(Fj ) = (%—Ot)m(%,f/,?k)
wherew (e, ¥}, i) is the between class modulus as given in (5).

The major result of this section is to show that adaptive confidence intervals
exist and to construct such adaptive intervals. As in Section 2.2 the construction of
these adaptive confidence procedures relies on the ordered magulug;, F;)
as givenin (4). For ki, j <k setw; ; = w(z"—/j, Fi, ¥j) and Ietﬁ-’j be linear
estimators with variances and biases bounded as in (13)—(15).

The confidence procedure is built in two steps. In the first step for each
1<j <k an interval is constructed which controls the coverage probability
over F; and which also has expected length o¥grwithin a constant factor of
the lower bound given by (26). In the second step these intervals are combined to
create a single interval which maintains coverage while simultaneously attaining
an expected length over evefy within a fixed constant factor of the lower bound
given in (26).

For the first step define the confidence inten@ll; as follows. For 1< j <k

Sﬁ%=wﬂ%%j}?Ddeﬂm£Wby

f’k + fk, j 2 7
c@:[i—?—i—ﬂnk—ﬂﬂ++%ﬂ
@7) .
Tjp+ T, - 2
% +{(Tjx — Tk, j)+ + 251'}]'

Lemma 2 shows that these intervals have guaranteed coverag&oeed near
optimal expected length over;.
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REMARK 4. This interval is designed forQ @ <0.2. If 0.2 <« < 0.5 all
subsequent results hold with minor modifications, as noted in later remarks, when
the interval is replaced by

J

5 —{(Tjx — Te. )y + 355},

(28) . .
Tik+ Tk, A N
% +{(Tjx =T, )+ + 3%‘,‘}]
LEMMA 2. For O<a <0.2, the confidence interval CI* defined in (27) has
coverage probability of at least 1 — a for all f € # and SatISerS

1 1
L(CI}, ¥j) < {2<D< Zot/Z) \/_Z P<—§Z§/2) +4} &)
/2

Za/2
§8a) ( ?,fk)
\/_ J

REMARK 5. For Q2 < a < 0.5 the interval given in (28) satisfies the same
coverage but has expected length bounded by@@%z Fi, Fr).

In the following proof, and throughout the rest of the paper, wHtdor a
standard Normal random variable.

(29)

PROOF OFLEMMA 2. Lemma 2 gives a bound on Inatoverage probability
and expected length. First consider coverage probability. It is easy to see that the
mtervaICI* contains the interveCl ; defined as

(30) Clj =Ty —2¢, Tjx + 251

where the intervalCl ; is taken to be the empty set whenever the left endpoint
of the above interval is larger than the right endpoint. First note thaf fer#;,
ETy;—Tf < 3w andthatET; x — Tf > —3w; x. Let

Tvj—Tf — (/2w

Zk, i — )
! Wk, j/Za/2
= Tix —Tf + (1/wj
- Wjk/Zaj2

Then for any f € #; it follows from (14) and (15) that; ; has a Normal
distribution with mean less than or equal to zero and variance bounded by 1,
andz; has a Normal distribution with mean greater than or equal to zero and
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variance bounded by 1. Note thigt= max(wy, ;, w; ). Hence forf € %,
P(Tf ¢CI}) < P(Tf ¢Cl))

o 2)wn) (s (-2l )

<P i 2> — — Plzig=>|-2 —

= (Zk,, >< o 2 Za2 |+ P\ 2jk = Dik + 5 Za/2
3

<2P (Z > EZoc/Z)-

Note that for a fixed. > 1, itis easy to verify thag(z) = P(Z > rz)/P(Z > z) is
a strictly decreasing function affor z > 0 and fora = 0.2,

2P(Z > %Za/z) <%a

Hence,P(Tf ¢ Cljf) < %a and so the claim of the required coverage probability
has been established.

Now turn to the bound on expected length given in (29) for which the following
technical lemma is needed.

LEMMA 3. Let X ~ N(u,o?) With,uguoand0<cr<cro Then
(31) EX1(X > 0) < ,uo<D< ) +— exp( )
200

PROOF. It is easy to check by taking partial derivatives tli&X1(X > 0) is
an increasing function of botha ando . Hence

E,oX1(X > 0)
< Eup.opX1(X > 0)

1 o0 — 10)?
v 2mog Jo 20
1 o & — 110)? )
= ex dx +—/ xp(——)d
\/27100/0 Ho 20, 2 2 uo/aoy 2 Y

() {13, :

Now note that forf € ¥,

A A A A 4
E(Tjx—Tij) <& and Va(Tji— Tr;) < &7,
Zot/2
and so from Lemma 3 it follows that

A A 1 1
(B2) E(Tjx—Ti )+ < { < Za/Z) «/Eza/z p(—ézg/z)} &) <2
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and hence (29) is satisfiedd

Lemma 2 shows that the intervﬂl;" has guaranteed coverage o and

near optimal expected length oveT;. Before turning to the construction of an
adaptive confidence interval we state a simple preliminary lemma. The proof is
straightforward and not given here.

LEMMA 4. Let 0 < & <& < --- < & be a sequence of monotonically
increasing positive numbers. Then there exists a unique subsequence &, < &;, <
- <& with j,, =k, suchthat for all 1 <i <m,

(33) Sji > 2$ji_1 and Eji < 2&‘]' forall j;_1<j <
wherewe set jo=0and & = 0.

The construction of the adaptive confidence interval proceeds as follows. Once
again for 1< j <k, set§; = w+(z°‘7/nz, Fi, Fr). Leté; <&, <--- <&, bethe

subsequence satisfying (33). Lebe the index of the shortest interval among all
theCl 7} for 1 <i <m. More precisely,
j=argminL(Cl*%).
Ji1<i<m
Then the adaptive confidence interval fof is defined by
(34) Cl* = CIE.

The following theorem shows th&l* is a 1— « level adaptive confidence
interval over the collectioff;, j =1, ..., k}.

THEOREM 2. The confidence interval CI* defined in (34) has coverage
probability of at least 1 — « for all f € #, thatis, CI* € 4,5 and satisfies

T . q T 16Z 2 T. q
(35) L;‘,(fj,msL(CI*,f]-)s(l/zf“g%L;(fj, 0
simultaneoudly for all 1 < j < k. Moreover,
* g Za/z
(36) L(CI ,fjl)§8a)+<ﬁ,.¢h,.¢k)
forall 1<i <m,andforall 1< <k
(37) L@*, F}) < 1%(%’ 7. 7).
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The proof of Theorem 2 rests on the following important technical lemma.
Recall that Lemma 2 gives a lower bound on coverage 8yemnd an upper bound
on expected length ove¥;. Lemma 5 shows, in a precise way, thaCiI]’." has a
large expected length it must have high coverage probability.

LEMMA 5. If f € F and

P(Tf ¢ CI%) > 2P(Z > 30.+ 3)z4/2),
then
E(Tj — Ty ;) < A&j.

PrROOE First note that

f',k + f"k, i A A
P(rs ¢ Ol < p(1f < TR (dyy - i+ 2 )
f"',k + f"k, i S S
+ P(Tf > % + (Tjx—Ti,j+ 25,-))-
Now note that

fj,k + fk,j
2

1 1 . A 1 1 . N
—Efj—EE(Tj,k—Tk,j)SE _Tf§§§j+§E(Tj,k—Tk,j)-

Let X = w —Tf — (T;x — Tr.j + 2£,). Suppose that

E(Tjx —Trj) > 1§

Then
4
E(X)<-3(+3)§ and VarX)< &7
Z01/2
Hence
Tjx+ Tk A A
P(1s =242 — (dyy— Ty +26) ) = P(X 2O
1
§P<Zzza+3kwa.
Similarly
Tiv+Te: . 1
P(Tf > kT kS + (T, — Tk, j + ZS]')) < P(Z > Z()\ +3)Zo¢/2).
Hence,

P(Tf ¢ClI%) <2P(Z = (A + 3)za2). 0
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PrROOF OFTHEOREM 2. Note that it suffices to prove (36) since (37) follows
immediately from (36) and (35) is a direct consequence of (20), (7) and (37).
For (36) assume without loss of generality tifat> 2&; 1 for all 1 < j <k;
otherwise we can work along the subsequence. First note that Glricis the
shortest of all th€l; confidence intervals Lemma 2 yields that the expected length
of CI* satisfies

L(CI*, F)) < L(CI%, %))

1 4 1
20 (2 T exp(—222,) 4l
(38) < f20(Geur2) + = o ~5222) +4] &)
<8&;.

Now turn to the proof of coverage. Note that

k
P(Tf¢ClI*) =Y P(Tf¢Clinj=))
(39) ’:1
<> min{P(Tf ¢ CI%), P(j =)}
j:l

For I > 0, denoted(l) = 2P(Z > %(l + 6)zq/2). Note thatd(0) = 2P(Z >
3242) < 0. Forl > 1let

(40) Ar={j1d() < P(Tf ¢CI}) <d(l - 1)}

and letj (/) = min{j:j € A;}. Note that it follows from Lemma 2 that), A; =
{j > 1}. Then by Lemma 5

(41) E(Tiox — Tejo) < (4 3)E0)-

Note that Va(f,-(,),k — fk,‘,-(z)) < Zziéz, SO
/2

P(L(CI% ) > 4p€50) = P(Tjapx — Tejoy > 2(0 — D)
< P(Z=(p—3~31)z0s2)-
Since&; > 2¢;_4, it follows that, for any integem > 0,
P(j=j)+m)< P(L(CI% ) > 45 @)+m)
< P(L(CI5q) > 4-2";0)
<P(Z=(@2"—3-3)22)

=VYim-
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Let j, =min{j():1<!<8}. Form=3and 1<! <8,y = P(Z > 3(11—
Dzay2)- It ji=j(1), then
k ~
Y min{P(Tf ¢Cl%), P(j = j)} <d(0) +d(0) +d(0) + y13
<%+ P(Z>5z402).
Similarly, if j, = j(I) for some 2<[ < 8, then
k
Y min{P(Tf ¢Cl%H), P(j=j)} <dl—1)+d(0)+d©0) + .3
J=Jx
<8+ P(Z>5z402).
Hence
k

(42) Y min{P(Tf ¢ CI%), P(j = j)} < S+ P(Z > 524/2).
The following simple lemma can be used to bouh@ > 5z,2).
LEMMA 6. LetZ~ N(0,1) andlet a > 0 and b > 0 be two constants. Then

P(Z >a+b) <exp(—(ab+ 3b%))P(Z > a).

Applying Lemma 6 witha = z,/2 andb = 4z, it follows that
P(Z 2 524/2) = P(Z = zaj2 + 420/2)

< exp(—1222,5) % = o

Therefore

k
P(Tf ¢CI*) <> min(P(Tf ¢ CI%), P(j = j))
j=1

<Ba+> Y min{P(Tf ¢Cl%), P(j =)}
=9 jeA;

Forl > 9, letm; be the smallest integer satisfying!2> %(3[ + 7). Thenm; <
log,(3/ + 7) — 1. Recall that forj € A;, P(Tf ¢ CI*;) <2P(Z > ;11(1 + 3)za/2)-
Now note that ‘

P(j=j0)+m) <yim < P(Z= 31U+ 3z2).
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So, forl > 9,
Y min{P(Tf ¢ Cl%), P(j = j))
JEA;
<my-2P(Z > 31+ 3)zas2) + Viom
<@2m+1)P(Z=> %l(l +3)2q4/2).
So

> > min{P(Tf ¢ClI%), P(j = )))

=9 jeA;

o0

<> (21063 +7) — 1) P(Z = 2 + 3)z402).
=9

Lemma 6 yields

1 1
P(z > L0+ 3>za/2) < P(z = 2t - 1>za/z)
1 1 o
(a1 —1—12)2>.—.
sexp( (4( )+32( )" )2a)2 5

> > min{P(Tf ¢CI%), P(j = )))

=9 jeA;

5%2(2Iogz(31+7)—1)exp( < (l—1)+—(l—1) )Za/Z)

1=9
a & Zg/z 2 Z5/2

<= 2log,(3/ +10) -1 ——=1 ——=1).

= g( 0g,(3/ + 10) )exp( 3 )exp( 2 )

It is easy to see that fdr> 8, (21log,(3/ + 10) — 1) exp(— (za/2/32)12) is strictly
decreasing and

Hence,

2

z 1
2100,(3 + 10) — 1 —“—/212) -
(210g,(3! + 10) — 1) ex e

So,

Zme{P(Tf¢C| Y, P(f=j)) < erexp( ‘{zl)fﬁa.

=9 jeA
Hence,
* 13 1., _
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3.1. Adaptation over nearly nested parameter spaces. In some common cases
of interest such as Holder spaces, Sobolev spaces and Besov spaces, the parameter
spaces are not exactly nested, but have nested structure in terms of the moduli of
continuity. Theorem 2 can be generalized to such nearly nested parameter spaces.
Denote by CHull () the convex hull of a parameter s&t Let #;,i =1, ..., k,
be convex parameter spaces and for any integerml < k let §,, = UL, F.
Suppose the following condition, wdh is trivially satisfied if#; are nested, holds.

CoNDITION C. For 1< j <k and some constant > C1 > 0,
w(g, C.Hull(§ ), C.HUll($x)) < Ciw(e, . Gi) < Cow (e, Fj, Fi)
and
w(e, C.HUll(x), C.Hull(gj)) < Ciw(e, Gk, $j) < Cow(e, Fi, Fj)
forall0 < ¢ < ¢q.

Similarly to the nested case for4d.i, j <k, seta)lf’j = w(%,C.HuII(gi),
C.Hull(4,)), and once again Cai and Low (2004) give a construction of linear
estimatorsfifj which have variance bounded by

;) 2
2 2 %ij
a/2

Var( )=

and bias which satisfies
flnf (E(T ) —Tf) = 30!

and

SUp(E(T} ;) — Tf) < 30;
feFi

Set&) = a)+(z°‘/2 C.Hull(g), C.Hull(4x)) and define the confidence inter-
vals CI as earller When & « < 0.2, let

o [Tt T
o = | R~ ((Fa— B e+ 255,
(43)

T/

Jk+T/

(T~ T+ 26
and when @ <o < 0.5 let
T, + 1T, . R
Oy =[S (= T e+ 3
(44)

T/

Jk+T/

T - T+ 31|



1826 T. T. CAIAND M. G. LOW

Following the argument given in the nested casef}eibe a subsequence 9}

satisfying (33) and letj = arg min;, 1<i<m L(CI ) be the index of the shortest
interval along the subsequence and define the adaptive confidence intefl for

by
(45) Cl*=Cl j;.

As stated precisely in the following result this confidence interval is adaptive over
the parameter spacés;:j=1,...,k}.

PrROPOSITION 3. Suppose Condition C holds. Then the confidence inter-
val CI* defined in (45) has coverage probability of at least 1 — « for all f e
= U’;Zl F; and satisfies the lower bound on expected length,

(46) Ly(F;, F) < L(CI*, F)) < C(a) L, (¥}, F),
simultaneously for all 1 < j <k, where the constant C(«x) only depends on «

and is independent of k. In other words, L(CI*, #; w+(z°‘/2 F;, F) for all
l<j=<k

We omit the proof of Proposition 3 since it essentially follows a similar path to
that of Theorem 2.

3.2. Examples. Theorem 2 and Proposition 3 have established general adap-
tation results for collections of nested or nearly nested parameter spaces. In this
section a couple of examples are given which illustrate this general theory.

Suppose that we observe the white noise with drift process (1) and that the linear
functional is point evaluation. For convenience tgdké= f(0). Let D be the set
of all decreasing functions o-3, 3] and letFp (8, M) = F(B, M) N D be the
collection of monotonically decreasing Lipschitz functions whe(@, M) is the
Lipschitz class defined in (22).

Forintegerj > 1 letM; = 2/(2/3”)% and letg = U, Fp(B. M;). Standard
calculations as in, for example, Donoho and Liu (1987), yield

w(e, Fp(B, M), ) =w(e, §, Fp(B, M))

(47) — (28 + 1M @D g1/ @B +D) ;28/(2+)

for M > (28 + 1)Y/?%. Let&; = w(z—/; Fp(B, M), $). Then itis easy to see that
¢;+1 = 2£; and hence the adaptive confidence interval given in (34) has coverage
probability overg of at least 1- « and satisfies

1/(28+1) 28/(2B+1) —
Furthermore, for anyf > 0,

(49) L(CI*, Fp(B. M)) < 12(2p + 1Y @P+D Y/ @5+D 20/ 4D, =p/ 25+
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for all sufficiently largen.

Another common problem in function estimation is to adapt over smoothness
classes. For fixedf > 0, the classe&p(y1, M) C Fp(y2, M) whenever O< y» <
y1 < 1. Let§’ =Uo<, <1 Fp(y, M). Then once again standard calculations yield

w(e, Fp(B, M), §) =w(e, §', Fp(B, M))

(50) (2B + 1Y/ @BHD g 1/@5+D) 2/ B+D).

Now let 1= 1 > B2 > - - - be the sequence such that

Za/2 /2
CU-&-(%,FD(ﬂj-&-l, MW’)=2w+(ﬁ,FD<ﬂj,M>,g/).
Then the adaptive confidence interval given in (34) has coverage probability
overg’ of at least 1- o and satisfies

L(CI*, Fp(B;, M))

51
(51) <6(28; + 1)1/(2/3j+l)Ml/(Zﬁj-i—l)Zi/jé/(zﬁj+1)n—ﬁj/(2ﬁj+l)'

Furthermore, forany & g <1,
* < 1/(2B+1) 2 s1/(28+1) 28/(2B+1)  —B/(2B+1)
(52) L(CI*,Fp(B,M)) <1228+ 1) M 2g/2 n

for all sufficiently largen.

4. Adaptation over a general collection of convex parameter spaces.
Section 3 focused on collections of nested parameter spaces. It has been shown
that the between class modulus of continuity completely characterizes the optimal
expected length of adaptive confidence intervals. One particularly interesting
feature of the nested case is that the optimal expected length of the confidence
intervals does not depend on the number of parameter spaces in the collection.

The nested case, although interesting, is somewhat special. In this section
general finite collections of convex parameter spaces are considered. In this general
setting the theory is more complicated and in general the number of parameter
spaces, sa%, may also play a role in the optimal expected length of adaptive
confidence intervals. For a fixed and finite number of parameter spaces the optimal
expected length of adaptive intervals is still within a constant factor of the between
class modulus of continuity. However the constant factor in this case can depend
on the number of parameter spaces. We construct adaptive confidence intervals
which show that this constant factor does not grow faster tfilmg k and we give
an example which shows that this factor is sometimes necessatry.

Let {¥;:j =1,...,k} be a collection of convex spaces with nonempty
intersections, that isf; N ¥; # @ for all i, j. The objective is to construct
an adaptive confidence interval for a linear functiofigl which has guaranteed
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coverage probability of + « overg = U’jzl F; and rate optimal expected length
over each of the parameter spaégs

The adaptive confidence interval given in this section differs substantially from
that given in the nested case. However, the general strategy for constructing
adaptive confidence intervals in this setup is similar to that of the nested case.
In particular, a key step is to first construct an interval which has optimal expected
length over one of the parameter spaces while attaining coverage probability over
the union of the parameter spaces.

4.1. Constrained optimal expected length confidenceintervals. As mentioned
above, it is convenient to construct a confidence interval which has shortest
possible expected length over a givEn while maintaining coverage probability
overg = U];':l F;.

First note that for any confidence inten@ll € 1, g, Theorem 1 yields a target
for the expected length

(53) L(Cl, %)) > (%—a)m(%,?j,g).

As in Section 2.2, for ki, j <k setw; ; = w(“—ﬁ, i, ;) and Ietﬁ-’j be a

linear estimator which has variance boundedz-j%ywizj and bias which satisfies
aj2

i I 1
(54) flg’.f(E(E’j) —Tf) =z —5wi,
and
(55) Sup(E () — Tf) < 3.
feFi

As a first step in the construction of adaptive confidence intervals, c@fmge
by

(56) Cl%y= [”}i”{fi,j — 3wi}, ml_ax{f,-,,- + %a)‘,-,,-}].

The following result shows that this confidence interval attains the lower bound
on the maximum expected length ov&r given in (53) and satisfies the constraint
that it has the minimum coverage of-lx for all f € §.

PROPOSITION 4. Let #;, j =1,...,k, be convex parameter spaces with
FinFj#oforali, jandlet § = U’;zlf‘j. Lettheinterval CI% , be defined as
in (56). Then CI% , € Jq.g and CI7 , has expected length over ¥; satisfying

{ 8log(k + 1) +4z4)2
(1/2 — )2y

(57) Ly(F;.9) <L(Cl},, Fj) <

]’ -

| L. 9.
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REMARK 6. It follows from (59) that the expected length of the confidence
intervalCl */f,a is rate optimal aa — oo as long a% remains fixed.

PROOF OF PROPOSITION 4. First consider the coverage probability of the
interval CI* . Supposef € F,, for some 1< m < k. Note that the intervaCl ;‘-,a
contains

A

Clm,j = [Tm,j - %a)m,ja fj,m + gwj,m]-
The derivation below shows that the inteng@ll,, ; has correct coverage proba-
bility. First note that forf € %, ET,, ; — Tf < 3w ; and thatET; ,, — Tf >
—%a)j,m. Let
T, — Tf — (12w,
Om,j/Zaj2
Tim—Tf+ Q/Dwjm
wj,m/Za/Z

Then for any f € %, it follows from (54) and (55) thatX,, ; has a Normal
distribution with mean less than or equal to zero and variance bounded by 1
andX; ,, has a Normal distribution with mean greater than or equal to zero and
variance bounded by 1. Hence, fére %,,,

P(Tf € C|;ﬁ-’a) > P(Tf e C|m,j)
= P(Xm,j = —Za/2 andX/' m = Za/Z)
>1- P(Xm,j =< _Za/Z) P(Xj m Z Zot/Z)

>1—a.

Xm,j=

’

Xjm=

Soforanyf € §, P(Tf € Cl; ) = 1—a and thus coverage has been established.
The bounds on the expected length of these intervals can now be obtained by
using the following technical lemma from Dudley [(1999), pages 56 and 57].

LEMMA 7. LetXq, Xo,..., X benormally distributed randomvariableswith
mean 0 and variance < 2. Then

4+ log4

12
log(k +1).
g<3/2)) viog(k+1)

(58) E max|X | <a<2+

1<i<

Let
b4
£ =w+(3%2 Fj, g,) = max{e; j, ;.
It is easy to see that the length of the mtel@a’;ﬂ is bounded by

L(Cl} o) =maxTy; — Tf)4 +maxTf — T j); + 3¢;.
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Now note that iff € ¥}, then for anyi # j,
aj; =ET;; —Tf) < %wj,i
and
bij=E(Tf = T; ) < joi .

Also note that for any real numbersandy, (x + y)+ < (x)+ + (¥)+. So for
f € F; the expected length @! j‘a satisfies

EL(CI},) < Emax(T;; — Tf)y + EmaxTf — T, j)y + 3
< E(mia><{(aj,i)+ + (fj,i -Tf— aj,i)+})
4 E(ml,a><{<bl-, Dot (@ —TF—b; ,~>+}) 13

< E(miax(fj,i ~Tf- aj,i)+) + E(miax(fi,j —~T; - bi,j)+) +4§;.

It then follows from Lemma 7 that

. 2 (. 4+log4\t? .
Ef(L(Cl j,ot)) < @S] (2+ W) v/ |Og(k + 1) +4€]
- {8./Iog(k+l) +4}%_j
Za/2

and it follows by taking the supremum ovejy; that

(59) L(Cl% . F)) < {87V log(k+ 1) +4}w+<ﬂ, 7, g)
’ Za/2 \/ﬁ

The proposition now follows by combining (20), (7) and (59

4.2. Adaptive confidence intervals. The intervalsCl; , constructed in the
last section have near optimal expected length dvetbut do not control the
expected length over other;. In this section adaptive confidence intervals over
{F;:1<j <k} are formed by intersecting such intervals. For a fixgdhe
resulting interval has rate optimal expected length over every parametergpace
forall 1 < j < k. A Bonferroni approach is applied to the intervals of Section 4.1
to yield an adaptive confidence interval.

More specifically, define the confidence inter@t by

k
(60) Cl* = ﬂ Cl% ok
j=1
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whereCI* are given in(56). The following theorem shows that this confidence
interval has guaranteed coverage probability and also has near optimal expected
length over¥; for each 1< j <«k.

THEOREM 3. Let F;, j =1,...,k, be convex parameter spaces with #; N
Fi#oforali, jandlet § = U’;Zlf‘j. Let theinterval ClI* be given asin (60).
Then CI* € 4,,¢ and CI* satisfies

1224 2k

61) La(F5.§) = L(Clo, ) = 5= -

Ly (%, 9)
forall 1<j <k.

PRoOF The results follow easily from Proposition 4. For anye g,
Proposition 4 shows that

P(TfeCl% ) > 1-2 T
Hence, for anyf € 4,

P(TfeCl*y=1—P(Tf¢Cl*)>1— ZP(Tfe,éCl* )>1—a.
j=1

For the expected length note that

LI, F}) < L o 1, F)) < {87”09(1‘“) +4}w+<z“/2k, Fj. 9)

Za/2k \/ﬁ
forany 1< j <k. For O< a < 0.5, calculations show that
Viogk+ D _ 1
Za )2k -
and hence
2a/2k -
(62) L(CI*, f])<12w+< N fj,g)

The theorem now follows by combining (7), (20) and (621

REMARK 7. It follows from Lemma 6 that, x < /zzilogk+l  Za)2-
. /2

Hence it follows from (62) and (20) that

L(Cl*,}‘j)§12w+< £ logk+1.%2 & )
01/2 \/_

Za/2 -
<12/—Iogk+1 a)+( ,fj,g,).
a/2 \/ﬁ
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The ratio of the upper bound just given to the lower bound in (53) is thus clearly
bounded by a constant multiple gflogk.

Section 5.2 gives an example of a nearly black object which shows that this
J/1ogk factor cannot in general be improved.

5. Minimax confidence interval for nonconvex parameter spaces. As
mentioned in the Introduction, Donoho (1994) constructed for any convex
parameter spacf fixed length intervals centered at affine estimators which have
length within a small constant factor of the minimax expected lerdgh#).
Although the focus of the present paper is on adaptation the adaptation theory
developed in the previous sections can also be used to yield a minimax theory for
parameter spaces that are finite unions of convex parameter spaces. In this section
confidence intervals with a specified coverage probability are given which also
have near optimal maximum expected length. It is also shown, in contrast to the
theory for convex parameter spaces, that optimal confidence intervals centered on
affine estimators can have expected length much longer than the expected length
of optimal confidence intervals centered at nonlinear estimators.

LetF,i=1,...,k, be convex parameter spaces WihN F; # o for all i, j
and letg = Ule Fi. Note that the parameter spggés in general nonconvex. The
minimax expected length of confidence intenv@lse 1, ¢ can be bounded above
and below as follows.

Set O< o < % and letCl be a 1- « level confidence interval for alf e
g = Uf.‘zlf',-. It follows from Theorem 1 that the maximum expected length of
Cl € 44,4 is bounded below by

(63) L(Cl,§) > (% —a)w(%, g)

Upper bounds on the minimax expected length can be obtained by considering
the confidence intervdll * as defined in (60). As shown in Theorem 3 this interval
has coverage probability of at least-lx over§. In addition, it follows from (61)
that the maximum of the expected lengthQif overg satisfies

L(CI*,4) = max L(CI*, Fj)
1<j<k

o/2k o
© =12, (77 73:9)

Za/2k
=12w , 6.
( NG 9‘)
Hence, (63) and (64) together yield the following result on the minimax expected
length of 1— « level confidence intervals ovér.
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THEOREM4. Letg = Uﬁzlﬂ, wherefor j =1, ...,k ¥; are convex spaces
with nonempty intersections and suppose 0 < o < % Then

(65) (%—a)w(%g) §L§(g)§12w<zi’//;k,g>.

Hence, the confidence inten@l * attains the optimal rate of convergence for
the maximum expected length over the parameter spaceisen the number of
convex subspaces is fixed and finite.

The example of confidence intervals in Section 5.2 for a linear functional of
nearly black objects shows that the factorzgf =< /logk in the upper bound
of (65) cannot be dropped in general when the nunibef convex subspaces
grows withn.

5.1. Confidence intervals centered at affine estimators. We now consider the
performance of confidence intervals centered at affine estimators over nonconvex
parameter spaces. As mentioned earlier, when the parameterSpaassumed
to be fixed and convex, Donoho (1994) and Theorem 1 given in Section 2 together
show that the length of the shortest fixed length confidence interval centered on an
affine estimator is within a fixed constant factor of the maximum expected length
of the optimal confidence interval. Hence there is relatively little to gain by looking
beyond the class of fixed length confidence intervals centered on affine estimators.

The following theorem considers the case when the parameter space is
nonconvex. Once again let.lQull(¥) denote the convex hull of a parameter
spacef .

THEOREM5. Consider the white noise model (1) or the sequence model (2).
Let 7 be an affine estimator of 7/ and y > 0 a nonnegative random variable. If
Cl=[T —y, T + y] isa (variable length) confidence interval centered at 7 and
Cl € 44 7, then

22&/2
Jn
where C(«) > 0isa constant depending on « only. In particular, if the interval Cl

is of fixed length, then

(66) LCI,F)=> C(a)w( ,C.Hull(}'))

2201/2

N

(67) L(Cl) > %w( ,C.Hull(fF)).

PROOF Itis shown in Cai and Low (2004) that the affine estimdtmsatisfies

SUp|ET —Tf|= sup |ET —Tf].
feF FeC.HUll(F)
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It then follows from Theorem 2 of Low (1995) th@tmust satisfy either

. 1 /2
(68) Sup|ET 712 Zw( %Z, C.HuII(?))
€
or
1 /2
(69) o> mw( %Z’ C.Hull(}‘)),
o

whereaf denotes the standard deviation of the estimatowe now consider the
two cases separately. If (68) holds, then for any 0, there existy € ¥ such that

2205/2
NG

SinceCl = [T — y, T + y] has minimum coverage probability of at least I
overf,

1—a<Pr(|T—Tfl<y)

(70) sz|Ef"—Tf|z%w< ,C.Hull(}‘))—e.

=P;(T —Tf|<yandy <By)+ P;(IT — Tf| <y andy > By)
< P;(IT —Tf| < By)+ P(y > By).

SinceT is an affine estimator and thus has a normal distribution, it is easy to check
thatP;(|T —Tf| < By) <1/2 and hence

(71) P(y>Bp) >3 —a.
Lettinge — 0in (70), it then follows that
E;L(Cl)=2E¢(y) >2BsP(y > By)

If (69) holds, we have, fof € F,
l—a<Pr(T—Tf|<y)

_ (_y _ET-Tf v _ET—Tf)
9% op — 0f of
§P<|Z|< ’/)
oF
y Y
=P IZISFandV <z0250% | + P IZIS;andy>zo.250f

T
< P(|Z| <z0.25) + P(y > 20.2507)

T
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whereZ denotes a standard normal random variable. Hence
P(y > z02504) = % —a.
Consequently,

EfL(Cl) =2E¢(y) > 2202507 P(y > 20.2507)

2
> (1— 2) 20.25w< Za/2

Za/2 \/ﬁ

1-2a (2242
> , C.HUll(F) ).
- 10za/zw( vn ( ))
Equation (66) now follows by taking («) = min{zl1 -3 11&5‘/"2}. Equation (67)
for the fixed length case is easier to prove and we omit the proof hére.

,c.Huu(fr))

REMARK 8. Theorem 5 shows that the minimax expected length of con-
fidence intervals centered at affine estimators is determined by the modulus
of continuity over the convex hull off, not over ¥ itself. In the case that
w (e, CHUII(F)) > w(e, ), any confidence intervals centered at affine estima-
tors will perform poorly. Such is the case in the near black object example given
in the next section.

5.2. Nearly black object. In this section an example is given which shows
that the factor, /2 =< +/logk in the upper bound of the minimax expected length
given in Theorem 4 cannot in general be dropped. It is also shown that confidence
intervals centered at affine estimators are far from optimal.

Consider the Gaussian sequence model (2) with the indeM set1, 2, ..., n},
namely

(72) Y(Q)=fG@)+nY%,  i=1,....n,

wherez; Mg N (0, 1). The size of the vecton, is assumed large. We assume that
the vectorf is sparse: only a small fraction of components are nonzero, and the
indices or locations of the nonzero components are not known in advance.

Denote thefp quasi-norm by f|lo = Card{i: f(i) # 0}). Fix m,. The
collection of vectors with at most,, honzero entries is

§ =Lto(mn) ={f €R":||fllo < mn}.

Assume thain,, is known andn, < n¥ wherey < %

Such an example is considered in Cai and Low (2004) in the context of
minimax estimation. The model, which arises naturally in wavelet analysis, has
also been studied in Donoho, Johnstone, Hoch and Stern (1992) and Abramovich,
Benjamini, Donoho and Johnstone (2000) for estimating the whole object.
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Let the linear functional’ f be given by
n
Tf=) f,
i=1

and following Cai and Low (2004) lef(m,,n) be the class of all subsets of
{1,...,n}of m, elements and fof € 4(m,, n) let

Fir={feR": f()=0Vj¢l}
Note that¥; is anm,-dimensional subspace spanned by the coordinatds in
These are obviously convex agd= U¥; where the union is taken ovérin the

setd (m,, n). From now on we shall assume thais in the setl (m,,, n).
Simple calculations show that for dl] J € 4 (m,, n)

w(e, F1, Fy)=+/CardI U J)e
and consequently
wE F1,$)=w(E G, F1)=w(e, $) =vV2my,e.

REMARK 9. It is easy to see that .Bull(¢4) = R" and hencew(e,
C.Hull($)) = /ne. It follows from Theorem 5 and (66) that any confidence in-
terval with coverage of at least-1 « centered at an affine estimator must have
maximum expected length bounded from below by a fixed constant not depending
onn.

Let k£ be the number of the:,-dimensional parameter spacg€s. Thenk is
equal ton choosen,, and it is easy to see that

k:( n >§nm”.
my

The following result gives a lower bound on the expected length of any
confidence interval with a minimum coverage probability ef & overg.

PROPOSITIONS. Supposethat we observethe Gaussian sequence model (72),
thatn > 4andm, <n? withy < 3.Let Tf = Y7, f(i) and 0 < @ < 3. Suppose
that CI (Y) is a confidenceinterval for T f based on (72)and CI(Y) € J4,4. Then
for all sufficiently largen,

EoL(CI(Y)) = (% B “)%m
SR CL L

where Eq denotes expectation under the Gaussian model (72) with f (i) = 0 for
i=12,...,n.

(73)
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REMARK 10. It follows immediately from (73) that the maximum expected
length ofCl (Y) over§ satisfies

J1ogk
77 9)

Comparing the lower bound (74) for the maximum expected length with the
minimax upper bound given in (65) shows that the factdogk in the upper
bound for the minimax expected length cannot be dropped in general. A similar
result also holds for adaptation.

(74) L(CI(Y), §) > Cw(

PrROOF OFPrROPOSITIONS. In the following proof the calculation of the;
distance between a mixture of normals and a given normal distribution follows
a similar calculation used in Cai and Low (2004). We include the details of
the calculation here for completeness. In the proof we will omit the subscript
in m, and simply writem for m,. Let ¥r be the joint density of the Gaussian
observations given in (72). More specifically; is a multivariate normal density
with mean(f (1), f(2),..., f(n)) and covariance matri%A,, where A,, is the
n x n identity matrix. Fix a constanp > 0. ForI € {(m,n) let f; be defined
by f1(j) = %]l(j e I) and let fp be the sequence defined by(j) = 0 for
j=1,2,...,n. Finally let

1

Ied(m,n)
Note that a similar mixture prior was used in Baraud (2002) to give lower
bounds in a nonparametric testing problem. Note that fofalll f; = m% and
thatT fo = 0. Note also that if

P
Py, <mﬁ € CI(Y)) >1—a

forall I € 4(m, n) then it follows that
P¢*<mL eCl (Y)) _1 S Py, <mL eCl (Y)) >1-a.
ﬁ (m) Ied(m,n) \/ﬁ

Note that

‘//_*2 _ 1 Z Z ViV
= 5 L
w_fo (:1) Ied(m,n) I'ed(m,n) ‘//fo

and simple calculations show that

Wf[ Wf,/ . .2
f n = exp(jp°),
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where; is the number of points in the set I'. It follows that

v
fo
whereJ has a hypergeometric distribution,

(56
()

Now note that from Feller [(1968), page 59],

run=(3) () 62 (-5

Now suppose that > 4 and thain < n/2. Then

——
)

e ()3 (-2

It now follows that ifn > 4 andm < n” with y < 3, then

2
lpfo

= Eexp(Jp?),

P(J=j)=

and hence

= Eexp(Jp?)

m
n n
m
<qmin (1 - %exp(pz)) :

Now takep = ,/3log-%. Then

2 n?
ﬂ < 4"7(1727”) 1+ i 1L
v’fo nl/2

Hence we can bound the; distance by

/ll//*—wfo| < (/ %)”2:< 1f_fo_l)l/z

Ca2) 1 nY 1/2
o

Soforany O< ¢ < 1— 2« there exist, such that for alk > n, [ |, — Vil <e.
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It follows from the fact thaCCl has minimum coverage probability ofFla and
that theL, distance betweett s, andi. is bounded above bythat

Pw_f[)(m% eCI) 2P¢*<m%eCI> —e>1—a—e.

Hence

Pl//f0<06 cl andm% € CI) >1-20—s.

SinceCl is an interval the length of this interval must be at Ieﬂ% when both O
andm = are in the interval. Hence for> n.,

v
L(CI Y)>1—-2u0— e) ‘/

Now takee = % — a. Then for all sufficiently larger,

Ey LCI(Y)) = (% —“) i\ 2 : '°g< )

(i)

wherek is the number of convex parameter spaceg.in[]

REMARK 11. It follows immediately from Proposition 5 that

1 1 vy J1ogk
L* [rod > - . aq .
2= (5-a) 5 5o . #1.9)
Hence the factor of, /2« < +/logk for adaptation in the upper bound of Theorem 3
and the same factor for minimax confidence procedures in Theorem 4 cannot in
general be removed.
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