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Higher criticism or second-level significance testingg a multiple-
comparisons concept mentioned in passing by Tukey. It concerns a situation
where there are many independent tests of significance and one is interested
in rejecting the joint null hypothesis. Tukey suggested comparing the fraction
of observed significances at a givadevel to the expected fraction under
the joint null. In fact, he suggested standardizing the difference of the two
quantities and forming a-score; the resulting-score tests the significance
of the body of significance tests

We consider a generalization, where we maximize thi&ore over a
range of significance levels @ o« < «g. We are able to show that the
resultinghigher criticism statistids effective at resolving a very subtle testing
problem: testing whether normal means are all zero versus the alternative
that a small fraction is nonzero.

The subtlety of this “sparse normal means” testing problem can be seen
from work of Ingster and Jin, who studied such problems in great detail. In
their studies, they identified an interesting range of cases where the small
fraction of nonzero means is so small that the alternative hypothesis exhibits
little noticeable effect on the distribution of thevalues either for the bulk
of the tests or for the few most highly significant tests. In this range, when
the amplitude of nonzero means is calibrated with the fraction of nonzero
means, the likelihood ratio test for agmisely specified alternative would still
succeed in separating the two hypotheses.

We show that the higher criticism isscessful throughout the same region
of amplitude sparsity where the likelihood ratio test would succeed. Since
it does not require a specification of the alternative, this shows that higher
criticism is in a sense optimally adi@e to unknown sparsity and size of the
nonnull effects. While our theoretical work is largely asymptotic, we provide
simulations in finite samples and suggest some possible applications. We also
show that higher critcism works well over a range of non-Gaussian cases.

1. Introduction. In his Class Notes for Statistics 411 at Princeton University
in 1976 [31], Tukey introduced the notion of tiegher criticismby means of a
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story. A young psychologist administers many hypothesis tests as part of aresearch
project, and finds that, of 250 tests 11 were significant at the 5% level. The young
researcher feels very proud of this fact and is ready to make a big deal about it,
until a senior researcher (Tukey himself?) suggests that one would expect 12.5
significant tests even in the purely null case, merely by chance. In that sense,
finding only 11 significant results is actually somewhat disappointing!

Tukey used this story as a way to make vivid the notion ofhigder criticism
of such situations as multiple testing. He then proposed a sstadnd-level
significance testingoased on the statistic

HCo.05,» = +/n[(Fraction Significant at.05)— 0.05]/+/0.05 x 0.95,

and suggested that values of (say) 2 or greater indicate a kisihjpificance

of the overall body of test§The same statistic was proposed and applied in a
psychometric trial by BroZzek and Tiede [10] even earlier, but without the catchy
name.)

Although Tukey'’s discussion turned to other topics at that point, we may, if we
like, imagine that it had continued in this vein. We might then consider not only
significance at the 0.05 level, but perhaps at all levels between (say)d)aadd
so define

HC! = max +/n[(Fraction Significant at) — «]/va x (1 — a).

O<a<ag

In this paper, we will analyze a statistic of this kind in a setting where there are
a small fraction of nonnull hypotheses and derive an adaptive optimality for it.

In our setting there aren independent tests of unrelated hypotheses,
Ho,; vs. H1 ;, where the test statisticé; obey

(11) HO,i:Xi NN(O, 1),
(1.2) Hy;:X; ~N(u,1), wi > 0.

In the overwhelming majority of the tests, the corresponding null hypothesis is
true (i.e., the corresponding normal mean= 0), but some small fractiomay
concern tests where the null hypothesis is false (and so the meard). So the
fraction of false null hypotheses, if nonzero, is small. Can we tell reliably whether
the fraction is actually O or not?

We mention three application areas where situations like this might arise:

e Early detection of bioweapons useSuppose that there are observational
units in a certain geographical region, and for each one we hayscare
associated with the presence of a certain symptom at rates higher than
background. If a bioweapon has been used in that region, then in early stages
we do not expect all observational units to be affected, we do not know which
ones might be affected, and we do not want to wait until some observational
unit begins to display wildly elevated rates. We want to detect while a small
fraction begins to show individually significant results but no unit yet shows
jointly significant results.
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e Detection of covert communicatiansin a signals intelligence setting we
suppose that a small fraction of the signal spectrum in a certain situation may
be used for covert communications, which would mean that a few frequencies
exhibit increased power. However, we do not know what frequencies those
might be, and the specific frequencies being used might change randomly from
one epoch to another, so that we never get a very definite indication that we are
definitely seeing increased power in any one specific frequency. Nevertheless,
we might still want to detect the presence of a small fraction of frequencies with
slightly increased power.

e Meta-analysis with heterogeneityWe have results from experiments testing
a certain treatment. It turns out that an unidentified experimental factor is
crucial to success, but that only in a small fraction of experiments is this factor
fortuitously chosen so that the experimental performance follows a nonnull
distribution. Can we reliably detect the presence of a small fraction of well-
laid out experiments among many hopeless ones, when we do not know which
ones may be well-laid out?

There are many other potential applications in signal processing; see, for
example, [19-21]. In spatial statistics Kendall and Kendall [25] developed a
statistic closely related to HCcalled “pontogram” for the purpose of detecting
near-alignments in sets of points.

1.1. The model and the asymptotic detection boundaryranslating our
problem into precise terms, we begin by scrutinizing a special case where all
the nonzerqu; are equal, and we can then model our data as providingd.
observations from one of two possible situations:

(1.3) Ho:X: " N©O1, 1<i<n,
(1.4) H?: X, " 1-e)NO. D) +eN(u. 1), 1<i<n.

Here Hp denotes the global intersection null hypothesis, aEqQﬂ) denotes a

specific element in its complement. UndH{”), a fractione of the data comes

from a normal with common nonnull mean. Here= ¢, and the meamu = u,,

will be chosen to make the problem very hard, but (just barely) still solvable.
Obviously, in this situation, withe,, and u, fixed and known, the optimal

procedure is simply the likelihood ratio test; a careful analysis of its performance

in [23] (cf. also [16] and [17]) tells us the following. Suppose weslgt= n~# for

some exponeng e (%, 1), so that the fraction of nonzero means is small but not

vanishingly small. In this range the number of nonzero means is too small to be

noticeable in any sum which is, in expectation, of or@geso it cannot noticeably

affect the behavior of the bulk distribution of tlpevalues. Let

(1.5) wn =~ 2rlog(n), O<r<1.
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As u, < +/2log(n), the nonzero means are, in expectation, smaller than the
largestX; coming from the true component null hypotheses, so the nonzero means
cannot have a visible effect on the upper extremes. Clearly, this is a rather subtle
testing problem.

It turns out that there is threshold effector the likelihood ratio test: the sum
of Type | and Type Il errors tends to O or 1 depending on whethexceeds a
so-calleddetection boundargr not. In detail, there is a functige*(8) so that

if r > p*(B), Hy andHl(") separate asymptotically
if r <p*(8),  HoandH," merge asymptotically.

In short, p*(8) defines a precise demarcation between what is possible and
impossible in this problem, that is, how big the nonzero effect must be to be
detectable as a function of the rarity of nonzero effects. Hence, we have the
termdetection boundaryindeed, translating results of Ingster [17] to our notation
(see also [23]),

w

p— %’ % <=1z
1-vI=B)? 2<p<1.

If we think of the (r,8) plane, O< r < 1, % < B < 1, we are saying
that, throughout the region > p*(8) the alternative can be detected reliably
using the likelihood ratio test (LRT). Unfortunately, the usual (Neyman—Pearson)
likelihood ratio requires a precise specificationraind 8, and misspecification
of (r, 8) may lead to failure of the LRT; see [23] for a discussion. Naturally,
in any practical situation we would like to have a procedure which does well
throughout this whole region without knowledge(ef8). Bickel and Chernoff [6]
and Hartigan [14] have shown that the usual generalized likelihood ratio test
maxg,,i(a’Pl(”)(e, u)/dPé”))(X) has nonstandard behavior in this setting; in fact
the maximized ratio tends tso underHy. It is not clear that this test can be relied
on to detect subtle departures fraffy. Ingster [18] has proposed an alternative
method of adaptive detection which maximizes the likelihood ratio over a finite
but growing list of simple alternative hypotheses. By careful asymptotic analysis,
he has, in principle, completely solved the problem of adaptive detection in this
setting; however, this is a relatively complex and delicate procedure which is
tightly tied to the narrowly specified model (1.3) and (1.4). It would be nice to
have an easily implemented and intuitive method of detection which is able to
work effectively throughout the whole region<08 < % r > p*(B), which is not
tied to the narrow model (1.3) and (1.4), and which is in some sense easily adapted
to other (non-Gaussian) mixture models. This is wheré ld@mes in.

(1.6) P (B) =
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1.2. Performance of higher criticism.To apply the higher criticism, let us
convert the individual test statistics into another form. pet= P{N (0, 1) > X;}
be thep-value for theith component null hypothesis, and let thg, denote the
p-valuessorted in increasing ordeiso that under the intersection null hypothesis
the p(;) behave like order statistics from a uniform distribution.

With this notation, we can write

HC, = max au[i/n—py]/Vpi(1—po)-
1<i<wagn

Despite the closeness of our statistic to the one in [2], note that what we are doing is
not arbitrary goodness of filnstead we are dealing with a specific kind of multiple
hypothesis testing, outside of which the problem would not be interesting.

To use HC to conduct a levetr test, we must find a critical valug(n, «):

Ppo{HC, > h(n,a)} <.

Adapting asymptotic theory for the normalized empirical process as in [27],
Chapter 16, gives us the following information on the sizé @f, «):

THEOREM1.1. Under the null hypothesidy,
HC; B

v/2loglogn)

It follows that, for fixeda > 0, h(n,a) =~ /2loglog(n). For asymptotic

analysis, it is convenient to consider a sequence of problems indexedvith
critical valuesy,, — 0. We will say that the leval,, — 0 slowly enouglif

h(n, a,) = ~2loglogn)(1+ o(1)).

(1.7)

, n— 0o.

THEOREM 1.2. Consider the higher criticism test that rejedis when
HC, > h(n, ay),

where the leved,, — 0 slowly enoughFor every aIternativeHl(") defined above
wherer exceeds the detection boundari(8)—so that the likelihood ratio test
would have full power—higher criticism also has full power

PH<n>{RejectH0} — 1, n — oo.
1

Roughly speaking, everywhere in the amplitude/spargity) plane—where
the likelihood ratio test would completely separate the two hypotheses asymptoti-
cally—the higher criticism will also completely separate the two hypotheses
asymptotically. Of course, in the cases where the amplitude/sparsity relation falls
belowthe detection boundary, all methods fail. More precisely, we only claim that
higher criticism works in the interior of this region. Just at the critical point where
r = p*(1+ o(1)), our result says nothing; this would be an interesting (but very
challenging) area for future work.
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1.3. Which part of the sample contains the informaftonUnderlying our
results is a set of insights about “where to look” for evidence ag&ip$80], how
the evidence may not be in the “obvious” place and how the adaptation in HC
automatically ensures that the best evidence will be included in making the “case”
againstHy.

To get started, note that, in the null case 'HE closely related to well-known
functionals of the standard uniform empirical process. This is because, Hpder
then p-values can be viewed as.d. samples fron/ (0, 1).

Formalizing, giverm independent random samplés, ..., U, from U (0, 1),
with empirical distribution function

1 n
Fu(t) =— Zﬂ{Uigt},
i

the uniform empirical process is denoted by
Up(t) =/n[Fy(t) —t],  O<t<1,
and thenormalized uniform empirical procegy
U (1)
Vid=1)

Note thatW,, () is asymptoticallyN (0, 1) for each fixed € (0, 1).
Since, underHy the p-values are.i.d. U(0,1), we have, in that case, the
representation

Wy (1) =

HC = max W,(1);
O<t<ag
note the use of max instead of sup, since the maximum valii, ¢ is attained.

We will extend usage below by letting, () also stand for the normalized em-
pirical process starting from, () = % Y1 1¢p;<), Where thep; are then given
p-values, but which are i.i.dJ/ (0, 1) only in the null case. Accordingly,, (z)
will be asymptoticallyN (0, 1) at each fixed only underHp, and one anticipates
a different limiting behavior under the alternative.

We now look for the value of at which W,(¢) has the most dramatically
different behavior under the null and the alternative.

We introduce the notation,(¢) = +/2¢Tog(n), for 0 < ¢ < 1, and look for
the value ofg for which ProlfX; > z,(¢)} best differentiates between null
and alternative. Recall that, under the alternawg) the data have a sparse
component with nonzero mean at, = z,(r). It might seem that the most
informative part of the sample would be in the vicinity @f, where data from
the alternative are most common, and that therefore the most informative value
of g is g = r. Surprisingly, this is not the case.
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To find this most informativey, we introduce some notation. Let, , =
P{N(,1) > z,(¢)}, ¢ > 0, and note that
max W,(t) = max W, .
0<t<1/2 n(t) 0<q 200 n(Pn,q)

It will be immediately clear that it is only necessary to consider§ < 1.
Let N, (g) count the observations exceediydq):

Nn(Q) =#{i X > Zn(Q)}'
Then define

Nn(q) - npn,q
v npn,q(l - Pn,q)

In many calculations, we will find factors with polylog behavior,
~ Constlog (n), wherea may be positive or negative depending on the case.
When such factors are multiplying term¥ for y £ 0, the polylog factors have a
weak influence on the eventual growth rate of the resulting product. To focus on
the main ideas, we introduce the notatiby for a generic polylog factor, which
may change from occurrence to occurrence. When we do this, we thitik of
essentially as if it were constant.

Now

Va(q) =

PN (tn, 1) > 24(q)} = Ly - n~ VI,
P{N©,1) > z,(¢)} =L, -n" 9, r<g=<1.1

It follows that, under the alternatile(”), we have

P .n—(ﬁ—ﬁ)z
vn-n—4

while under the nulEV, (¢) = 0. The most informative value af will optimize

the growth rate of(1+9)/2-8=(/a—v"?| tg 0. The most informative value of
satisfies

EVn(q) = Ln . = Ln . n[(1+q)/2_ﬁ_(«/§_«/7)2]’

if r < %, theng = 4r andEV,(¢) = L, - n" = =1/,
if r>1  theng =1andEV,(q) = L, -n[@-H~A=VD?]

In fact, there can be considerable latitude in choosirgp thatEV,(¢) goes
to oo underH," . This requires

2\/_—,/2(1’—/3—}—%)<\/§<2«/?+\/2(r—ﬂ+%).

Notice thatr > p*(B8) impliesr — 8 + % > 0. Within this interval the “most
informative choice” ol is the center,/g = 2,/r in caser < %1.



HIGHER CRITICISM FOR DETECTING MIXTURES 969

Translating this into the original-scale yields the surprise mentioned earlier.
Whenr < %1, the most informative place on the originakcale is not af,,, as we
might suppose, but ag,. By going out “in the tails” farther than,,, observations

from both Hy and Hl(”) are becoming extremely rare, but the ones frH{ﬁ) are
far more frequent in a relative sense.

The story whenr > ;11 is somewhat different. There, when looking for a
discrepancy, we had best look ne@2 log(n), which is less than 2,. The point
is that observations frorily almost never get substantially larger tha@ log(n),

so there is no need to look much farther out in the tails.

1.4. Comparison to several multiple comparison procedurddie higher
criticism is just one specific approach to combining manyalues in search of an
overall test; many other tools are available from the field of multiple comparisons
(e.q.,[15], [26] and [33]) and meta-analysis [3]. How do these other tools perform?

In this section we describe several specific procedures and their range of
detectability. See Figure 1.

1.4.1. Range/Maximum/Bonferroni.One of the most classical and frequently
used tools in multiple comparisons, also associated with Tukey [33], is the
studentized range:

R, = (maxX; —minX;)/S,,

whereS, is the sample standard deviation. This is frequently used in testing for
homogeneity of a set of normal means, and could well be used in the setting we

1 1
0.9 . 0.9
Estimable
0.8 0.8
0.7 0.7
0.6 0.6
~05 Detectable =05
0.4 0.4
0.3 031 FDR/Bonferroni
0.2 0.2 s
04 Undetectable o1 < Optimal/HC*
005 0.6 0.7 0.8 0.9 1 %.5 0.6 0.7 0.8 0.9 1
B B

FiG. 1. Left: three regions of thgg — r plane The detection boundary separates the detectable
region from the undetectable regioRor the estimable regignit is possible not only to detect

the presence of nonzero meabst also to estimate those meafght: two detection boundaries

The one on the bottom is the optimal detection boundary as well as the detection boundary
for HC*; the one on the top is for range/maximum/Bonferroni/FDRo detection boundaries are

only different When?-l <pB<1.
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have defined here. For our theoretical purposes, it is convenient to analyze the
simpler statistic

M, = m_axXl-,
1
where we focus attention on one-sided deviations only and have no need to
estimate the (known) standard deviation under the null. (We note that in the field
of meta-analysis this is the same thing as combining seyexalues by taking

the minimum p-value [3]; another equivalent term for this is Bonferroni-based
inference.) The maximum statistic has a critical valu@, o) which obeys

mn,a) ~~2logn), n— 0o.

In comparison to HC, it follows that the test focuses entirely on whether there are
observations exceeding2log(n). We again say that, goes to Gslowly enough
(now for use withM,,) if

mn, a,) ~ ~/2logn).

The following result summarizes the behaviorndy.

THEOREM1.3. Define
pmax(B) = (1—VI—B)>.

Suppose > pvax(8) and consider a sequence of leughtests based oM, with
o, — 0 slowly enoughThen

PH(n){Mn rejectsHp} — 1.
1

In short, pmax defines the detection boundary fdf,. This compares to the
“efficient” boundary as follows:

p*(B) = pmax(B),  Be[F. ),
so thatM,, is effective in the range of very sparse alternatives, while
P (B) < pmax(B),  BE[3.3),
so thatM,, is inefficient if 8 < %. In particular, note that
0=p*(3) < pmax(2) = (2— v/2)?/4~0.0858

We interpret this as saying thaf,, (and the Studentized randg, as well) can be
dramatically outperformed when there may be abdéf nonzero means among
then observations. Compare Figure 1.
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1.4.2. FDR-controlling methods. Recently considerable interest has been fo-
cused on the false discovery rate (FDR)-controlling methodology for simultaneous
inference. In one example of this so-called FDR approach [4], one considers, for
k=123,..., the k most significantp-values. These are compared wiﬂ,%,
whereq is a critical value (e.g.,.05). If the p-values in the group are all smaller
than the standard for comparison, thHp is accepted at that stage. If some are

larger than the standard for comparison, tm}ﬁ) is accepted, no further are
considered, and that specific group lothypotheses is identified as containing
likely nonnull hypotheses. Viewed as a hypothesis testing procedure for the in-
tersection null hypothesis, Benjamini and Hochberg [4] show that this procedure
has level less than or equaldo They also show that procedure controls the FDR,
which means, roughly speaking, that, in expectation, a fraction of at(kastr)

of the rejected null hypotheses should be truly nonnull hypotheses.

How does such a procedure behave in the current setting? We begin by pointing
out that Abramovich, Benjamini, Donoho and Johnstone [1] have analyzed
the behavior of FDR in exactly the kind of mixture model described above
in (1.3)—(1.4), but wherg,, is calibrated differently from (1.5), and they found an
asymptotic minimaxity of FDR in that setting. That is, they considered a situation
where one observed dal§ = 6; + Z; and where theZ; are 1.i.d. N(0, 1). They
supposed that only a fractiar) of the mean®; might be nonzero. This is similar
to our model above.

As it turns out, for our measure of performance, the behavior of FDR-controlling
procedures is not different from that of the maximwf. To articulate this, con-
sider the detection boundary for the FDR-controlling procedure above. This is the
function prpr(B) such that, ifu,, = +/2r log(n), and if we use a sequence of levels
a = oy, tending to 0 slowly enough, then fer> pppr(8) the procedure has power
tending to 1 as — oo, while forr < prpr the procedure has power tending to O.

THEOREM 1.4.

(1.8) PFDR(B) = pmax(B) = (1—V1-8 )2, I<p<l

From our discussion of the behavior of the maximfy, the FDR-controlling
procedure is effective in the rangee [%, 1), while it is relatively inefficient

for 8 < 3. Compare Figure 1.

1.5. Classical methods for combining-values. In the literature of meta-
analysis [3], one also faces the problem of combining severablues to
achieve an overall test of significance. In that literature the component nonnull
hypotheses are all the same (“homogeneity”), whereas in our discussion they vary
widely (“heterogeneity”). A classical approach to combinpgalues is Fisher’s
method [13], which refers t&, = -2 ;1_;-,l0g(p;) as thexn2 distribution. In
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our setting of extreme heterogeneity, Fisher's method is unable to function well
asymptotically:

THEOREM 1.5. If e, =n"#, B > % and u, < ./2log(n), asymptoticallyF,,
is unable to separatHl(”) and Ho.

1.6. Relation to goodness-of-fit testingOf course, the method we are dis-
cussing may be viewed as an application of a goodness-of-fit measure, compar-
ing the empirical distribution op-values to the uniform distribution. As such, it
may be compared to many goodness-of-fit procedures where distributioninder
differs from that ofHy in one tail.

Thus, Anderson and Darling [2] defined a goodness-of-fit measure which
involves the maximum of the normalized empirical process. Translated into the
current setting, this initially seems very close to ‘HO'he main difference is
that we focus attention near= 0, while Anderson and Darling maximize over
a < p <bwith 0 <a < b < 1. However—important point—all the information

needed for discrimination betweeﬂ‘én) and Hl(”) is at values ofp increasingly
close to 0 as: increases. Therefore, statistics basedaof p < b with a, b
fixed are dramatically inefficient. Similarly, Borovkov and Sycheva ([7] and [8])
proposed statistics based on the maximum of a normalized empirical process with
a general nonlinear normalizati@rip) not necessarily/p(1 — p). However, the
maximum is ovelu < p < b, 0 <a < b < 1, so our remarks on the Anderson—
Darling statistic apply.

Berk and Jones [5] proposed a goodness-of-fit measure which, adapted to the
present setting, may be written as

— . +(; .
(1.9) BJ =n 1933?21( (i/n, puy)s

whereK * is defined by

t 1—1¢
tlog— + (1—1)log——r, fo<x<t<l1,
K¥(t,x) = * T
7o ifo<r<x<1,
+00, otherwise,

and is motivated by large deviation theory. Roughly speaking, Lemma 6.4 below
shows thatK ™ (¢, x) behaves a%((t — x)%)/(x(1 = x)), so it should not be
surprising that for our measure of performance the detection boundary;of BJ
is the same as that of HC(Note, however, that full justification of the asymptotic
claim in [5] has only recently been provided; see [35] for a thorough analysis,
which also may shed light on the limiting distribution of I To articulate our
claim about the detection boundary of the Berk—Jones method, define a function
pBi(B) such that, ifu, = /2rlog(n), and if we use a sequence of levels-= «,,
tending to O slowly enough, then fer> pgj(8), the procedure has power tending

to 1 asn — oo, while forr < pgj the procedure has power tending to 0.
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THEOREM1.6. pgy(B) =p*(B), 5 <B <1.

However, HC is still better than BJ) in important ways; we will discuss this in
the Appendix, where we prove Theorem 1.6.

1.7. Generalizations. As we have defined it, the higher criticism statistic
can obviously be used in a wide variety of situations and there is no need for
the p-values to be derived from normally distributettscores, for example.
Consequently, numerous other settings for its deployment can be considered. We
have found that, in a wide variety of settings where one has data which are
“sparsely nonnull,” the HCstatistic has an adaptive optimality.

To give the flavor of one of these, we consider a model deriving from the covert
communications example mentioned earlier. The problem is one of noncooperative
spread-spectrum signal detection. Here one obsarpesiodogram ordinates; .

In the “covert data absent” case, these represent periodogram ordinates of a white
noise, while in the “covert data present” case a small fraction of periodogram
ordinates are inflated by the presence of covert signal. The formal model takes
the form:

Ho: X; " Exp2), 1<i<n,

HY X" (1- o) Exp2) +ex2(5),  l<i<n.

[Here Exa2) denotes the exponential distribution with mean 2 aﬁ(ﬁ) denotes
the noncentral chi-squared distribution with noncentrality parandefétere the
data are non-Gaussian,is large, and the sparsity parametee ¢, = n~* as
before. The strength of the covert signal is measured by the noncentrality
parametep of the chi-squared distribution, which we takeéas §,, = 2r log(n)
for an underlying amplitude parametehaving much the same interpretation as
before. (In a cooperative signal detection setting we would know a priori which
of the coordinatesX; will exhibit the presence of the covert signal; in the
noncooperative case we would not know this.)

We can again apply the principle of higher criticism in this setting, defining
p-values through the component null hypotheses:

pi:ProuEXp(2)>Xi}, i=l,...,n.

We can also define the detection boundary for this test, as before. This is the
function pyc exp(B) such that, ifs, = 2rlog(n), and if we use a sequence of
levelsa = a, tending to O slowly enough, then, for> pyc exp(B), the procedure

has power tending to 1 as— oo, while, for r < pyc exp, the procedure has
power tending to 0. We can also define the intrinsic detection boundary, the
function pg,,(8) such that ifr < pg,, the two hypotheses merge asymptotically,
while if r > PExp the two hypotheses separate asymptotically.
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THEOREM1.7.
ﬂ_%’ %<ﬁS%1
(1-vI=B)? 3<p<Ll.

In words, the higher criticism statistic achieves the optimal detection region in
the (r, B8) plane; interestingly, this region is the same as we had in the Gaussian
case. See Figure 3; also compare to Figure 1.

Other non-Gaussian settings are discussed in Sections 5.1 and 5.2. In each case
the higher criticism statistic achieves the (interior of) the optimal detection region.

(110)  prc.Exp(B) = pixp(B) =

1.8. Contents of this paper.In this paper we establish the key results referred
to so far, and then we consider various generalizations. Section 2 develops
Theorems 1.1 and 1.2. Section 3 discusses$ ld€a variant of HE but with better
performance in finite samples. Section 4 describes some simulation experiments.
Section 5 considers numerous non-Gaussian settings and shows consistently the
superiority of higher criticism over Bonferroni and other ideas from the field
of multiple comparisons; the proof of Theorem 1.7 is also in this section. The
Appendix provides proofs of Theorems 1.3—-1.6 as well as Lemma 5.1.

2. Main results. Before continuing the narrative flow of the paper, we pause
to prove our key results: Theorems 1.1 and 1.2. Later sections will return to the
narrative format.

2.1. Proof of Theoreni.1. The idea behind Theorem 1.1 is to simply apply
known results from the theory of empirical processes. We recall the normalized
uniform empirical proces®,, (¢) introduced in Section 1.3, and remind the reader
that, undetH,,

HC* = max_W,(r).
O<r<1/2
The normalized empirical process has been studied carefully by a number of
authors, and a summary of results can be found in [27], Chapter 16. There,
in (16.20), they show that

max0<t<ao Wn(t) _P) 1
J/2Toglogn) ’

by an argument that depends on the work of Jaeschke [22]. This, in turn, depends

on the approximation o#¥, by a Brownian bridge and on a result of Darling

and Erdos [11], which says that, B(¢) is standard Brownian motion starting

at B(0) =0, then

(2.11)

n— 00,

sup2® ! L1
[1’,}]) Vit /2loglogu '
Of course, (2.11) implies Theorem 1.1]
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2.2. Proof of Theorenl.2 We begin with a simple observation.

LEMMA 2.1. Let X3,...,X, be iid. Bernoulliz,) and letay,...,a,
be a sequence of real humbed nmx, — oo and a,/./nm, — oo, then
lim, o0 P(Z?:l(xi —1,) < —a,) =0.

PROOF  Since Vat}_!_; X;) <nm,, use of Chebyshev’s inequality yields

n
ni,
PI>Xi—m)<—an{ <—5 —>0, n—oc.
i=1 a, O

To prove Theorem 1.2, we note that it is enough to show
(2.1) nlimoo Py {HC < +V4loglogn)} =0.
g 1
Now, recalling the definition o/, (¢), we have

HC > sup V,(q).
0O<g<1

ForO0<gq <1, recall thatp, , = P{N(0,1) > z,(¢g)};, we also put

Png=P{QL—e)NO,1) + e, N(in, Dza(@)}.
We now consider two cases. First, suppose that p*(8) andr > ;11; then
the hypothesis is detectable, if at all, merely by looking at the maximum of

the X;. Note thaty/r + I—p > 1. Now, asV,(1) < sup_,<1 Va(q) and

Vo (D) =p (N, (1) — npn,l)/v Pn,l(l - Pn,l)v
PH{"){ sup V,(q) <+/4log Iog(n)}

O0<g<1

< PH{n){Vn(l) <+/4loglogn) }
= PHl(n){Nn(l) < Vnpn1v4loglogin) + npn,l}-

Under H(”), N,(1) is a sum of independent Bernou}bg’l), and by direct
calculations

pn,l = 0(1)7
, 1
pn,l= n
VA Tog(n)(1— /r)

With Lemma 2.1 in mind, letr, = p,, ; and

an =npy, 1 — [/npn,1v4loglogn) + npu 1] =np;, 1(1+ o(D)),

A=V (14 (D).
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sonm, — oo anda, /./nm, — oo; the desired result (2.1) in this case follows from

Lemma 2.1. In the second case, supposeo™*(8) andr < %1. It will turn out that
the hypothesis is detectable based ori' Gt not on the maximum of th&;. Note
thatg +r < 1.

PHl(n>{ sup V,(q) 5«/4Iog|og(n)}

O<g<1

= PH(n){Vn(4r) = 4|Og |an) }
1
= PHl(n) {Nn (4r) < /npy.ar~4loglogin) + npn,4r}-

UnderHl(”) N, (4r) is a sum of: independent Bernou(lp;lA,), and
1

_ —4r
pn,4r—4mn (1+0(1))’

1
/ —
Pr.ar = Pndr + 47rrlog(n)

With Lemma 2.1 in mind, letr,, = p;l’4r and

n~ B (14 0(2)).

ap = l’l[P;lAr - pn,4r] — A/ NPn,4rV 4 |09 |09(n)
Direct calculation shows
an O (n"~=%2 /(log(n))¥/*4), if B> 3r,

Vit | oY=+ s logn) V), i B <3,

sonm, — 00, a,/./nm, — o0; the desired result (2.1) follows for this case from
Lemma2.1. OJ

3. Arefinement. Inthe most challenging cases, where @ < ;11, the analysis

above tells us that the real information about the presenégtfis located away
from the extreme values, and so, perhaps unexpectedly, the few srmpakestnot
relevant to the detection problem.

This suggests that we will still be able to reach the full interior of the detection
region if we work with a modified statistic involving the maximum over all
p-values greater than or equal tgrl which is

HC, = reian DB 1 Vuli/n=pao]/Vpo (1= po)-
Of course, this restriction is not necessary from the viewpoint of asymptotic
analysis, since our results show that HiS effective without any adjustment.
However, our experience with moderate-sized samples shows this adjustment to
be quite valuable.
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The empirical process viewpoint is helpful. Undés HC behaves as

(3.1) sup W, (1).
O<r<1/2

For comparison, Hg? behaves as

(3.2) sup W, (1).
1/n<t<1/2

The limitation of the range in (3.2) is important. The quantity in (3.1) can be
very much dominated by behavior in the vicinity of 0, or, more particularly, by
the smallest observation. Since the smallest observation (smaliedtie) is not
where the information for detection resides, this emphasis is misplaced.

Speaking quantitatively, the statistic can have a heavy-tailed distribution under
the null hypothesis, as we will show in a moment. Since, ordinarily, one does not
want to use test statistics with heavy-tailed distributions—because tests at stringent
levels would have low power in small samples—the quantitative motivation
for HC; is clear.

The heavy tails under the null hypothesis come from the following effect. Recall
that, undelHp, the minimump-value has a distribution that is E€yn). It follows
that the first component in the maximum defining HC

HC, 1= [1/n - pw)]/V P (1 - pw).
has the asymptotic distribution
1
HC:, =2 ——= — VE,

VE

whereE is exponentially distributed with mean 1. Now, for lange

1 1
P<ﬁ ~VE> z) = P(VE < (VP+a-1)/2)~
Hence, HG ; has “heavy tails” undeHo.

Numerical simulations show that unusually large values of dader the null
hypothesis are most frequently caused by, HCsuggesting that if we restrict the
range of the maximum as in HCthis “heavy tail” is thinned out considerably.
Numerical experiments support this analysis. Adapting material from [12], or
from [27], page 600, it seems we have the following asymptotic law fof HC

b,HCH — ¢, — E2,
where
by =+/2loglogin), ¢, = 2loglogn) + 3 log(loglog(n)) — 3 log(4r),

and the c.d.f. ofEf is exp(—2 exp(—x)). Experiments show that this is a fairly
accurate approximation for moderate The same form of limiting distribution
holds for HG,, of course, but it is empirically a poor fit.
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4. Simulation. We have conducted a small-scale empirical study of the
performance of H and HG' . Our idea was to select a few interesting 8)
pairs in the detectable region—above, but close to the boundary, to create samples
from null and alternative—and to study the behavior of the proposed statistics.

We tookn = 108, ¢ = %oo andu =4/2-0.15-log(n) ~ 2.04 for the following
experiment:

1. Drawn samples fromV (0, 1) to representy; calculate HC and HC".
2. Replace 1000 of the previous samples by the same number of samples
from N(u, 1) to represenHl(”); calculate HC and HC".

3. Repeat 1 and 2 100 times and make histograms of the simulateddiGHC".

See Figure 2 for the results. As can be seen from the theory above, detectability
requires increasingly large samples as one approaches the detection boundary. In
fact, depending on how close one goes to the boundary, the required sample sizes
can become enormous. To have an idea of how lamgay have to be, we consider

the case < 5, 3 < B < 3. We recall that

» v —0, underHo,
(4.1) ") r=6-12 ) s Togan. underH{".

Numerically, we calculate the values BV, (4r) underHl(”) for variousn with
r=0.1, g = 3 andr = 0.05, g = 3, respectively; the results are summarized
in Table 1, together with the values @f2loglog(n) for comparison; notice the
variance ofV,,(4r) is roughly 1. This, of course, raises the issue of whether our
theory adequately describes practice in small samples and, in particular, whether
the motivating examples of the Introduction really offer credible scenarios for
deployment of these results. We leave such discussion to another occasion.

T T 8, T
L | ol
57 ”’ ’ | 47 ”’ \
ot
0||||||||| ||| "| W, mu , [ | . oll‘m‘}”” “ M'II"II'
2 4

6 8 10 2

A
4

5t

(=T SN S = B

0

2 4 6 8 10 2 4 6 8 10

FiGc. 2. Histograms forHC* and HC*. Top row: Behavior underHg. Bottom row: Behavior
under H{”). Left column: HC:. Right column: HC . Here n = 10°, . = /0.3log(n) ~ 2.04,
=103
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TABLE 1
EVy,(4r) underHl(") for variousn. The parametersr, ) arer =0.1, g = %

andr =0.05,8= % respectivelyvalues of,/2loglog(n) are also included
for comparison

n 108 107 108 10° 1010

+/2loglog(n) 2.2916 2.3579 2.4139 2.4622 2.5046
EVy(4ry r=018= % 2.7582 3.3411 4.0680 4.9728 6.0976
r=0.05p8= % 1.6439 1.7748 1.9259 2.0982 2.2931

The large-sample issue also raises the question of how to efficiently sample
from the normal distribution with very large Our approach goes as follows.

1. Pick a small number, such ag =103 ors =107,
2. Simulate samples from uniform distribution at quantiles greater than.1

e Sample a numbek from the Poisson distribution with mean.

e Generate K samples (Uy,...,Ug) from the uniform distribution
on(l—eg,1).

e Generatek samples ofzs, ..., zx) by letting

(4.2) y;=-2log(1—-U;)—log2r, zi =~ yi —logyi, 1<i<K.

Approximately, thezs, ..., zx) can be viewed as if a sample of sizéad been
taken from the Normal distribution, and then only tfle— ¢)n largest sample
values were retained. Compared to brute force, the algorithm requiressonly
flops, rather tham flops. Obviously, the accuracy of the approximation in (4.2)
depends on how smaillis; the smaller the, the more accurate the approximation,
and thus the more accurate the simulation.

5. Other settings. The principle of higher criticism can be applied in a much
wider series of situations than the Gaussian model studied so far, as we now show.

5.1. Chi-Squared. Let XUZ(S) denote the usual chi-squared distribution with
v degrees of freedom and noncentrality paraméte€Consider the problem of
testing between these hypotheses:

(5.1) Ho: X: & x2(0), 1<i<n,
(5.2) H?: X " (1) 520 +ex2(6),  1<i<n.

Heree = ¢, = n~# as before. Owing to the representation of chi-squared r.v.s
as sums of squares of standard normals, the problem can be rewritten in terms of
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o

arrays of normalsij Hd N0, 1):

(5.3) Hp: Z 2, 1<i<n,

(5.4) H" :X (1—8)Zz1,+e[(z,1+8) +Zz,]}, l<i<n,

wheregz; EN N (0, 1). Roughly speaking, a small fraction of the normals may have
nonzero mean, and we must base our decisions on sums of squares rather than on
the normals themselves. The problem is obviously related to the Gaussian problem
discussed above; only the observations with nonzero means occur in groups, and
while the nonzero means are not equal within a group, the sums of squares of those
means within a group must be equal.

Now, obviously, ifv = 1, then we are equivalently dealing with squares of
individual normals, and so are just seeing a two-sided variant of the original one-
sided normal testing problem considered so far. As it turns out, all the detection
boundary and attainability results for the two-sided normal problem are the same
as in the one-sided case.

If v =2, we view this as modeling the covert communications problem of
Section 1.5. Indeed, the real and imaginary components of the discrete Fourier
transform of Gaussian white noise are normal and independent; the sum of squares
of those two components is just the periodogram. In a frequency where there is no
signal, only Gaussian noise, the periodogram hﬂ%(a) [or Exp(2)] distribution,
which is precisely the exponential mentioned earlier; while, in the signal-present
case, the periodogram hasgé(ék) distribution, where$;, is the signal energy at
that frequency.

If v > 2, we can think of agricultural trials, where a treatment is attempted with
replications and in many different blocks. The alternative hypothesis is that, in a
few special blocks, the treatment has a substantial effect, but in most blocks it has
no effect.

As it turns out, for any fixed, constant number of degrees of freedom, the results
will be similar. Let the noncentrality parameter obey

8 =34, =2rlog(n), O<r<1.

In this problem, we again have an, 8) plane, in which there is a region of
detectability and a detectidyoundary. There are two key facts:

e The optimal detection boundan)f(z(ﬁ) is the same as in the Gaussian case:
2

1-vI=B)
1

-3

A
IA

J>-Iw H

/0;22(,3) =

NI ~lw

p
<p<

This is proven in [23].
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;
0.9
o Estimable
0.7
0.6
~05 Detectable
0.4
0.3
0.2
0.1 Undetectable
%.5 0.6 0.7 0.8 0.9 1

p

Fic. 3. Three regions in the—g plane for thex2 model (5.1)—(5.2).The detection boundary
separates the detectable region from the undetectable reBarthe estimable regiarit is possible
not only to detect the presence of nonzero mglamisalso to estimate those means

e HC; is able to separate the null and alternative hypotheses throughout the
interior of the detection region, and thus its detection boundg&/xzz obeys

Prc. 2 (B) = ,0;22(/3), % <B<1l

The key ideas are illustrated in Figure 3.
The analysis supporting the performance of'HEas follows. Definec,%(q) =
2q log(n). We then have

P{x2(0) > x2(¢)} ~ L, -n"",
(5.5) o,
P{x2(0) > x2(@)} ~ L, -n~ WV g <1,

The left-hand relation is proved as follows:
1-v/2 0 )
PO = 5@ = T /Wp 1e=r"12 4
_ (qlog(n))"/?#71
B I'(3)
It takes a little more effort to check that the second equality is also true; this follows
from the following lemma.

n~1(140(1)).

LEMMA 5.1. LetO<r <g <lands, =2qglog(n). Thenasn — oo,
P{x2(64) = x2(q))
1 r 1

(1-v)/4
T - (a-r)?
o) V27" (+o).
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The proof of Lemma 5.1 is given in the Appendix. Once the relations (5.5) are
available, the analysis proceeds exactly as in the earlier Gaussian case. The most
informative values of (resp.x?) are at

if r < %, theng = 4r 0rx2%48,,,

if r>21,  theng =1 orx?~2log(n),

correspondingly.

5.2. Generalized GaussigiBubbotin distribution. The generalized Gaussian
(Subbotin) distribution GN(w) has density function

1 —ul¥ 1
—exp(— lx — pl ) c, = 21—1<_)y1/y—1'
Cy 14 14

This class of densities was introduced by Subbotin [29]; see [24], page 195. It
has many uses in Bayesian analysis; see [9], page 157, who cite several earlier
references. The Gaussian is, of course, the specialcas@. The casey =1
corresponds to the double exponential (Laplace) distribution, a well-understood
and widely used distribution. The case< 1 is of interest in image analysis
of natural scenes, where it has been found that wavelet coefficients at a single
scale can be modeled as following a Subbotin distribution with 0.7 [28]. This
suggests that various problems of image detection, such as in watermarking and
steganography, could reasonably use the model above.

A natural generalization of (1.3)—(1.4) is the following:
(5.6) Ho : X; " GN,(0), l1<i<n,
67 H" X" A-e)GN,(0) +eGN, (), 1<i<n.

Here we choose the calibrations

8n=n_ﬁ, M:My,nz(yrlog(n))l/y, %<ﬂ<1, O<r<1.

First we will discuss the cage> 1. In this range the number of nonzero means
is too small to be noticeable in any sum which is of expectation of ordér r
is not large, we cannot expect a visible effect on the upper extreme. In short, this
detection problem will be a difficult problem.

Fory > 1, we showed in [23] that the detection boundary is defined as

(5.8) pX(B) = (V=D — 1);/—1('3 - %), % <B<1-—2v/r=-D,
Y (1—(1_ﬂ)1/y)y’ 12 /-D < g o1,

Now we discuss the case< 1. Jin [23] showed that there is a threshold effect
for the likelihood ratio test, but the detection boundary is quite different, and,
surprisingly, it can be described in terms(efs) independent of :

(5.9) PyB=2(8-3). <p<Ll

We have the following result.
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FIG. 4. Left: Detection boundaries of the-8 plane for mode(5.6)—(5.7)for y <l1andy = 1.5,

2, 3from top to bottomSolid parts of the curves are line segmermght: The common detection
boundary for all0 < y < 1 which separates the detectable region from the undetectable region
Three curves from top to bottom correspond to the detection boundaries of the Bonferroni method
Withy:%,y:%andy:l.

THEOREM 5.1. Consider applying higher criticism to the-values p; =
P{GN,(0) > X;}, i =1,...,n, in the setting just describedhen the detection
boundarypnc,, for this procedure is the same as the efficient detection boundary

prcy (B =p3(B),  <B<Ll

The basic phenomena are depicted in Figure 4.

The analysis can be made very similar to the normal case. Specifically, introduce
the notatiorz, ,(¢) = (yqlog(n))Y/* andletr, , , = P{GN, (0) > z, (q)}, 0 <
g < 1. Note that, whey =2, z, ,(q) = z,(¢) andn, ,, 4 = pn,4. We have

max W,() = max W,(x .
0<t<1/2 n(®) O<g<oo n( y,n,q)

Similarly, let N, ,(¢) count the observations exceedig,(q):
Ny,n(CI) =#i. X; > Zy,n(CI)}
and also

Ny,n(Q) —NTynq
\/nny,n,q(l— Tyn.q)

Vy,n(Q) =

By arguments which are obvious at this point,

P{GN, (ity.n) > 2yn(q)} = Ly -n=@"" =777

P{GN, (0) >z n(q)} =L, -n"1, r<qg<1
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It follows that, under the alternatile(”), we have

_ —(gVy —1V/
pl=B =@ =y

vn-n—4

— L, - nl A+ /2=p=@"7=ri")7]

EVy,n(CI) = Ln .

while under the nulE'V,, ,,(¢) = 0. The most informative value af will optimize

the growth rate of(1+0)/2==@""=r")"1 15 50
For the case > 1, define

(1 _ 2—1/(}/—1))7_

ry =
The most informative value of satisfies
if r<r,,  theng= % andEV,(q) = L, - /@ -V r=(6-1/2)]
ifr>r,, theng =1andEV,(¢) =L, - pl@=p)—A=rty]
For the case & y < 1, the story is quite different, and the main reason is that
1+a _
2

as a function ofg, is strictly decreasing for any fixed © y < 1, so the most
informative place to look is at

p— (g =iy,

qg=r or, equivalently, ak ~ .

Notice that, undeHo, HC* behaves the same as in the normal case. UH¢/&r
the above analysis shows the behavior at the most informative place. We can argue
exactly as in the proof of Theorem 1.2. The growth/¥,, ,(¢) easily surpasses
the /4 loglog(n) threshold, and the result follows.
There are some interesting points here.
First, the detection boundary for all the cases where 1 looks like the limit
of the boundaries foy > 1 asy — 1. Second, the most informative place to look,
for the case’ > 1, is at

1

SR Py Yt

the coefficient 1(1—2-Y/¥-D) — 1 asy — 1;in comparison, for the case< 1,
the most informative place to look is at= u.

Third, it is interesting to notice that, for the cage< 1, the best that either the
maximum or the FDR-controlling methods can obtain is

(5.10) r>1-1-p¥.
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This is strictly above the detection boundary as defined in (5.9) foéaﬂy’ﬁ’ <1,
while, in comparison, higher criticism can obtain the full interior of the region
of detectability, for ally. Fourth, notice that the performance of the maximum
or FDR-controlling methods worsens compared to*H@heny — 0. The best
that the maximum or FDR-controlling methods can do whes O is to detect
for r > 1, while higher criticism is able to detect for> 28 — 1, 1 B <1,
independent of/; the superiority of HC can be seen most prominently for the
casef ~ % y ~ 0, in which HC" is able to detect for > 28 — 1~ 0, while the
maximum or FDR-controlling methods are able to detect only ferl. Compare
Figure 4.

APPENDIX: PROOFS
A.1. Proof of Theorem 1.3.

LEmmA A.1. If z, ~ Binomial(n, ;) and =, — 0, nm, — oo, then
P{z, > 1} — 1.

PROOF
Pz, =0} = (1— )" = e "1090-7) _, 0. -
PROOF OF THEOREM 1.3. When r > p™(B) or, equivalently,

1— B> (1— ./r)2 we can pick a constamt> 0 depending only orir, 8) such
that

1-B>(V1tc—r)o
To prove Theorem 1.3, it is sufficient to prove
(A1) PH{”){M” > «/2(1+c—)log(n)} -1 asn — oo.
Let
N(c)=#{i: X; = V2(1+ ) log(n) }.
Then, undetHl(”) N (¢) ~ Binomial(n, g, ), where
Gne = P{(L=e)N O, 1) +&,N (s, 1) = V2(1+ ) log(n) }
— L, n B WTHe=V)?

Notice that, asn — oo, ¢n.. — 0 andng, . — oo. So lettingw, = g, in
Lemma A.1, we have

PH(n){N(C) >1}->1 asn — oo.
1
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Finally, the desired result (A.1) follows from

PH{"){M” >+V2(1+ ¢)log(n) } = PH{"){N(C) > 1}. 0
A.2. Proof of Theorem 1.4.

LEMMA A.2. Forconstants; <§<1,0<a <1,
sup P{Binomial(n,t) >n-t/a} < 2e‘c(“)"H, n— 00,
{t:t>n—%}

wherec(a) =1— (loga + 1)/a.
PROOF By noticing that

sup P{Binomial(n,7) >n-t/a} <P

{ Binomial(n, 1) 1}
sup —=—,
{r>n—9%})

t>n—9 nt a

Lemma A.2 follows directly from [34], Lemma 1.0
Now for any3 < 8 < 1 introduce statistics:

Fi= mn 20

FF= mn Z2O 0
{i:poy<n=dyi/n

{l . p(i)>n_5} l/l’l ’

LEMMA A.3. Forany constantg <8 <1, 0<a < 1,if r < pppr(B), then
asn — oo,

(A.2) Puy{F} <a}) — 0, PHl(m{Ff <a}—0.

ProoF Recall thatnF,(t) = > ; 1{p,<s, 0 <t < 1. We havenF,(t) ~

Binomial(n, r) under Hy andn F,,(¢) ~ Binomial(n, 7 (n, t)) underH(”), where
n(n,t)= PH(n>{p,- <t} >t; sincer < prpr(B) we also have
1

ay 2 sup w(n,t)/t — 1.
{t>n—9%)

Observe that/n = F,(p)), SO
PG) <g
i/n—

by Lemma A.2, the desired result in (A.2) follows from

— F.(pw) =pri/a;

Py {F} <a)<n- sup P{Binomial(n,t)>n-t/a}— 0,
{t:t>n—%)

P w{F} <a}<n- sup P{Binomial(n,7(n,1))>n-t/a}— 0.
1 . _s
{t:t>n—°}
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PROOF OFTHEOREM 1.4. Forthe FDR-controlling procedure,

Reject if and only if min @ <h(n,ay),
1<i<ni/n
whereh(n, a,) < a < 1 is any given critical value. Since the attainability of the
FDR-controlling procedure is as good as tinaximum or Bonferroni method, all
we need to prove is that, f@r, 8) in the regionp*(8) < r < (1 — /I— B)?, the
FDR-controlling method totally fails or

(A.3) P, {RejectHo} + P, m {AcceptHo} — 1 asn — o0.
1

Now, underHl(") we break{1, 2, ..., n} into two setsA(ln) andA(z"), where

i€ A(l”) if X; is sampled fromv (0, 1),
ieAy if X; is sampled fromV (u,, 1).

Introduce an event:
E% = {p) < n~% for somei € AY"}.
Sincer < (1 — VI=p)?, or /r + V/T—B < 1, we can choosé to be close
enough to 1 such th&tH{m (E,fo) — 0. Notice that
(F°| Ho) 2 {F|(H{" . (E}")))
and

PH{n){Fgo <h(n,a,)}
= (L= Py () Pyon| F3° < h(n, )| (E))

+ PH{M(E,‘EO)P

8
H{M{FZO < h(n, ay)|ED),

SO Ppo{F2° < h(n, ay)} — P

o (F5® < h(n, a,)} 0.
1
Finally, by Lemma A.3

| Pu,{Reject — P

1 {Reject|

8 8
< |ProlFR° < h(n, )} — PHl<n>{F2° <h(n,a)}|

+| i F1® < hn, @)} + [ Py 1Fy° < h(n. )|
— 0,

and the desired result in (A.3) follows[]
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A.3. Proof of Theorem 15. Under Ho, F, ~ x4, and EF, = 2u,
Var(F,) = 4n. UnderHl(") with &, = n=*, pu, = V2rTogn), 3 <p <1, 0<
r < 1, direct calculations show thaihZX EF, = 2n[1 + O(s,L,)], Var(F,) =
dn[1+ O(e,Ly)]; sincep > % the conclusion follows.

A.4. Proof of Theorem 1.6. To prove Theorem 1.6 we need the following
lemma.

LEMMA A4, ()ForO<x <7 <32,

‘ 1—x?
(A.4) Kt x) < =1

(i) Letx =x(¢r) obey0O <x <t <1.We haveasr — 0,
2
1620 <1+0<z+5—1)), if L1,
(A.5) KT, x)= 2x(1—-x) X X
tlog£(1+o(1)), if L = oo,
X

X

ProOOF (i) Letting t = sx, it is sufficient to prove that, for fixed & x < %
and for 1< s < -,

1 1—sx 1(s —1)?
(A.6) slogs+<;—s)log(1_x)§E 1%

To prove (A.6), set

f(s)=slogs + <E—s) Iog<1—sx> B }(5_1)2;

X 1—=x 2 1—=x
direct calculations show that(1) =0, f'(1) =0 and
1-5)1-— 1 1
F(s) = 1-5)A—-(+Dx) 1<s<

s(—x)1—xs) -2

Notice thatwhern > 1, 1— (s + 1)x > 1 — 2sx, so, for any fixed O< x < %
f(s) <0 1<s<i
9 Zx .
This proves (A.6).

(i) The caset — oo is obvious. For the case— 1, notice that O< x <7 < 1

and
(t—x)° (a—xﬂ)
=0 s

x2 X
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SO

1-—
K*(r,x):tlog£+(l—t)log—t
X 1—x

=[50 Jra-o[ 5502

1@ —x)7? t
_éix(l_x)<l+0<t+;—1)>. -

PROOF OFTHEOREM 1.6. From (A.4) we have
BJ} < 5(HC"?,
so underHy the behavior of BJ is well controlled.

Now we consider the behavior of BlmderHl("). We examine the cases< %

andr > (1— /I — B)2 separately; these two cases overlap and together cover the
full region < B <1,r > p*(B).

First, for the case < % notice thatr < ;11. Takerg such that O< rg < r; as in
Lemma A.3, it is easy to prove that, undféf”),
10}
i/n

Introduce the following statistic:

max
{i: n‘4’<p(,») <n_4’0}

— 1‘ —0 in probability.

HC;kro — max [ﬁw}
’ {i:n=% <pg, <n~—%0) VPiy A= paiy)

Now, from (A.5)

1 I — Do 2 :
n-K"‘(l./n,p(i))NE(max{ﬁM 0}) if i/n ~1

VPioy@=p@)’ 120)
and so
. % 12
(A7) BJ > max nK*(i/n, pi) = 3[HC, (14 o(D).

{i: n*4’<p(,')<n74’0}

Thus, in this case, a“Jis able to separatHy andHl(").
For the second case notice that+- 8)/2./r < 1. Pick a constang such that
max{ (r + B)/2/r, J/r} < /g < 1. Observe that undeHl("),

#i: p; <n~9} ~ Binomial(n, Lnn‘[’”(ﬁ_ﬁ)z]),
Ly BHWa—M? s, p=a.
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This implies that, undef/{"
from (A.5),
nK*(pa),n~1) ~ L, Binomial(n, Lnn_[’g"'(ﬁ_ﬁ)z]).

Asl-B—(/q— Jr)?>0, BJ! is able to separatHl(") andHp. O

, for thosep-valuespy ~n=4, (i/n)/pu) > 1, so,

REMARK. For the second case M@ more powerful than Bﬁ. In fact, the
best BJ can do is to chooskas large as possible while keepitign)/pq) > 1.
This is roughly equivalent to choosing- n1~¢ with ¢ satisfying

P e VN D LN S PN Va >+ p)/2Jr).
As a result, Bj ~ L,nl-C+P?/(4) To see the main idea, take the
region% <B< %, 0*(B) <r <1— B for comparison. Fokr, 8) in this range,
(HC*)2 ~ L,n%~#*1 Since 1- (r + B)?/(4r) < 2r — B + 1, HC" has better per-
formance than Bj.

A5. Proof of Lemma 51 With z ' N(0,1), 8, = u2 = 2rlog(n),
x%(0) =p 22+ 2%+ + (zv + )2, SO
P{x2(8,) = 2qlog(n)}
= P22+ 254 -+ (2 + ) = V2qTog(n) }
1
= (27.[)11/2
/2 2
x/ cos”_302d92---/ do,_1
—/2 0
2—v/2+1

= /AN = 1/2) Joyzn2

o
X/ pv—le—pz/de’
[—+/2r Sinf1++/2g —2r co 01]/1og(n)

whereA (61, p) = {(61, p) : 161] < 5, p? + 2pp, SiN61 > 2(g — r) log(n)}.
The case =1 is obvious, while fo = 2 we have

P{x2(8,) = 2qlog(n)}
_ l n—[«/q—rco§91—\/75in91]2 doy

/ cog 26,0 e/ 4oy dp
A1)

cog 20, do,

T J|011<m/2
1 [e’e}
= Jagey” T )T 1 o)
— 1 1 <£>_1/4 . n—[ﬁ—ﬁ]2(1+ 0(1)).
2rlog(n) /29 — /2r \q
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Now consider the case > 3. Notice that, for fixed- and ¢ but largen,

pl=rsindi+y/qg—rcof 01 ghtains its maximum rate of growth é¢ = % and for
01~ %
20

[—ﬁsin@l +vVg—r C05291]2

V7 2
~ =P (0 G )

moreover, notice that for any— oo,

o0
f p" e P2 dp = v 207 2(1 4 0(1)).
.

These enable us to write

o0 2
cog 2 61 d91/ v=1=r%/2 g4
/915n/2 —\/ﬂsin91+~/2q—2r co2 61 1/1og(n) P

= ([V2g — V2r Vlog(n))"~

) /o 2% 20y . p IS0 —rcog o d91} (1+0(D)
<01<m

= ([v2q — v/2r |Vlog(n) )"~

X -/ (1—x?)=3/2=(v q—r+rx?—/rx)? dx](l—{— 0(1))

= ([v2q — v/2r |vlog(n) )"~
y _/O (1+x)(v—3)/2(1_x)(v—3)/2n—(«/q—r+rx2—\/7x)2dx](1+0(1))

29[ — 3 Vo)
1
% |:/(; 1- x)(v—3)/2n—(\/q—r+rx2—«/7x)2 dx] (1 + 0(1))

To evaluate this integration, notice that

1
/ (1— x)(u—s)/zn—(m—ﬁx)z dix
0
_ /lx(v—3)/2n—(«/q—2rx+rx2—ﬁ+ﬁx)2 dx
0

—n~Wa-V)? [/1x(”_3)/2n_2m(ﬂ_\/7)2x a'xi| (14+0)
0
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:in_(ﬂ_ﬁ)z
log(n)
B n v—3)/2
) /mg( ) ( x )< 2 TNENT dx}(1+0(1))
LJo log(n)

— (|og(n))(1—v)/2n—(ﬁ—«/7)2

X -/Oox(u—B)/Ze—\/r/_q(\/Z—@)zx dx](l—i—o(l))
0

r
q

_ (1-v)/2
. r(” > 1) [[(@ - @)2log<n)] =TT (14 0(D)).

Finally, we have

P{x2(8,) > 2qlog(n)}
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