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We consider a class of semiparametric regression models which are
one-parameter extensions of the CdxRoy. Statist. Soc. Ser. B 34 (1972)
187-220] model for right-censored univariate failure times. These models
assume that the hazard given the covariates and a random frailty unique to
each individual has therpportional hazards form multiplied by the frailty.
The frailty is assumed to have mean 1 within a known one-parameter
family of distributions. Inference is based on a nonparametric likelihood.
The behavior of the likelihood maximér is studied under general conditions
where the fitted model may be misspecified. The joint estimator of the
regression and frailty parametersvasll as the baseline hazard is shown to
be uniformly consistent for the pseudo-value maximizing the asymptotic limit
of the likelihood. Appropriately standardized, the estimator converges weakly
to a Gaussian process. When the model is correctly specified, the procedure
is semiparametric efficient, achieving the semiparametric information bound
for all parameter components. It is also proved that the bootstrap gives valid
inferences for all parameters, even under misspecification. We demonstrate
analytically the importance of the robust inference in several examples. In
a randomized clinical trial, a valid test of the treatment effect is possible when
other prognostic factorsnd the frailty distribution are both misspecified.
Under certain conditions on the covariates, the ratios of the regression
parameters are still identifiable. The practical utility of the procedure is
illustrated on a non-Hodgkis lymphoma dataset.

1. Introduction. An objective of many medical studies is a predictive model
for survival. The Cox (1972) model is popular for such analyses, because of
its theoretical properties and availability in software packages. Unfortunately, in
many practical settings the phenomenon under study is quite complicated and
the assumed model is at best a working approximation to the truth. Consider
the Non-Hodgkin’s Lymphoma Prognostic Factors Project (1993) which analyzed
data from a collection of cancer clinical trials. A system was developed to
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classify patients according to baseline characteristics. The scheme employs a
proportional hazards model with five influential covariates. The ordinal and
continuous predictors are dichotomized for clinical interpretation. There are also
important risk factors which are omittesuch as treatment center. Diagnostics
show that the model fits poorly [Gray (2000)]. Furthermore, the survival estimates
are quite biased by the misspecification.

There are several alternatives to the Cox model which might improve the
fit. These include additive hazards regression models [Aalen (1978, 1980) and
Lin and Ying (1994)], accelerated failure time models [Tsiatis (1990) and Wei,
Ying and Lin (1990)] and time-varying coefficient models [Sargent (1997)].
Additional models have been developed for covariate-dependent heteroscedasticity
and other departures from proportionality [Bagdogaws and Nikulin (1999) and
Hsieh (2001)].

Frailty models are a comparatively parsimonious representation which general-
ize the Cox model in a natural way. The misspecified and omitted covariates are
described by an unobservable random variabléWdgunique to the linear predic-
tor of each patient. LeT be the failure time and = {Z(¢),r > 0} ad x 1 vector
process of possibly time-dependent covariates. DehpteZ (1), W} as the haz-
ard function of7’ conditionally onZ(r) = {Z(s), s < t} andW. Theproportional
hazards frailty regression model is

(1.1) Mt Z(t), Wy = a(t) expllog(W) + B'Z(1)},

where 8 is ad x 1 regression parametet(r) is an unspecified base hazard
function and prime 'j denotes transpose. Takinf(w; y) to be the Lebesgue
density of a continuous frailtyW, where y is an unknown scalar, yields a
rich class of semiparametric models. This class excludes models with positive
probability of W = 0. Examples in the class include the inverse Gaussian frailty
[Hougaard (1984)], the positive stadimilty [Hougaard (1986)], the log-normal
frailty [McGilchrist and Aiskett (1991)], the power vaaince frailty Palen (1988)],
the uniform frailty [Lee ad Klein (1988)] and the tteshold frailty [Lindley
and Singpurwalla (1986)]. While the one-parameter extension (1.1) of the Cox
model is unlikely to address all misspecification, it is a point of departure. The
objective of this paper is to provide a rigorous foundation for inference within this
class of models, adopting the point of view that any model is at best a working
approximation to the truth.

It is popular to letW have a gamma distribution with mean 1 and variapce
With time-independent covariates, the model is equivalent to the odds-rate
regression [Dabrowska and Doksum (1988)],

(1.2) WT)y=-p"Z+e,,

whereh(t) is an unspecified strictly monotone increasing function, andsg3p
has a Paretg ) distribution. Fixingy = 0 gives proportional hazards, whije=1



1450 M. R. KOSOROK, B. L. LEE AND J. P. FINE

gives proportional odds [Bennett (1983)].f{w; y) has zero variance, then (1.1)
reduces to the Cox model and efficient estimatiop @ straightforward with the
partial likelihood [Andersen and Gill (1982)]. Estimation for the special case (1.2)
with y known has been studied extensively [Pettitt (1982, 1984), Cheng, Wei and
Ying (1995, 1997), Murphy, Rossini and van der Vaart (1997), Fine, Ying and
Wei (1998), Scharfstein, Tsiatis and Gilbert (1998), Shen (1998) and Slud and
Vonta (2004)]. When the parameter in the frailty distribution is unknown, these
methods are not applicable. Asymptotic theory for maximum likelihood estimation
of model (1.1) with clusters of size greater than or equal to 2 and shared gdémma
having unknowry was derived by Parner (1998). See Nielsen, Gill, Andersen and
Sgrensen (1992) and Murphy (1994, 1995) for related work. A unified theory for
estimation in model (1.1) with uncorrelated data and general frailty distribution is
not available.

In this paper the focus is on independent observations. The data setup and frailty
model assumptions are given in Section 2. Bagddhasiand Nikulin (1999)
suggested ad hoc estimators for the parameters, but their large-sample properties
were not established rigorously. The large-sample results in Parner (1998) can be
adapted to the univariate gamma frailty setting with a correctly specified model,
but do not apply to other frailty models and cannot be used to address model
misspecification.

In Section 3, a likelihood-based procedure for model (1.1) is formally proposed,
and the existence of likelihood maximizers and of both score and information
operators is examined without requiring the model to be correctly specified.
Section 4 establishes uniform consistency and weak convergence of the parameter
estimators under mild identifiability conditions which ensure the uniqueness of the
implied parameter corresponding to the maximizer of the asymptotic limit of the
likelihood with respect to the true model. We also study properties of the estimators
in settings where the model is not identifiable, as occurs when0 and the
frailty variance and baseline hazard aenfounded. To our knwledge, this is
the first attempt at asymptotic theory for misspecified nonparametric maximum
likelihood estimation (NPMLE) for semiparametric survival regression models.
White’s (1982) work on robust parametric likelihood estimation is not directly
applicable due to the presence of nonparametric components in (1.1). The closest
related work is on asymptotic theory for the misspecified Cox model based on
partial likelihood [Struthers and Kalbfleisch (1986), Lin and Wei (1989) and
Sasieni (1993)]. However, these results do not apply to estimation based on full
nonparametric likelihood.

Because the parametric and nonparametric components in (1.1) are estimated
simultaneously, inference is complicated. Parner (1998) showed that the variance
of the NPMLE for the gamma frailty model with cluster sizes greater than
or equal to 2 can be consistently estimated by inverting a discrete observed
information matrix. However, computing the required second derivatives can be
difficult when the likelihood does not have a closed form, for example, with
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log-normal frailties. Furthermore, the limiting covariance function is extremely
complicated and does not permit the construction of analytic confidence bands
for functionals of the baseline hazard such as covariate-specific survival functions.
The procedure we employ is to maximize the profile likelihood using a simple
fixed-point algorithm for the baseline hazard motivated by the EM algorithm.
We show that bootstrapping this procedure provides valid inference, including
variance estimation and the construction of confidence bands for survival functions
under model misspecification. The estimated survival probabilities may not be
unbiasedin large samples. However, it may be useful to interpret these quantities as
minimizing the Kullback—Leibler discrepancy between the survival curves under
the fitted and true models, conditionally on covariates.

In Section 5, the identifiability conditions given in Section 4 are shown to be
satisfied when the model is correctly specified. We further verify that the estimators
achieve the semiparametric variance bound [Sasieni (1992) and Bickel, Klaassen,
Ritov and Wellner (1993), hereafter abbreviated BKRW] and are fully efficient
for all model parameters. Section 6 evaluates the conditions of Section 4 under
misspecification. In this case the estimators are still uniformly consistent and
converge weakly, but inference must be based on an infinite-dimensional analogue
to White's (1982) robust variance formula. Our contributions beyond Parner’s
(1998) work on the shared gamma frailty model are threefold. First, we study
univariate data. Second, we allow general frailty distributions. Third, we permit
misspecification.

The robust inferences are practically useful under some well-known misspec-
ification mechanisms. To begin, we establish that when the true model has the
form (1.1) but the choice of the distribution @f is incorrect, the parameter esti-
mate for a single covariate which is independent of one or more other misspecified
covariates may be consistent up to sign. Note that all the covariates may be par-
tially misspecified under mild restrictions. The setting applies in particular when
assessing treatment effect in a randomized trial. Next we show that if the covariates
Z are correctly specified andE#Z|8,Z] is linear ing;Z for all linear combina-
tions b’'Z, then the parameter estimates are consistenk46g, wherepfy is the
true regression parameter ang@ € R. When the Cox model is used but the
true model has frailty variance greater than 0, the estimated effect wilh Bg
wherea1 € (0, 1) and fg is the true effect. The conditional linearity assumption
has been used by Li and Duan (1989) to establish similar robustness results un-
der link function violations for parametric regression and for the Cox model based
on partial likelihood but without censoring. Our results are applicable under in-
dependent censoring and are based on the full likelihood so that joint estimation
of y andA(t) = [5a(s)ds as well asg is possible, which may be necessary for
survival predictions.

While the focus of this paper is on independent survival times, many of the
results and methods of proof are potentially applicable to multivariate failure time
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data. Furthermore, the fact that a proportional hazards model can be changed to
a nonproportional hazards model by simply adding a frailty underscores the need
to be careful when interpreting marginal inferences based on multivariate shared
frailty models involing covariates. Nonpropodnal marginal hazards may not
imply correlation of the failure times [Hougaard (2000)]. Extending the univariate
results of this paper to the multivariate setting is an important topic for future
research.

Several computational issues are discussed in Section 7, and the utility of the
methods is illustrated on the lymphoma data in Section 8. All proofs are given
in Section 9.

2. Thedata setup and frailty models.

2.1. Dataassumptions. The datd X; = (V;,6;, Z;),i =1, ..., n} consist ofn
i.i.d. realizations ofX = (V,8,Z), whereV =T AC,§=1{T <C}, x Ay
denotes the minimum of and y, 1{B} is the indicator ofB and C is the right
censoring time. The analysis is restricted to an intef@ak], wheret < oo.
The covariateZ = {Z(¢),t € [0, ]} is assumed to be a caglad (left-continuous
with right-hand limits) process witl (r) e R?, ¢ € [0, t]. We make the following
additional assumptions:

(A1) PIC =0]1=0, FC > t|Z] =P[C = 1|Z] > 0 almost surely, and censoring
is independent of" givenZ.
(A1) Condition (Al) is strengthened to require tifatnd Z are independent.
(A2) Thetrue density of" givenZ, fo(t|Z), exists and is bounded ovee [0, 7]
almost surely, and[' > t|Z] > 0 almost surely.
(A3) The total variation ofZ(-) on [0, ] is < mg < oo almost surely, and
varnlZ(0+)] is positive definite, where for a real functidghwith right-hand
limits we defineF (t+) = limg; F(s).
(A3’) Condition (A3) is strengthened to require tiat (Z1, Z2), whereZ; e R
is time independent and; andZ, are stochastically independent.
(A3”) Condition A3 is strengthened to require tiats time independent and that
E[b'Z|c'Z] is linearinc’'Z for all b, ¢ € RY.

Conditions (A1) and (A2) are somewhat standard for right-censored regres-
sion models, while condition (A3) is needed for both asymptotic normality in
Section 4.3 and for parameter identifiability when the model is correctly spec-
ified in Section 5.1. The condition on yar0+)] is similar to Parner’s (1998)
condition 2(g). The more restrictive assumptions’(AlA3’) and (A3’) are only
used in Sections 6.2 and 6.3 for establishing robustness results under misspecifi-
cation. An important example of when condition (ABolds is wherZ; indicates
treatment and treatment assignment has been randomized to ensuig tiaate-
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sponding to other prognostic factors, is independef;0fAn important example
of when condition (A3) holds is wherZ is multivariate normal.

2.2. Frailty model assumptions. The frailty models we consider in this paper
posit that the hazard function has the form (1.1). After integrating &wethe
corresponding survival function at timegiven Z = z becomes

S(itlz)=PIT >t1Z=1z]

(2.1) = E[exp{—W /0 B dA(s)“Z = z]
= Ay{/ot eﬁ’2<s)dA(s)},

where W is continuous and independent &, A(s) = [ya(u)du, A, (1) =
Jo e ™ f(w; y)dw is the Laplace transform oV andy € R is an unknown
parameter. At this point we are not assuming that the posited model agrees with
the true conditional densityy. The remainder of this section contains technical
conditions on the frailty models, conditioiiB), (C), (D1)-(D3), (E1) and (E2),
which some readers may wish to skip over on the first reading.

We assume that the posited model consists of a family of frailty transfosmjs
and a collection of indiceg) = (y, 8, A)}, which satisfy:

(B) B € Bo, where By c R contains 0 and is open, convex and bounded and
whereB denotes closure of a sBt

(C) There exist a constang and a continuous, decreasing functign|[0, co)
(0,3/4), so that O0< cg < g9(0) < 3/4, lim;_, o, e0(¢) = 0 and, for each
positivem, t < oo, there is an extension ot (-):[0,m) x [0, ¢] — [0, 1]
having domairf—eq(¢), m] x [0, t].

For the parametric componegt= (y, 8), define the parameter s@& =
(—co,m1) x Bg for some positivem; < oo. In consequence of conditions
(A3) and (B), let 1< K < oo be the maximum possible value of 1 and befff
ande=#'Z® over B € Bg andt € [0, t]. Also let 4 be the collection of monotone
increasing functionsA : [0, t] — [0, 00), with A(t) < oo, and defineAg to be
the subset of4 consisting of absolutely continuous functions with derivative
satisfying O< a(t) < oo for all ¢ € [0, T]. Fory € [—co, ml] defineA(,) so that
Ay = A wheny >0, andA,) ={A e AA(T) < & (y)/Ko} wheny < 0.
Also deflneA‘(’ y = wheny > 0 and A(y) ={Aec AIA(T) < gy (y)/Ko}

when y < 0. We can now define the index sels = (v :(y,8) € ©®,A €
Ay} ={Y:A €A, BeBoyel—e(KoA(r)),mi]} andWo={y:(y,B) € O,
A€ AgN A(y)}

We need the following additional conditions an,, where we defined,, =
AN, (1)/(@1), A, = A, (1)/(B1), G, =—logA,, G, = 3G, (1)/d1), Gy
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3G, (1)/@1), G,= 3G, 1)/ 31, GY = 3G, /0y), GP =36 )/ (1) and

GP =a6P )/ on:

(D1) For each positive < oo, we have the following for aly € [—¢o(7), m1]
andu € [0,¢]: A,(O+) =1, Ay(w) >0, 0< —A,(u) < oo and 0<
Ry () < 00,9 Gy (u)/Bu), Gy )/ (), 3Gy () /(9y) andd? Gy (w) /
(8y)2 exist and are bounded;, (0+) =1, G;l)(0+) =0,G,(u) <0and
C"}g,l)(O—{—) <0.

(D2) There exists a1:(0,m1] — (0, 00] such that, for any sequende;} <
[0,m1] with y — y > 0, limsup_, . SUR,=out" A, (u) < co and
limsup,_, o, U0 X1 A,, ()] < co.

(D3) There exists a2:[0,m1] — (0, co], with ¢2(0) = oo, such that for all
sequencesty, — o0 z_:lnd {(vi} € [—eo(tr),m1] with y — y > 0,
liminfi_, o infue0,.4) 16 Gy, () = c2(y). )

(E1) Forally € [0, m;] and allt € [0, o0), G, (1) +tG,,(t) > 0 and

Gy (@) H[qy (1) _{qy(r>} }50
G, (1) Gy() LGy

(E2) lim, ;o E[(W — 1)2]/y =1 and lim, ;o E[|W — 1[3]/y = 0, whereW is a
random variable with Laplace transform, .

Conditions (D1)—(D3) are needed for uniform consistency and weak conver-
gence of the estimators. Condition (D1) is also used for identifiability when the
model is correctly specified. Conditions (E1) and (E2) are needed for identifiabil-
ity under misspecification.

REMARK 1. Condition (C) ensures thajp = 0 is an interior point. Parts
of (D1)—(D3) are conditions on the moments W&f. For (D1) this follows since
G, (0+) = E[W] and G, (0+) = —vafW]. Condition (D2) is satisfied if there
exists a continuous function : (0, m1] — (0, co) such that EW 1] < oo for
all y € (0, mq].

2.3. Examples of frailty models. The following are instances of frailty
transforms:

1. Thegamma frailty hasA, (t) = (L + y1)~Y/7.

2. Theinverse Gaussian frailty [Hougaard (1984)] hag,, (r) = exp{—y 1+
2ynt2 -1y}

3. Thelog-normal frailty [McGilchrist and Aisbett (1991)] has

Ay (1) =/Rexp{—teyl/zv_y/z}qb(v)dv.
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4. Thepositive stable frailty [Hougaard (1986)] haa.,, (r) = exp{—t"'}.
5. The IGGQw) family of frailty transforms has the form

A, :exp{—la_ya [<1+ 1’::[)“ = 1]}

wherea € [0, 1) is assumed known. The IGG(0) family is obtained by taking
the limit asa | O.

REMARK 2. The IGQu) family includes both the gamma frailty (= 0) and
the inverse Gaussian frailtye (= 1/2). The IG is for “inverse Gaussian” and the
second G for “gamma.”

REMARK 3. A, and the functionals ofA, introduced above are defined
aty = 0 by continuity. In all the above frailties, excepting the positive stable frailty,
Ao(r) =limy, 0 A, (r) = ™!, corresponding to the Cox model.

The following states that most of the stated frailty conditions are valid for a
number of standard frailty families:

PropPoOsITION 1. Conditions (C), (D1)—(D3)and (E2) are satisfied by the
gamma, inverse Gaussian, log-normal and IGG(«), for any fixed o € [0, 1),
frailty distributions.

REMARK 4. Verification of these conditions for the log-normal is hard
technically since\,, does not have a closed form.

REMARK 5. Condition (E1) is easily verified for the gamma, inverse Gaussian
and IGGQu) frailties, and has been validated numerically for the log-normal
frailty for y € [0, 4.62], corresponding to a frailty variance of 100. We conjecture
that (E1) holds for the log-normal frailty for all® y < co.

REMARK 6. For the positive stable frailty, conditions (D1), (D3), (E1)
and (E2) are not satisfied but conditions (C) and (D2) are. For example,
G,(0+) =00 wheny < 1. Note also for this frailty that, wherz is time

independent;-log S(¢|z) = e?P'’Z + AY(¢), and the model is thus not identifiable.
3. Nonparametric maximum likelihood estimation.
3.1. Theestimator. The nonparametric log-likelihood has the form

Luw) =Paf [[109G (HY 5)) + '2(5) +Ioga)] N s)
3.1)
-G, .
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where N(t) = 1V < 1,6 =1}, Y1) = YV > 1}, HV (1) = [{eF?© dA(s),
a=dA/dt andP, is the expectation with respect to the empirical probability
measure. As discussed by Murphy, Rossini and van der Vaart (1997), the maximum
likelihood estimator fora does not exist, because any unrestricted maximizer
of (3.1) puts mass only at observed failure times and is not a continuous hazard.
Instead, we compute the maximizer by profiling owr This yields esti-
mators foré = (y, 8) and A, but nota. The profile likelihood ispL, () =
SUPse ) L,(y¥)=L,(@®, Ag), Where Ay = arg Maie.a,, La (0, A). Consider
one-dimensional submodels fot, 1 — A;() = é'){l + th(s)}dA(s), where
(-) denotes an argument ranging oy@rr] ands : [0, ] — R is a bounded func-
tion. When they component of is nonnegative, the upper limit of elements
of A, is unconstrained. In this setting one may differentiafg(6, A;)} with
respect tor, whereh(s) = 1{s < u} andu € [0, t], and solve forA with r = 0,
sinceA = A,_o. Hence Ay solves

Aot = [ (B Y1706, {17 ) —5%)})

(3.2) x B {dN (s)}
= /O 770(5)) BN (5)),

whereyy = (0, Ag).

Under model misspecification, it is possible that the best fit will occur for
somey < 0. In this case,f(w; y) will usually not be a density, even though
the quantityS(z|z) in (2.1) is a proper survival function providedl(t) is not
too large. Specifically, alA € A,y must satisfyA(r) < egl(y)/l(o. Under this
constraint, one may differentiate, {(6, A;)} with respect tor, whereh(s) =
v <s<u}—[Au)— AWw)]/A(r) andu,v € [0, ], taker =0, letv 1+ u and
solve forA. This yields

(3.3) Aou) = /O (J99(5) + pu ()} P ld N (5)),

where

P8 — [& IV (s)dA(s)
A7)

By considering one-dimensional submodgds} with i (s) = —1, the fact that the
derivative ofL, (6, A,) ats = 0 is nonpositive implies thas, ({/9) > 0. Thus, for
all 6 € ©, Ay has the form given in (3.3), with, (¥9) > 0 only wheny < 0 and
Ag(t) = 5 (v)/Ko, andp, (1) = 0 otherwise.

The same maximizer occurs withA in place ofa in L,,(y), whereAA(s) =
A(s) — A(s—) and A(s—) = lim;y; A(r). That is, one maximized., () over

(V) =
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all A with jumps at the observed failure times. We denotelly) the log-
likelihood expression withAA in place of a. The nonparametric maximum
likelihood estimator (NPMLE) ig), = (6,.. A; ), whered, = argmaxy g pLy(0).
Equivalently,i, = arg max, cw L,(y).

We have the following existence result.

PrRoOPOSITION2. Under conditions (A1)—(A3), (B), (C)and (D1)—(D3),and
provided max <;<, 8; > 0, then for some 1 < M < oo and all 6 € © there exist

maximizers Ag, and all such maximizers satisfy (3.3)and 1/M < Ag < M.

REMARK 7. Proposition 2 implies the existence of an NPMUE as a
consequence of the compactnesstof However, the proposition says nothing
about uniqueness of the NPMLE.

For a limiting value of the NPMLE to exist, it is necessary (but not suf-
ficient) that the M in Proposition 2 does not go teo as n — oco. How-
ever, a significantly stronger result can be obtained. Defifyg = {A € A
1/M < A(t) < M,suUppat) < M} and, for eache > 0, define X}, =
{A € Alsupgo AWM — A(1)| < ¢ for someA € X}. Note thatX, is com-
pact for each k M < oo. Let P, denote inner probability. We have the follow-
ing result.

THEOREM 1. Assume conditions (A1)—(A3), (B), (C)and (D1)—(D3). Then,
for each n > 0, there exist some 1 < M < oo such that limg o P.({Ag:
6 € ©} € X%, Vn large enough) > (1 —n).

REMARK 8. Theorem 1 implies that all sequences of NPMLE’'s have
convergent subsequences and that the resulting limit poinb;%@a:ohave bounded
derivatives almost surely. Consistency will then follow from identifiability of
the model. Moreover, when only some of the parameters are identifiable,
consistency of the identifiable parameters will also follow. The important example
of estimation off when the survival distribution does not depend on covariates is
discussed in Section 4.2.

3.2. Kullback-Leibler information. We now establish properties of the
Kullback—Leibler information. Let py(v,e|z) = fe(vlz) ST ¢(v|z), where
ftlz) =—-0S8(t|z)/(01), S(t|z) = exp{—G},(H'f’(t))} as definedin (2.1). For each
0 € O, let Ag = argmaXie.s,,n4, Polog(py) andyy = (0, Ag). We have the fol-
lowing result.

LEMMA 1. Under conditions (A1)-(A3), (B), (C)and (D1)—(D3), and for
somel <M < o0, Ay € Ky for all 6 € ©.
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REMARK 9. Lemma 1 tells us that, even without any model identifiability,
all possible Kullback-Leibler maximizers lie in a compact set. Questions about
consistency can thus be reduced to goest about identifiability or partial
identifiability as mentioned in Remark 8.

For eachd € ©, let Yy = (0, Ag) and iy = (8, Ap). For anyyr, ¥ in the
subset of¥ where A; and A» have jumps only at observed failure times, define
the empirical Kullback—Leibler informatioh, (1, ¥2) = L, (¥1) — L, (), and,
for any 1, ¥2 in the subset of for which the derivativea; andas exist, define
the Kullback—Leibler informationo(v1, ¥2) = Polog(py,/py,)- The following
theorem establishes, in the profile context, an important asymptotic equivalence
betweenl,, andly.

THEOREM 2. Under conditions (A1)-(A3), (B), (C)and (D1)—(D3),

Sup_|1n (K/}le &92) - IO(W@y W92)| —0
61,00€0

outer almost surely, asn — oo.

REMARK 10. While Proposition 2 and Lemma 1 establish the existence
of the profile maximizers@e and Ag, uniqueness is not established. However,
Theorem 2 tells us that all members of the equivalence dasse asymptotically
equivalent to all members of the equivalence classin terms of Kullback—
Leibler information. Thus, model identifiability immediately implies asymptotic
uniqueness.

3.3. Score and information operators. In this section we derive the score and
information operators. These play a key role in the weak convergence results
presented in later sections. For eaghe ¥ with A having bounded derivative,
define the one-dimensional submodels v; =  + t{h1, ho, 0(') h3(s)dA(s)},
where(hy, ho, h3) € H, for somer < co and whereH, is the space of elements
h = (h1, ho, h3) such thati; € R, ho € R4, h3 is a cadlag (right-continuous with
left-hand limits) function an¢h1| 4+~ hbho + | A3, < r, with || - ||, being the total
variation norm. Let, = g, -« Hr. Sincey can be represented as a functional
on H, of the formyr (h) = h1y + h%B + [y ha(s) dA(s), the parameter spadeis
then a subset of*° (H,) with norm||y/|| ) = sup,c . |V (h)|, where¢>(B) is the
space of bounded functionals & Forys € W andg, h € H,, define

WS (h) = gihi + ghho + /0 3()ha(s) dAGs).

Note that Hy is rich enough to extract all components ¢f since Hy in-
cludes{h:h1 =1, ho=h3=0U{h:hp =1 h1=h3=0U{h:hy=hy =0,
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h3(s) =1{s <t},t € [0, r]}. Let

U, () (h) = —L (1//z)

—p {[ P ey

_ WY }
G, (H"(V A1) Gy (HY(V A 0)) [

+ / (2 () + ha(s)]dN (5)
(3.4) °

[Béy(Hw(V AT))

i -G, (HY ]
G, (H"(V A1) Gy (HY(V A )

. ./o Y (s)eP @[ Z' (s)ho + ha(s)]d A(s)

[—

=P, U™ () (h).

This score operator can easily be extended so that the bounded derivative
restriction onA is unnecessary. The operator has expectdtibqy) = PoU™ (V).
The dependence anwill be needed later.

The Gateaux derivative o/j(y)(h) at ¥1 € W exists and is obtained by
differentiating the score operator for the submodels 1 + #y. This deri-
vative is

—Uy, () (h) = ——Uo(lﬁl-i-tw)(h)‘ ¥ (o, (h)),
where the operatary, : Hy, — Hy IS
1 ;12 13
% % %\ (h
oy =| ot o2 o || h2
h3

31 _32 33
Oy~ Oy Oy
11 412 513
(3.5) oy 0y Oy hy
= Pg Av%l AV%Z 5'!/2/3 (hz)
531 532 533 h3
Oy~ Oy Oy

= Pooy (h).
The operatorsv{k = Po%k, for 1< j, k < 3, are well defined and bounded, where
61 h1) =€ ha,

624 hy) =657 f " Z(s)Y (5)ef 7 dA(s)hy,
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63 h) @) =EPY 0P 7 Ohy,
6322 =87 [ 2/ ha¥ (920 d (o),
633z =2 / ha(9)Y (5)eP 2O dAs),
52%(h2 )_g(o) / Z($)Z ()h2Y (s)eP Z®) d A(s)
£ f Z($)Y ()P 70 dA(s) / Z/()ha¥ ()P 70 dA(s),
52%(hs )_g(o) / Z(s)h3(s)Y (s)eP 2 dA(s)
+8 [ 2670170 dAG) [ ha)Y 06" dAe),
532(ho) (1) = &5 7' (haY (1)eP #
+&50Y (nef 70 /O " 2 (5)haY ()eP 2 dA(s),
533h3) (1) = £ ha()Y (1)ef 7O

, T 17 (e
FEPY 0O [ ha()¥ (e A0 dA)

and where
—_—
Sy _ Gy (VA D)
Sy = Oy (HY(V AT)) G, (HY(V AT))

EY =GP (HY(V AD)

(
S[G(Z)(H‘/’(V AT {G,(,l)(H‘/’(V AT)) ﬂ
(

Gy (HY(V A T)) Gy (HY(V A T))
§P =GP (HY(V AD)

-4

GPHY (VAT GPHYV AT)G, (HY (VA r))i|
Gy (HV(V AT)) (G, (HY(V A1)))2
and

£ =Gy(HY(V A D) —g[éy HY(V AT) { Gy (H(V A7) ﬂ

G,(HY(VAT) |Gy (HY(VAT))

where we also definé'? = 3G (1)/(3y).
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To use the Z-estimator master theorem to obtain weak convergence in
Section 4.3, the Gateaux differentiability @f needs to be strengthened to Fréchet
differentiability. Accordingly, we have the following result.

LEMMA 2. Under conditions (A1)—(A3), (B), (C) and (D1)—(D3), and for
any Y1 € , the operator v — Ug () is Fréchet differentiable at v, with
derivative v (oy, (h)).

4. General results.

4.1. Additional assumptions. Let So(z|z) = [, fo(s|z) ds, wherefy is as de-
fined in condition (A2). Denotgo(v, e|z) = £ (v|2) S5 < (v]z) and letv(v, e, )
be the implicitly defined measure f@V, §, Z) such that the true expectation
of g(X), denotedPpg, can be written ag,. gpodv, whereX is the sample space
for X andg is measurable. Recall that the operaigr was defined in (3.5) for
all v € ¥. We make the following assumptions about the relationship between the

posited frailty model and the true distribution:

(F) Polog(py/po) has a uniqgue maximum ovey € Wo at v, = (v, B+,
A,) e Wp.
(G) oy, : Hx — H is One-to-one.

REMARK 11. Assumption (F) is analogous to assumption A3(b) of White
(1982) and is required for consistency, while condition (G) is analogous to
assumption A6(b) of White (1982) and is required for asymptotic normality. The
lack of convexity of the Kullback—Leibler information in the posited frailty models
generally prevents assumptions (F) and (G) from being direct consequences of the
other conditions, except when the frailty model is correctly specified (Section 5)
or when the true model is not too far from a member of the posited frailty model
(Section 6.1).

REMARK 12. With a misspecified frailty model, the existence of the implicitly
defined vy, does not guarantee its meaningfulness. In genergl,# po and
Y« = Yo only when py, = po. We show in Sections 6.2 and 6.3 that when
py is misspecified but assumption (F) holds, some of the componenis wfay
sometimes be useful for inference abpyt

4.2. Consistency. The theorem we now present establishes the consistency
of v, under the identifialtity assumed in (F).

~ THEOREM 3. Under the conditions of Proposition 2 and condition (F),
Y, convergesouter almost surely to v, in the uniform norm.
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The following gives us the consistency @ under an important partial
identifiability setting not requiring condition (F).

PrROPOSITION3. Assume the conditions of Proposition 2 and that fo(7|Z =
z1) = fo(t|Z = zp) for all 7 € [0, r] and all possible values z1 and z2 of the
covariate process. Then 3,, converges outer almost surely to 0.

REMARK 13. An innovation in the proofs of Theorem 3 and Proposition 3
is that the existence and asymptotic boundedness,a$ established even when
the model is misspecified or when condition (F) may not hold. This was shown
in Proposition 2 and Theorem 1, where it wdsmonstrated that the asymptotic
boundedness and equicontinuity 4f depends only on the structure of the data,
the posited model and the general condition (A2), but does not depend on any other
aspects of the underlying true distribution.

4.3. Asymptotic normality. We use Hoffmann-Jgrgensen weak convergence
as described in van der Vaart and Wellner (1996) (hereafter abbreviated VW).
We have the following result.

THEOREM 4. Under the conditions of Theorem 3 and condition (G),
Jn(Y, — ¥,) is asymptotically linear, with influence function ¢(h) = U™ () x
(01;*1(}1))’ h € Hi, converging weakly in the uniform norm to a tight, mean-zero
Gaussian process Z, with covariance V. (g, h) = E[£(g)¢(h)], g, h € H;.

REMARK 14. In the proof in Section 9, the problem of establishing weak
convergence can be cleanly divided into establishing properties of the data and
fitted model (1.1), based on conditions (A1)—(A3), (B), (C) and (D1)—(D3), and
establishing properties of the Kullback—Leibler discrepalhgpg(py / po), based
on conditions (F) and (G), which involves the true distribution of the censoring
and covariates.

4.4. The bootstrap. The usual nonparametric bootstrap resamples with
replacement from the observed data. A disadvantage is that ties can arise with cen-
sored survival data. We propose an alternative weighted bootstrap. In each boot-
strap sample one generatemdependent and identically distributed nonnegative
weights¢y, ... ., &, with mean and variance 1 and wiff® «/P[¢1 > x]dx < co.

Each weight is divided by the average weight (rejecting samples with all 0’s) to ob-
tain “standardized weightgy, . . ., ¢, which sum ta:. Distributions satisfying the
moment conditions include the unit exponential and the Poisson with mean 1. For
the nonparametric bootstrap the weights. .., ¢, are generated from a multino-
mial distribution with E; =1,i =1,...,n,and}_/_; ¢/ =n.

For a known functionf, let P f(V,8, Z; ) = n= 130 1 2 f(Vi, 8i, Zis )
define the weighted empirical measi#tg. The weighted bootstrap estimafg’
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is computed by substituting®; for P, in the expressions in Section 2.2 and
maximizing overy. Note thatlP; is defined similarly toP; with the weights
¢i,---,¢, In place of¢p, ..., ¢;. The nonparametric bootstrap estimd}g is
computed by usin@;, in place ofP, in Section 2.2.

The following result establishes the validity of both the nonparametric and the
weighted bootstraps.

COROLLARY 1. Under the assumptions of Theorem 4, the conditional boot-
strap of 1, based either on Wn or wn, is asymptotlcally consistent for the

limiting process Z,. That is, \/n(; — ¥,) and /n(y° — 4,) are asymptoti-
cally measurable,

() supepy, |E-8(v/n(;, — ) — Eg(Z,)| — Oinouter probability, and
(i) SUPyepr, |Eog(V/n (W — V) — Eg(Z4)| — Oinouter probability,

where BL; is the space of functions mapping R?*+1 x ¢°°([0, 7]) —~ R with
Lipschitznorm < 1, and conditional on the data E. and E, are expectations over
the multinomial and standardized weights, respectively.

REMARK 15. While the choice of¢;} in the weighted bootstrap has no
effect asymptotically, the rate of convergence may be affected. Newton and
Raftery (1994) discuss different choices in the context of parametric maximum
likelihood. They demonstrate that unit exponential weights, which are Dirichlet
after standardizing, perform well. Our own experience is that exponential weights
also work well for semiparametric inference. A detailed analysis of the distribution
of the weights is beyond the scope of this paper.

REMARK 16. An advantage of using-estimator theory for establishing
weak convergence of estimators for likelihood inference under possible model
misspecification is that consistency of the bootstrap is essentially an immediate
consequence of the influence function befgDonsker.

5. Results under correctly specified model. The focus of this section is
on the behavior ofj, when the frailty regression model is correctly specified.
Accordingly, ¥, = ¥ throughout this section. In Section 5.1 we establish that
the identifiability condition [condition (F)] holds. In Section 5.2 the injectiveness
of oy, [condition (G)] is established and shown to imply thiat is both regular
and efficient. In addition to assuming that, is correctly specified, we make the
following assumption:

(H) y0€[0,m1), 0# Bo € Bg andAg € Ag With ag > 0.

REMARK 17. Condition (H) is also assumed by Parner (1998). Whes 0,
the survival functiorSo(r) does not depend on covariates, and we have the situation
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considered in Proposition 3. Moreover, we have that for any 0, there exists
an A, € Ag so thatSo(t) = A, (A,(1)). Thus,y and A are not identifiable
whengg = 0.

5.1. Identifiability. Nonparametric identifiability of the mixed proportional
hazards model, under the assumption thgZ takes on at least two distinct
values, has been established for right-, left- and double-censored data with finite-
mean frailties by Kortram, van Rooil,enstra and Ridder (1995). For earlier
related work, see also Heckman and Taber (1994), Elbers and Ridder (1982) and
Heckman and Singer (1984). In our case, is parametric rather than completely
unspecified and may not have the interpretation of being the Laplace transform
of a frailty wheny < 0. The following proposition establishes uniqueness of
the model.

PrROPOSITION4. Under conditions (A1)-(A3), (B), (C), (D1)—(D3)and (H),
model (2.1)isidentifiable over ¥q, and thus condition (F) is satisfied.

REMARK 18. The monotonicity iny of G,(0+), where G,(t) =
—92log Ay(t)/(al‘)z, as given in condition (D1), is the key to establishing identi-
fiability of the extended Laplace transform. Sineéy(0+) is the variance oW
wheny > 0, this is the same as requiring that W&l be a monotone function
of y. The positive stable frailty model violates this condition and is not identifi-
able without clustered dats noted in Remark 6 ate. Because dProposition 1,
the gamma, inverse Gaussian, log-normal and b @gilties are identifiable.

5.2. Efficiency. The main result of this section is as follows.

THEOREM 5. The information operator oy, is one-to-one. Thus, oy, is

continuously invertible, condition (G) is satisfied and v, is a regular and efficient
estimator of o when yo > 0 and censoring is uninformative of . The limiting

covariancefor /n({, — o) is¥§ (Uz;ol(h))7 g, h € H.

REMARK 19. For the shared gamma frailty regression model, Parner (1998)
suggests inference based on estimating the covariance. This is done through first
estimatingo,, by plugging inyr,, for ¥ and then inverting, considering only the
parameterg’/, 8 and AA at observed failure times. Because this approach may
be difficult to implement with generat(w; y) and does not readily enable the
construction of confidence bands, the bootstrap is recommended for inference.
By Corollary 1, Theorem 5 implies that the bootstrap will yield valid inferences.

REMARK 20. The proof of Theorem 5 draws heavily on the tangen#set
as defined in the proof of Theorem 4. The issue is showing thath ferH,,



FRAILTY REGRESSION MODELS 1465

oy,(h) =0 impliesh = 0. This gives thaty,, is continuously invertible and onto,

and thus the influence function is contained in the closed linear span of the score
operator, yielding the given covariance. Regularity and efficiency then follow from
Theorems 5.2.3 and 5.2.1 of BKRW.

REMARK 21. An alternative estimator td, is to take

g = it 9 > 0,
"1, B, A,  otherwise,

whereg,, A, are the estimates based on the Cox model. It is not difficult to show
that, whenyg > 0, ¥, has the same limiting behavior s,, but whenyg = 0,

the limiting distribution of,/n (4, — ¥o) is a mixture of the limiting distribution

of ﬁ(w/?,, — ) and the limiting distribution under the Cox model (with a 0 in
the y component), each with probability/2. This alternative estimator is thus
more precise whemo = 0. It also follows without difficulty that the conditional
limit law of the bootstrap which imitates this estimation procedure is equal to the
limit law of ﬁ(x}n — 1) in the sense of Corollary 1.

6. Results under model misspecification. In this section, we examine
conditions under which the model is misspecified but the parameter estimates
are consistent and asymptotically Gaussian, and some of the components of the
estimated quantity may be interpreted yig. In Section 6.1 we demonstrate
that if the posited conditional survival distribution—based on the chosen frailty
transform A,,—is not too badly misspecified, then conditions (F) and (G) are
satisfied under certain restrictions on the indexdeln Section 6.2, we examine
the effect of testing for the effect of a single covariate with misspecification. In
Section 6.3 we study andg under misspecification with structural requirements
on the covariates.

6.1. Existence of unigue Kullback-Leibler maximizers. Define

Yy ={y =(r,B,4) 1y € (—eo(KoA(r)), m1),

ﬂeBo,AeeA?y),l/M<a<M},

where 1< M < o0, gg(+) is as defined in condition (C) anky is as defined
in Section 2.1. LetD(v) be the space of all conditional densitie&|z) such
that k¢(v|z)L(v|z)}~¢, where L(v|z) = [.° k(u|z) du, is v-measurable. Denote
fy(lz) = py (v, 1]z2). Also, for f € D(v), let ps) (v, elz) = f¢(v]2)ST4(v]2),
whereS(v|z) is the survival function corresponding #(v|z). The main result of
this section is as follows.

THEOREM 6. Assume that conditions (Al)-(A3), (B), (C), (D1)-(D3)
and (H) are satisfied by the data and the posited frailty distribution. Then for
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every O < oo there exists an ¢ > 0 such that for each conditional density
f € D(v),with f < Q v-almost surelyand [y | f — fy|dv < e for someyr € Wy,
there exists a unique Kullback—Leibler maximizer vy = argmay, cy,, P(s) X
log(py./p(s)) € Ym, With oy, = PGy, Ho — He being one-to-one,
where P(y)g = [x gp(p) dv-

REMARK 22. This theorem tells us that for any given class of proportional
hazards frailty regressiomodels parameterized by,, and satisfying the stated
regularity conditions, there exist an infinite number of true models not agreeing
with the posited model but which satisfy conditions (F) and (G) wijth=
(Vs> Bx» Ax) = ¥ (p). In other words, conditions (F) and (G) are satisfied when the
posited frailty family is sufficiently close to the true distribution. This is important
in misspecified frailty model settings where uniqueness is not guaranteed by
convexity. Note that without the condition bounding the true densitieDhy
the Kullback—Leibler discrepancy between the true and posited models may be
unbounded even when the respective densities are quite clagéin

REMARK 23. Itis worth emphasizing that. may be less than 0. In practice,
one might mistakenly assume that the model is correctly specified and constrain the
maximization to be over the subsetf, for which y > 0. Denote the resulting
maximizen}* = (Vs, B*, A*) and assume it is unique. The results in Section 2 can
then be redone for the estimatgy;, defined in Remark 21. In the general setting,
¥, will be uniformly consistent foi,., and/n (¥, — ¥) will have three possible
limiting distributions: whery, > 0, the limiting distribution is a Gaussian process
as given in Theorem 4; whep. = 0 and they term in Uof(lﬁ*) =0, the limiting
distribution is a mixture of two Gaussian processes similar to the mixture described
in Remark 21; and whefr, = 0 but they term in Ug(&*) < 0, the limiting
distribution for./n(y, — 7,) is a point mass at O while the remaining components
have the limiting distribution resulting from assuming the Cox mogdge& 0). Itis
not possible, under the stated regularity conditions, to liave 0 but they term
in Ug(&*) > 0, since this would imply thay, > 0. It also can be shown that
the conditional limit law of the bootstrap, which imitates the foregoing estimation
procedure, is equal to the limit law Qf7 (¥, — v,) in the sense of Corollary 1.
Hence, when the bootstrap distributionyaf under this constraint is frozen at 0,
there is significant evidence against the frailty model being correctly specified.

6.2. ldentifying an independent covariate effect under a misspecified model.
In this section, we examine the effect of testing for a univariate covariate effect in
the presence of other covariates and frailties when the posited frailty distribution
and some of the covariates may be misspecified. We assume throughout this
section that the data satisfy conditions (A1(A2) and (A3) for the covariate
proces¥Z = (Z1, Z») and that the posited model satisfies conditions (B), (C), (D1),
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(D2) and (E1). We allowZ, to be misspecified and; to be partly misspecified,
in that we only assum@o{T < (-)|Z1 = z1} iS monotone irx1.
The following is the main result of this section.

THEOREM 7. Assume conditions (Al’), (A2), (A3), (B), (C), (D1)—(D3)
and (E1) hold for the data and posited frailty model. Denote Fj'(r) = P[T > 1|
Z1 = z1] and assume that Fél(-) is monotone in z; almost surely. The covariates
may be otherwise misspecified. Also assume condition (F) holds with Kullback—
Leibler maximizer v, = (yx, Bs = (B«1, Bx2), Ax) € Yo, where y, > 0. Then
(i) if Fy* isconstantin z1, B.«1 = O; (ii) if F5* isstrictly increasingin z1, By1 > 0;
and (jii) if Fy" isstrictly decreasingin z1, B.1 < O.

REMARK 24. If we interpret the covariate effect @ to be positive when
Fy' is increasing irr1, negative when decreasing, 0 when constant and ambiguous
otherwise, then Theorem 7 implies that the covariate effect can be consistently
estimated up to the correct sign even if b@thandZ» are otherwise misspecified.
If condition (G) also holds, then the score and Wald testsHer 8.1 = 0 will
be valid for testing the covariate effect @f. These results generalize Kong and
Slud (1997) to more general misspecification when fitting the more general class
of models (1.1).

REMARK 25. Note that we requirg, > 0. This is becauseondition (E1)
appears to be needed for Theorem 7, and this condition only works whe@.
This requirement is stronger than necessary for the consistency and asymptotic
normality results for possibly misspecified models given in Section 4.

6.3. Coefficient effects under misspecified models. In this section we examine
the effect of regression parameter estimates under a misspecified frailty distribu-
tion and stronger conditions on the covariates. We assume that the data and posited
frailty distribution satisfy (A1), (A2), (A3"), (B), (C), (D1)—(D3) and (E1).

REMARK 26. Conditional linearity [condition (A3] is also used by Li and
Duan (1989) in their study of regression analysis under link violation. Their results
apply to fitting parametric models based on maximum likelihood and to semi-
parametric Cox models based on partial likelihood without censoring. Brillinger
(1983) used this assumption to study unobserved Gaussian regressor variables in
generalized linear models. In contrast, our results apply to semiparametric frailty
regression models under frailty missgemtion using nonparametric maximum
likelihood with or without censoring. While condition (ABis sufficient, it may
not be necessary for the results below.

We have the following proposition which extends Li and Duan (1989) to
censoring when the true model has the form (1.1).
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PROPOSITIONS. Assume conditions (A1’), (A2) and (A3”) hold for the data,
the posited model is a Cox proportional hazards model with 8 € R?, and the
true failure time distribution satisfies a proportional hazards frailty regression
model with parameter v = (0, Bo, Ao) € Yo, Where yp > 0 and where the
corresponding true negative log frailty transform family (denoted {G?}) satisfies
conditions (C), (D1)—(D3)and (E1). Then conditions (F) and (G) are satisfied with
B =a1Bo, Whereay =1if yp=0and ay € (0, 1) if yo > 0.

The following result establishes consistency up to scale when fitting (1.1) with
a misspecified Laplace transform.

PROPOSITION 6. Assume conditions (A1), (A2) and (A3”) hold for the
data; the posited and true proportional hazards frailty regression models satisfy
conditions (B), (C), (D1)—-(D3)and (E1) for the common index set W, where
the posited negative log frailty transform family is denoted {G, } and the true
family is denoted {G}}; and the true parameter value for the true model
is Yo = (yo0, Bo, Ag) € Wo, where o > 0. Also assume condition (F) holds
with Kullback—Leibler maximizer v, = (yx, B, Ax) € Yo, where y, > 0. Then
B« = a2Bo, Wwhere ar = a1 when y, =0, a2 > O when y,, > 0 and a1 is as defined
in Proposition 5.

REMARK 27. If conditional linearity is violated, it may be possible to
perform a reweighted maximum likelihood estimation procedure, based on weights
described in Cook and Nachtsheim (1994). The resulting estimator would have
the properties described in Proposition 6 and could be employed as a diagnostic
for (A3”) by comparing to the unweighted estimator.

REMARK 28. Under the stated regularity conditions, these results show that
using the Cox model when an unobserved frailty is present results in an estimate
which is an attenuation of the true effect. When fitting (1.1) with the Laplace
transform correctly specified, there is a deattenuation relative to the Cox model
as a consequence of model identifiability. With a misspecified frailty distribution,
the correct direction is obtained. However, it is unclear whether the effect size is
deattenuated relative to the Cox model.

REMARK 29. One can test whether the Cox model is an attenuation of the true
effect, that isq < 1, if the score test foHy : o = 0 remains valid and consistent
under misspecification of the frailty distribution. Proving this in generality appears
to be quite difficult, but the following result is a step in the right direction.

PROPOSITION7. Assume conditions (Al’), (A2) and (A3”) hold for the data
and the posited and true proportional hazards frailty regression models satisfy
conditions (B), (C), (D1)-(D3), (El)and (E2) for the common index set W. Then
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the score test for Hp: o = 0 based on the posited model is valid and consistent
under positive contiguous alter natives.

REMARK 30. Proposition 7 points out that this score test has the same form
at y = 0 under both correctly and incorrectly specified frailty models. Thus, to
ensure that this score test is consistent for the fixed alternativey > 0, one
would need to establish that the profile likelihood fgrprofiling overg andA, is
convex over the regiof0, m1] when the model is correctly specified. This appears
to be very challenging analytically.

7. Computational issues. We implemented the profile likelihood estimation
method of Section 3.1, along with the bootstrap procedure of Section 4.4 based on
Dirichlet weights, for the gamma and inverse Gaussian frailty models. We did not
implement the log-normal frailty model because of the additional computational
burden resulting from\,, not having a closed form. Although this issue can be
addressed using Monte Carlo quadrature methods, we do not pursue it further
here. To estimate the parameters in the gamma and inverse Gaussian frailty
models, we maximized the nonparametric likelihood via profiling. A simple
random search method based on the Metropolis—Hastings algorithm was used to
maximizepL, (6) over®. For each candidate value &f the fixed-point equation
given in (3.2) was iterated until stabilization to obtaip. Some simplification

of JV occurs for these two frailty models. For the gamma frailty,

Y(1)ef 201+ y6>]
1+ yHl/f(V) ’

TV (1) :Pn[

and for the inverse Gaussian frailty,

Y (0)eP 2O (14 2y HY (V)}Y2 + y6>]
1+yHY(V) '
When the candidate value ¢f was negative, the likelihood was considered 0

if Gy(H(‘)*Af?)(V)) was either negative or undefined for any data point. Overall,
we found that this procedure was accurate and computationally efficient at finding
the maximum, with or without bootstrap weights.

TV (1) :Pn[

8. Example: non-Hodgkin’s lymphoma data. The data are a subset of
1385 patients with aggressive non-Hodgkin’s lymphoma (NHL), from 16 insti-
tutions and cooperative groups in North America and Europe. These patients
were treated with a particular chemotherapy regimen. Survival was documented
from start of treatment until either death or loss to follow-up. The censoring rate
was 547%. Information on the following pretreatment covariates is complete for
all patients in the subsedge at the diagnosis of NHL£ 60 or> 60 years), perfor-
mancestatus (ambulatory or nonambulatory), serum lactate dehydrogeease
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(below normal or above normal), number of extranodal diseide®(< 1 or > 1)

and Ann Arbor classification of tumatage [stage | or Il (localized disease) or
stage Ill or IV (advanced disease)]. Each characteristic is coded 0 for the first
group in the parentheses and 1 for the second. These dichotomous predictors are
the basis for the original model [Non-Hodgkin’s Lymphoma Prognostic Factors
Project (1993)]. A clinical reason for using dichotomous predictors is that it pro-
vides a simple classification of risk based on only a finite set of risk groups.

We now illustrate the utility of the procedures described in Section 7 for the
gamma and inverse Gaussian frailty models. The bootstrap procedure based on
the Dirichlet weights was repeated 500 times for inference. Parameter estimates,
standard errors and values for the parameters in the gamma frailty model both
with unknowny (GF) and with the estimated value pftreated as known (GJ},
the inverse Gaussian frailty model with unknowr(IGF), the proportional odds
model and the Cox model are given in Table 1. While the coefficient estimates
are the same for GF and @Rhe difference is that the standard errors forgGF
are based on bootstrap estimates from a model with fixed2.197. The Gl
standard errors are helpful in assessing the bias in precision estimation due to
assumings known. This bias is generally nontrivial and should not be ignored in
practice.

The attenuation of the covariate effects in the Cox model, predicted in
Section 6.3, is evident in the results, although the attenuation does not appear to
be uniform across all covariates. Faatus, the ratio of the parameter coefficient
under the gamma frailty model to the coefficient under the Cox model is about 2.2,
while the corresponding ratio fatage is only about 1.6. This difference may
be related to the fact that the ratio of the standard errors adt#tes coefficient
estimates for GF to Gf-is about 1.27, while the corresponding ratio ftege
is only 1.03. An anonymous referee has suggested that the Cox attenuation
phenomenon for a covariate effect may depend on the degree to which that
covariate’s parameter estimate is correlated with the frailty variance estimate.
Except for the GE results, theZ values for the covariate effects are fairly stable
across models.

The estimated frailty variances in GF and IGF arg9Z and 4325, respec-
tively, which are significantly higher than that assumed by the Cox mgdel @)
and the proportional odds modet & 1). The maximized log profile likelihood
values for the GF, IGF, PO and PH models a#61839, —462837,—-462330
and—468840, respectively. This suggests that GF provides the best fit to the data
and thaty is significantly greater than Ip(= 0.0074 via the two-sided Wald test
based on the bootstrap). Also, PO is better that IGF, even though IGF is more
flexible, seemingly.

In Figure 1, we plot the Kaplan—Meier estimates of the marginal survival
distributions for the LDH level and performance status groups. The estimates
from GF and the Cox model are also displayed. The survival estimate in a group
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TaBLE 1
Parameter estimates for the non-Hodgkin's lymphoma data using the gamma frailty model with y
both unknown (GF) and fixed at the estimated value (G Fp), the inverse Gaussian frailty model
with y unknown (IGF), the proportional odds model (PO)and the Cox model (PH)

Covariate Parameter Model Estimate SE. Z value
(oddsrate) v GF 2.197 0.447 4.914
GFy 2.197 — —
IGF 4.325 1.855 2.332
PO T — —
PH o — —
Age B1 GF 1.100 0.139 7.903
Ghy 1.100 0.127 8.628
IGF 1.008 0.138 7.291
PO 0.881 0.118 7.457
PH 0.683 0.088 7.796
Level B2 GF 1.024 0.159 6.433
GhRy 1.024 0.144 7.155
IGF 0.933 0.143 6.524
PO 0.833 0.120 6.967
PH 0.624 0.092 6.796
Satus B3 GF 1.291 0.210 6.136
Gk 1.291 0.166 7.779
IGF 0.994 0.147 6.767
PO 0.949 0.145 6.562
PH 0.586 0.098 5.958
Stes B4 GF 0.694 0.156 4.444
Gk 0.694 0.149 4.644
IGF 0.622 0.139 4.464
PO 0.546 0.122 4.458
PH 0.394 0.092 4.272
Sage Bs GF 0.584 0.158 3.693
Gk 0.584 0.154 3.779
IGF 0.545 0.148 3.680
PO 0.485 0.137 3.549
PH 0.369 0.104 3.560

*y is fixed at the given value.

(e.g., patients witlstatus = 0) from GF is[[p_, {1 — AH(s)}, where

YY) explBlZi(s))
") _/0 2 Yi(s)

S A l A
x(lwn [ exp{B,zzi(w}dAn(u)) dAns),
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FiG. 1. Estimated marginal survival distributions of non-Hodgkin's lymphoma patients for LDH
level (a) and performance status (b) under the gamma frailty model. The Kaplan-Meier estimates
and Cox model estimates are included for comparison.

and summation is over all observations in the group. Tha () is a model-based
estimate of the cumulative hazard which averages over the observed covariate
distribution in that group. The estimate based on the Cox model uses the partial
likelihood estimator, Breslow’s estimator and 0O in the placqégf A, and Vi»
respectively, inf. The reason the Kaplan—Meier curves may be quite different
from the model-based curves in the tail is that there are fewer observations in the
subgroups available for the Kaplan—Meier curves, whereas the model-based curves
utilize all of the data. In general, the GF estimates are closer to the Kaplan—Meier
curves than the proportional hazards fit, particularly with the performance status
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group comparison. This demonstrates the superior fit of the frailty model. We also
examined the survival curve estimates based on the proportional odds model and
found them to be intermediate between GF and the Cox model. These are omitted
from the figures for clarity.

Next, we illustrate the robust inference procedure for the best fitting survival
probabilities under the assumed gamma frailty model. Survival predictions for two
covariate values, representing an elderly high-risk patiért[(1, 1, 1,1, 1)"] and
an elderly low-risk patientf = (1, 0, 0, 0, 0)'], are shown in Figure 2. Also shown
are 95% simultaneous confidence bands for the GF prediction using 500 multiplier

e 4 .
@« :‘.\a
[S] 3\
i \‘, —— Gamma Frailty
2 Y ---- Cox
2 «© L 95% Confidence Band
2 o 7
]
(7]
c
2
5 <
Q o
[
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FIG. 2. Survival predictions and 95% simultaneous confidence bands for the gamma frailty model:
(a) highrisk, Z = (1,1,1,1,1); (b) low risk, Z = (1,0, 0,0, 0)’. The Cox model predictions are
included for comparison.
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bootstrap samples with Dirichlet weights. The Cox proportional hazards survival
predictions are included for comparison. The Cox prediction for the high-risk
patient significantly underestimates the long-term survival probability relative
to GF. The difference between the Cox and GF predictions is less pronounced
for the low-risk patient. Some improvement in the model fit may be possible if
continuous rather than dichotomous covariates are used, but we do not pursue this
further here.

9. Proofs.

PROOF OFPROPOSITION1. For any IGG§) frailty family, the conditions
hold with eo(r) = (2/3)(1 Vv 1)~ %, c1(y) = 1/y andca(y) = (1 — «)/y, where
a Vv b is the maximum of: andb. Establishing these results is straightforward. For
the log-normal, we now show that the conditions hold veigty) = (1 v r)~*/64,
c1(y) =1 andca(y) = 1/y. Complex analysis is involved singgy is imaginary
for y < 0. However, the imaginary components&f, G, and their derivatives
are all 0. Moreoverj,, (¢) and its first two derivatives inhave the following form,

with & = /Ty] andu = t¢£°/2;
(9.1) (-1)%"52/2[ e TUCOSY cogqy singv — kEv)g (v) dv
R

for k =0, 1, 2, respectively. If we establish that (9.1), foe= 2, is greater than 0
over the correct range, then (C) follows and showing (D1) is easy. kix0< co.
If there exists ap > 2 andég € [0, 7/(2vp)] such that

(92) u sin&gug + 2&gvg = /4

and such that the part of the integral ovyer > vg is completely dominated by
the part overv| < v, then (9.1) will be greater than 0 for all € [0, «'] and
all £ € [0, &]. Assume thatg > 2 andég satisfies (9.2). Then

/UO ¢~ coskov cosu’ singgu — 2&qv)¢ (v) dv > 0'—956_“/

v V2

and
/ 1 / 2
e~ COSk0Y coqy’ Singgy — 2£qv) (V) dv < ———e* ~V0/2,
/lmo 6ov — 2600) (v) dv < ——

Thus, the total integral is clearly positive when
-1
L {085, 3
27 NG 4

Note that this is satisfied whenevep > 2+/1Vvu’. Choosing any positive
g9 < (1 v u')~%2/24 assures that there existsvg> 2+/1Vv u’ which also
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satisfies (9.2). Setting56/2 = u’, we have thato = (1/8)(1 v r)~3/2 is sufficient
and thereg(r) = (1v 1)~3/64 works. However, to satisfy (D2) and (D3) we reduce
the rate to(1 v r)~4/64. Lemma 3 gives that this rate is sufficient]

LEMMA 3. Conditions (D2) and (D3) are satisfied by the log-normal frailty
model with (1) = (1 v 1)~4/64,c1(y) =1and ca(y) = 1/y.

PROOF  For (D2), letW, = erl/ZZ‘Vk/Z, whereZ ~ N(0, 1). Now,
SUpPU A, (1) = SUpPE[ue "]

u>0 u>0

< E[Supue_”wk} <E[W. 1,

u>0

supu?A, (u)| = SUPE[u?Wye W]
0

u= u>0

< E[Supquke_“W"} <EW 1,
u>0

and it follows since BW, ] = e%. For (D3), if f — oo and yx — 0, then

yx consists of one or both of two subsequences, one less than or equal to 0

and one greater than or equal to 0. Without loss of generality, assume 0

from above or below but not both. We begin with a sequence approaching from

below. Lett = /7], & = Iyl u = 1€ /2, uy = e5/2, and reparameterize

tinfyeo,1 Gy (w) for y <0 as

. —w CosEv ; _ d
t inf G_p(w)=u inf Jre cos(wsm,;v Ev)g(v)dv
wel0,1] wel0,u] fRe—wcosgv cow SiNEv)¢ (v) dv

= inf w).
“ wel0,u] gs( )

Forv > v, = u,f/3, thev? terming (v) completely dominatesy sincev?/uy — co.

. -1/3
Sinceugérvg <u, '~ — 0,

w(l-Ccosiv) oo sin . d
inf gg (w) = inf Jne Swsingev — &) (v) dv
wel0,ug] wel0,ux] f]R ew(1-Cos5v) cogw SiNgLv) ¢ (v) dv

— 1.

Hence uy infy,c0,u,1 85, (W) — oo.
Now assume that, — 0 from above. Then

—tA, (1) JpteVVV TV 2exp(—1eVVVTV12¢ (v) dv
Ay (2) B Ir exp{—1evY' 72} (v) dv

_ [u_lfRe—wg(w)mw)dw}—l
fR é‘u(w)qay(w) dw ’
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where u = te /2, ¢,(w) = ue” exp{—ue”} and ¢y (w) = y Y20 (y—12).
Sincee™" is a decreasing function, for any, — oo,

fRe_wgu(w)(ﬁy(w)dw < [__Ouék e_wgu(w)(ﬁy(w) dw
JRGuW)dy (w)ydw — [T g (w)dy (w)dw

. [u?f ew{u(_w)d)y(w)dw
T tu(—w)gy (w)dw

Now denotes; = e %/2 and letwy, = log(1 + yuy + u,%/z). Since

(9.3)

-1
v we(we + uge ™) = wy (kak + %) — 00
1+ yeup + uy

for all w > wy, the ¢, (w) term dominates the expectation in (9.3) with= u;
and y = y,. Hence, with this substitution, (9.3} 1 + yrur + u,%/z + 0
and#G,, (&) — oo. The same arguments work whep — y > 0, except that
liminfi_ 0 tx Gy, () = 1/y. Condition (D3) follows since (C) implies for > 0
that inf,ci0.,] G, (w) = G, (t). O

PROOF OF PROPOSITION 2. Fix the sample size. If the conclusion of
this proposition dog not hold, there exists a sequerdég = (v, Bn) € ©} SO
that, for A,, = Ay, , either limsup, . . A,,(t) = oo or liminf,, ., A, (t) = 0.
Assume first that limsuyp., ., An(t) = 0o and let{m;} be a subsequence for
which lim;_ o0 Ay, (T) = 00 and y,, — v. Let Yo = Y, B> Am) and g, =
Ym>» Bm, P, N). Using arguments from the proof of Theorem 1, we can conclude
thaty > 0 and, for a partition = ug <u1 < --- <uy <7, that

in(‘zm) - ]:n(Wm)
< ¢ +10g(Ay, (0))P,[81{V € [uy—_1,00]}

(9.4) — (cay) + )LV € [uy. ool}]
J-1 N
+ 3109 (A (1)) Pa[S1{V € [1-1, u;1)
j=1

— (1) + UV € [uj, ujral}],

where ¢ € (0,00) is a constant not depending on the parameter values or
on the partition, and where the summation is 0 whee= 1. Let Ty, ..., Ty

be the observed failure times and define a partition with= T;, and, if
J>1,letu; e (T;,Tjy1) for j=1,...,J —1. Now the intervalsfu;, u 1],

for j=0,...,J, whereu;,1 = oo, all contain exactly one failure time. Thus,
(9.4)< ¢ — c1(y)[10g(A (7)) + Z]J.;ll log(A,, (u;))]. Hence, using again argu-
ments from the proof of Theorem 1, (9-4) —oc. This is a contradiction. Thus,
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limsup,_ « Ap(7) < 00. The proof that inf_g Ag(7) > 0 can also be obtained
from arguments similar to those employed in the proof of Theorenil.

PROOF OFTHEOREM 1. Let(X*, 8, P5°) be the probability space for in-
finite sequences of observations, ¥tc X*° be the set of observation sequences
for which P, N converges uniformly tqup = PoN and note thatP,(W) = 1.
Then if the conclusion of Theorem 1 does not hold, there exist a sequence
{60 = (¥, By) € O} and anw € W so that, ford, = Ay {w} (we will suppress
dependence om hereafter), limsup, . A,(t) = oo, liminf, . A,(t) =0
or A, is not asymptotically close to an absolutely continuous function with
bounded derivative.

Assume first that limsyp, ., A, () = co. Now suppose, has an accumula-
tion point aty < 0 along a subsequence for whidh () — co. But this is im-
possible by (C) and the constraints @n,,). Thus,y, has no such accumulation
points less than 0. Suppose, however, thahas 0 as one of these accumulation
points. Accordingly, take a subsequerpeg} such thats,, — 0 andAnk () = oo.
Since, by (D1),G, ) — G, u){G,u)}"* = —A, w){A, @)}t > 0, we have
by (3.3) that

A . , . i Gy (HP (V)] T\ 2

B, Z(1) Vn s rmt7 AT
A = [[ (B[ 1020 (G, (1710} 6Gynk{H¢nk<v>})]>
x dP,{N (1)}

-1
50(1){ inf Gynk(u)},
u€l0,KoAp, (1)]

since infeo,7] ]P’nY(t)eﬂ’,“kZ(t) is bounded below for alk large enough. Thus,
by (D3), 1< 0(1) {A,,(7) I, c10, Ko, (1) Gy, (w)}~* — 0, which is a contra-

diction. Hence, for any subsequence \Miipk(r) — 00, the accumulation points

of y,, are greater than 0. Now ldk;} be a subsequence witﬁnk(r) — 00
andy,, — y > 0.

Let ¥, = (Vs B An) @andyr, = (v, B, P N). Then
0 = ink (‘/A’nk) - an (‘/’nk)

T G}/nk (H‘/A/nk (S)) .
<P [ [oo] m} Hloglne Ay, () | dNG)

el )
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<01) +P, {/OT log(nx AA,,(s))dN(s)
+[—8(1+c1(y)) log H?" (V)] A O

~ A= 9Gy, (1 1)

Cl’lk ’

since

Py

| —

fo ' log{G,, (H"(5))}dN(s) +log A, (H‘/’"k(V))} =0(1)
and since (D2) implies

109Gy, (H () < [~(L+ c1(»)) log H" (5)] A O+ O (D).

Now C,, is bounded above by

o) + Pnk{/ot log(ni AA,, (s))dN(s)
(9.5)
+[=(6 -+ cx(7))log A, ()] 10}

since (D2) also impIieS}},nk(H‘Z’"k(V)) > [c1(y) IogAnk(V)] vO0+ O(1). Fora
sequence B ug<up <up<---<uy=rt,letN/(s)=N(s)L{V e (uj—1,u;l},
j=1..., J. By Jensen’s inequality,

/O log(nk A Ay, (5)) dPp, (N (5))

u

<P, N (2) Iog( /O ’ nAA, (s)dP,, N/ (s)/P,, N (r))

< O(L) +109(An, ()P, (SLV € [j—1,u;1}).
Thus, (9.5) is dominated by
o)+ IOQ(Ank(f))]P’nk[Sl{V € [uy_1, 001} — (ca(y) +8)L{V € [z, 00l}]

J-1

(9.6) + > 10g(An, ()P, [81{V € [uj—1, u;]}
j=1

— (1) + UV € uj, ujy1l}].
Chooses:0 < ¢ < Po{V = 7} and the sequencg;} for finite J such that
caa(y)e/(ca(y) +1) < po(ujy1) — po(uj) < ca(y)e for j =0,..., J —2and
po(t) — po(uy—1) = c1(y)e/(ca(y) + 1). Note that (3.3) implies lo@i,, (u)) >
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log(P,,, N (1)) + O(1), sinceG,, (1) —8G,, (1)/Gy, (1) <2— Gy, (0+) for all
t > 0 and allk large enough. Since al&, N — o uniformly, (9.6) goes te-oco.
This is a contradiction. Thus, limsup, (r) <co.

Now assume that there are a sequef(gg, 8,) € ®} and anw € W so that
liminf,_.oc A, (z) = 0. Define A, = e5(co)P,N/Ko and note thatd,, € 4,
for all n > 1. Now let {n;} be a subsequence Witﬁnk(r) — 0 and define
Yn = (V> Bu» An). Then

0= Lu (W) = L (¥rn,)

<0 +P, { Iog (AA,, (s))dN(s)}

<0(1)+IP>,,k{ log( ,,k(r) dN(s)}—) —00.

o

This is again a contradiction. Hence, limiff(t) > 0. By previous arguments
and (3.3), we also have, fort € [0, t], that

|An(s) — An(0)] < OP,IN(s) — N(1)] < OD)|pols) — po(0)] + o(D),
and the conclusions of the theorem hold by (A2)J

PROOF OFLEMMA 1. Fix a convergent sequen{®,} € ®. The arguments
used in the proof of Theorem 1, after replacing the meaBurevith Py, can be
used with only minor modification to show that limsyp., A, () < oo and
liminf,,_~ Ap, (r) > 0. Using again arguments from the proof of Theorem 1,
we can also establish thigdg,, (s) — Ay, (1)| < clno(s) —no(t)| forall s, t € [0, 7]
and a constant € (0, co) not depending on the sequence. The desired results now
follow from condition (A2). O

PROOF OF THEOREM 2. Let W c X* be the set of data sequences for
whichP, N — uo uniformly and note that the class of functions

, ) G, {HY(V)}
— B'Z(t) v gyt VT
gk_{Y(t)e (Gy{H (V)} 3Gy{ w(v)}).

te[0,t],¥ e ¥andA(r) < k}

is Py-Glivenko—Cantelli for eactk < co. To see this, arguments given in the
proof of Proposition 8 verify that the classgs(r)e? ) :t € [0, 7], B € Bo} and
(HY (V)¢ e W, A(t) < k} are Donsker; conditions (C) and (D1) imply that
the maps(y, 1) — G y (@), (v, 1) > G y(@) and(y,t) — [G (H]1~1 are bounded
and Lipschitz over the domaih—eo(u),m] x [0, u] for any u € (0, c0); and
A(t) < k implies that HY (V) < kKo for all ¥ € ¥ almost surely. Thus, the
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classedG,{HY (V)}:y € W, A(x) <k}, {G,{HV(V)}:¢ € ¥, A(7) < k} and
{[G},{H‘/’(V)}]_l 1 e W, A(t) < k} are all Donsker by Theorem 2.10.6 of VW.
Since products of bounded Donsker classes are Donsker, thejgléas®onsker
and hence also Glivenko—Cantelli.

For eachM < oo, let Wy, € W be the subset of data sequences for which the
limit points of{Ag .0 € O} are inX ), and also for whict?, — Pgin £%°(G,). For
any € 0, let Ay (1) = [31JJ° (s) + po(¥e)] P {d N (s)}, whereJ = PoJ, and

Pos — J§ I () d AGs)

po(Y) = AD)
Also letyy = (0, Ag) andyry = (6, Ag). We will first show that
(9.7) sup La(¥9) — L (Y9)| — 0
0e®
outer almost surely and then show that
(98) Supﬁ|£n(lﬁ91) - in(‘}&g) - IO(Wel, W92)| —-0

61,00€@

outer almost surely, and the proof will be complete.

Fix M < oo, choose aw € Wy, and let{n} index the corresponding data
sequence. Lefd,} be any parallel sequence of parametersdirand let {n;}
be any convergent subsequence Wi — 6%, 1}% — Y* = (0*,A") and
&gnk — Y** = (0%, Ag+). The last convergence statement follows from the defi-
nitions of Ay andAg. Since

dAn (1) 53" @) + po(Vs,,)
dAnk(t) Jr;/@nk (1) +p"($‘9nk)
IO + po(yr*)
%

1) + poty)

uniformly overr € [0, t], where the limit of (9.9 dA*(r)/d Ag+(¢) is bounded
below and in total variation, we have that

P, /O log{dAgnk(t)/dAgnk(t)}dN(t)—> /O log{d A*(t) /d Ag+(t)} d po(t).
Hence, it follows that

0< ]:nk (lﬁ@nk) — ]:nk (1}9”) — Pglog 51//1//:* <0.

Since this is true for every such convergent subsequence, and$irceo can be
increased so that, (W) is arbitrarily close to 1, we have established (9.7).

(9.9)
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Since by Lemma 1

d Ao (1) _ Iy (®) + pols,)
A0 g @) + poliay)

is bounded below and in total variation, uniformly overé, € ®, we have that

T T
IP’,,/O log{d Ag,(t)/d Ag,(t)} dN (1) —>/0 log{d Ag,(t)/d Ag,(t)} do(t),
uniformly overé,, 6, € ©. Hence, it follows that (9.8) holds.(]

PROOF OFLEMMA 2. By the smoothness assumed in (D1) of the involved
derivatives,

lim sup sup
Oy |y lipy<1heH,

Thus, sup.y, [Ug(W1 + ¥)(h) — Ug(Y)(h) + ¥ (oy, (M) = o(l¥ i) as
I¥llgy — 0. O

1
/0 Y (0y 4ty (h) — oy (R)) ds| = 0.

PROOF OFTHEOREM 3. Recall thatd, = Aén and v, = (0,, A,), whered,
is the profile MLE. Theorem 1 implies that the $8tc X°° of data sequences for
which the limit points ofA,, are in;, for someM < oo, has inner probability 1.
Accordingly, fix the data sequenae € W and take a subsequenée;} for
which &nk converges uniformly to som¢ = (0, A) € ¥, with A € K, for
someM < oo. Let v, = (64, Ag,), Whereb, = (y4, ) and Ay is as defined in
the proof of Theorem 2. By Theorem 2 we have

0< L, (¥n) — L (V) — Polog 2L <0,
Py,
and hence condition (F) implies that= .. Since this is true for every convergent
subsequencey,, — v, with inner probability 1. SinceA, is a piecewise
constant function with masa A, only at observed failure times, . .., 1, , wn is
a functional of a maximum taken over, + d + 1 real variables. This structure
implies that supo |A, (1) — A(7)| is a measurable random variable, and hence

the uniform distance betweeln, andy, is also measurable. Thus, the convergence
with inner probability 1 can be strengthened to outer almost sure convergénce.

PROOF OFPROPOSITION3. Since fo does not depend on covariates, there
exists anAg € 4Ag So thatSp(r) = exp(—Ao(z)) for all ¢ € [0, t]. Hence, the
parameter valuerg = (yo = 0, 8o = 0, Ag) for the posited model describes the
true distribution of the failure times. Arguments in Theorem 3 now yield that,
with inner probability 1, all limit points of the maximum likelihood estimathy
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lie in a compact setl for which Polog(py/po) = 0. Since Polog(py /po) <
—fx (p1/2 1/2)2p0dv and po = py,, We now know that all Kullback—

Leibler maximizersy = (y, B, A) € ¥ must satisfyG, (HY (1)) = Go(H"°(1))
for all r € [0, ]. This implies that8 = Bp by arguments given in Proposition 4.
The desired result now follows.[

PrROOF OFTHEOREM 4. From Section 3.3, we ha\zqf(hg) fo fa(s) x
h3(s)dAs(s), 052(h3) =[5 fa(s)ha(s)dAx(s) and 05%(ha) = g1() fg fa(s) X
ha(s) dA(s) + g2()h3(-), wherefi, fa, g1: R~ Randf>:R +— R are bounded
and where go(s) = Po{éﬁ)Y(s)eﬁ;Z(s)}. From the proof of Theorem 1,

0 < ga(s) <ooforalls €[0, r]. Thus,oy, = 01/(/1) + 01/(/2) where

10 O h1
aﬁ)(h)z(o I 0 )(hz)
0 0 g2/ \h3

is continuously invertible and onte @ _ ;f ) is compact and denotes the

identity. Sinceoy, is one -to-one by condltlon (G¥y, is continuously invertible
and onto, with i inverse,, ! This now implies that, for each> 0, thereisan > 0

with o ~1(H,) C H,. F|x r > 0. Continuous invertibility of—Uw* on lin, where
lin denotes linear span, now follows by Proposition A.1.7 of BKRW since

1Ty () oy o SUQ,GUJ*I(HQ)W/(UTJI*U'I))'
velinv ¥y T velinw ||‘//||(r)

inf Wll(q)
 yew ||1//||(r) 3r

This proposition also implies thatUy, is onto. By Proposition 8,
AU W) (h) — U () (1)) — /(U () () — UG () ()
=op(L+/nllYn — ¥ull).,

uniformly overh € H,., where|| - || is the uniform metric.

Applying the Z-estimator master theorem (Theorem 3.3.1 of VW) now
gives the desired weak convergence\ﬁf(xﬁn — V), provided U (¥)(-) =0
U,f(lﬁ,,)(-):o asymptotically andU®(y,)(-) is Pyp-Donsker. The first two
conditions follow from condition (F) and the fact thé, is asymptotically an
interior pointinW by consistency and condition (C). Because products of bounded
Donsker classes are Donsker, showitg(V) and [5 ¥ (s)ef*®©n3(s) d A4 (s)
are Donsker, as processes indexedhBy(h1, ho, h3) € H,, is sufficient, since
Bs and A, are fixed. First, since all functions i/, are bounded in total
variation, 8h3(V) is Donsker, as a class indexed by, since it is the product

(9.10)
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of bounded Donsker classes. Nejg, Z(¢) : ¢t € [0, 7]} is Donsker since the total
variation of Z is less than or equal tag with probability 1 by condition (A3).
Since ex-) is Lipschitz on compacts anfl(r),r < [0, t]} is monotone and
bounded,{Y (r)ef+4"} is Donsker. Finally, since the map from(-)ef+%20) to

JE Y ()P O hg(s)d A.(s), as a map from an element #°([0, 7]) to £°(H,),

is continuous and linear, the continuous mapping theorem vyields the desired
Donsker property. These results now imply thiat(h) is asymptotically linear

with influence functionZ(h)zU’(w*)(aJ*l(h)) and covarianceV,(g,h) =

E[¢(g)¢(h)] for g, h € H,. Takingr > 1 yields weak convergence in the uniform
metric, sinceH is sufficiently rich as noted earlier[]

PROPOSITION8. Expression (9.10)holds.

PrRoOOF If for somee > 0 {UT(Y)(h) — U (Yry)(h) : || — Y|l <&, h € Hy}
is  Po-Donsker and lig_,y, sup,cy PolUT(¥)(h) — U (Y (h))? = 0,
then (9.10) holds by Lemma 3.3.5 of VW. The latter condition follows from con-
dition (D1). The Donsker condition requires more work. LBt = {y: ||y —
Yl < e}. Takee small enough so tha¥, C W: such ans always exists by (C)
and the fact thay, > 0. BecauseZ has bounded total variation and the class
{B, B € Bo} is trivially a bounded Donsker clas§s’Z(t), B € Bo,t € [0, t]} is
Donsker. Since exp) is Lipschitz on compacts and (¢), ¢ € [0, ]} is monotone
and bounded, the clasy (1)ef' 2™, B € Bo,t € [0, 7]} is Donsker. Because
A ={A:(y,B,A) e ¥} is uniformly bounded in total variation, the map
Y(1)eP 20 1 [TY(s5)ef 7™ d A(s), as a map from an elementdf®(Bo x [0, 7])
to an element if> (B x A%), is continuous and linear, and the continuous map-
ping theorem yields thaf} ¥ (s)e? #©) d A(s) is Donsker as a processff (¥, ).
By conditions (C) and (D1)G, (1), G, (1), GV (1), G (1) and[G, (1)t are
Lipschitz iny andt over the appropriate range. Thus,

[SG_(#)(HWV)) ~ Gy (HY (V)
Gy (HY (V) Gy (HY (V)

are also Donsker as processeg (V). Similar results and the fact that both
sums of Donsker classes and products of bounded Donsker classes are Donsker
give the result. [

G;D(H'ff(V))] and [8 —Gy(HVf(V))]

PROOF OF COROLLARY 1. We first prove (ii). Using arguments from the
proof of Theorem 4 and applying th&-estimator master theorem (Theorem 3.3.1
of VW) gives that\/r_z(lﬁ,‘; — Yy) = ﬁP;UT(w*)(o_l(-)) + op(1) uncondi-
tionally, whereop denotes a quantity approaching 0 in outer probability. Since
VWS — ) = /(P8 — P)UT (¥) (0 () 4+ op(1) unconditionally, (i) fol-
lows by the multiplier central limit theorem (Theorem 2.9.6 of VW) since
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Uf(w*)(avj*l(-)) is Po-Donsker and, over this Donsker class,

\/I_Z(]P)z — ]P)n) = En_l\/ﬁZ({l - En)(AXi - Po)

i=1

=/n) (& —D(Ax, — Po) +0p(D),

i=1

where ¢, = n—lz;lzl ¢ and Ay is the point mass ak. Similar arguments
establish (i), but the nonparametric bootstrap central limit theorem (Theorem 3.6.1
of VW) is used in place of Theorem 2.9.6[]
= . 1/2 1/2\2
ROOF OFPROPOSITION4. SincePylog(py /po) < —fx(pv/ — py )%
podv andpg = py,, we are done if we can show that, for apye W,

(9.11) Gy (HY (1)) = G, (HY°(1))

for all t € [0, ] implies ¥ = o almost surely. Note that this requirement is valid
even fory <0, since by (C) and (D1) an appropriate extensiorGof and its
corresponding density,, exist. Taking the derivative of both sides of (9.11) with
respect ta yields

(9.12) Gy (HY (l‘))eﬁ/Z(t)b(t) — GVO(H% (t))eﬁéz(t),

where b = a/ag. Letting ¢ | 0 in (9.12) givesb(0+)ef 201 = ¢FoZ(0+) py

condition (D1). This impliesg = Bo since varZ(0+)] is positive definite.
Hence,b(0+) = 1 by condition (H). Settingd = 8o and dividing both sides
of (9.12) by #oZ® differentiating with respect to and lettingz | 0 gives

G, (04)efo?OH) 4 h04) = G,(04)efo? O where b = db/dAg. Since

varfpyZ(0+)] > 0, 5(0+) = 0. This now provesy = yo since G, (0+) is

monotone and bounded jn Now A = Ag follows trivially. [

PROOF OF THEOREM 5. With any 4 € H, such thatoy,(h) = 0, de-
fine the regular parametric one-dimensional submagdglh) = o + t{h1, ho,

39 ha(s) d Ao(s)}. Note thato, (k) = 0 implies

82
Popl——=L
O{(at)Z n(Yor)
where the score operatbr is given by (3.4). But this implie®o{U " (¥0) (h)|$ (n,
y,1)}? = 0, where the random se§(n,y,1) = {N,Y:N(s) = n(s), Y (s) =
y(s),s € [t, T]}, has nonzero probability. This then implies tHat(yo)(h) =0
almost surely for allr € [0, 7] (here is where we need the dependenceron

} — Po(U* (o) ()2 =0,

t=0
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mentioned above in Section 3.3). Assuming tha¥ (s), Y (s), Z(s)},s > 0] is
censored aV € (0, 7],

0= Gy (H"(1))hy
(9.13)

. t !
+ Gy (HY(1)) /0 Y (5)eP%0 (1yZ (5) + ha(s)} d Ao(s).

Taking the derivative with respect to and lettings | O yields h5Z(0+) +
h3(0+) = 0 sinceG'Y (0+) = 0 andG,,(0+) = 1 by assumption (D1). But this
impliesi, = 0 by condition (A3). Dividing (9.13) bys,,(HY°(t)), differentiating
with respect ta and takingio = 0 yields

0=[GPHY(1))G o (HY(1)) — G (HY (1)) G o (HV*(1))] 11
+[Gyo(HY (1) h3(0).

Differentiating again with respect to and lettingz | 0 gives 0= C"}%)(OH X
ePoZOD g 4 fi3(04), wherehz = ag *dhs/dr. Now (H) and (D1) yieldr; = 0.
Thus, (9.13) impliegs(¢) =0 for all ¢t € [0, 7], and the desired result follows[]

PROOF OFTHEOREM 6. Define

Yy ={¥ =B, A):y €[—e0(KoA(1)), m1],
B € Bo, A€ Ay, l/M<a<M)].
For h = (h1, ho, h3), with i1 € R, ho € R? andhsz € Lo([0, 7]), also define the
metric |kl = k1l + hY ho + (J§ h3(s) ds)Y/? and let the space of all sudh
with ||z ]2y < oo be denoteddyy. Let Py g = [y gpy dv and denoté&,, = Py 6y, .
Arguments in the proofs of Theorems 4 and 5 can be readily reworked to yield
that o, is one-to-one and continuously invertible as an operatai/j. Thus,
by the uniform compactness aF,;, by continuity and by Proposition 4 and
Theorem 5, there exist constaritg, b, > 0 andki, k2, k3 < oo such that, for
all v ey,
Y Gy () = ballkllfy  and "Gy () <killhlEy
v-almost surely i € Hy,
oy (MWlly = b2llhll, and 6y (M)lly < kallhllv,
v-almost surely i € Hyo,

and

1/k3 < |py (X)| < ks, v-almost surely.
Choosee1 = (2/3)({b1/k1} A {b2/k2}) and, for anyf € D(v) [where D(v) is
defined in Section 6.1] andr € ¥, denoteaéff) = [x 6y p(r)ydv. Then, for
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all pairs (f,¢) with f € D(v), ¥ € Wy and [y | f — fyldv < &1, we have
v (h) = (2/3)b2|lI|%,, Tor all h € Hizy and o ()]s > (2/3)b2]lll, Tor
allh e Hy

For the chosenD, let e = {£2/[20k3Q(Q + k3)1} A {e1/3}. Then, for all
pairs (f,¥) with f € D(v), ¥ € Wy and [y |f — fyldv < e, we have a
unique maximizer

Y1 = arg max N log(py../pr)) P dv

Y€Wy

such thatljo” ()1, > (2/3)b2|lhll, for all h € Heo. To see this, note that,
for (f,y¥) and all ¥, with [y |py, — pyldv < (2/3)e1, we have [y |pr) —
pyldv < [y |f = fyldv + [x|py — pyldv < e Thus, yl©o” () =
Yl Gy, () — kelhl%, fx |P(r) — Pyl dv = (1/3)b1]|h|%, for all h € Hizy and,
arguing in a similar mannenoll(f-f)(h)nv > (1/3)by||h||, for all h € Hy. Thus,
[ 109(py. /P(r)) Py dv is a convex function iy, with a continuously invertible
second derivative, providefd. | py, — py |dv < (2/3)e1.

Furthermore, whenevety, satisfies [y [py — py,ldv < ¢/10, we have
Jx109(Py. /PP dv = —k3Q [x |y, — ppldv = —k3Q(11/10)e, but
wheneveny, satisfies/y. |py — py,|dv > (2/3)e1, we have/fy. 10g(py. /pr)) x
pipdv = —[20 + k1 x|y — py.ldv)® < —€f/[18(Q + ky)] <
—k30(11/10)e. Hence, any Kullback—Leibler maximizey s must satisfy
Jx [Py — Pyl dv < (2/3)e1. The desired existence and uniquenesggf now
follow, and P( )6y, ,, is one-to-one SinCiP f)Gy,,, (h)lly > bl ||, forall h € Hxo
and someé > 0 by arguments given abovel]

PROOF OFTHEOREM 7. Assume without loss of generality thafg] =
Note that A, is uniformly bounded and equicontinuous by Lemma 1. Deflne
Ky(e,t) =G, (1) — eG,(1)/G, (1), K,(e,t) =K, (e,1)/(31) and U (x; ¢) =
z1{e — H‘/’(v)K (e, H%/f(v))}, Wherex = (v,e,2) € X, z=(z1,22) andzy is
a possible value of1. For eachy = (y, B = (B1, B2), A) € W, definey©@ =
(v, (0, B2), A).

Assume first thaiFol() is constant inz1. It is clear that EU (X; wio))]
If B41 > 0, then conditions (A, (A3') and (E1) imply

E[ZLHY (V)R,, (8, H'* (V)] > E[Z1HY (V)R (5, H' (V)] =

and thus EJ(X; ¥.)] < 0, but this is a contradiction. Similar arguments show
that if 8.1 < 0, E{U(X; ¥)] > 0, also yielding a contradiction. Hencg,1 =0
and (i) follows.

Now assumeF;* is strictly increasing iny. If 8.1 <0, then by condition (E1)

E[ZiHY (V)R,, (8, H*(V))] <E[ZeH™ (V)K,, (5, H' V)],
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but
w0 > y©
E[Z1{s — HY* (V)K,, (8, H"* (V))}]

(9.14) —E[-ZLH" ()G, (H" (V)]

HY ()G, (HY (V) ”
Gy, (H (V) '

Now both § and —V are stochastically increasing id;. By condition (E1),

—tG,, (¢) is strictly decreasing in and 1+ ¢G,, (1)/G,,(t) is nonincreasing im;

thus (9.14) is positive. Hencd (X ; ¥,)] > 0. This implies thaj,1 > 0 and (ii)
follows. A similar proof can be used to establish (iii)J

+ E|:Z15{l+

PROOF OF PROPOSITION 5. If y9 = 0, the proof follows from standard
results for the Cox model. Hence, assupge- 0. Without loss of generality also
assume EZ] =0. The score fop is

T E[ZY (t)ef ] g
9.15 EU {z—i}y NePoZGS (HVO (1)) d Ao(t ]
(9.15) A Er e | T O GH(0) d Aot
Note that the derivative of this with respect fois negative definite; thus, a 0
of (9.15) would be the unique maximizer of the profile likelihood (profiling
over A). Note that

ELBpZY ()] _ E[BYZY (1)ePo? GS (HV(1))] _ EIByZY (e
E[Y ()] ELY (1)ePo? G, (HYo(1))] E[Y (t)efo?]

sinceG$, (HY0(1)) is decreasing iy Z buteﬁéZG;’,O(H‘/’O(t)) is increasing ing,Z
by condition (E1). Thus,

4 E[ZY (t)eP+Z] s
e[ [ ez - EETOSN et i o] 0
A S Y 0 G Y0 0) d Aot
for B, = @180, Wwherea € (0, 1).

To evaluate the score @t= B, in directions orthogonal t@o, let g1 = [I —
RBo(BHRBo) ~BLlu, whereR = var Z] andu € RY. Then BB, Z [§ Y (1)efo? x
G35, (HY(1)) d Ao(1)|ByZ] = O since EB; Z|B;Z] = 0 by condition (AZ). Simi-
larly, E[ﬂ’lZY(t)eﬁ:*Z] = 0. Since this is true for any € R?, g, = a1/ is indeed
the unique maximizer of the profile likelihoodd

PROOF OFPROPOSITIONG6. Whenyy = 0, the result follows since the Cox
model is a valid submodel for any of the proportional hazards frailty models,
and consistency has been established in Proposition 4. Asggimed and let
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K, andK, be as defined above in the proof of Theorem 7. The expected score
for B8, profiling overA, now has the form

E[ / {Z _EIZYnef K, (5, HY (V)] }
0 E[Y (t)ef' 2K, (8, HV (V)]

(9.16)
x Y (1)ePo? G';O(HV/O(z))dAo(z)},

whereA(t) solves

A /r ELY (5)e” Gy (HY°(5))]
)= =

0 E[Y(s)eﬁ’ZKy(B, HY (V)]
and whereA(r) < oo by Lemma 1. LetB.c) = @fo + cB1, Where B1 =
[l - Rﬁl(ﬂéRﬁo)_lﬁ()]u, with R = varfZ] and u € R?, as in Proposition 5.
Denoteyq,c) = (¥, B,c)» A). After multiplying by g}, the expected score (9.16)
becomes

dAo(s)

- /r E[BZY ()ePwa? K, (5, HV@o (V)]
0

E[Y (ePwa? K, (8, HVwo (V)]
(9.17) o
x Y (1)ePo” G (HY° (1)) d Ax(1).

We now evaluateg(a,c) = E[ﬂiZY(t)eﬁwaI?y(B,H‘/’<a»v>(V))]. Note that
g(a, 0) = 0 by previous arguments, and
dg(a, c)

5 = E[(,BiZ)ZY(t)eﬁéa,c)Z{Igy (8, Hi/f(a,c)(v))
c

+ HV@o(V)K,, (8, HV@o(V))}] > 0,

since K, (t) + tK, () > 0 for all 0 <t < oo by condition (E1). This now
implies (9.17)< 0, which means that the expected score (9.16) is positive in the
direction—ps.

Hence 8, = afg for somex € R. Note that ifa < 0, then

E[BoZY (1)e*Po? K., (8, HV*«0 (V))] < E[BLZY (1)K, (5, HY*0O (V)]

by condition (E1). However, ByZ{§ — A(V)I?y*(B,H‘/’*@O)(V))}] > 0 by
arguments used in the proof of Theorem 7. Thus, (9.16) is strictly positive
if By =aBpanda <0.Hencex >0. O

PROOF OFPROPOSITION7. By condition (E2),
limy~1G, ()= lim E[We Wi _ oW1
y40 vaiw1i0 E[e=W!valW]]
— lim E[[W —1](1—[W —1]1)] _
vaf w140 variw]
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and, arguing similarly,
E[—loge~""/e™)]

limy =G, ()= lim
oY OO = i varfw]
D log(1+valWwlr?/2)  —i?
" varfw1i0 vaffw] 27
By Proposition 5the score test foHy : yp = 0 thus has limiting expectation
, 20{1;362A2 1%
_E[Se“lﬁozA*(V) _ %}

where

E[Y (s)ePo? GS_(H V=
A*(t):/ot [Y (s)ePo” GJ (H*(s))] dAo(s).

E[Y (s)e®PoZ]
SinceAﬁ(V)/Z = Jo Y(s)A.(s) dA.(s), the score expectation becomes

g [ e - E[Y(z)ezmﬂéz]}
0 E[Y (1)e“2Fo?]
(9.18)

x Y(t)eﬁéZG;o(H‘/fO(;))A*(t)dAo(t)].

This clearly is equal to 0 whemg = 0. Validity under contiguous alternatives
follows from the regularity of the estimators under the correct model as established
in Theorem 5. O
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