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Higher criticism, or second-level significance testing, is a multiple-
comparisons concept mentioned in passing by Tukey. It concerns a situation
where there are many independent tests of significance and one is interested
in rejecting the joint null hypothesis. Tukey suggested comparing the fraction
of observed significances at a givenα-level to the expected fraction under
the joint null. In fact, he suggested standardizing the difference of the two
quantities and forming az-score; the resultingz-score tests the significance
of the body of significance tests.

We consider a generalization, where we maximize thisz-score over a
range of significance levels 0< α ≤ α0. We are able to show that the
resultinghigher criticism statisticis effective at resolving a very subtle testing
problem: testing whethern normal means are all zero versus the alternative
that a small fraction is nonzero.

The subtlety of this “sparse normal means” testing problem can be seen
from work of Ingster and Jin, who studied such problems in great detail. In
their studies, they identified an interesting range of cases where the small
fraction of nonzero means is so small that the alternative hypothesis exhibits
little noticeable effect on the distribution of thep-values either for the bulk
of the tests or for the few most highly significant tests. In this range, when
the amplitude of nonzero means is calibrated with the fraction of nonzero
means, the likelihood ratio test for a precisely specified alternative would still
succeed in separating the two hypotheses.

We show that the higher criticism is successful throughout the same region
of amplitude sparsity where the likelihood ratio test would succeed. Since
it does not require a specification of the alternative, this shows that higher
criticism is in a sense optimally adaptive to unknown sparsity and size of the
nonnull effects. While our theoretical work is largely asymptotic, we provide
simulations in finite samples and suggest some possible applications. We also
show that higher critcism works well over a range of non-Gaussian cases.

1. Introduction. In his Class Notes for Statistics 411 at Princeton University
in 1976 [31], Tukey introduced the notion of thehigher criticismby means of a
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story. A young psychologist administers many hypothesis tests as part of a research
project, and finds that, of 250 tests 11 were significant at the 5% level. The young
researcher feels very proud of this fact and is ready to make a big deal about it,
until a senior researcher (Tukey himself?) suggests that one would expect 12.5
significant tests even in the purely null case, merely by chance. In that sense,
finding only 11 significant results is actually somewhat disappointing!

Tukey used this story as a way to make vivid the notion of thehigher criticism
of such situations as multiple testing. He then proposed a sort ofsecond-level
significance testing, based on the statistic

HC0.05,n = √
n
[
(Fraction Significant at 0.05)− 0.05

]/√
0.05× 0.95,

and suggested that values of (say) 2 or greater indicate a kind ofsignificance
of the overall body of tests. (The same statistic was proposed and applied in a
psychometric trial by Brožek and Tiede [10] even earlier, but without the catchy
name.)

Although Tukey’s discussion turned to other topics at that point, we may, if we
like, imagine that it had continued in this vein. We might then consider not only
significance at the 0.05 level, but perhaps at all levels between (say) 0 andα0, and
so define

HC∗
n = max

0<α≤α0

√
n

[
(Fraction Significant atα) − α

]/√
α × (1− α).

In this paper, we will analyze a statistic of this kind in a setting where there are
a small fraction of nonnull hypotheses and derive an adaptive optimality for it.

In our setting there aren independent tests of unrelated hypotheses,
H0,i vs.H1,i , where the test statisticsXi obey

H0,i :Xi ∼ N(0,1),(1.1)

H1,i :Xi ∼ N(µi,1), µi > 0.(1.2)

In the overwhelming majority of the tests, the corresponding null hypothesis is
true (i.e., the corresponding normal meanµi = 0), but some small fractionmay
concern tests where the null hypothesis is false (and so the meanµi > 0). So the
fraction of false null hypotheses, if nonzero, is small. Can we tell reliably whether
the fraction is actually 0 or not?

We mention three application areas where situations like this might arise:

• Early detection of bioweapons use. Suppose that there aren observational
units in a certain geographical region, and for each one we have az-score
associated with the presence of a certain symptom at rates higher than
background. If a bioweapon has been used in that region, then in early stages
we do not expect all observational units to be affected, we do not know which
ones might be affected, and we do not want to wait until some observational
unit begins to display wildly elevated rates. We want to detect while a small
fraction begins to show individually significant results but no unit yet shows
jointly significant results.
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• Detection of covert communications. In a signals intelligence setting we
suppose that a small fraction of the signal spectrum in a certain situation may
be used for covert communications, which would mean that a few frequencies
exhibit increased power. However, we do not know what frequencies those
might be, and the specific frequencies being used might change randomly from
one epoch to another, so that we never get a very definite indication that we are
definitely seeing increased power in any one specific frequency. Nevertheless,
we might still want to detect the presence of a small fraction of frequencies with
slightly increased power.

• Meta-analysis with heterogeneity. We have results fromn experiments testing
a certain treatment. It turns out that an unidentified experimental factor is
crucial to success, but that only in a small fraction of experiments is this factor
fortuitously chosen so that the experimental performance follows a nonnull
distribution. Can we reliably detect the presence of a small fraction of well-
laid out experiments among many hopeless ones, when we do not know which
ones may be well-laid out?

There are many other potential applications in signal processing; see, for
example, [19–21]. In spatial statistics Kendall and Kendall [25] developed a
statistic closely related to HC∗n called “pontogram” for the purpose of detecting
near-alignments in sets of points.

1.1. The model, and the asymptotic detection boundary.Translating our
problem into precise terms, we begin by scrutinizing a special case where all
the nonzeroµi are equal, and we can then model our data as providingn i.i.d.
observations from one of two possible situations:

H0 :Xi
i.i.d.∼ N(0,1), 1 ≤ i ≤ n,(1.3)

H
(n)
1 :Xi

i.i.d.∼ (1− ε)N(0,1) + εN(µ,1), 1≤ i ≤ n.(1.4)

Here H0 denotes the global intersection null hypothesis, andH
(n)
1 denotes a

specific element in its complement. UnderH
(n)
1 , a fractionε of the data comes

from a normal with common nonnull mean. Hereε = εn and the meanµ = µn

will be chosen to make the problem very hard, but ( just barely) still solvable.
Obviously, in this situation, withεn and µn fixed and known, the optimal

procedure is simply the likelihood ratio test; a careful analysis of its performance
in [23] (cf. also [16] and [17]) tells us the following. Suppose we letεn = n−β for
some exponentβ ∈ (1

2,1), so that the fraction of nonzero means is small but not
vanishingly small. In this range the number of nonzero means is too small to be
noticeable in any sum which is, in expectation, of ordern, so it cannot noticeably
affect the behavior of the bulk distribution of thep-values. Let

µn = √
2r log(n), 0 < r < 1.(1.5)
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As µn <
√

2 log(n), the nonzero means are, in expectation, smaller than the
largestXi coming from the true component null hypotheses, so the nonzero means
cannot have a visible effect on the upper extremes. Clearly, this is a rather subtle
testing problem.

It turns out that there is athreshold effectfor the likelihood ratio test: the sum
of Type I and Type II errors tends to 0 or 1 depending on whetherµ exceeds a
so-calleddetection boundaryor not. In detail, there is a functionρ∗(β) so that

if r > ρ∗(β), H0 andH
(n)
1 separate asymptotically,

if r < ρ∗(β), H0 andH
(n)
1 merge asymptotically.

In short, ρ∗(β) defines a precise demarcation between what is possible and
impossible in this problem, that is, how big the nonzero effect must be to be
detectable as a function of the rarity of nonzero effects. Hence, we have the
termdetection boundary. Indeed, translating results of Ingster [17] to our notation
(see also [23]),

ρ∗(β) =



β − 1
2, 1

2 < β ≤ 3
4,(

1− √
1− β

)2
, 3

4 < β < 1.
(1.6)

If we think of the (r, β) plane, 0< r < 1, 1
2 < β < 1, we are saying

that, throughout the regionr > ρ∗(β) the alternative can be detected reliably
using the likelihood ratio test (LRT). Unfortunately, the usual (Neyman–Pearson)
likelihood ratio requires a precise specification ofr andβ, and misspecification
of (r, β) may lead to failure of the LRT; see [23] for a discussion. Naturally,
in any practical situation we would like to have a procedure which does well
throughout this whole region without knowledge of(r, β). Bickel and Chernoff [6]
and Hartigan [14] have shown that the usual generalized likelihood ratio test
maxε,µ(dP

(n)
1 (ε,µ)/dP

(n)
0 )(X) has nonstandard behavior in this setting; in fact

the maximized ratio tends to∞ underH0. It is not clear that this test can be relied
on to detect subtle departures fromH0. Ingster [18] has proposed an alternative
method of adaptive detection which maximizes the likelihood ratio over a finite
but growing list of simple alternative hypotheses. By careful asymptotic analysis,
he has, in principle, completely solved the problem of adaptive detection in this
setting; however, this is a relatively complex and delicate procedure which is
tightly tied to the narrowly specified model (1.3) and (1.4). It would be nice to
have an easily implemented and intuitive method of detection which is able to
work effectively throughout the whole region 0< β < 1

2, r > ρ∗(β), which is not
tied to the narrow model (1.3) and (1.4), and which is in some sense easily adapted
to other (non-Gaussian) mixture models. This is where HC∗

n comes in.
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1.2. Performance of higher criticism.To apply the higher criticism, let us
convert the individual test statistics into another form. Letpi = P {N(0,1) > Xi}
be thep-value for theith component null hypothesis, and let thep(i) denote the
p-valuessorted in increasing order, so that under the intersection null hypothesis
thep(i) behave like order statistics from a uniform distribution.

With this notation, we can write

HC∗
n = max

1≤i≤α0·n
√

n
[
i/n − p(i)

]/√
p(i)

(
1− p(i)

)
.

Despite the closeness of our statistic to the one in [2], note that what we are doing is
not arbitrary goodness of fit; instead we are dealing with a specific kind of multiple
hypothesis testing, outside of which the problem would not be interesting.

To use HC∗n to conduct a level-α test, we must find a critical valueh(n,α):

PH0{HC∗
n > h(n,α)} ≤ α.

Adapting asymptotic theory for the normalized empirical process as in [27],
Chapter 16, gives us the following information on the size ofh(n,α):

THEOREM 1.1. Under the null hypothesisH0,

HC∗
n√

2 log log(n)

p→ 1, n → ∞.(1.7)

It follows that, for fixed α > 0, h(n,α) ≈ √
2 log log(n). For asymptotic

analysis, it is convenient to consider a sequence of problems indexed byn, with
critical valuesαn → 0. We will say that the levelαn → 0 slowly enoughif

h(n,αn) = √
2 log log(n)

(
1+ o(1)

)
.

THEOREM 1.2. Consider the higher criticism test that rejectsH0 when

HC∗
n > h(n,αn),

where the levelαn → 0 slowly enough. For every alternativeH(n)
1 defined above

wherer exceeds the detection boundaryρ∗(β)—so that the likelihood ratio test
would have full power—higher criticism also has full power:

P
H

(n)
1

{RejectH0} → 1, n → ∞.

Roughly speaking, everywhere in the amplitude/sparsity(r, β) plane—where
the likelihood ratio test would completely separate the two hypotheses asymptoti-
cally—the higher criticism will also completely separate the two hypotheses
asymptotically. Of course, in the cases where the amplitude/sparsity relation falls
belowthe detection boundary, all methods fail. More precisely, we only claim that
higher criticism works in the interior of this region. Just at the critical point where
r = ρ∗(1 + o(1)), our result says nothing; this would be an interesting (but very
challenging) area for future work.
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1.3. Which part of the sample contains the information? Underlying our
results is a set of insights about “where to look” for evidence againstH0 [30], how
the evidence may not be in the “obvious” place and how the adaptation in HC∗
automatically ensures that the best evidence will be included in making the “case”
againstH0.

To get started, note that, in the null case HC∗
n is closely related to well-known

functionals of the standard uniform empirical process. This is because, underH0,
then p-values can be viewed as i.i.d. samples fromU(0,1).

Formalizing, givenn independent random samplesU1, . . . ,Un from U(0,1),
with empirical distribution function

Fn(t) = 1

n

n∑
i=1

1{Ui≤t},

the uniform empirical process is denoted by

Un(t) = √
n [Fn(t) − t], 0 < t < 1,

and thenormalized uniform empirical processby

Wn(t) = Un(t)√
t (1− t)

.

Note thatWn(t) is asymptoticallyN(0,1) for each fixedt ∈ (0,1).
Since, underH0 the p-values are i.i.d. U(0,1), we have, in that case, the

representation

HC∗
n = max

0<t<α0
Wn(t);

note the use of max instead of sup, since the maximum value ofWn(t) is attained.
We will extend usage below by lettingWn(t) also stand for the normalized em-

pirical process starting fromFn(t) = 1
n

∑n
i=1 1{pi≤t}, where thepi are then given

p-values, but which are i.i.d.U(0,1) only in the null case. Accordingly,Wn(t)

will be asymptoticallyN(0,1) at each fixedt only underH0, and one anticipates
a different limiting behavior under the alternative.

We now look for the value oft at which Wn(t) has the most dramatically
different behavior under the null and the alternative.

We introduce the notationzn(q) = √
2q log(n), for 0 < q ≤ 1, and look for

the value ofq for which Prob{Xi > zn(q)} best differentiates between null
and alternative. Recall that, under the alternativeH

(n)
1 the data have a sparse

component with nonzero mean atµn = zn(r). It might seem that the most
informative part of the sample would be in the vicinity ofµn, where data from
the alternative are most common, and that therefore the most informative value
of q is q = r . Surprisingly, this is not the case.
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To find this most informativeq, we introduce some notation. Letpn,q =
P {N(0,1) > zn(q)}, q > 0, and note that

max
0<t<1/2

Wn(t) = max
0<q<∞Wn(pn,q).

It will be immediately clear that it is only necessary to consider 0< q ≤ 1.
Let Nn(q) count the observations exceedingzn(q):

Nn(q) = #{i :Xi ≥ zn(q)}.
Then define

Vn(q) = Nn(q) − npn,q√
npn,q(1− pn,q)

.

In many calculations, we will find factors with polylog behavior,
∼ Const loga(n), wherea may be positive or negative depending on the case.
When such factors are multiplying termsnγ for γ 
= 0, the polylog factors have a
weak influence on the eventual growth rate of the resulting product. To focus on
the main ideas, we introduce the notationLn for a generic polylog factor, which
may change from occurrence to occurrence. When we do this, we think ofLn

essentially as if it were constant.
Now

P {N(µn,1) > zn(q)} = Ln · n−(
√

q−√
r )2

,

P {N(0,1) > zn(q)} = Ln · n−q, r < q ≤ 1.

It follows that, under the alternativeH(n)
1 , we have

EVn(q) = Ln · n1−β · n−(
√

q−√
r )2

√
n · n−q

= Ln · n[(1+q)/2−β−(
√

q−√
r )2],

while under the nullEVn(q) = 0. The most informative value ofq will optimize
the growth rate ofn[(1+q)/2−β−(

√
q−√

r)2] to ∞. The most informative value ofq
satisfies

if r < 1
4, thenq = 4r andEVn(q) = Ln · n[r−(β−1/2)],

if r ≥ 1
4, thenq = 1 andEVn(q) = Ln · n[(1−β)−(1−√

r )2].

In fact, there can be considerable latitude in choosingq so thatEVn(q) goes
to ∞ underH(n)

1 . This requires

2
√

r −
√

2
(
r − β + 1

2

)
<

√
q < 2

√
r +

√
2
(
r − β + 1

2

)
.

Notice thatr > ρ∗(β) implies r − β + 1
2 > 0. Within this interval the “most

informative choice” ofq is the center:
√

q = 2
√

r in caser < 1
4.
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Translating this into the originalz-scale yields the surprise mentioned earlier.
Whenr ≤ 1

4, the most informative place on the originalz-scale is not atµn, as we
might suppose, but at 2µn. By going out “in the tails” farther thanµn, observations

from bothH0 andH
(n)
1 are becoming extremely rare, but the ones fromH

(n)
1 are

far more frequent in a relative sense.
The story whenr > 1

4 is somewhat different. There, when looking for a
discrepancy, we had best look near

√
2 log(n), which is less than 2µn. The point

is that observations fromH0 almost never get substantially larger than
√

2 log(n),
so there is no need to look much farther out in the tails.

1.4. Comparison to several multiple comparison procedures.The higher
criticism is just one specific approach to combining manyp-values in search of an
overall test; many other tools are available from the field of multiple comparisons
(e.g., [15], [26] and [33]) and meta-analysis [3]. How do these other tools perform?

In this section we describe several specific procedures and their range of
detectability. See Figure 1.

1.4.1. Range/Maximum/Bonferroni.One of the most classical and frequently
used tools in multiple comparisons, also associated with Tukey [33], is the
studentized range:

Rn = (maxXi − minXi)/Sn,

whereSn is the sample standard deviation. This is frequently used in testing for
homogeneity of a set of normal means, and could well be used in the setting we

FIG. 1. Left: three regions of theβ − r plane. The detection boundary separates the detectable
region from the undetectable region. For the estimable region, it is possible not only to detect
the presence of nonzero means, but also to estimate those means. Right: two detection boundaries.
The one on the bottom is the optimal detection boundary as well as the detection boundary
for HC∗; the one on the top is for range/maximum/Bonferroni/FDR. Two detection boundaries are
only different when34 < β < 1.
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have defined here. For our theoretical purposes, it is convenient to analyze the
simpler statistic

Mn = max
i

Xi,

where we focus attention on one-sided deviations only and have no need to
estimate the (known) standard deviation under the null. (We note that in the field
of meta-analysis this is the same thing as combining severalp-values by taking
the minimump-value [3]; another equivalent term for this is Bonferroni-based
inference.) The maximum statistic has a critical valuem(n,α) which obeys

m(n,α) ∼ √
2 log(n), n → ∞.

In comparison to HC∗, it follows that the test focuses entirely on whether there are
observations exceeding

√
2 log(n). We again say thatαn goes to 0slowly enough

(now for use withMn) if

m(n,αn) ∼ √
2 log(n).

The following result summarizes the behavior ofMn.

THEOREM 1.3. Define

ρMax(β) = (
1− √

1− β
)2

.

Supposer > ρMax(β) and consider a sequence of levelαn-tests based onMn with
αn → 0 slowly enough. Then

P
H

(n)
1

{Mn rejectsH0} → 1.

In short,ρMax defines the detection boundary forMn. This compares to the
“efficient” boundary as follows:

ρ∗(β) = ρMax(β), β ∈ [3
4,1

)
,

so thatMn is effective in the range of very sparse alternatives, while

ρ∗(β) < ρMax(β), β ∈ [1
2, 3

4

)
,

so thatMn is inefficient ifβ < 3
4. In particular, note that

0 = ρ∗(1
2

)
< ρMax

(1
2

) = (
2− √

2
)2

/4 ≈ 0.0858.

We interpret this as saying thatMn (and the Studentized rangeRn as well) can be
dramatically outperformed when there may be aboutn1/2 nonzero means among
then observations. Compare Figure 1.
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1.4.2. FDR-controlling methods.Recently considerable interest has been fo-
cused on the false discovery rate (FDR)-controlling methodology for simultaneous
inference. In one example of this so-called FDR approach [4], one considers, for
k = 1,2,3, . . . , the k most significantp-values. These are compared withα k

n
,

whereα is a critical value (e.g., 0.05). If thep-values in the group are all smaller
than the standard for comparison, thenH0 is accepted at that stage. If some are

larger than the standard for comparison, thenH
(n)
1 is accepted, no furtherk are

considered, and that specific group ofk hypotheses is identified as containing
likely nonnull hypotheses. Viewed as a hypothesis testing procedure for the in-
tersection null hypothesis, Benjamini and Hochberg [4] show that this procedure
has level less than or equal toα. They also show that procedure controls the FDR,
which means, roughly speaking, that, in expectation, a fraction of at least(1− α)

of the rejected null hypotheses should be truly nonnull hypotheses.
How does such a procedure behave in the current setting? We begin by pointing

out that Abramovich, Benjamini, Donoho and Johnstone [1] have analyzed
the behavior of FDR in exactly the kind of mixture model described above
in (1.3)–(1.4), but whereµn is calibrated differently from (1.5), and they found an
asymptotic minimaxity of FDR in that setting. That is, they considered a situation
where one observed dataXi = θi + Zi and where theZi are i.i.d.N(0,1). They
supposed that only a fractionεn of the meansθi might be nonzero. This is similar
to our model above.

As it turns out, for our measure of performance, the behavior of FDR-controlling
procedures is not different from that of the maximumMn. To articulate this, con-
sider the detection boundary for the FDR-controlling procedure above. This is the
functionρFDR(β) such that, ifµn = √

2r log(n), and if we use a sequence of levels
α = αn tending to 0 slowly enough, then forr > ρFDR(β) the procedure has power
tending to 1 asn → ∞, while for r < ρFDR the procedure has power tending to 0.

THEOREM 1.4.

ρFDR(β) = ρMax(β) = (
1− √

1− β
)2

, 1
2 < β < 1.(1.8)

From our discussion of the behavior of the maximumMn, the FDR-controlling
procedure is effective in the rangeβ ∈ [3

4,1), while it is relatively inefficient
for β < 3

4. Compare Figure 1.

1.5. Classical methods for combiningp-values. In the literature of meta-
analysis [3], one also faces the problem of combining severalp-values to
achieve an overall test of significance. In that literature the component nonnull
hypotheses are all the same (“homogeneity”), whereas in our discussion they vary
widely (“heterogeneity”). A classical approach to combiningp-values is Fisher’s
method [13], which refers toFn = −2

∑
1≤i≤n log(pi) as theχ2

n distribution. In
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our setting of extreme heterogeneity, Fisher’s method is unable to function well
asymptotically:

THEOREM 1.5. If εn = n−β , β > 1
2 and µn ≤ √

2 log(n), asymptoticallyFn

is unable to separateH(n)
1 andH0.

1.6. Relation to goodness-of-fit testing.Of course, the method we are dis-
cussing may be viewed as an application of a goodness-of-fit measure, compar-
ing the empirical distribution ofp-values to the uniform distribution. As such, it
may be compared to many goodness-of-fit procedures where distribution underH1
differs from that ofH0 in one tail.

Thus, Anderson and Darling [2] defined a goodness-of-fit measure which
involves the maximum of the normalized empirical process. Translated into the
current setting, this initially seems very close to HC∗. The main difference is
that we focus attention nearp = 0, while Anderson and Darling maximize over
a < p ≤ b with 0 < a < b < 1. However—important point—all the information
needed for discrimination betweenH(n)

0 andH
(n)
1 is at values ofp increasingly

close to 0 asn increases. Therefore, statistics based ona < p < b with a, b

fixed are dramatically inefficient. Similarly, Borovkov and Sycheva ([7] and [8])
proposed statistics based on the maximum of a normalized empirical process with
a general nonlinear normalizationg(p) not necessarily

√
p(1− p). However, the

maximum is overa < p < b, 0 < a < b < 1, so our remarks on the Anderson–
Darling statistic apply.

Berk and Jones [5] proposed a goodness-of-fit measure which, adapted to the
present setting, may be written as

BJ+n = n · max
1≤i≤n/2

K+(
i/n,p(i)

)
,(1.9)

whereK+ is defined by

K+(t, x) =




t log
t

x
+ (1− t) log

1− t

1− x
, if 0 < x < t < 1,

0, if 0 ≤ t ≤ x ≤ 1,

+∞, otherwise,
and is motivated by large deviation theory. Roughly speaking, Lemma 6.4 below
shows thatK+(t, x) behaves as12((t − x)2)/(x(1 − x)), so it should not be
surprising that for our measure of performance the detection boundary of BJ+

n

is the same as that of HC∗. (Note, however, that full justification of the asymptotic
claim in [5] has only recently been provided; see [35] for a thorough analysis,
which also may shed light on the limiting distribution of HC∗

n.) To articulate our
claim about the detection boundary of the Berk–Jones method, define a function
ρBJ(β) such that, ifµn = √

2r log(n), and if we use a sequence of levelsα = αn

tending to 0 slowly enough, then forr > ρBJ(β), the procedure has power tending
to 1 asn → ∞, while for r < ρBJ the procedure has power tending to 0.
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THEOREM 1.6. ρBJ(β) ≡ ρ∗(β), 1
2 < β < 1.

However, HC∗ is still better than BJ+n in important ways; we will discuss this in
the Appendix, where we prove Theorem 1.6.

1.7. Generalizations. As we have defined it, the higher criticism statistic
can obviously be used in a wide variety of situations and there is no need for
the p-values to be derived from normally distributedZ-scores, for example.
Consequently, numerous other settings for its deployment can be considered. We
have found that, in a wide variety of settings where one has data which are
“sparsely nonnull,” the HC∗ statistic has an adaptive optimality.

To give the flavor of one of these, we consider a model deriving from the covert
communications example mentioned earlier. The problem is one of noncooperative
spread-spectrum signal detection. Here one observesn periodogram ordinatesXi .
In the “covert data absent” case, these represent periodogram ordinates of a white
noise, while in the “covert data present” case a small fraction of periodogram
ordinates are inflated by the presence of covert signal. The formal model takes
the form:

H0 : Xi
i.i.d.∼ Exp(2), 1 ≤ i ≤ n,

H
(n)
1 : Xi

i.i.d.∼ (1− ε)Exp(2) + εχ2
2(δ), 1 ≤ i ≤ n.

[Here Exp(2) denotes the exponential distribution with mean 2 andχ2
2(δ) denotes

the noncentral chi-squared distribution with noncentrality parameterδ.] Here the
data are non-Gaussian,n is large, and the sparsity parameterε = εn = n−β as
before. The strength of the covert signal is measured by the noncentrality
parameterδ of the chi-squared distribution, which we take asδ = δn = 2r log(n)

for an underlying amplitude parameterr having much the same interpretation as
before. (In a cooperative signal detection setting we would know a priori which
of the coordinatesXi will exhibit the presence of the covert signal; in the
noncooperative case we would not know this.)

We can again apply the principle of higher criticism in this setting, defining
p-values through the component null hypotheses:

pi = Prob{Exp(2) > Xi}, i = 1, . . . , n.

We can also define the detection boundary for this test, as before. This is the
function ρHC,Exp(β) such that, ifδn = 2r log(n), and if we use a sequence of
levelsα = αn tending to 0 slowly enough, then, forr > ρHC,Exp(β), the procedure
has power tending to 1 asn → ∞, while, for r < ρHC,Exp, the procedure has
power tending to 0. We can also define the intrinsic detection boundary, the
functionρ∗

Exp(β) such that ifr < ρ∗
Exp the two hypotheses merge asymptotically,

while if r > ρ∗
Exp the two hypotheses separate asymptotically.
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THEOREM 1.7.

ρHC,Exp(β) = ρ∗
Exp(β) =




β − 1
2, 1

2 < β ≤ 3
4,(

1− √
1− β

)2
, 3

4 < β < 1.
(1.10)

In words, the higher criticism statistic achieves the optimal detection region in
the (r, β) plane; interestingly, this region is the same as we had in the Gaussian
case. See Figure 3; also compare to Figure 1.

Other non-Gaussian settings are discussed in Sections 5.1 and 5.2. In each case
the higher criticism statistic achieves the (interior of) the optimal detection region.

1.8. Contents of this paper.In this paper we establish the key results referred
to so far, and then we consider various generalizations. Section 2 develops
Theorems 1.1 and 1.2. Section 3 discusses HC+ as a variant of HC∗n but with better
performance in finite samples. Section 4 describes some simulation experiments.
Section 5 considers numerous non-Gaussian settings and shows consistently the
superiority of higher criticism over Bonferroni and other ideas from the field
of multiple comparisons; the proof of Theorem 1.7 is also in this section. The
Appendix provides proofs of Theorems 1.3–1.6 as well as Lemma 5.1.

2. Main results. Before continuing the narrative flow of the paper, we pause
to prove our key results: Theorems 1.1 and 1.2. Later sections will return to the
narrative format.

2.1. Proof of Theorem1.1. The idea behind Theorem 1.1 is to simply apply
known results from the theory of empirical processes. We recall the normalized
uniform empirical processWn(t) introduced in Section 1.3, and remind the reader
that, underH0,

HC∗ = max
0<t<1/2

Wn(t).

The normalized empirical process has been studied carefully by a number of
authors, and a summary of results can be found in [27], Chapter 16. There,
in (16.20), they show that

max0<t<α0 Wn(t)√
2 log log(n)

p→ 1, n → ∞,(2.11)

by an argument that depends on the work of Jaeschke [22]. This, in turn, depends
on the approximation ofWn by a Brownian bridge and on a result of Darling
and Erdös [11], which says that, ifB(t) is standard Brownian motion starting
atB(0) = 0, then

sup
[1,u]

B(t)√
t

1√
2 log logu

p→ 1, u → ∞.

Of course, (2.11) implies Theorem 1.1.�
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2.2. Proof of Theorem1.2. We begin with a simple observation.

LEMMA 2.1. Let X1, . . . ,Xn be i.i.d. Bernoulli(πn) and let a1, . . . , an

be a sequence of real numbers. If nπn → ∞ and an/
√

nπn → ∞, then
limn→∞ P (

∑n
i=1(Xi − πn) ≤ −an) = 0.

PROOF. Since Var(
∑n

i=1 Xi) ≤ nπn, use of Chebyshev’s inequality yields

P

{
n∑

i=1

(Xi − πn) ≤ −an

}
≤ nπn

a2
n

→ 0, n → ∞.
�

To prove Theorem 1.2, we note that it is enough to show

lim
n→∞P

H
(n)
1

{
HC∗

n ≤ √
4 log log(n)

} = 0.(2.1)

Now, recalling the definition ofVn(q), we have

HC∗
n ≥ sup

0<q≤1
Vn(q).

For 0< q ≤ 1, recall thatpn,q = P {N(0,1) ≥ zn(q)}; we also put

p′
n,q = P

{
(1− εn)N(0,1) + εnN(µn,1)zn(q)

}
.

We now consider two cases. First, suppose thatr > ρ∗(β) and r ≥ 1
4; then

the hypothesis is detectable, if at all, merely by looking at the maximum of
the Xi . Note that

√
r + √

1− β > 1. Now, asVn(1) ≤ sup0<q≤1Vn(q) and
Vn(1) =D (Nn(1) − npn,1)/

√
pn,1(1− pn,1),

P
H

(n)
1

{
sup

0<q≤1
Vn(q) ≤ √

4 log log(n)

}

≤ P
H

(n)
1

{
Vn(1) ≤ √

4 log log(n)
}

≤ P
H

(n)
1

{
Nn(1) ≤ √

npn,1
√

4 log log(n) + npn,1
}
.

Under H
(n)
1 , Nn(1) is a sum of independent Bernoulli(p′

n,1), and by direct
calculations

pn,1 = o(1),

p′
n,1 = 1√

4π log(n)(1− √
r )

n−β−(1−√
r )2(

1+ o(1)
)
.

With Lemma 2.1 in mind, letπn = p′
n,1 and

an = np′
n,1 − [√

npn,1
√

4 log log(n) + npn,1
] = np′

n,1
(
1+ o(1)

)
,
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sonπn → ∞ andan/
√

nπn → ∞; the desired result (2.1) in this case follows from
Lemma 2.1. In the second case, supposer > ρ∗(β) andr < 1

4. It will turn out that
the hypothesis is detectable based on HC∗ but not on the maximum of theXi . Note
thatβ + r < 1.

P
H

(n)
1

{
sup

0<q≤1
Vn(q) ≤ √

4 log log(n)

}

≤ P
H

(n)
1

{
Vn(4r) ≤ √

4 log log(n)
}

≤ P
H

(n)
1

{
Nn(4r) ≤ √

npn,4r

√
4 log log(n) + npn,4r

}
.

UnderH(n)
1 Nn(4r) is a sum ofn independent Bernoulli(p′

n,4r), and

pn,4r = 1

4
√

πr log(n)
n−4r

(
1+ o(1)

)
,

p′
n,4r = pn,4r + 1√

4πr log(n)
n−(β+r)

(
1+ o(1)

)
.

With Lemma 2.1 in mind, letπn = p′
n,4r and

an = n[p′
n,4r − pn,4r] − √

npn,4r

√
4 log log(n).

Direct calculation shows

an√
nπn

=
{

O
(
nr−(β−1/2)/(log(n))1/4), if β > 3r,

O
(
n1/2[1−(β+r)]/(log(n))1/4), if β ≤ 3r,

sonπn → ∞, an/
√

nπn → ∞; the desired result (2.1) follows for this case from
Lemma 2.1. �

3. A refinement. In the most challenging cases, where 0< r < 1
4, the analysis

above tells us that the real information about the presence ofH
(n)
1 is located away

from the extreme values, and so, perhaps unexpectedly, the few smallestpi are not
relevant to the detection problem.

This suggests that we will still be able to reach the full interior of the detection
region if we work with a modified statistic involving the maximum over all
p-values greater than or equal to 1/n, which is

HC+
n = max

1<i≤n/2, p(i)≥1/n

√
n

[
i/n − p(i)

]/√
p(i)

(
1− p(i)

)
.

Of course, this restriction is not necessary from the viewpoint of asymptotic
analysis, since our results show that HC∗

n is effective without any adjustment.
However, our experience with moderate-sized samples shows this adjustment to
be quite valuable.
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The empirical process viewpoint is helpful. UnderH0 HC∗
n behaves as

sup
0<t<1/2

Wn(t).(3.1)

For comparison, HC+n behaves as

sup
1/n<t<1/2

Wn(t).(3.2)

The limitation of the range in (3.2) is important. The quantity in (3.1) can be
very much dominated by behavior in the vicinity of 0, or, more particularly, by
the smallest observation. Since the smallest observation (smallestp-value) is not
where the information for detection resides, this emphasis is misplaced.

Speaking quantitatively, the statistic can have a heavy-tailed distribution under
the null hypothesis, as we will show in a moment. Since, ordinarily, one does not
want to use test statistics with heavy-tailed distributions—because tests at stringent
levels would have low power in small samples—the quantitative motivation
for HC+

n is clear.
The heavy tails under the null hypothesis come from the following effect. Recall

that, underH0, the minimump-value has a distribution that is Exp(1/n). It follows
that the first component in the maximum defining HC∗

n,

HC∗
n,1 = √

n
[
1/n − p(1)

]/√
p(1)

(
1− p(1)

)
,

has the asymptotic distribution

HC∗
n,1

D
⇒ 1√
E

− √
E,

whereE is exponentially distributed with mean 1. Now, for larget ,

P

(
1√
E

− √
E > t

)
= P

(√
E <

(√
t2 + 4− t

)/
2
) ∼ 1

t2 .

Hence, HC∗n,1 has “heavy tails” underH0.
Numerical simulations show that unusually large values of HC∗

n under the null
hypothesis are most frequently caused by HC∗

n,1, suggesting that if we restrict the
range of the maximum as in HC+n this “heavy tail” is thinned out considerably.
Numerical experiments support this analysis. Adapting material from [12], or
from [27], page 600, it seems we have the following asymptotic law for HC+

n :

bnHC+
n − cn → E2

v,

where

bn = √
2 log log(n), cn = 2 log log(n) + 1

2 log
(
log log(n)

) − 1
2 log(4π),

and the c.d.f. ofE2
v is exp(−2 exp(−x)). Experiments show that this is a fairly

accurate approximation for moderaten. The same form of limiting distribution
holds for HC∗

n, of course, but it is empirically a poor fit.
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4. Simulation. We have conducted a small-scale empirical study of the
performance of HC∗n and HC+

n . Our idea was to select a few interesting(r, β)

pairs in the detectable region—above, but close to the boundary, to create samples
from null and alternative—and to study the behavior of the proposed statistics.

We tookn = 106, ε = 1
1000 andµ = √

2 · 0.15· log(n) ≈ 2.04 for the following
experiment:

1. Drawn samples fromN(0,1) to representH0; calculate HC∗ and HC+.
2. Replace 1000 of the previous samples by the same number of samples

from N(µ,1) to representH(n)
1 ; calculate HC∗ and HC+.

3. Repeat 1 and 2 100 times and make histograms of the simulated HC∗ and HC+.

See Figure 2 for the results. As can be seen from the theory above, detectability
requires increasingly large samples as one approaches the detection boundary. In
fact, depending on how close one goes to the boundary, the required sample sizes
can become enormous. To have an idea of how largen may have to be, we consider
the caser < 1

4, 1
2 < β < 3

4. We recall that

EVn(4r)

{= 0, underH0,

∼ nr−(β−1/2)/ 4
√

πr log(n), underH(n)
1 .

(4.1)

Numerically, we calculate the values ofEVn(4r) underH(n)
1 for variousn with

r = 0.1, β = 1
2 and r = 0.05, β = 1

2, respectively; the results are summarized
in Table 1, together with the values of

√
2 log log(n) for comparison; notice the

variance ofVn(4r) is roughly 1. This, of course, raises the issue of whether our
theory adequately describes practice in small samples and, in particular, whether
the motivating examples of the Introduction really offer credible scenarios for
deployment of these results. We leave such discussion to another occasion.

FIG. 2. Histograms forHC∗ and HC+. Top row: Behavior underH0. Bottom row: Behavior

under H
(n)
1 . Left column: HC∗. Right column: HC+. Here n = 106, µ = √

0.3 log(n) ≈ 2.04,

ε = 10−3.
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TABLE 1
EVn(4r) underH(n)

1 for variousn. The parameters(r,β) are r = 0.1, β = 1
2

andr = 0.05,β = 1
2, respectively; values of

√
2 log log(n) are also included

for comparison

n 106 107 108 109 1010

√
2 log log(n) 2.2916 2.3579 2.4139 2.4622 2.5046

EVn(4r) r = 0.1, β = 1
2 2.7582 3.3411 4.0680 4.9728 6.0976

r = 0.05,β = 1
2 1.6439 1.7748 1.9259 2.0982 2.2931

The large-sample issue also raises the question of how to efficiently sample
from the normal distribution with very largen. Our approach goes as follows.

1. Pick a small numberε, such asε = 10−3 or ε = 10−6.
2. Simulate samples from uniform distribution at quantiles greater than 1− ε.

• Sample a numberK from the Poisson distribution with meannε.
• Generate K samples (U1, . . . ,UK) from the uniform distribution

on (1− ε,1).
• GenerateK samples of(z1, . . . , zK) by letting

yi = −2 log(1− Ui) − log 2π, zi = √
yi − logyi, 1 ≤ i ≤ K.(4.2)

Approximately, the(z1, . . . , zK) can be viewed as if a sample of sizen had been
taken from the Normal distribution, and then only the(1 − ε)n largest sample
values were retained. Compared to brute force, the algorithm requires onlyεn

flops, rather thann flops. Obviously, the accuracy of the approximation in (4.2)
depends on how smallε is; the smaller theε, the more accurate the approximation,
and thus the more accurate the simulation.

5. Other settings. The principle of higher criticism can be applied in a much
wider series of situations than the Gaussian model studied so far, as we now show.

5.1. Chi-Squared. Let χ2
ν (δ) denote the usual chi-squared distribution with

ν degrees of freedom and noncentrality parameterδ. Consider the problem of
testing between these hypotheses:

H0 :Xi
i.i.d.∼ χ2

ν (0), 1 ≤ i ≤ n,(5.1)

H
(n)
1 :Xi

i.i.d.∼ (1− ε)χ2
ν (0) + εχ2

ν (δ), 1 ≤ i ≤ n.(5.2)

Here ε = εn = n−β as before. Owing to the representation of chi-squared r.v.’s
as sums of squares of standard normals, the problem can be rewritten in terms of
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arrays of normalszij
i.i.d.∼ N(0,1):

H0 : Xi
i.i.d.∼

ν∑
j=1

z2
ij , 1≤ i ≤ n,(5.3)

H
(n)
1 : Xi

i.i.d.∼ (1− ε)

ν∑
j=1

z2
ij + ε

[
(zi1 + δ)2 +

ν∑
j=2

z2
ij

]
, 1 ≤ i ≤ n,(5.4)

wherezij
i.i.d.∼ N(0,1). Roughly speaking, a small fraction of the normals may have

nonzero mean, and we must base our decisions on sums of squares rather than on
the normals themselves. The problem is obviously related to the Gaussian problem
discussed above; only the observations with nonzero means occur in groups, and
while the nonzero means are not equal within a group, the sums of squares of those
means within a group must be equal.

Now, obviously, if ν = 1, then we are equivalently dealing with squares of
individual normals, and so are just seeing a two-sided variant of the original one-
sided normal testing problem considered so far. As it turns out, all the detection
boundary and attainability results for the two-sided normal problem are the same
as in the one-sided case.

If ν = 2, we view this as modeling the covert communications problem of
Section 1.5. Indeed, the real and imaginary components of the discrete Fourier
transform of Gaussian white noise are normal and independent; the sum of squares
of those two components is just the periodogram. In a frequency where there is no
signal, only Gaussian noise, the periodogram has aχ2

2(0) [or Exp(2)] distribution,
which is precisely the exponential mentioned earlier; while, in the signal-present
case, the periodogram has aχ2

2(δk) distribution, whereδk is the signal energy at
that frequency.

If ν > 2, we can think of agricultural trials, where a treatment is attempted with
replications and in many different blocks. The alternative hypothesis is that, in a
few special blocks, the treatment has a substantial effect, but in most blocks it has
no effect.

As it turns out, for any fixed, constant number of degrees of freedom, the results
will be similar. Let the noncentrality parameter obey

δ = δn = 2r log(n), 0< r < 1.

In this problem, we again have an(r, β) plane, in which there is a region of
detectability and a detectionboundary. There are two key facts:

• The optimal detection boundaryρ∗
χ2

2
(β) is the same as in the Gaussian case:

ρ∗
χ2

2
(β) =




(
1− √

1− β
)2

, 3
4 ≤ β ≤ 1,

β − 1
2, 1

2 < β < 3
4.

This is proven in [23].
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FIG. 3. Three regions in ther–β plane for theχ2 model (5.1)–(5.2).The detection boundary
separates the detectable region from the undetectable region. For the estimable region, it is possible
not only to detect the presence of nonzero means, but also to estimate those means.

• HC∗
n is able to separate the null and alternative hypotheses throughout the

interior of the detection region, and thus its detection boundaryρHC,χ2
2

obeys

ρHC,χ2
2
(β) = ρ∗

χ2
2
(β), 1

2 < β ≤ 1.

The key ideas are illustrated in Figure 3 .
The analysis supporting the performance of HC∗

n is as follows. Definex2
n(q) =

2q log(n). We then have

P {χ2
ν (0) > x2

n(q)} ∼ Ln · n−q,

P {χ2
ν (δn) > x2

n(q)} ∼ Ln · n−(
√

q−√
r )2

, r < q ≤ 1.
(5.5)

The left-hand relation is proved as follows:

P {χ2
ν (0) > x2

n(q)} = 21−ν/2

�(ν
2)

∫ ∞
√

2q log(n)
ρν−1e−ρ2/2dρ

= (q log(n))ν/2−1

�(ν
2)

n−q
(
1+ o(1)

)
.

It takes a little more effort to check that the second equality is also true; this follows
from the following lemma.

LEMMA 5.1. Let0 < r < q < 1 andδn = 2q log(n). Then, asn → ∞,

P {χ2
ν (δn) ≥ x2

n(q)}

= 1√
2π log(n)

(
r

q

)(1−ν)/4 1√
2q − √

2r
n−(

√
q−√

r )2(
1+ o(1)

)
.
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The proof of Lemma 5.1 is given in the Appendix. Once the relations (5.5) are
available, the analysis proceeds exactly as in the earlier Gaussian case. The most
informative values ofq (resp.x2) are at

if r < 1
4, thenq = 4r or x2 ≈ 4δn,

if r ≥ 1
4, thenq = 1 orx2 ≈ 2 log(n),

correspondingly.

5.2. Generalized Gaussian(Subbotin) distribution. The generalized Gaussian
(Subbotin) distribution GNγ (µ) has density function

1

Cγ

exp
(
−|x − µ|γ

γ

)
, Cγ = 2�

(
1

γ

)
γ 1/γ−1.

This class of densities was introduced by Subbotin [29]; see [24], page 195. It
has many uses in Bayesian analysis; see [9], page 157, who cite several earlier
references. The Gaussian is, of course, the special caseγ = 2. The caseγ = 1
corresponds to the double exponential (Laplace) distribution, a well-understood
and widely used distribution. The caseγ < 1 is of interest in image analysis
of natural scenes, where it has been found that wavelet coefficients at a single
scale can be modeled as following a Subbotin distribution withγ ≈ 0.7 [28]. This
suggests that various problems of image detection, such as in watermarking and
steganography, could reasonably use the model above.

A natural generalization of (1.3)–(1.4) is the following:

H0 : Xi
i.i.d.∼ GNγ (0), 1 ≤ i ≤ n,(5.6)

H
(n)
1 : Xi

i.i.d.∼ (1− ε)GNγ (0) + εGNγ (µ), 1 ≤ i ≤ n.(5.7)

Here we choose the calibrations

εn = n−β, µ = µγ,n = (
γ r log(n)

)1/γ
, 1

2 < β < 1, 0 < r < 1.

First we will discuss the caseγ > 1. In this range the number of nonzero means
is too small to be noticeable in any sum which is of expectation of ordern; if r

is not large, we cannot expect a visible effect on the upper extreme. In short, this
detection problem will be a difficult problem.

Forγ > 1, we showed in [23] that the detection boundary is defined as

ρ∗
γ (β) =




(
21/(γ−1) − 1

)γ−1(
β − 1

2

)
, 1

2 < β ≤ 1− 2−γ /(γ−1),(
1− (1− β)1/γ

)γ
, 1− 2−γ /(γ−1) ≤ β < 1.

(5.8)

Now we discuss the caseγ ≤ 1. Jin [23] showed that there is a threshold effect
for the likelihood ratio test, but the detection boundary is quite different, and,
surprisingly, it can be described in terms of(r, β) independent ofγ :

ρ∗
γ (β) = 2

(
β − 1

2

)
, 1

2 < β < 1.(5.9)

We have the following result.
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FIG. 4. Left: Detection boundaries of ther–β plane for model(5.6)–(5.7)for γ ≤ 1 andγ = 1.5,
2, 3 from top to bottom. Solid parts of the curves are line segments. Right: The common detection
boundary for all0 < γ ≤ 1 which separates the detectable region from the undetectable region.
Three curves from top to bottom correspond to the detection boundaries of the Bonferroni method
with γ = 1

2, γ = 3
4 andγ = 1.

THEOREM 5.1. Consider applying higher criticism to thep-valuespi =
P {GNγ (0) > Xi}, i = 1, . . . , n, in the setting just described. Then the detection
boundaryρHC,γ for this procedure is the same as the efficient detection boundary:

ρHC,γ (β) = ρ∗
γ (β), 1

2 < β < 1.

The basic phenomena are depicted in Figure 4.
The analysis can be made very similar to the normal case. Specifically, introduce

the notationzγ,n(q) = (γ q log(n))1/γ and letπγ,n,q = P {GNγ (0) > zγ,n(q)}, 0 <

q < 1. Note that, whenγ = 2, zγ,n(q) ≡ zn(q) andπγ,n,q ≡ pn,q . We have

max
0<t<1/2

Wn(t) = max
0<q<∞Wn(πγ,n,q).

Similarly, letNγ,n(q) count the observations exceedingzγ,n(q):

Nγ,n(q) = #{i :Xi ≥ zγ,n(q)}
and also

Vγ,n(q) = Nγ,n(q) − nπγ,n,q√
nπγ,n,q(1− πγ,n,q)

.

By arguments which are obvious at this point,

P {GNγ (µγ,n) > zγ,n(q)} = Ln · n−(q1/γ −r1/γ )γ ,

P {GNγ (0) > zγ,n(q)} = Ln · n−q, r < q ≤ 1.
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It follows that, under the alternativeH(n)
1 , we have

EVγ,n(q) = Ln · n1−β · n−(q1/γ −r1/γ )γ

√
n · n−q

= Ln · n[(1+q)/2−β−(q1/γ −r1/γ )γ ],

while under the nullEVγ,n(q) = 0. The most informative value ofq will optimize

the growth rate ofn[(1+q)/2−β−(q1/γ −r1/γ )γ ] to ∞.
For the caseγ > 1, define

rγ = (
1− 2−1/(γ−1)

)γ
.

The most informative value ofq satisfies

if r < rγ , thenq = r

rγ
andEVn(q) = Ln · n[(21/(γ −1)−1)1−γ ·r−(β−1/2)],

if r ≥ rγ , thenq = 1 andEVn(q) = Ln · n[(1−β)−(1−r1/γ )γ ].

For the case 0< γ ≤ 1, the story is quite different, and the main reason is that

1+ q

2
− β − (q1/γ − r1/γ )γ ,

as a function ofq, is strictly decreasing for any fixed 0< γ ≤ 1, so the most
informative place to look is at

q = r or, equivalently, atx ≈ µ.

Notice that, underH0, HC∗ behaves the same as in the normal case. UnderH
(n)
1

the above analysis shows the behavior at the most informative place. We can argue
exactly as in the proof of Theorem 1.2. The growth ofEVγ,n(q) easily surpasses
the

√
4 log log(n) threshold, and the result follows.

There are some interesting points here.
First, the detection boundary for all the cases whereγ ≤ 1 looks like the limit

of the boundaries forγ > 1 asγ → 1. Second, the most informative place to look,
for the caseγ > 1, is at

x ≈ 1

1− 2−1/(γ−1)
µ,

the coefficient 1/(1−2−1/(γ−1)) → 1 asγ → 1; in comparison, for the caseγ ≤ 1,
the most informative place to look is atx = µ.

Third, it is interesting to notice that, for the caseγ ≤ 1, the best that either the
maximum or the FDR-controlling methods can obtain is

r >
(
1− (1− β)1/γ

)γ
.(5.10)



HIGHER CRITICISM FOR DETECTING MIXTURES 985

This is strictly above the detection boundary as defined in (5.9) for any1
2 < β < 1,

while, in comparison, higher criticism can obtain the full interior of the region
of detectability, for allγ . Fourth, notice that the performance of the maximum
or FDR-controlling methods worsens compared to HC∗ whenγ → 0. The best
that the maximum or FDR-controlling methods can do whenγ ≈ 0 is to detect
for r > 1, while higher criticism is able to detect forr > 2β − 1, 1

2 < β < 1,
independent ofγ ; the superiority of HC∗ can be seen most prominently for the
caseβ ≈ 1

2, γ ≈ 0, in which HC∗ is able to detect forr > 2β − 1 ≈ 0, while the
maximum or FDR-controlling methods are able to detect only forr > 1. Compare
Figure 4.

APPENDIX: PROOFS

A.1. Proof of Theorem 1.3.

LEMMA A.1. If zn ∼ Binomial(n,πn) and πn → 0, nπn → ∞, then
P {zn ≥ 1} → 1.

PROOF.

P {zn = 0} = (1− πn)
n = e−n log(1−πn) → 0. �

PROOF OF THEOREM 1.3. When r > ρ+(β) or, equivalently,
1 − β > (1 − √

r )2, we can pick a constantc > 0 depending only on(r, β) such
that

1− β >
(√

1+ c − √
r

)2
.

To prove Theorem 1.3, it is sufficient to prove

P
H

(n)
1

{
Mn ≥ √

2(1+ c) log(n)
} → 1 asn → ∞.(A.1)

Let

N(c) = #
{
i :Xi ≥ √

2(1+ c) log(n)
}
.

Then, underH(n)
1 N(c) ∼ Binomial(n, qn,c), where

qn,c = P
{
(1− εn)N(0,1) + εnN(µn,1) ≥ √

2(1+ c) log(n)
}

= Ln · n−β−(
√

1+c−√
r )2

.

Notice that, asn → ∞, qn,c → 0 and nqn,c → ∞. So letting πn = qn,c in
Lemma A.1, we have

P
H

(n)
1

{N(c) ≥ 1} → 1 asn → ∞.
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Finally, the desired result (A.1) follows from

P
H

(n)
1

{
Mn ≥ √

2(1+ c) log(n)
} = P

H
(n)
1

{N(c) ≥ 1}. �

A.2. Proof of Theorem 1.4.

LEMMA A.2. For constants1
2 < δ < 1, 0< a < 1,

sup
{t : t>n−δ}

P
{
Binomial(n, t) ≥ n · t/a} ≤ 2e−c(a)n1−δ

, n → ∞,

wherec(a) = 1− (loga + 1)/a.

PROOF. By noticing that

sup
{t>n−δ}

P
{
Binomial(n, t) ≥ n · t/a} ≤ P

{
sup

t>n−δ

Binomial(n, t)

nt
≥ 1

a

}
,

Lemma A.2 follows directly from [34], Lemma 1.�

Now for any 1
2 < δ < 1 introduce statistics:

F δ
1 = min

{i : p(i)>n−δ}
p(i)

i/n
, F δ

2 = min
{i : p(i)≤n−δ}

p(i)

i/n
.

LEMMA A.3. For any constants12 < δ < 1, 0 < a < 1, if r < ρFDR(β), then,
asn → ∞,

PH0{F δ
1 ≤ a} → 0, P

H
(n)
1

{F δ
1 ≤ a} → 0.(A.2)

PROOF. Recall thatnFn(t) = ∑
i 1{pi≤t}, 0 < t < 1. We havenFn(t) ∼

Binomial(n, t) underH0 andnFn(t) ∼ Binomial(n,π(n, t)) underH(n)
1 , where

π(n, t) = P
H

(n)
1

{pi ≤ t} ≥ t ; sincer < ρFDR(β) we also have

an
�= sup

{t>n−δ}
π(n, t)/t → 1.

Observe thati/n = Fn(p(i)), so

p(i)

i/n
≤ a ⇐⇒ Fn(p(i)) ≥ p(i)/a;

by Lemma A.2, the desired result in (A.2) follows from

PH0{F δ
1 ≤ a} ≤ n · sup

{t : t>n−δ}
P

{
Binomial(n, t) ≥ n · t/a} → 0,

P
H

(n)
1

{F δ
1 ≤ a} ≤ n · sup

{t : t>n−δ}
P

{
Binomial

(
n,π(n, t)

) ≥ n · t/a} → 0. �
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PROOF OFTHEOREM 1.4. For the FDR-controlling procedure,

Reject if and only if min
1≤i≤n

p(i)

i/n
≤ h(n,αn),

whereh(n,αn) ≤ a < 1 is any given critical value. Since the attainability of the
FDR-controlling procedure is as good as the maximum or Bonferroni method, all
we need to prove is that, for(r, β) in the regionρ∗(β) < r < (1 − √

1− β )2, the
FDR-controlling method totally fails or

PH0{RejectH0} + P
H

(n)
1

{AcceptH0} → 1 asn → ∞.(A.3)

Now, underH(n)
1 we break{1,2, . . . , n} into two setsA(n)

1 andA
(n)
2 , where

i ∈ A
(n)
1 if Xi is sampled fromN(0,1),

i ∈ A
(n)
2 if Xi is sampled fromN(µn,1).

Introduce an event:

Eδ0
n = {

p(i) ≤ n−δ0 for somei ∈ A
(n)
2

}
.

Sincer < (1 − √
1− β)2, or

√
r + √

1− β < 1, we can chooseδ0 to be close
enough to 1 such thatP

H
(n)
1

(E
δ0
n ) → 0. Notice that

{F δ0
2 |H0} D= {

F
δ0
2

∣∣(H(n)
1 , (Eδ0

n )c
)}

and

P
H

(n)
1

{F δ0
2 < h(n,αn)}

= (
1− P

H
(n)
1

(Eδ0
n )

)
P

H
(n)
1

{
F

δ0
2 < h(n,αn)|(Eδ0

n )c
}

+P
H

(n)
1

(Eδ0
n )P

H
(n)
1

{
F

δ0
2 < h(n,αn)|Eδ0

n

}
,

soPH0{F δ0
2 < h(n,αn)} − P

H
(n)
1

{F δ0
2 < h(n,αn)} → 0.

Finally, by Lemma A.3∣∣PH0{Reject} − P
H

(n)
1

{Reject}∣∣
≤ ∣∣PH0{F δ0

2 < h(n,αn)} − P
H

(n)
1

{F δ0
2 < h(n,αn)}

∣∣
+ ∣∣PH0{F δ0

1 < h(n,αn)}
∣∣ + ∣∣P

H
(n)
1

{F δ0
1 < h(n,αn)}

∣∣
→ 0,

and the desired result in (A.3) follows.�
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A.3. Proof of Theorem 1.5. Under H0, Fn ∼ χ2
2n, and EFn = 2n,

Var(Fn) = 4n. UnderH(n)
1 with εn = n−β , µn = √

2r log(n), 1
2 < β < 1, 0<

r ≤ 1, direct calculations show that 2n ≤ EFn = 2n[1 + O(εnLn)], Var(Fn) =
4n[1+ O(εnLn)]; sinceβ > 1

2, the conclusion follows.

A.4. Proof of Theorem 1.6. To prove Theorem 1.6 we need the following
lemma.

LEMMA A.4. (i) For 0 < x < t ≤ 1
2,

K+(t, x) ≤ 1

2

(t − x)2

x(1− x)
.(A.4)

(ii) Letx = x(t) obey0< x < t < 1. We have, as t → 0,

K+(t, x) =




1

2

(t − x)2

x(1− x)

(
1+ O

(
t + t

x
− 1

))
, if

t

x
→ 1,

t log
t

x

(
1+ o(1)

)
, if

t

x
→ ∞.

(A.5)

PROOF. (i) Letting t = sx, it is sufficient to prove that, for fixed 0< x < 1
2

and for 1≤ s ≤ 1
2x

,

s logs +
(

1

x
− s

)
log

(
1− sx

1− x

)
≤ 1

2

(s − 1)2

1− x
.(A.6)

To prove (A.6), set

f (s) = s logs +
(

1

x
− s

)
log

(
1− sx

1− x

)
− 1

2

(s − 1)2

1− x
;

direct calculations show thatf (1) = 0, f ′(1) = 0 and

f ′′(s) = (1− s)(1− (s + 1)x)

s(1− x)(1− xs)
, 1 ≤ s ≤ 1

2x
.

Notice that whens ≥ 1, 1− (s + 1)x ≥ 1− 2sx, so, for any fixed 0< x < 1
2,

f ′′(s) < 0, 1 < s <
1

2x
.

This proves (A.6).
(ii) The caset

x
→ ∞ is obvious. For the caset

x
→ 1, notice that 0< x < t < 1

and

(t − x)3

x2
= o

(
(t − x)2

x

)
,
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so

K+(t, x) = t log
t

x
+ (1− t) log

1− t

1− x

= t

[(
t

x
− 1

)
− 1

2

(
t

x
− 1

)2]
+ (1− t)

[
− t − x

1− x
− 1

2

(
t − x

1− x

)2]

+ O

(
(t − x)3

x2

)

= 1

2

(t − x)2

x(1− x)

(
1+ O

(
t + t

x
− 1

))
. �

PROOF OFTHEOREM 1.6. From (A.4) we have

BJ+
n ≤ 1

2(HC∗)2,

so underH0 the behavior of BJ+n is well controlled.
Now we consider the behavior of BJ+

n underH(n)
1 . We examine the casesr <

β
3

andr > (1− √
1− β )2 separately; these two cases overlap and together cover the

full region 1
2 < β < 1, r > ρ∗(β).

First, for the caser <
β
3 notice thatr < 1

4. Taker0 such that 0< r0 < r ; as in

Lemma A.3, it is easy to prove that, underH
(n)
1 ,

max
{i : n−4r<p(i)<n−4r0}

∣∣∣∣p(i)

i/n
− 1

∣∣∣∣ → 0 in probability.

Introduce the following statistic:

HC∗
r,r0

= max
{i : n−4r<p(i)<n−4r0}

[√
n

i/n − p(i)√
p(i)(1− p(i))

]
.

Now, from (A.5)

n · K+(
i/n,p(i)

) ∼ 1

2

(
max

{√
n

i/n − p(i)√
p(i)(1− p(i))

,0
})2

if
i/n

p(i)

∼ 1,

and so

BJ+
n ≥ max

{i : n−4r<p(i)<n−4r0}
nK+(

i/n,p(i)

) = 1
2

[
HC∗

r,r0

]2(1+ o(1)
)
.(A.7)

Thus, in this case, BJ+
n is able to separateH0 andH

(n)
1 .

For the second case notice that(r + β)/2
√

r < 1. Pick a constantq such that
max{(r + β)/2

√
r,

√
r} <

√
q < 1. Observe that underH(n)

1 ,

#{i :pi ≤ n−q} ∼ Binomial
(
n,Lnn

−[β+(
√

q−√
r )2]),

Lnn
−[β+(

√
q−√

r )2] � n−q .



990 D. DONOHO AND J. JIN

This implies that, underH(n)
1 , for thosep-valuesp(i) ∼ n−q , (i/n)/p(i) � 1; so,

from (A.5),

nK+(
p(i), n

−q
) ∼ Ln Binomial

(
n,Lnn

−[β+(
√

q−√
r )2]).

As 1− β − (
√

q − √
r )2 > 0, BJ+n is able to separateH(n)

1 andH0. �

REMARK. For the second case HC∗ is more powerful than BJ+n . In fact, the
best BJ+n can do is to choosei as large as possible while keeping(i/n)/p(i) � 1.
This is roughly equivalent to choosingi ∼ n1−q with q satisfying

n1−βn−(
√

q−√
r )2 � n1−q ⇐⇒ √

q > (r + β)
/(

2
√

r
)
.

As a result, BJ+n ≈ Lnn
1−(r+β)2/(4r). To see the main idea, take the

region 1
2 < β < 3

4, ρ∗(β) < r < 1 − β for comparison. For(r, β) in this range,

(HC∗)2 ≈ Lnn
2r−β+1. Since 1− (r + β)2/(4r) < 2r − β + 1, HC∗ has better per-

formance than BJ+n .

A.5. Proof of Lemma 5.1. With zi
i.i.d.∼ N(0,1), δn = µ2

n = 2r log(n),
χ2(δn) =D z2

1 + z2
2 + · · · + (zν + µn)

2, so

P {χ2
ν (δn) ≥ 2q log(n)}
= P

{
z2

1 + z2
2 + · · · + (zν + µn)

2 ≥ √
2q log(n)

}
= 1

(2π)ν/2

∫
A(θ1,ρ)

cosν−2 θ1ρ
ν−1e−ρ2/2dθ1dρ

×
∫ π/2

−π/2
cosν−3 θ2 dθ2 · · ·

∫ 2π

0
dθν−1

= 2−ν/2+1

√
π�((ν − 1)/2)

∫
|θ1|≤π/2

cosν−2 θ1 dθ1

×
∫ ∞
[−√

2r sinθ1+
√

2q−2r cos2 θ1]√log(n)
ρν−1e−ρ2/2dρ,

whereA(θ1, ρ) = {(θ1, ρ) : |θ1| ≤ π
2 , ρ2 + 2ρµn sinθ1 ≥ 2(q − r) log(n)}.

The caseν = 1 is obvious, while forν = 2 we have

P {χ2
2(δn) ≥ 2q log(n)}
= 1

π

∫
|θ1|≤π/2

n−[
√

q−r cos2 θ1−√
r sinθ1]2 dθ1

= 1

π
√

log(n)
n−[√q−√

r ]2
∫ ∞

0
e−√

r/q(
√

q−√
r )2x2

dx
(
1+ o(1)

)

= 1√
2π log(n)

1√
2q − √

2r

(
r

q

)−1/4

· n−[√q−√
r ]2(1+ o(1)

)
.
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Now consider the caseν ≥ 3. Notice that, for fixedr and q but largen,

n−[−√
r sinθ1+

√
q−r cos2 θ1]2 obtains its maximum rate of growth atθ1 = π

2 , and for
θ1 ≈ π

2 ,

[−√
r sinθ1 +

√
q − r cos2 θ1

]2

∼ [√
q − √

r
]2 +

√
r√
q

(√
q − √

r
)2

(
θ1 − π

2

)2

;

moreover, notice that for anyy → ∞,∫ ∞
y

ρν−1e−ρ2/2dρ = yν−2e−y2/2(1+ o(1)
)
.

These enable us to write∫
|θ1|≤π/2

cosν−2 θ1 dθ1

∫ ∞
[−√

2r sinθ1+
√

2q−2r cos2 θ1 ]√log(n)
ρν−1e−ρ2/2dρ

= ([√
2q − √

2r
]√

log(n)
)ν−2

×
[∫

0≤θ1≤π/2
cosν−2 θ1 · n−[−√

r sinθ1+
√

q−r cos2 θ1 ]2 dθ1

](
1+ o(1)

)

= ([√
2q − √

2r
]√

log(n)
)ν−2

×
[∫ 1

0
(1− x2)(ν−3)/2n−(

√
q−r+rx2−√

rx)2
dx

](
1+ o(1)

)
= ([√

2q − √
2r

]√
log(n)

)ν−2

×
[∫ 1

0
(1+ x)(ν−3)/2(1− x)(ν−3)/2n−(

√
q−r+rx2−√

rx)2
dx

](
1+ o(1)

)
= 2(ν−3)/2([√2q − √

2r
]√

log(n)
)ν−2

×
[∫ 1

0
(1− x)(ν−3)/2n−(

√
q−r+rx2−√

rx)2
dx

](
1+ o(1)

)
.

To evaluate this integration, notice that∫ 1

0
(1− x)(ν−3)/2n−(

√
q−r+rx2−√

rx)2
dx

=
∫ 1

0
x(ν−3)/2n−(

√
q−2rx+rx2−√

r+√
rx)2

dx

= n−(
√

q−√
r )2

[∫ 1

0
x(ν−3)/2n−2

√
r/q(

√
q−√

r )2x dx

](
1+ o(1)

)
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= 1

log(n)
n−(

√
q−√

r )2

×
[∫ log(n)

0

(
x

log(n)

)(ν−3)/2

e−√
r/q(

√
2q−√

2r )2x dx

](
1+ o(1)

)

= (log(n))(1−v)/2n−(
√

q−√
r )2

×
[∫ ∞

0
x(ν−3)/2e−√

r/q(
√

2q−√
2r )2x dx

](
1+ o(1)

)

= �

(
ν − 1

2

)[√
r

q

(√
2q − √

2r
)2 log(n)

](1−ν)/2

n−(
√

q−√
r )2(

1+ o(1)
)
.

Finally, we have

P {χ2
ν (δn) ≥ 2q log(n)}

= 1√
2π log(n)

(
r

q

)(1−ν)/4 1√
2q − √

2r
n−(

√
q−√

r )2(
1+ o(1)

)
.
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