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GENERALIZATION BOUNDS FOR AVERAGED CLASSIFIERS

BY YOAV FREUND, YISHAY MANSOUR1 AND ROBERT E. SCHAPIRE

Columbia University, Tel-Aviv University and Princeton University

We study a simple learning algorithm for binary classification. Instead
of predicting with the best hypothesis in the hypothesis class, that is, the
hypothesis that minimizes the training error, our algorithm predicts with a
weighted average of all hypotheses, weighted exponentially with respect to
their training error. We show that the prediction of this algorithm is much
more stable than the prediction of an algorithm that predicts with the best
hypothesis. By allowing the algorithm to abstain from predicting on some
examples, we show that the predictions it makes when it does not abstain are
very reliable. Finally, we show that the probability that the algorithm abstains
is comparable to the generalization error of the best hypothesis in the class.

1. Introduction. Consider a binary classification learning problem. Sup-
pose we use a hypothesis classH and are presented with a training set
(x1, y1), . . . , (xm, ym) drawn independently from a distributionD over the exam-
ple domainX × {−1,+1}. Most learning algorithms for this problem that have
been studied in computational learning theory are based on identifying the hypoth-
esish ∈ H that minimizes the training error. One of the main problems with this
approach is the phenomenon calledoverfitting. Overfitting is encountered when
the hypothesis classH is too “large,” “complex” or “flexible” relative to the size
of the training set. In this case it is likely that the algorithm will find a hypothesis
whose training error is very small but whose generalization error, or test error, is
large. To overcome this problem, one usually uses either model-selection or reg-
ularization terms. Model selection methods try to identify the “right” complexity
for H . A regularization term is a measure of the complexity of the hypothesish

that is added to the training error to define acost for each hypothesis. By minimiz-
ing this cost, the learning algorithm attempts to minimize both the training error
and the amount of overfitting.

However, it is not clear that predicting with the hypothesis that minimizes the
training error is indeed the only or the best prediction. One popular alternative
to predicting using the single best hypothesis is toaverage the prediction of those
hypotheses whose performance on the training set is close to optimal. Two popular
methods of this type are Bayesian averaging [15] and bagging [4, 5]. There is
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considerable experimental evidence that such averaging can significantly reduce
the amount of overfitting suffered by the learning algorithm. However, there is, we
believe, a lack of theory for explaining this reduction.

In the context of bagging, the common explanation is based on the argument
that averaging reduces the variance of the classification rule. However, as argued
elsewhere [11, 18], there is currently no adequate definition of variance for
classification problems. In addition, this explanation fails to take into account the
effect that the complexity of the model class has on overfitting.

In the Bayesian approach the problem of overfitting is generally ignored. Instead
the basic argument is that the Bayesian method is always the best method, and
therefore, the only important issues are how to choose a good prior distribution
and how to efficiently calculate the posterior average. However, the optimality
of the Bayesian method is based on the assumption that the data we observe
aregenerated according to one of the distribution modelsin the chosen class of
models. While this assumption is attractive for theory, it almost never holds in
practice. In practice, one usually uses relatively simple models, either because
there is not enough data to estimate the “true” model, because the computational
complexity is prohibitive, or because our prior knowledge of the system is only
partial. Even when very complex models are used, it is rarely the case that one can
assume that the data aregenerated by a model in the class. As a result, Bayesian
theory is inadequate for explaining why Bayesian prediction methods are better
than predicting with the best model in the class.

In this paper we propose a prediction method that is based on averaging
among the empirically best classification rules. This method is similar to, but
different from, the Bayesian method. The advantage of this method is that we
can theoretically justify its usage without making the aforementioned Bayesian
assumption that the data is generated by a distribution from a given class of
distributions. Instead we make the following weaker assumptions which are
common in the context of empirical error minimization methods. First, we assume
that the data is generated i.i.d. according to the distributionD defined above but
make absolutely no assumption aboutD other than that it is a fixed distribution.
Second, we choose a class of prediction rules (mappings from the input to the
binary output) and assume that there are prediction rules in that class whose
probability of error (with respect to the distributionD) is small,but not necessarily
equal to zero.

We deviate from the analysis used for empirical error minimization methods
in our definition of a classificationrule. In the context of a binary prediction
problem, we allow the classifierthree possible outputs. Two of them,−1 and
+1, are interpreted, as before, as predictions of the label. The third, denoted by
0, should be interpreted as “no prediction” or “insufficient data.”

What is the benefit of allowing the predictor this new output? The advantage
is that it allows the user of the classifier to identify those examples on which
overfitting might occur. For example, suppose that the best hypothesish∗ in our
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hypothesis classH has an expected error of 1%. Suppose further that the size
of the training set and the complexity ofH are such that the hypothesis that
minimizes the empirical errorh∗ is likely to have a generalization error of 5%.
If we useh∗ to make our predictions, then the most we can hope to get from a
uniform-convergence type analysis is an upper bound on the generalization error
that is close to 5%; we have no way of identifyingwhere these errors might occur.
On the other hand, if we allow the algorithm to output a zero, we can hope that the
algorithm will output zero on about 4% of the input, and will be incorrect on about
1% of the data. In such a case, we say that the classifieridentifies the locations of
potential overfitting and allows the user to choose a special course of action for this
case (such as referring the example back to a human to make the classification). In
this case we can justifiably say that the algorithm managed to avoid overfitting. It
is not misleading us into thinking that we have a classifier that is very accurate just
because its error on the training set is small.

As a toy example, Figure 1 shows a tiny learning problem in which positive and
negative training examples are indicated by pluses and minuses. In this example
hypotheses are represented by rectangles, and we suppose that there is a large
space of rectangular hypotheses, the best three of which are shown in Figure 1.
Each of these makes two mistakes on this data set. However, if we take an average

FIG. 1. A toy example.
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of hypotheses, one can imagine that it would be possible to obtain a combined
classifier that abstains on all points in the shaded region where there is likely to
be disagreement among the hypotheses, and predicts according to the weighted
majority elsewhere. Such a combined classifier, when it does not abstain, would
give nearly perfect predictions, having successfully identified the regions where
errors are most likely to occur.

Of course, if the generated classifier outputs zero most of the time, then there
is no benefit from having it. We need to show two things to be convinced that the
addition of the new output is useful. First, we need to show that the probability of
outputting a zero is of the same order as the bounds on overfitting that we would
get from an analysis based on uniform convergence. Second, we need to show that
when the output is+1 or −1, the probability of making a mistake is similar to
the generalization error of the best hypothesis in the class. In this paper we prove
that our algorithm has both these properties in the case thatH is a finite class of
models. In future work we hope to show how this work can be extended to infinite
model classes.

If H is finite, the uniform convergence bound is the well-known Occam’s
razor bound [2]. If H is infinite, we have to resort to bounds based on
VC-dimension [21]. Unfortunately, these bounds are usually very loose and
provide very poor estimates for the generalization error of learning algorithms in
real-world applications.

In recent years, researchers in computational learning theory have started
to consider algorithms that search for a good classification rule by optimizing
quantities other than the training error. Algorithms of this type include support-
vector machines [21] and boosting [18] which maximize the “margin” of a linear
classifier. Other work by Shawe-Taylor and Williamson [20] and McAllester [16]
provide PAC-style analysis of Bayesian algorithms. Bayesian algorithms compute
the posterior distribution over the space of hypotheses and predict by averaging
the predictions of all hypotheses whose training error is close to the minimum.
Another work that is relevant here is the work by Bousquet and Elisseeff [3] on the
relationship between stability and generalization in learning classification rules.

In this paper we study a learning algorithm that is very similar to the algorithm
that would be suggested by Bayesian analysis but uses a slightly different formula
for computing the posterior distribution. This formula is the “exponential weights”
formula introduced by Littlestone and Warmuth in the context of the weighted-
majority algorithm [14] and further analyzed by Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire and Warmuth [6]. Note, however, that we are generating a
fixed classification rule and are therefore working in the standard batch learning
model and not in the online learning model.

The analysis of the algorithm consists of two parts. First, we consider, for each
instancex, the log of the ratio of the total weight between those hypotheses that
predict+1 onx and those hypotheses that predict−1, where the weights depend
on a parameterη. We denote this ratio bŷ�(x). We prove that�̂(x) is rather
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insensitive to the random choice of the training set. In particular, we prove that the
variation in �̂(x) is independent of the concept class H ! This proof is interesting
because it avoids using the standard “union bound;” in fact, it altogether avoids
making any uniform claim on all of the hypotheses inH .

Using this central theorem, we can show that if�̂(x) is far from zero, then
predicting with sign(�̂(x)) is very stable, that is, is unlikely to change from training
set to training set. More precisely, we introduce a nonstochastic quantity�(x) and
show that�̂(x) is, with high probability, very close to�(x). Our algorithm predicts
with sign(�̂(x)) when �̂(x) is far from zero and abstains from prediction when
�̂(x) is close to zero. We prove that the probability that this algorithm makes a
prediction different from sign(�(x)) when it does not abstain is very small. On the
other hand, we show that ifH is finite and there is a hypothesish ∈ H whose error
is ε, then we can set the parameterη such that the error of sign(�(x)) is at most
about 2ε.

The relation between our algorithm and algorithms that predict with the best
hypothesis on the training set has a close correspondence to the relation between
Bayesian prediction algorithms and MAP (maximum a-posteriori) algorithms.
However, the analysis is carried out without making a Bayesian assumption, that
is, we do not assume that the training data are generated by a model in a pre-
specified class chosen by a pre-specified prior distribution. The prior and posterior
distributions are internal to the algorithm and are not part of the world around it.

We hope that this paper will shed some new light on the use of algorithms
that average many hypotheses such as Bayesian algorithms and averaging methods
such as bagging [4, 5].

The paper is organized as follows. We start in Section 2 by describing the
prediction algorithm. We give the basic analysis of the algorithm in Section 3.
In Section 4 we bound the performance of�(x) in terms of the error of the best
hypothesis in the class. In Section 6 we give a bound that is uniform with respect
to the learning rate parameterη which makes it possible to choose this parameter
after observing the training set. Finally, in Section 7 we outline how the ideas and
results in Sections 2–4 can be extended to infinite hypothesis classes.

2. The algorithm. Let D be a fixed but unknown distribution over(x, y)

pairs, wherex ∈ X andy ∈ {−1,+1}. Let H be a fixed class of hypotheses, that
is, mappings fromX to {−1,+1}. Let S denote a sample ofm training examples,
each drawn independently at random according toD. We denote thetrue error of
a hypothesish by ε(h)

.= Pr(x,y)∼D [h(x) �= y] and the estimated error according
to the sampleS by ε̂(h)

.= 1
m

∑m
i=1 1[h(x) �= y].

The prediction algorithm that we study calculates for each hypothesish aweight
that is defined asw(h)

.= e−ηε̂(h), whereη > 0 is a parameter of the algorithm. The
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prediction on a new instancex is defined as a function of theempirical log ratio:

�̂η(x)
.= 1

η
ln

(∑
h,h(x)=+1w(h)∑
h,h(x)=−1w(h)

)

= 1

η
ln

(∑
h,h(x)=+1 e−ηε̂(h)∑
h,h(x)=−1 e−ηε̂(h)

)
.

The prediction is defined to be

p̂η,�(x) =
{

sign
(
�̂(x)

)
, if |�̂(x)| > �,

0, otherwise,

where� ≥ 0 is a second parameter of the algorithm. Intuitively, the parameter�

characterizes the range of values of�̂η(x) in which the training data is insufficient
to make a good prediction and a better choice is to abstain. When clear from
context, we generally drop the subscripts and write simply�̂(x) andp̂(x).

3. Analysis of the algorithm. For an instancex, we define thetrue log ratio
to be

�η(x)
.= 1

η
ln

∑
h,h(x)=+1 e−ηε(h)∑
h,h(x)=−1 e−ηε(h)

,

which we often write as�(x) whenη is clear from context. The basic idea of our
analysis is to show that̂�(x) must usually be close to�(x) with high probability.
In particular, we will prove the following two theorems. First, we will prove that
for any fixedx the difference between the empirical log ratio and the true log ratio
is small:

THEOREM 1. For any distribution D, any instance x, any λ,η > 0 and any
s ∈ {−1,+1}:

Pr
S∼Dm

[
s
(
�(x) − �̂(x)

) ≥ 2λ + η

8m

]
≤ 2e−2λ2m.

Then, in order to show that our algorithm has reasonable performance, we will
transform Theorem 1 which gives a guarantee that holds with high probability for
anyfixed instance to a claim that holds with respect to a randomly chosen instance:

THEOREM 2. For any δ > 0 and η > 0, if we set

� = 2

√
ln(

√
2/δ)

m
+ η

8m
,

then, with probability at least 1− δ over the random choice of the training set,

Pr
(x,y)∼D

[p̂(x) �= 0 andp̂(x) �= sign(�(x))] ≤ δ.
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This theorem guarantees that, when our algorithm predicts something different
than 0 (which can be interpreted as “I do not know”), it is very likely to be making
the same prediction as�(x). Note that the statements of Theorems 1 and 2 have no
dependence on the hypothesis classH . In fact, the theorems and their proofs can
be extended to infinite hypothesis classes, as discussed in Section 7.

We define some notation that will be used in the proofs. ForK ⊆ H , let

Rη(K) = 1

η
ln

( ∑
h∈K

e−ηε(h)

)

and letR̂η(K) be the random variable

R̂η(K) = 1

η
ln

( ∑
h∈K

e−ηε̂(h)

)
.

We show thatR̂η(K) is close toRη(K) (with high probability) in two steps: First,
we show thatR̂η(K) is close to its expectation E[R̂η(K)] with high probability.
Then we show that E[R̂η(K)] is close toRη(K).

To prove the first result, we apply McDiarmid’s theorem [17]:

THEOREM 3 (McDiarmid). Let X1, . . . ,Xm be independent random variables
taking values in a set V . Let f :V m → R be such that, for i = 1, . . . ,m:

|f (x1, . . . , xm) − f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xm)| ≤ ci

for all x1, . . . , xm;x′
i ∈ V . Then for ε > 0, s ∈ {−1,+1}

Pr
[
s
(
f (X1, . . . ,Xm) − E[f (X1, . . . ,Xm)]) ≥ ε

] ≤ exp
(
− 2ε2∑m

i=1 c2
i

)
.

LEMMA 1. Let K and R̂η(K) be as above for a sample of size m. For η > 0,
λ > 0 and s ∈ {−1,+1},

Pr
[
s
(
R̂η(K) − E[R̂η(K)]b) ≥ λ

] ≤ e−2λ2m.

PROOF. We apply McDiarmid’s theorem with theXi ’s set to the labeled
examples ofS, and the functionf set equal to the random variablêRη(K). Let S′
be the sampleS in which one example(xi, yi) is replaced by(x′

i, y
′
i ). Let ε̂′(h) be

the empirical error ofh onS′, and let

R̂′
η(K) = 1

η
ln

( ∑
h∈K

e−ηε̂′(h)

)
.
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Then

R̂′
η(K) − R̂η(K) = 1

η
ln

(∑
h∈K e−ηε̂′(h)∑
h∈K e−ηε̂(h)

)

≤ 1

η
ln

(
max
h∈K

e−η(ε̂′(h)−ε̂(h))

)

= max
h∈K

(
ε̂′(h) − ε̂(h)

) ≤ 1

m
.

The first inequality uses the fact that(
∑

i ai)/(
∑

i bi) ≤ maxi ai/bi for positive
ai ’s andbi ’s. The second inequality uses the fact that changing one example can
change the empirical error by at most 1/m.

By the symmetry of this argument,|R̂η(K) − R̂′
η(K)| ≤ 1/m. Plugging in

ci = 1/m in McDiarmid’s theorem gives the result.�

LEMMA 2. Let K , Rη(K) and R̂η(K) be as above for a sample of size m.
Then for η > 0,

Rη(K) ≤ E[R̂η(K)] ≤ Rη(K) + η

8m
.

PROOF. For the lower bound on E[R̂η(K)], let K = {h1, . . . , hN }. For
x ∈ R

N , let

g(x) = ln

(
N∑

i=1

exi

)
.

Theng is convex: Givenα ∈ (0,1) andx,y ∈ R
N , letp = 1/α, q = 1/(1−α), and

defineri = eαxi andsi = e(1−α)yi . Since 1/p + 1/q = 1, by Hölder’s inequality,

∑
i

risi ≤
(∑

i

r
p
i

)1/p(∑
i

s
q
i

)1/q

.

Plugging in definitions and taking logarithms, this is equivalent to

g
(
αx + (1− α)y

) ≤ αg(x) + (1− α)g(y),

sog is convex as claimed.
Therefore, by Jensen’s inequality,

ηE[R̂η(K)]K = E
[
g
(〈−ηε̂(h1), . . . ,−ηε̂(hN)〉)]

≥ g
(〈−ηE[ε̂(h1)], . . . ,−η E[ε̂(hN)]〉)

= g
(〈−ηε(h1), . . . ,−ηε(hN)〉) = ηRη(K).
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To prove the upper bound on E[R̂η(K)], we have by Jensen’s inequality
(applied to the concave log function),

E[R̂η(K)] = 1

η
E

[
ln

( ∑
h∈K

e−ηε̂(h)

)]
(1)

≤ 1

η
ln

( ∑
h∈K

E
[
e−ηε̂(h)

])
.

Fix h and letε = ε(h) andε̂ = ε̂(h). Let Zi be a Bernoulli random variable that
is 1 if h(xi) �= yi and 0 otherwise. Then we can write

E
[
eη(ε−ε̂)

] = E

[
exp

(
η

m

m∑
i=1

(ε − Zi)

)]

=
m∏

i=1

E
[
exp

(
η

m
(ε − Zi)

)]

≤ (
eη2/8m2)m = eη2/8m.

The second equality uses independence of theZi ’s. The last step uses the fact,
proved by Hoeffding [13], that for any random variableX with E[X] = 0 and
a ≤ X ≤ b,

E[eX] ≤ e(b−a)2/8.

Here we letX = (η/m)(ε − Zi).

Thus, E[e−ηε̂(h)] ≤ eη2/8me−ηε(h). Combined with (1), this gives that

E[R̂η(K)]K ≤ 1

η
ln

(
eη2/8m

∑
h∈K

e−ηε(h)

)
= Rη(K) + η

8m

as claimed. �

PROOF OF THEOREM 1. Givenx, we partition the hypothesis setH into
two. The subsetK includes the hypothesesh such thath(x) = +1 and its
complementKc includes allh for whichh(x) = −1. We can now write

�(x) − �̂(x) = 1

η
ln

(∑
h∈K e−ηε(h)∑
h∈K e−ηε̂(h)

)
+ 1

η
ln

(∑
h∈Kc e−ηε̂(h)∑
h∈Kc e−ηε(h)

)
(2) = Rη(K) − Rη(K

c) − R̂η(K) + R̂η(K
c).

Combining Lemmas 1 and 2, we find that

Pr[Rη(K) − R̂η(K) > λ] ≤ e−2λ2m(3)
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and

Pr
[
R̂η(K

c) − Rη(K
c) > λ + η

8m

]
≤ e−2λ2m.(4)

Combining (2)–(4), we prove the claim fors = +1. The proof fors = −1 is almost
identical. �

LEMMA 3. For any distribution D, any λ,η > 0 and any s ∈ {−1,+1}, the
probability over samples S ∼ Dm that

Pr
(x,y)∼D

[
s
(
�(x) − �̂(x)

) ≥ 2λ + η

8m

]
≥ √

2e−λ2m

is at most
√

2e−λ2m.

PROOF. Since Theorem 1 holds for allx, it also holds for a randomx. Thus,

E
S∼Dm

[
Pr

(x,y)∼D

[
s
(
�(x) − �̂(x)

) ≥ 2λ + η

8m

]]

= E
(x,y)∼D

[
Pr

S∼Dm

[
s
(
�(x) − �̂(x)

) ≥ 2λ + η

8m

]]

≤ 2e−2λ2m.

The lemma now follows using Markov’s inequality.�

Theorem 2 follows immediately from Lemma 3.

4. Performance relative to the best hypothesis. We now show that there
exists a setting ofη and� that yields performance guarantees relative to the best
hypothesis in the class. We compare these guarantees to those given by the Occam
argument [2] for the algorithm that uses a hypothesis that minimizes the empirical
error rate.

In Lemma 3 we showed that the value of�̂(x) is, with high probability, close
to �(x). We now show that, with respect to theactual distributionD, the sign of
�(x) is closely related to that of the best hypothesis inH . By combining these
theorems, we show that the generalization error of our algorithm is close to that of
the best hypothesis inH .

Note that the following theorem does not involve the training set in any way; it
is a claim abouty�(x) which is a deterministic function of(x, y). Intuitively, for
large enough values ofη, the function�(x) essentially averages the best hypotheses
from H . In the worse case, as we show in Section 5, this can at most double the
error. The following theorem gives a detailed tradeoff between all the parameters.
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THEOREM 4. Let H be a finite hypothesis class and let ε be the error of the
best hypothesis in H with respect to the distribution D over the examples, that is,
ε = min{ε(h) :h ∈ H}. Let η > 0 and � ≥ 0 be such that �η ≤ 1/2. Then for any
γ ≥ ln(8|H |)/η,

Pr
(x,y)∼D

[y�(x) ≤ 0] ≤ 2(1+ 2|H |e−ηγ )(ε + γ ),

and

Pr
(x,y)∼D

[y�(x) ≤ 2�] ≤ (1+ e2�η)
(
1+ 2|H |eη(2�−γ )

)
(ε + γ )

≤ 4
(
1+ 2|H |eη(2�−γ )

)
(ε + γ ).

PROOF. We partition the hypotheses inH into two sets according to their true
error. We call those hypotheses whose error is smaller thanε + γ strong and the
other hypothesesweak.

We denote byWw the total weight of the weak hypotheses:

Ww = 1

Z

∑
h∈H : ε(h)≥ε+γ

e−ηε(h),

where

Z = ∑
h∈H

e−ηε(h).

To upper boundWw, note that we always have at least one strong hypothesis,
namely, the one that achievesε(h) = ε. Thus,

Ww ≤ |H |e−η(ε+γ )

e−ηε
= |H |e−ηγ .(5)

From the assumption thatγ ≥ ln(8|H |)/η, we get thatWw ≤ 1/8.
For a given example(x, y), we partition the strong hypotheses into two subsets

according to whether or not the hypothesis gives the correct prediction on(x, y).
We denote the total weight of these subsets by

W+
s (x, y) = 1

Z

∑
h∈H : ε(h)<ε+γ,h(x)=y

e−ηε(h),

W−
s (x, y) = 1

Z

∑
h∈H : ε(h)<ε+γ,h(x) �=y

e−ηε(h).

By the definition ofZ, for any(x, y),

W+
s (x, y) + W−

s (x, y) + Ww = 1.
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We now prove the second part of the theorem; the first part follows from the
second part by setting� = 0. We first boundy�(x) using Ww, W+

s (x, y) and
W−

s (x, y):

y�(x) ≥ 1

η
ln

(
W+

s (x, y)

W−
s (x, y) + Ww

)
.

Thus,y�(x) ≤ 2� implies

W−
s (x, y) + Ww

1− (W−
s (x, y) + Ww)

≥ e−2�η

or, equivalently,

W−
s (x, y) + Ww ≥ 1

1+ e2�η

.= c.

We denote byh ∼ S the random choice of a hypothesis from the strong set with
probability e−ηε(h)/Zs , whereZs normalizes the weightswithin the strong set to
sum to 1. We find that

Pr
(x,y)∼D

[y�(x) ≤ 2�] ≤ Pr
(x,y)∼D

[
W−

s (x, y)

W−
s (x, y) + W+

s (x, y)
≥ c − Ww

1− Ww

]

= Pr
(x,y)∼D

[
Pr

h∼S
[h(x) �= y] ≥ c − Ww

1− Ww

]

≤ E
(x,y)∼D

[
Pr

h∼S
[h(x) �= y]

]
1− Ww

c − Ww

(6)

= E
h∼S

[
Pr

(x,y)∼D
[h(x) �= y]

]
1− Ww

c − Ww

(7)

≤ (ε + γ )
1− Ww

c − Ww

(8)

≤ (ε + γ )(1+ e2�η)(1+ 2Wwe2�η).(9)

Equations (6) and (7) use Markov’s inequality and Fubini’s theorem. Equation (8)
follows from the fact thatε(h) < ε + γ for every strong hypothesis. Equation (9)
uses our assumptions that�η ≤ 1/2 andWw ≤ 1/8 together with the inequality
(1 − x)/(1 − x(1 + r)) ≤ 1 + 2xr for x > 0, r > 0 andx(1 + r) ≤ 1/2 (with
x = Ww andr = e2�η).

Combining this bound with (5) proves the second statement of the theorem.�

5. Discussion. We now discuss the implications of Theorems 2 and 4. We
start with a corollary of Theorem 4 for a specific setting of the parametersη and�

as a function of the sample sizem, the size of the hypothesis classH and the
reliability parameterδ.



1710 Y. FREUND, Y. MANSOUR AND R. E. SCHAPIRE

COROLLARY 1. Let 1/2> θ > 0, δ > 0 and

η = ln (8|H |)m1/2−θ ; � = 2

√
ln (

√
2/δ)

m
+ ln (8|H |)

8m1/2+θ
.

For m ≥ 8,

Pr
(x,y)∼D

[y�(x) ≤ 0] ≤
(

2+ 1

4m

)(
ε + 1

m1/2−θ
+ lnm

m1/2−θ ln 8|H |
)
,

and for

m ≥
[

8

√
ln

(√
2

δ

)
ln(8|H |)

]1/θ

,

we have

Pr
(x,y)∼D

[y�(x) ≤ 2�] ≤ 5
(
ε + 2� + 1

m1/2−θ

)
.

PROOF. To prove the corollary, we use Theorem 4 with two different
settings ofγ . The first bound is a result of choosingγ = 1/m1/2−θ + lnm/

(m1/2−θ ln 8|H |), and the second is a result of choosingγ = 2� + mθ−1/2. �

We now discuss the significance of each statement in the corollary. Let us fix
the reliability parameterδ.

The first statement of Corollary 1 shows that the sign of the true log ratio
is a reasonably good proxy for the best hypothesis in the class, denotedh∗.
Specifically, the error of sign(�(x)) is

2ε(h∗) + O

(
ln(m)

m1/2−θ

)
.

Let us separate between abstaining and making a mistake. If the algorithm
outputs 0 we say that it “abstained,” while if it outputs−1 or +1 and this label
does not agree with the actual label of the example, then we say that it “made
a mistake.” Combining this with the statement of Theorem 2, we find that the
probability that our algorithm makes a mistake on a test example is bounded by

2ε(h∗) + O

(
ln(m)

m1/2−θ

)
+ δ.(10)

Note that this bound isindependent of |H |.
In comparison, the upper bound on the hypothesis that minimizes the empirical

risk is

ε(h∗) + O

(√
ln(|H |/δ)

m

)
.(11)
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We see that the dependence onm here is slightly better, but the bound depends
on the hypothesis class, which is what we expect from an algorithm that cannot
abstain.

For our algorithm, the dependence on|H | instead appears in the bound on the
probability of abstaining on a test example; this is given in the second statement of
the corollary. Combining that statement with Lemma 3, we find that for

m = �
((√

ln(1/δ) ln(|H |))1/θ )
our algorithm will predict zero with probability at most

5ε(h∗) + O

(√
ln(1/δ) + ln(|H |)

m1/2−θ

)
.

This bound is similar to the Occam bound (11), but the choice ofθ makes an
important difference in the dependence onm.

In effect, we are replacing one type of guarantee with a different one. In the
traditional analysis that is based on uniform convergence theory, the guarantee is
of the form “the error of the classification rule is at mostε + O(ln(|H |)/√m).”
Our algorithm is one for which there are two guarantees. First, we can say that
“the error of the classification rule, when this rule makes a nonzero prediction,
is at most 2ε + Õ(1/

√
m) (no dependence on the size ofH here). Second, we

can show that the probability that the classification rule will generate a 0 (“I do
not know” prediction) is upper bounded by 5ε + Õ(ln(|H |)/√m). This second
bound does depend on the size ofH . Note that this quantity (the probability of
predicting 0) can be estimated from anunlabeled set of instances. Unlike the
event of a classification mistake, which depends both on the predicted label and
the actual label, the event of predicting 0 does not depend on the actual label.
In practice, unlabeled data is usually much more plentiful than labeled data.
Therefore, in practice, we can estimate the probability of abstaining directly and
do not need to use a priori bounds.

We now argue that the factor of 2 in front of the error of the best hypothesis in
the class which appears in the first part of the corollary is necessary. Suppose that
the input domainX is partitioned into two partsA1 andA2, such thatD(A1) =
1 − 2ε andD(A2) = 2ε. Suppose that all the hypotheses inH predict correctly
on instances inA1. For eachx ∈ A2, the prediction of each hypothesis is chosen
independently at random to be correct with probability 1/2 − η� and incorrect
with probability 1/2+η�. (Suppose further the number of elements inA2 and the
number of hypotheses are sufficiently large so that on most of the points inA2 the
actual fraction of correct predictions is sufficiently close to 1/2−η�.) In this case
each of the hypotheses inH has error close to 2ε(1/2 + η�) ≈ ε(1 + O(m−θ )).
This also implies that all of the hypotheses have approximately the same weight.

Consider now the value of�(x) for x ∈ A2. As the weights of all of the
hypotheses are similar, we get that

∀x ∈ A2, y�(x) ≈ 1

η
ln

(
1/2− η�

1/2+ η�

)
≈ −4�.
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As �̂ is likely to be very close to�, we conclude that forx ∈ A2 our algorithm will
usually make a nonzero prediction that is incorrect. In other words, our algorithm
will have a prediction error of about 2ε while each of the hypotheses has error of
aboutε.

It may seem impossible that the bound in (10) is independent of the number of
hypotheses. First, one should recall that a similar phenomenon exists in the large
margin analysis for hyperplanes, where the generalization error depends only on
the margin and not on the dimension of the class. One should not interpret our
result as suggesting that overfitting can never happen, regardless of the complexity
of the hypothesis space. In truth, if the hypothesis space is too complex, the
algorithm will simply abstain more often. For example, suppose that the hypothesis
space consists ofall binary functions on a finite domain. For any set of training
examples, there is a function that has zero training error (assuming no example
appears twice with different labels). However, we expect any algorithm to be
unable to predict the label of a new test example. Indeed, in this case, our algorithm
will abstain on all unseen examples [since�̂(x) is exactly zero outside the training
set].

Using the size of the hypothesis class as the measure of its complexity is clearly
a very rough upper bound. For example, consider the case in which a large fraction
of the hypotheses inH are all equal, or almost equal, to a single functionh∗. It
is not hard to see that in this case our prediction algorithm, as stated, will have
a strong bias towards predicting likeh∗. This bias can be removed by replacing
the set of almost identical hypotheses by the single hypothesish∗. Doing this also
improves the guaranteed performance bounds because it reduces|H |. A systematic
way for removing this type of bias is to replaceH with anε-net that covers it. In
other words, find a set of functionsHε , such that for anyh ∈ H there existsf ∈ Hε

such that Pr(x,y)∼D [h(x) �= f (x)] ≤ ε. Of course, choosing anε-cover requires
knowledge of the marginal distribution overx defined byD and is a nontrivial
computational problem. Potential future research regarding the use ofε-covers in
conjunction with our prediction algorithm is discussed in Section 9.

Finally, Theorem 4 shows that the error of our predictor cannot be much worse
than twice the error of the best hypothesis. On the other hand, it is possible in
some favorable situations for our predictor to significantly outperform the best
hypothesis. For example, suppose that there is anh∗ ∈ H such thatε(h∗) = 1/8,
and that for eachh ∈ H ′ = H −{h∗}, we haveε(h) = 1/4. Suppose further that for
eachx, the fraction ofh ∈ H ′ with the right label is 3/4. Choosing the hypothesis
with lowest observed error would give, hopefully, the hypothesish∗ that has an
error rate of 1/8. In our setting, for a labeled example(x, y), if h∗(x) = y, then

y�(x) = 1

η
ln

(
e−η/8 + (3/4)|H ′|e−η/4

(1/4)|H ′|e−η/4

)

= 1

η
ln

(
3+ 4eη/8

|H ′|
)
.
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Thus, forη = 1, we havey�(x) = ln(3+ 4e1/8/|H ′|). Similarly, if h∗(x) �= y, we
havey�(x) ≥ ln(3 − 12e1/8/|H ′|). Note that this implies thatp1,0(x) correctly
classifies all the examples (for|H | large). Theorem 1, withλ set to a constant,
then guarantees form = O(lg 1/δ) thatp̂1,0(x) has an error rate of at mostδ. The
important point here is that by averaging a large number of suboptimal hypotheses
we achieve a prediction accuracy that is better than that of the optimal single
hypothesish∗.

An interesting question was raised by one of the reviewers: why are we
comparing the performance of our algorithm to that of the optimal single prediction
rule when, in fact, one would expect a rule that is a combination of many prediction
rules to perform much better than any single rule? Our answer is that in this work
we wanted to relate our bounds to those that are proven using uniform-convergence
analysis of the type advocated by Vapnik [21], and those have as their “gold
standard” the performance of the optimal hypothesis. A natural direction for future
research would be to compare the performance of our algorithm to that of the rule:

sign
(

lim
η→∞ �η(x)

)
,

which is the analog of our prediction rule when the distribution is known (or
equivalently, in the limit of an infinite number of training examples). However,
it is not clear whether this is the correct gold standard to use.

6. Uniform bounds. The bound given in Lemma 1 applies to the case in
which the parameterη is fixed ahead of time so that̂Rη(K) converges to
E[R̂η(K)] for only a single value ofη. In the next lemma we show that on a
single sample this convergence is likely to take place forall values ofη ≥ 1
simultaneously. (We can prove a similar result forη > 0 using a slightly more
complicated proof. However, becauseη is typically large in this paper, we omit this
proof.) The proof of this is primarily taken from Allwein, Schapire and Singer [1].

LEMMA 4. Let K and R̂η(K) be as above for a sample of size m. For λ > 0,

Pr
[∃η ≥ 1 :|R̂η(K) − E[R̂η(K)]| ≥ λ

] ≤ 8 ln|K|
λ

e−λ2m/2.

The proof is given in the Appendix.
We can now state the following theorems similar to Theorems 1 and 2. These

theorems show that it is possible to design an algorithm that choosesη after the
sample has been chosen without paying a large penalty in accuracy.

THEOREM 5. Let K and R̂η(K) be as above for a sample of size m. For any
distribution D, any λ > 0 and any s ∈ {−1,+1},

Pr
S∼Dm

[
∃η ≥ 1 :s

(
�η(x) − �̂η(x)

) ≥ 2λ + η

8m

]
≤ 8 ln|K|

λ
e−λ2m/2.
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THEOREM 6. For any δ > 0, if we set

�η = 2

√
2

m
ln

(
16m ln |H |

δ2

)
+ η

m
,

then, with probability at least 1− δ over the random choice of the training set, for
all η ≥ 1

Pr
(x,y)∼D

[
p̂η,�η(x) �= 0 andp̂η,�η (x) �= sign

(
�η(x)

)] ≤ δ.

7. Infinite hypothesis classes. The ideas and results of Sections 2–4 can be
directly extended to infinite, even uncountable, hypothesis spaces. To make this
extension, we need to add as a parameter of the algorithm a finite measureµ over
the hypothesis spaceH . For convenience, we assume in fact thatµ is a probability
measure so that

µ(H) =
∫
H

dµ = 1.

Naturally, we will require certain measurability assumptions so that everything
is measurable that needs to be so. For our purposes, it is sufficient that the following
sets are measurable:

{h ∈ H :h(x) = +1}, for all x ∈ X,

{h ∈ H : ε(h) < ε}, for all ε ∈ R.

In other words, these sets are assumed to be elements of theσ -algebra over which
the measureµ is defined.

The results for finiteH presented earlier in the paper are, of course, a special
case in whichµ is the uniform discrete measureµ(K) = |K|/|H | for all K ⊆ H .

Formally, the measureµ is used much like a Bayesian prior. However, unlike a
prior, we donot assume that there is a target hypothesis inH that has been chosen
randomly according toµ.

The algorithm in Section 2 can now be extended by simply redefining the
empirical log ratio to be

�̂η(x)
.= 1

η
ln

(∫
{h : h(x)=+1} w(h)dµ∫
{h : h(x)=−1} w(h)dµ

)
,

where as usualw(h)
.= e−ηε̂(h) and the integral is the Lebesgue integral with regard

to the probability measure. The true log ratio�η(x) is redefined analogously.
To prove Theorems 1 and 2 and Lemmas 1–3 in this more general setting,

we simply need to replace each sum of the form
∑

h∈K f (h) by the integral∫
K f (h) dµ for measurable setsK . [If K has measure zero, thenRη(K) and

R̂η(K) are both defined to be zero.]
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The only potential difficulty occurs in proving in Lemma 2 thatRη(K) ≤
E[R̂η(K)]. When K is finite, we can simply apply Jensen’s inequality to a
function of|K| real variables. WhenK is infinite, however, this may be a problem
since standard forms of Jensen’s inequality do not apply. Nevertheless, we can
effectively reduce to the finite case as follows:

Let δ > 0. Let

Bi = {h ∈ K : iδ ≤ ε(h) < (i + 1)δ}.
Since ε(h) ∈ [0,1], B0, . . . ,Bk form a partition of K for k = �1/δ�. For
µ(Bi) > 0, defineε̃i to be a random variable that is the average ofε̂(h) over
h ∈ Bi , that is,

ε̃i
.=

∫
Bi

ε̂(h) dµ

µ(Bi)
.

Then

E[ε̃i ] =
∫
Bi

ε(h) dµ

µ(Bi)
≤ (i + 1)δ.

Combined with the fact thatε(h) ≥ iδ, for h ∈ Bi , gives∫
K

e−ηε(h) dµ ≤ ∑
µ(Bi)e

−ηiδ

≤ ∑
µ(Bi)e

−η(E [ε̃i ]−δ)

= eηδ
∑

µ(Bi)e
−η E [ε̃i ],

where it is understood that all sums are overi for whichµ(Bi) > 0. Thus,

Rη(K) = 1

η
ln

∫
K

e−ηε(h) dµ

≤ δ + 1

η
ln

∑
µ(Bi)e

−η E [ε̃i ]

≤ δ + 1

η
E

[
ln

∑
µ(Bi)e

−ηε̃i

]
(12)

= δ + 1

η
E

[
ln

∑
µ(Bi)exp

(
−η

∫
Bi

ε̂(h) dµ

µ(Bi)

)]

≤ δ + 1

η
E

(
ln

∑
µ(Bi)

∫
Bi

e−ηε̂(h) dµ

µ(Bi)

)
(13)

= δ + 1

η
E

(
ln

∫
K

e−ηε̂(h) dµ

)

= δ + E[R̂η(K)].
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Equation (12) uses Jensen’s inequality applied to the convex function

x �→ ln
∑
i

µ(Bi)e
xi .

(Convexity follows from a minor modification of the proof given in Lemma
2 for the functiong.) Equation (13) applies Jensen’s inequality to the convex
functionex . Sinceδ is arbitrary, the result follows.

The results in Section 4 compare performance to that of the best single
hypothesis. WhenH is infinite, this comparison may be meaningless since this
single hypothesis is likely to have measure zero. Moreover, the bounds in Section 4
are in terms of|H | which will now be infinite.

Therefore, rather than comparing to a single best hypothesis, we compare to a
set of good hypotheses. In particular, for anyε > 0, let Vε be the volume of all
hypotheses with error at mostε:

Vε
.= µ

({h : ε(h) ≤ ε}).
Then throughout this section we need to replace|K| with 1/Vε .

Specifically, the generalization of Theorem 4 becomes the following:

THEOREM 7. Let H be any hypothesis class. Let ε > 0 and let Vε =
µ({h : ε(h) ≤ ε}). Assume ε is large enough that Vε > 0. Let η > 0 and � ≥ 0
be such that �η ≤ 1/2. Then for any γ ≥ ln(8/Vε)/η,

Pr
(x,y)∼D

[y�(x) ≤ 0] ≤ 2
(
1+ (2/Vε)e

−ηγ )
(ε + γ ),

and

Pr
(x,y)∼D

[y�(x) ≤ 2�] ≤ (1+ e2�η)
(
1+ (2/Vε)e

η(2�−γ )
)
(ε + γ )

≤ 4
(
1+ (2/Vε)e

η(2�−γ )
)
(ε + γ ).

The modification of Corollary 1 is immediate. In the discussion following
Corollary 1,ε(h∗) is replaced byε as in Theorem 7.

Besides replacing|H | by 1/Vε , the proof of Theorem 4 only needs to be
modified by replacing all sums with integrals. Also, to upper boundWw, we lower
boundZ by Vεe

−ηε , a fact that follows immediately from the definition ofVε .
Generalizing the results of Section 6 to infinite classH seems harder and

remains as an open problem for future research.

8. Conclusions. In this paper we present a new algorithm for prediction of
binary functions using a weighted vote over all prediction rules within a class. We
have shown when, and in what sense, this algorithm can perform better than the
more common approach of choosing the prediction function which performs best
on the training data.
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While this algorithm is similar in spirit to a Bayesian prediction algorithm, there
are at least two important differences.

The first difference is in the dependence of the posterior probability (before
normalization) on the size of the training setm. In most Bayesian algorithms
the expected value of the unnormalized posterior probability for any particular
model
 decreases at the rate exp(−c(
)m), wherec(
) is the expected value
of the log probability of the data given the model. In our algorithm the rate of
decrease is (approximately) exp(−c(
)

√
m). We choose this rate (Corollary 1) so

that the variance of the empirical log-ratio is slowly decreasing, which results in
an estimator whose stability improves as the size of the sample increases.

Second, the goal of our algorithm is to increase the stability of the prediction
and not to optimize a Bayesian measure of risk. To that end, the only assumption
regarding the data generation mechanism that we make in our analysis is that the
data is generated in an IID fashion. To the best of our knowledge, all existing
Bayesian analysis (other than on-line prediction methods) make the assumption
that the data is generated by one of the models in the class over which the Bayesian
averaging is performed. In this context it is worthwhile to mention recent work
by Bousquet and Elisseeff [3] in which they show how improved generalization
bounds can be proven for algorithms that are known to be stable. The main
difference between that work and our work here is that we describe and analyze a
specific averaging method that is guaranteed to be stable.

It was suggested that the main reason that our algorithm does not over-fit has
to do with the fact that we allow abstention, rather than with the averaging of
many hypotheses. We believe that the most important property of our algorithm
is the stability of the empirical log-ratio. Abstention is just one way of utilizing
this stability. In other scenarios one may be better off using the log-ratio scores
differently. For example, if the goal is to detect a rare type of instance within a
large set, the correct method might be to sort all instances according to their log-
ratio score and output the instances with the highest scores.

It is natural to think of the empirical log ratio as an estimate of the conditional
probability of the labely given the instancex. However, one should not take this
intuition too far. The log ratio is a measure of themodel uncertainty by which we
mean the uncertainty in the identity of the best model which results from the finite
size of the training set. It doesnot measure the uncertainty that is inherent in the
true conditional distribution ofy givenx. To realize this, consider a class with 100
rules in which one rule has a true error of 10%, while the true error of each of
the other 99 rules is larger than 20%. Then with a training set with a few hundred
examples the weight assigned to the best rule is likely to be larger than the total
weight of all of the other rules. This in turn would imply that the log ratio would be
very far from zero everywhere and our algorithm will always predict like the best
rule and never abstain. Indeed, we can interpret the log-ratio values as an indication
that we are certain which is the best rule in the class. This is quite independent
of the fact that the best rule in the class has an error of 10%. To estimate this
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conditional probability we need tocalibrate the predictions of our algorithm. One
can devise various ways of performing this calibration. An interesting parameter-
free calibration method has been recently suggested by Vovk [22].

Our work shares some ideas with the recent work by Shawe-Taylor and
Williamson [20] and McAllester [16] on PAC–Bayesian analysis. The main
common idea is that if many classification rules perform well, then their prediction
can be trusted more than that of a single rule that is performing well. The
main difference is that in our work we average over the predictions of the best
rules and get a different prediction confidence for each test instance, while the
PAC–Bayesian analysis uses the plurality of the good performers to improve the
performance guarantees for a single classification rule that is chosen at random
according to the posterior. Similar ideas were used in the analysis of large-margin
classifiers.

Another connection worth mentioning here is to margin based classification
methods such as SVMs [19, 21] and boosting [10, 18]. One intuition that explains
why large margins are important regards the stability of the linear classifier. Large
margins around the separating hyperplane imply that slight perturbations of the
hyperplane will also classify the data correctly. In other words, it implies that a
large set of similar linear classifiers have small training error. Suppose now that
we used the averaging algorithm suggested in this paper where the set of classifiers
that is used is the set of all linear classifiers. The fact that the set of close-to-optimal
classifiers is large implies that the prediction where they all agree would be very
confident. On the other hand, the region on which the algorithm will abstain is
similar (but not identical) to the margin region. In other words, the behavior of our
algorithm is, in fact, similar to that of large margin classifiers. However, there are
two important differences. On the one hand, the averaging algorithm is much more
general in that it can be applied to any set of classifiers, not just linear classifiers;
neither does it depend on whether or not the data is separable, that is, perfectly
classifiable by one of the rules in the class. On the other hand, our algorithm is
extremely inefficient as compared to SVMs or AdaBoost as its application requires
calculating the empirical error for each and every rule in the set.

9. Future research. We suggest two directions for future work, one regarding
computational efficiency, the other regarding the choice of a prior distribution.

Consider first the computational issue. For most interesting hypothesis classes
the task of finding the hypothesis that minimizes the training error is computa-
tionally intractable. Obviously, calculating the error of all of the hypotheses in the
class is at least as hard as finding the best hypothesis and probably much harder.
Does this mean that our algorithm cannot be used for practical learning problems?
Not necessarily. Here are three approaches to solving the computational problem:

1. Sometimes the problem of learning a complex classification rule can be broken
down into several problems of learning very simple rules. For example, Freund
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and Mason [9] show how to break down the problem of learning alternating
decision trees (a class of rules which generalizes decision trees and boosted
decision trees) into a sequence of simpler learning problems using boosting.
Each of the simpler problems involves finding the best threshold rule in one
dimension. These last problems are so simple the calculation can be done in
time linear in the size of the training set. In this context our algorithm can
be used directly and its use might significantly increase the robustness of the
system as a whole.

2. In some cases a careful choice of the prior distribution over the hypotheses
makes it possible to calculate the posterior average efficiently. For example,
conjugate priors commonly used in Bayesian statistics are prior distribution
which maintain their functional form as they are updated. A more interesting
case which involves variable-length Markov models for sequences was studied
by Willems, Shtarkov and Tjalkens [23] and extended by Helmbold and
Schapire [12]. It might be possible to adapt these techniques to efficiently
calculate the empirical log ratio for our algorithm.

3. In some cases the posterior distribution can be approximated by a single sharp
peak around the best hypothesis. In such a case the empirical log ratio can be
approximated using Laplace approximation method. This technique was used
by Freund [8]. For an introduction to this type of approximation methods see
the excellent book by de Bruijn [7].

4. Another approach to estimating the average vote over the empirically best
hypothesis is to use random sampling. Suppose we are given a learning
algorithm capable of finding a hypothesis with small training error. Our goal
is to tweak the algorithm in a way that will randomly create a hypothesis whose
performance is almost as good as the original untweaked hypothesis. Moreover,
we want the distribution according to which the hypothesis is generated to be
close to the distribution defined by our exponential weights.

There are several learning algorithms that sample hypotheses and average
them. The best known of these so-calledensemble algorithms is Breiman’s
bagging algorithm [4, 5]. It might be that bagging is indeed an efficient
randomized algorithm of the type suggested here. On the other hand, it might be
possible to adapt the theory presented in this paper to give a rigorous analysis
for the performance of bagging and other ensemble methods.

The second direction we suggest for future work is to consider the choice of the
prior measureµ defined in Section 7. Clearly, the choice of measure has a large
influence on the algorithm and on the upper bound given in Theorem 7.

Intuitively, we would like to maximize the probability measure of the setVε .
However, we need to define the measureµ before observing the training data, that
is, before we know whatVε is. One natural approach is to maximize the minimum
over the measure of all possible setsVε .

Consider first a case in which we have prior knowledge of the distribution
over the instances, without the labels. In this case we can use the measure which
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places uniform weights over anε-net on the hypothesis class, as was suggested
in Section 5. This will ensure that if the best hypothesis in the class has errorε∗,
then the setVε∗+ε will have measure at least 1/N whereN is the size of the
ε-net. The disturbing thing about this choice forµ is that it depends onε.
Possibly this disturbance can be cleared if one can use a limit distribution where
ε → 0. Intuitively, such a limit measure will capture the detailed structure of the
hypothesis space in a way similar to Jeffreys’ prior in Bayesian analysis.

Assuming that this analysis can be carried through, one should return to the
original problem in which the distribution over the instances is unknown. In this
case we need to approximate the “ideal” algorithm by using the information
about the instance distribution that we get from the training examples. Ultimately,
we would like to find an averaging algorithm whose performance is close to
the averaging algorithm that has this prior knowledgeand that is efficiently
computable.

APPENDIX: PROOF OF LEMMA 4

First, letK = {h1, . . . , hN }, and let

F(η,x) = 1

η
ln

(
N∑

i=1

e−ηxi

)
.

For anyx, by checking derivatives, it can be verified that the functionη �→ F(η,x)

is nonincreasing, while the functionη �→ F(η,x) − (lnN)/η is nondecreasing.
Therefore, if 0< η1 ≤ η2, then for anyx ∈ R

N ,

0≤ F(η1,x) − F(η2,x) ≤
(

1

η1
− 1

η2

)
lnN.(14)

Now let

E =
{

4 lnN

iλ
: i = 1, . . . ,

⌊
4 lnN

λ

⌋}
.

We show next that for anyη ≥ 1, there existŝη ∈ E such that∣∣∣∣1

η
− 1

η̂

∣∣∣∣ lnN ≤ λ

4
.

For if η ≥ 4(lnN)/λ, then letη̂ = 4(lnN)/λ. Then

0 ≤
(

1

η̂
− 1

η

)
lnN ≤ 1

η̂
lnN = λ

4
.

Otherwise, if 1≤ η ≤ 4(lnN)/λ, then letη̂ = 4(lnN)/(iλ) be the smallest element
of E that is no smaller thanη. That is,

4 lnN

(i + 1)λ
< η ≤ 4 lnN

iλ
.
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Then

0≤
(

1

η
− 1

η̂

)
lnN =

(
1

η
− iλ

4 lnN

)
lnN

≤
(

(i + 1)λ

4 lnN
− iλ

4 lnN

)
lnN

= λ

4
.

SinceR̂η(K) = F(η, 〈ε̂(h1), . . . , ε̂(hN)〉), (14) and the argument above imply that
for anyη ≥ 1, there existŝη ∈ E such that

|R̂η(K) − R̂η̂(K)| ≤ λ

4

and so
∣∣(R̂η(K) − E[R̂η(K)]) − (

R̂η̂(K) − E[R̂η̂(K)])∣∣ ≤ λ

2
.

Thus,

Pr
[∃η ≥ 1 :|R̂η(K) − E[R̂η(K)]K| ≥ λ

]
≤ Pr

[
∃ η̂ ∈ E : |R̂η̂(K) − E[R̂η̂(K)]| ≥ λ

2

]

≤ 2|E |e−λ2m/2,

where the second inequality uses the union bound combined with Lemma 1.
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