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It is known that both the optimal exponentially weighted moving average
(EWMA) and cumulative sum (CUSUM) control charts are based on a given
reference value δ, which, for the CUSUM chart, is the magnitude of a shift in
the mean to be detected quickly. In this paper a generalized EWMA control
chart (GEWMA) which does not depend on δ is proposed for detecting the
mean shift. We compare theoretically the GEWMA control chart with the
optimal EWMA, CUSUM and the generalized likelihood ratio (GLR) control
charts. The results of the comparison in which the in-control average run
length approaches infinity show that the GEWMA control chart is better than
the optimal EWMA control chart in detecting a mean shift of any size and is
also better than the CUSUM control chart in detecting the mean shift which is
not in the interval (0.7842δ,1.3798δ). Moreover, the GLR control chart has
the best performance in detecting mean shift among the four control charts
except when detecting a particular mean shift δ, when the in-control average
run length approaches infinity.

1. Introduction. Since the exponentially weighted moving average (EWMA)
control chart was first introduced by Roberts (1959), a variety of EWMA methods,
design strategies and enhancements have been developed to detect shifts in the
process mean. Crowder (1987, 1989) and Lucas and Saccucci (1990) evaluated
the average run length (ARL) properties of the EWMA chart and provided useful
tables for the design of the EWMA chart. Lucas and Saccucci (1990) suggested
various enhancements to the EWMA chart, such as the fast initial response feature
that makes the control chart more sensitive at start-up, the combined Shewhart-
EWMA, and the robust EWMA. Saccucci, Amin and Lucas (1992), Baxley
(1995), Reynolds (1995, 1996a, b) and Jones, Champ and Rigdon (2001) studied
the properties, performance and application of the EWMA chart with variable
(adaptive) sampling intervals and estimated parameters. Wardell, Moskowitz and
Plante (1994) and Jiang, Tsui and Woodall (2000) investigated the application of
EWMA charts to autocorrelated processes. Montgomery and Mastrangelo (1991),
Mastrangelo and Montgomery (1995) and Mastrangelo and Brown (2000) studied
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the application of the moving centerline EWMA to various underlying time
series models. Another popular control chart is the cumulative sum (CUSUM)
test proposed by Page (1954). Its properties have been thoroughly studied in the
literature [see, e.g., Hawkins and Olwell (1998)]. A numerical comparison of the
EWMA and CUSUM control charts was given by Lucas and Saccucci (1990)
and Yashchin (1993). Srivastava and Wu (1993, 1997) and Wu (1994) considered
design of the optimal EWMA control chart and compared it with the CUSUM and
Shiryaev–Roberts control charts. From the papers cited above, we can see that the
EWMA control chart is a powerful tool and can compete with the CUSUM control
chart in detecting mean shifts.

However, it should be noted that both the optimal EWMA and CUSUM control
charts are based on a given reference value δ [see Srivastava and Wu (1993,
1997)], which for the CUSUM chart is the magnitude of a shift in the process
mean to be detected quickly. In fact, we rarely know the exact shift value. Using
the generalized likelihood ratio statistic, Siegmund and Venkatraman (1995) have
proposed a CUSUM-like control chart called GLR (the generalized likelihood
ratio) which does not depend on the value of δ. Their simulation results show that
the GLR is better than the CUSUM control chart in detecting a mean shift which
is larger or smaller than δ and is only slightly inferior in detecting the mean shift
of size δ. Can we extend the design of an EWMA control chart such that it does
not need the value δ and has good performance in detecting any mean shift? If one
can obtain such an extended EWMA control chart, what would the relationship
be between the extended EWMA, the optimal EWMA, CUSUM and GLR control
charts?

The purpose of this paper is to study these two questions, with an emphasis on
the second. In the next section, a generalized EWMA (GEWMA) control chart
which does not depend on the value of δ is presented. The theoretical comparison
of the optimal EWMA, GEWMA, CUSUM and GLR control charts is shown in
Section 3. Section 4 contains numerical results which compare the average run
lengths (ARLs) of the four control charts. The paper concludes in Section 5, with
the proofs of four lemmas given in the Appendix.

2. The generalized EWMA control chart. Let Xi , i = 1,2, . . . , be the ith
observation on an i.i.d. process. Suppose that at some time period τ , which is
usually called a change point, the distribution of Xi changes from N(µ0, σ 2)

to N(µ, σ 2); in other words, from time period τ onwards the mean of Xi

undergoes a persistent shift of size µ − µ0, where we assume that µ and τ are
unknown, µ0 and σ are known and without loss of generality, µ0 = 0 and σ = 1.
The first time (stopping time) outside the control limit c for the EWMA can be
written as

TE(c) = inf{n ≥ 1 : |W̄n(r)| ≥ c},
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where

W̄n(r) = Wn(r)

σWn

=
√

(2 − r)√
r[1 − (1 − r)2n]

n−1∑
i=0

r(1 − r)iXn−i ,

Wn(r) = rXn + (1 − r)Wn−1(r),

W0(r) = 0,

(1)

r is a weighting parameter (0 < r ≤ 1), and σWn is the standard deviation of Wn(r).

Since the magnitude of the shift is unknown, it is natural to define the following
control statistic and the first time (stopping time) outside the control limits by
using a method like the maximum likelihood procedure to raise the sensitivity of
the EWMA chart for detecting a change in the mean:

W̃n = sup
0<r≤1

{|W̄n(r)|},

T (c) = inf{n ≥ 1 : W̃n ≥ c}.
Obviously, it is difficult to obtain W̃n since there is an infinite choice of values of r

in (0,1]. Note that r(1 − r)i , 0 ≤ i ≤ n − 1, 0 < r ≤ 1, attains its maximum value
when r = 1

i+1 . From this and (1) a feasible control statistic and its stopping times
can be defined as follows:(

W̄n(1), W̄n(1/2), . . . , W̄n(1/n)
)

and

TGE(c) = inf
{
n ≥ 1 : max

1≤k≤n

∣∣∣∣W̄n

(
1

k

)∣∣∣∣ ≥ c

}
,(2)

where

W̄n

(
1

k

)
=

√
(2 − 1/k)√

1/k[1 − (1 − 1/k)2n]
n−1∑
i=0

1

k

(
1 − 1

k

)i

Xn−i .(3)

The control statistic and its stopping time in (2) are the focus of this study, and
can be called the generalized EWMA (GEWMA) control chart. The upward and
downward stopping times of the GEWMA can be defined as

T +
GE(c) = inf

{
n : max

1≤k≤n
W̄n

(
1

k

)
≥ c

}
,

T −
GE(c) = inf

{
n : min

1≤k≤n
W̄n

(
1

k

)
≤ −c

}
.

It is obvious that TGE = min(T +
GE, T −

GE).

To compare the GEWMA control chart with the other charts, the definitions of
the optimal EWMA, CUSUM and GLR control charts are given in the following.
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According to Wu (1994) the one-sided optimal EWMA control chart can be
defined as

W ∗
n (r∗) =

√
(2 − r∗)√

r∗
n−1∑
i=0

r∗(1 − r∗)iXn−i ,

T ∗
E (c) = inf{n ≥ 1 :Wn(r

∗) ≥ c},
(4)

where r∗ = 2a∗δ2/c2 is the optimum choice which minimizes the SADTδ

(stationary average delay time). See Srivastava and Wu (1993) for a continuous
time version of the EWMA scheme. For minimizing the ARLδ (average run length),
Srivastava and Wu (1997) recommend a∗ ≈ 0.5117 obtained by numerical search
to minimize − log(1 − √

a )/a for 0 < a < 1. From (1) and (4) it follows that

W ∗
n (r∗) = W̄n(r

∗)
√

1 − (1 − r∗)2n.

The two-sided stopping time of the CUSUM can be written as

TC(c) = min
{
T +

C (c), T −
C (c)

}
,

where

T +
C (c) = inf

{
n : max

1≤k≤n
δ[Sn − Sn−k − δk/2] ≥ c

}
, δ > 0,

T −
C (c) = inf

{
n : min

1≤k≤n
δ[Sn − Sn−k + δk/2] ≤ c

}
, δ > 0,

(5)

and Sk = X1 + · · · + Xk. When the mean shift δ is unknown, Siegmund and
Venkatraman (1995) use δ̂ = (Xn +· · ·+Xn−k+1)/k to estimate δ, giving the GLR
(generalized likelihood ratio) chart; that is, the upward stopping time of the
GLR is

T +
GL(c) = inf

{
n : max

1≤k≤n
Un(k) ≥ c

}
, Un(k) = (Sn − Sn−k)/k1/2.(6)

In this paper we consider mainly the upward stopping times, that is, T ∗
E (c),

T +
GE(c), T +

C (c) and T +
GL(c).

3. Comparison of the optimal EWMA, GEWMA, CUSUM and GLR. For
the convenience of discussion, we use standard quality control terminology. Let
P (·) and E(·) denote the probability and expectation when there is no change in
the mean. Denote Pµ(·) and Eµ(·) for the probability and expectation when the
change point is at τ = 1, and the true mean shift value is µ. For a stopping time
T as the alarm time with a detecting procedure, the two most frequently used
operating characteristics are the in-control average run length (ARL0) and the out-
of-control average run length (ARLµ), defined by

ARL0(T ) = E(T ),

ARLµ(T ) = Eµ(T ).
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Usually, comparisons of the control charts’ performances are made by designing
the common ARL0 and comparing the ARLµs of the control charts for a given shift
µ. The chart with the smaller ARLµ is considered to have better performance. The
comparisons of the optimal EWMA, GEWMA, CUSUM and GLR control charts
are given in the following theorems and corollaries.

THEOREM 1. Let c > 0 be a common control limit for the optimal EWMA,
GEWMA and GLR control charts. Then

ARL0(T
∗

E ) > ARL0(T
+

GE)(7)

and

ARL0(T
∗

E ) > ARL0(T
+
GL).(8)

If c → ∞, then there exists a constant M > 0 such that

ARL0(T
+

GE) ∼ M
(2π)1/2ec2/2

c
.(9)

By Theorem 1 and the results of ARL0 for the optimal EWMA, CUSUM and
GLR control charts given by Wu (1994), Siegmund (1985) and Siegmund and
Venkatraman (1995), the following corollary can be obtained.

COROLLARY 1. Let K = ∫ ∞
0 xψ2(x) dx, where

ψ(x) = 2x−2 exp

{
−2

∞∑
n=1

�
(−x

√
n/2)

n

}

and � is the distribution function of the standard normal distribution. Then

ARL0(T
∗
E ) ∼ e0.834δec2/2

0.408δ2c
> ARL0(T

+
GL) >

(2π)1/2ec2/2

cK
,

ARL0(T
+
GE) ∼ M

(2π)1/2ec2/2

c
> ARL0(T

+
C )

∼ e(c+2δρ) − 1 − (c + 2δρ)

δ2/2
+ O(δ)

(10)

for large c, where ρ ≈ 0.583.

Two approximations for ARLµ(T +
GE) and ARLµ(T +

GL) are given in the following
two theorems.
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THEOREM 2. If ARL0(T
+

GE) → ∞ or c → ∞, then

ARLµ(T +
GE) = c2

bµ2

(
1 + o

(
ln c

c

))

= 2 ln(ARL0) + ln(2 ln(ARL0)) − 2 ln(
√

2πM)

bµ2
(11)

×
(

1 + o

(
ln(2 ln(ARL0))

[ln(ARL0)]1/2

))

for µ > 0, where b = 2(1 − e−1)/(1 + e−1) ≈ 0.9242343.

THEOREM 3. If ARL0(T
+

GL) → ∞ or c → ∞, then

ARLµ(T +
GL) = c2

µ2

(
1 + o

(
ln c

c

))

= 2 ln(ARL0) + ln(2 ln(ARL0)) − 2 ln(
√

2π/K)

µ2
(12)

×
(

1 + o

(
ln(2 ln(ARL0))

[ln(ARL0)]1/2

))

for µ > 0.

The following approximation for ARLµ(TGL) has been obtained by Siegmund
and Venkatraman (1995), where TGL is the two-sided stopping time of the GLR
control chart: For µ > 0, as c → ∞,

ARLµ(TGL) = c2 − 1

µ2 + F(µ)

µ
+ o(1),(13)

where F(µ) is a function which does not depend on c. By Theorem 3, we have
ARLµ(T +

GL)/ARLµ(TGL) → 1 as c → ∞.

By Theorems 2 and 3, we have the following corollary.

COROLLARY 2. If ARL0(T
+

GE) = ARL0(T
+

GL) → ∞, then

ARLµ(T +
GE) > ARLµ(T +

GL)(14)

for µ > 0.

The following theorems and corollary show the results of comparison of the
four control charts.
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THEOREM 4. For the optimal EWMA and GEWMA control charts, if
ARL0(T

∗
E ) = ARL0(T

+
GE) → ∞, then

ARLµ(T ∗
E ) > ARLµ(T +

GE)(15)

for µ > 0. Furthermore, for
√

a∗δ < µ < 2δ, ARLµ(T ∗
E ) − ARLµ(T +

GE) can attain

its minimum value at µ = 2
√

a∗δ
1+√

1−b
≈ 1.122δ, where a∗ = 0.5117.

THEOREM 5. For the CUSUM and GEWMA control charts, let ARL0(T
+

C ) =
ARL0(T

+
GE) → ∞. Then

ARLµ(T +
C ) > ARLµ(T +

GE)(16)

if and only if 0 < µ < δ/(1 + √
1 − b ) or µ > δ/(1 − √

1 − b ), that is, 0 < µ <

0.7842δ or µ > 1.3798δ.

THEOREM 6. For the CUSUM and GLR control charts, if ARL0(T
+

C ) =
ARL0(T

+
GL) → ∞, then

ARLµ(T +
C ) > ARLµ(T +

GL)(17)

for 0 < µ 	= δ and

ARLµ(T +
GL)

ARLµ(T +
C )

→ 1(18)

for µ = δ.

COROLLARY 3. For the optimal EWMA, GEWMA and the GLR control
charts, if ARL0(T

∗
E ) = ARL0(T

+
GE) = ARL0(T

+
GL) → ∞, then

ARLµ(T ∗
E ) > ARLµ(T +

GE) > ARLµ(T +
GL)(19)

for µ > 0.

REMARK 1. It has been shown by Moustakides (1986) and Ritov (1990) that
the performance in detecting the mean shift of the one-sided CUSUM control chart
with the reference value δ is optimal in the sense of Lorden (1971) if the real mean
shift is δ. Theorem 6 shows that when ARL0 → ∞, the GLR control chart is better
than the CUSUM control chart in detecting any mean shift except the shift of
size δ. Theorems 4 and 5 prove that the GEWMA control chart becomes more
efficient than the optimal EWMA control chart in detecting any mean shift and is
better than the CUSUM control chart in detecting the mean shifts which are not in
the interval [δ/(1 + √

1 − b ), δ/(1 −√
1 − b )] when ARL0 → ∞. It follows from

Theorem 4 that the optimal EWMA has the best performance in detecting a mean
shift when the true shift value µ ≈ 1.122δ. Theorem 6 and Corollary 3 show that
the GLR control chart has the best performance of detecting mean shift among the
four control charts except detecting the mean shift δ when ARL0 → ∞.
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REMARK 2. The condition ARL0 → ∞ in Theorems 2–6 means that
c → ∞.

Proofs of the theorems follow (for convenience of proof, four lemmas are given
in the Appendix).

PROOF OF THEOREM 1. Since E(Wk(r
∗)) = EXk = 0, Cov(Wi(r

∗),
Wj(r

∗)) ≥ Cov(Xi,Xj ) = 0, i 	= j , and Var(Wi(r
∗)) = √

1 − (1 − r∗)2i ≤
Var(Xi) = 1, it follows from Lemma 1 that

P (T ∗
E > n) = P

(
Wk(r

∗) < c, 1 ≤ k ≤ n
) ≥ P (Xk < c, 1 ≤ k ≤ n).(20)

Obviously,

P (Xk < c, 1 ≤ k ≤ n) ≥ P

(
max

1≤k≤m
W̄m

(
1

k

)
< c, 1 ≤ m ≤ n

)
= P (T +

GE > n)

since W̄k(1) = Xk. By (20) we have P (T ∗
E > n) ≥ P (T +

GE > n). Hence ET ∗
E >

E(T +
GE), that is, ARL0(T

∗
E (c)) > ARL0(T

+
GE(c)). For the same reason, we have

ARL0(T
∗
E (c)) > ARL0(T

+
GL(c)). �

An approximate for ET ∗
E (c) has been given by Wu (1994); that is,

ARL0
(
T ∗

E (c)
) ∼ e0.834δec2/2

0.408δ2c

for large c and small δ. By this and Lemma 4, we can choose a constant M > 0
which satisfies

e0.834δ

0.408δ2
√

2π
≥ M > 0

such that

ARL0(T
+
GE) ∼ M

(2π)1/2ec2/2

c

for large c.

PROOF OF THEOREM 2. We first prove that

c2 − 4c
√

3 ln c

bµ2
− O

(
1√
ln c

)
≤ ARLµ

(
T +

GE(c)
)

≤ c2 + 4c
√

ln c

bµ2 + o

(
1

ln c

)(21)
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for large c, where b is defined in Theorem 2. Let µnk = Eµ(W̄n(1/k)). It follows
from (3) that

µnk = µ
√

k

√
(2 − 1/k)

√
1 − (1 − 1/k)n√

1 + (1 − 1/k)n
.

Note that

9

10
≤ bn = (2 − 1/n)(1 − (1 − 1/n)n)

1 + (1 − 1/n)n −→ b = 2(1 − e−1)

(1 + e−1)

for n ≥ 2 and

b − bn = o

(
1

n

)
.

Putting N = 1
µ2b

(c2 + 4c
√

ln c ) and n = N + k, we have

c − µnn = −(
µ

√
N + k

√
bn − c

)
= −µ

√
N + k

√
bn

{
1 − 1√

bn/b + 4bn

√
ln c/(bc) + µ2kbn/c

}

≤ −µBN

√
N + k = −[

2
√

ln c + o(1/c)
] → −∞

as c → ∞, where BN = √
bN [1 − (bN/b + 4bN

√
ln c/bc)−1/2]. Let ϕ and �

be the standard normal density and distribution functions, respectively. Note that
µ2B2

NN = 4 ln c + o(
√

ln c/c) and b = bN + o(1/c2) for large c. It follows that

∞∑
n=N+1

Pµ

(
T +

GE(c) > n
)

=
∞∑

n=N+1

P

(
W̄l

(
1

k

)
< c − µlk, 1 ≤ k ≤ l, 1 ≤ l ≤ n

)

≤
∞∑

n=N+1

∫ c−µnn

−∞
φ(x) dx ≤

∞∑
n=N+1

∫ +∞
µBN

√
n
φ1(x) dx

≤
∞∑

k=1

exp{−1
2µ2B2

N(N + k)}
µ

√
2πBN

√
N

≤ exp{−1
2µ2B2

NN}
µ

√
2πBN

√
N(1 − exp{−1

2µ2B2
N })

≤ 1

4
√

2πbµ2(ln c)3/2
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for large c. Thus

ARLµ

(
T +

GE(c)
) ≤

N∑
n=1

Pµ

(
T +

GE(c) > n
) + 1

4
√

2πbµ2(ln c)3/2

≤ N + 1

4
√

2πbcµ2(ln c)3/2
(22)

≤ 1

µ2b

(
c2 + 4c

√
ln c

) + o

(
1

ln c

)

for large c. This proves the upward inequality of (21).
Suppose that Ylk, 1 ≤ k ≤ l, are standard independent normal variables. By

Lemmas 1 and 3, we have

m∑
n=1

Pµ

(
T +

GE(c) > n
) =

m∑
n=1

Pµ

(
max

1≤k≤l
W̄l

(
1

k

)
< c, 1 ≤ l ≤ n

)

=
m∑

n=1

P

(
W̄l

(
1

k

)
< c − µlk, 1 ≤ k ≤ l, 1 ≤ l ≤ n

)

≥
m∑

n=1

P (Ylk < c − µlk, 1 ≤ k ≤ l, 1 ≤ l ≤ n)

(23)

=
m∑

n=1

n∏
l=1

l∏
k=1

P (Ylk < c − µlk) =
m∑

n=1

n∏
l=1

l∏
k=1

�(c − µlk)

≥
m∑

n=1

([�(c − µmm)](m+1)/2)n

= [�(c − µmm)](m+1)/2(1 − [�(c − µmm)](m+1)m/2)

1 − [�(c − µmm)](m+1)/2 .

Let m = 1
bµ2 (c2−4c

√
3 ln c ). It follows that �(c−µmm) = 1−(

√
24π ln cc6)−1×

(1 − O(1/ ln c)) for large c. Thus

ARLµ

(
T +

GE(c)
) ≥ [�(c − µmm)](m+1)/2(1 − [�(c − µmm)](m+1)m/2)

1 − [�(c − µmm)](m+1)/2

= m − O

(
1√
ln c

)

for large c. This is the downward inequality of (21). By Theorem 1, we have
c2 ≈ 2 ln(ARL0) + ln(2 ln(ARL0)) − 2 ln(M

√
2π ) for large c. Thus, Theorem 2

can be obtained immediately. �



326 D. HAN AND F. TSUNG

PROOF OF THEOREM 3. Let N = 1
µ2 (c

2 + 4c
√

ln c ) and n = N + k. Since

νnk = Eµ(Un(k)) = µ
√

k, it follows that

c − νnn = −(
µ

√
N + k − c

)
= −µ

√
N + k

{
1 − 1√

1 + 4
√

ln c/c + µ2k/c

}

≤ −µAN

√
N + k = −[

2
√

ln c + o(1/c)
]

and µ2A2
NN = 4 ln c + o(

√
ln c/c) for large c, where AN = [1 − (1 +

4
√

ln c/c)−1/2]. As in (22) and (23) we can check

ARLµ

(
T +

GL(c)
) ≤ N + 1

4
√

2πµ2(ln c)3/2

≤ 1

µ2

(
c2 + 4c

√
ln c

) + o

(
1

ln c

)

and

ARLµ

(
T +

GL(c)
) ≥ [�(c − νmm)](m+1)/2(1 − [�(c − νmm)](m+1)m/2)

1 − [�(c − νmm)](m+1)/2

= m − O

(
1√
ln c

)

for large c, where m = 1
µ2 (c

2 − 4c
√

3 ln c ). This completes the proof of
Theorem 3. �

PROOF OF THEOREM 4. From Corollary 1 and ARL0(T
∗

E ) =
ARL0(T

+
GE) → ∞ it follows that there exists a positive increasing function f (c)

such that f (c) = c − ε(c) and ET ∗
E (f (c)) = ET +

GE(c) → ∞ as c → ∞, where
0 < ε(c) < D/c and D is a constant. For µ >

√
a∗δ, the approximation for

ARLµ(T ∗
E (f (c))) is given by Wu (1994) as follows:

ARLµ

(
T ∗

E (f (c))
) = 1

δ2

[− ln(1 − √
a∗δ/µ)

2a∗
(
c − ε(c)

)2

− δ2

4µ2

(1 − (1 − √
a∗δ/µ)2)

(1 − √
a∗δ/µ)2

+ o

(
1

(c − ε(c))2

)](24)

for large c. In fact, a rough estimation for ARLµ(T ∗
E (f (c))) can be obtained as

follows. Let n = N + k and N = d
2δ2a∗ (c2 + 2gc

√
ln c ), where d = − ln(1 −√

a∗δ/µ), g = ed
√

a∗δ/µd. Note that

γn = Eµ

(
W ∗

n (r∗)
) = µ

√
(2 − r∗)(1 − (1 − r∗)n)√

r∗ ,
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r∗ = 2a∗δ2/c2 and (1 − e−d)µ/(
√

a∗δ) = 1. It follows that

c − γn = −c
µ√
a∗δ

e−d

{
2δ2a∗

c2
(N + k) − d + O

(
ln c

c2

)}

≤ −(N + k)
µ√
a∗δ

e−d

(
2δ2a∗

c
− dc

N

)

= −(N + k)DN = −[
2
√

ln c + o(1/c)
]

for large c, where DN = µ√
a∗δ e

−d(2δ2a∗
c

− dc
N

). Thus

∞∑
n=N+1

Pµ

(
T ∗

E (c) > n
) =

∞∑
n=N+1

P
(
W ∗

k (r∗) < c − γk, 1 ≤ k ≤ n
)

≤
∞∑

n=N+1

∫ c−γn

−∞
φ(x) dx ≤

∞∑
n=N+1

∫ +∞
(N+k)DN

φ(x) dx

≤
∞∑

k=1

exp{−1
2D2

N(N + k)2}√
2πDN(N + k)

≤ N exp{−1
2D2

NN2}
4
√

2π(ln c)3/2
→ 0

as c → +∞, that is,

ARLµ

(
T ∗

E (c)
) ≤ N + d

2
√

2πδ2a∗(ln c)3/2

≤ − ln(1 − √
a∗δ/µ)

2δ2a∗
(
c2 + 2gc

√
ln c

) + o

(
1

ln c

)

for large c and µ >
√

a∗δ. As (23) we also have

ARLµ

(
T ∗

E (c)
) ≥ [�(c − γm)](1 − [�(c − γm)]m)

1 − [�(c − γm)] = m − O

(
1√
ln c

)

= − ln(1 − √
a∗δ/µ)

2δ2a∗
(
c2 − 2gc

√
ln c

) − O

(
1

ln c

)

for large c and µ >
√

a∗δ, where m = d
2δ2a∗ (c

2 − 2gc
√

2 ln c ). Thus, a rough
estimation for ARLµ(T ∗

E (f (c))) is approximately

ARLµ

(
T ∗

E (f (c))
) = − ln(1 − √

a∗δ/µ)

2a∗δ2

(
c − ε(c)

)2
(

1 + o

(
ln c

c

))
.(25)

It can be checked that

− ln(1 − √
a∗δ/µ)

2a∗δ2 >
1

bµ2
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for µ >
√

a∗δ. By (25) and Theorem 2, we see that ARLµ(T ∗
E (f (c))) >

ARLµ(T +
GE(c)) for µ >

√
a∗δ as c → ∞ since

− ln(1 − √
a∗δ/µ)

2a∗δ2

(
c − ε(c)

)2
>

c2

bµ2

for µ >
√

a∗δ as c → +∞. It can be checked that the following function for√
a∗δ < µ < 2δ,

− ln(1 − √
a∗δ/µ)

2a∗δ2 − 1

bµ2 ,

attains its minimum value at µ = 2
√

a∗δ
1+√

1−b
≈ 1.122δ. This means that the optimal

EWMA control chart has relatively best performance in detecting mean shift

(
√

a∗δ < µ < 2δ) when the true shift µ = 2
√

a∗δ
1+√

1−b
.

Next we prove ARLµ(T ∗
E (f (c))) > ARLµ(T +

GE(c)) for µ ≤ √
a∗δ. Note that, as

c → +∞,

f (c) − γm = c − ε(c) − cµ√
a∗δ

√
2 − r∗
√

2

(
1 − (1 − r∗)m

)

≥ c

(
1 − µ√

a∗δ
− o

(
1

c2

))
→ +∞

and

1 − �

(
c

(
1 − µ√

a∗δ
− o

(
1

c2

)))

= φ(c(1 − µ/(
√

a∗δ) − o(1/c2)))

c(1 − µ/(
√

a∗δ) − o(1/c2))

(
1 − O

(
1

c2

))

for µ <
√

a∗δ. As (23) we can obtain

ARLµ

(
T ∗

E (f (c))
) =

∞∑
m=1

Pµ

(
T ∗

E (f (c)) > m
)

≥
∞∑

m=1

[
�

(
f (c) − γm

)]m

≥ �(c(1 − µ/(
√

a∗δ) − o(1/c2)))

1 − �(c(1 − µ/(
√

a∗δ) − o(1/c2)))

= √
2πc

(
1 − µ√

a∗δ

)
exp

{
c2

2

(
1 − µ√

a∗δ

)2}

×
(

1 + O

(
1

c2

))
+ O(1)
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for large c. Thus ARLµ(T ∗
E (f (c))) > ARLµ(T +

GE(c)) for µ <
√

a∗δ as c → +∞.

Let µ = √
a∗δ and m = c2

2a∗δ2 (ln c − ln
√

4 ln c ). It follows that

f (c) − γm = c − ε(c) − c

√
2 − r∗
√

2

(
1 − (1 − r∗)m

)

≥ c

(
1 − 2a∗δ2

c2

)m

+ o

(
1

c

)
= 2

√
ln c + o

(
1

c

)

and

�
(
2
√

ln c
) = 1 − 1

2
√

2πc2
√

ln c

(
1 − O

(
1

ln c

))

for large c. Hence

ARLµ

(
T ∗

E (f (c))
) ≥

m∑
k=1

Pµ

(
T ∗

E (f (c)) > k
)

≥
m∑

k=1

[
�

(
f (c) − γm

)]k

≥ �(
√

4 ln c)(1 − [�(
√

4 ln c )]m)

1 − �(
√

4 ln c )

= 2
√

2πc2
√

ln c

(
1 − exp

{− ln c + ln
√

4 ln c

2
√

2π
√

ln c

})

×
(

1 + O

(
1

ln c

))
+ O(1)

for large c. This means that ARLµ(T ∗
E (f (c))) > ARLµ(T +

GE(c)) as c → ∞. This
completes the proof of Theorem 4. �

PROOF OF THEOREM 5. From Corollary 1 and ARL0(T
+

GE) =
ARL0(T

+
C ) → ∞ it follows that there exists a positive increasing function l(c) such

that l(c) = √
2c + ln 2c + ε(c) and E(T +

C (c)) = ET +
GE(l(c)) → ∞ as c → ∞,

where |ε(c)| ≤ M0 and M0 is a constant. For µ < δ/2, as (23) we can obtain

Pµ

(
T +

C (c) > m
)

= P
(
Un(k) < c/

(
δ
√

k
) + (δ/2 − µ)

√
k, 1 ≤ k ≤ n, 1 ≤ n ≤ m

)
≥ [

�
(
2
√

c
√

(δ/2 − µ)/δ
)]m(m+1)/2
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since c/(δ
√

k ) + (δ/2 − µ)
√

k attains its minimum value 2
√

c
√

(δ/2 − µ)/δ at
k = c/(δ/2 − µ)δ. Let m = 4

√
(δ/2 − µ)/δec(δ/2−µ)/δ). Then

ARLµ

(
T +

C (c)
) ≥

m∑
n=1

([
�

(
2
√

c
√

(δ/2 − µ)/δ
)](m+1)/2

)n

= [�(2
√

c
√

(δ/2 − µ)/δ )](m+1)/2

1 − [�(2
√

c
√

(δ/2 − µ)/δ )](m+1)/2

(26)

×
(
1 − [

�
(
2
√

c
√

(δ/2 − µ)/δ
)]m(m+1)/2)

= m

[
1 − O

(
1√
c

)]
+ O

(
1√
c

)

for large c. From this and (21) it follows that ARLµ(T +
C ) > ARLµ(T +

GE) for
µ < δ/2 as c → ∞. Let µ = δ/2 and M = c2/(8δ2 ln c). Similarly, we have

ARLµ

(
T +

C (c)
) ≥

M∑
m=1

[
�

(
c

δ
√

m

)]m(m+1)/2

≥ [�(
√

8 ln c )](M+1)/2

1 − [�(
√

8 ln c )](M+1)/2

(
1 − [

�
(√

8 ln c
)]M(M+1)/2

)
(27)

= M

[
1 − O

(
1

(ln c)2+1/2

)]
+ O

(
1

(ln c)2+1/2

)
for large c. Thus, by (21),

ARLµ

(
T +

GE(l(c)
) ≤ 1

bµ2

(
l(c)2 + 4l(c)

√
ln l(c)

) + o
(
(ln l(c))−1)

= 1

bµ2

(
2c + ln 2c + ε(c) + 4l(c)

√
ln l(c)

) + o
(
(ln l(c))−1)

< M

[
1 − O

(
1

(ln c)2+1/2

)]
+ O

(
1

(ln c)2+1/2

)

≤ ARLµ

(
T +

C (c)
)

for µ = δ/2 as c → ∞. For µ > δ/2, the approximation for ARLµ(T +
C (c)) is given

by Wu (1994) as follows:

ARLµ

(
T +

C (c)
) ≈ 2(µ − δ/2)(c + 2ρδ)/δ − 1 + e−2(µ−δ/2)(c+2ρδ)/δ

2(µ − δ/2)2
.(28)

Comparing this with (21) we can see that ARLµ(T +
C (c)) > ARLµ(T +

GE(l(c)) for
µ > δ/2 as c → ∞ if and only if

1

(µ − δ/2)δ
>

2

bµ2 .
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This implies that 0 < µ < δ/(1 + √
1 − b ) = 0.7842δ or µ > δ/(1 − √

1 − b ) =
1.3798δ. This completes the proof. �

PROOF OF THEOREM 6. From Corollary 1 and ARL0(T
+

GL) =
ARL0(T

+
C ) → ∞ it follows that there exists a positive increasing function h(c)

such that h(c) = √
2c + ln 2c + ε(c) and E(T +

C (c)) = ET +
GL(h(c)) → ∞ as

c → ∞, where |ε(c)| ≤ A and A is a constant. By (26), (27) and Theorem 3,
we have ARLµ(T +

C (c)) > ARLµ(T +
GL(h(c)) as c → ∞ for µ ≤ δ/2. Let µ > δ/2.

Since

1

(µ − δ/2)δ
− 2

µ2 = 1

(µ − δ/2)δµ2 (µ − δ)2,

it follows that ARLµ(T +
C (c)) > ARLµ(T +

GL(h(c)) as c → ∞ for δ/2 < µ 	= δ.

Furthermore, by (28) and Theorem 3 we have

ARLµ(T +
GL(h(c))

ARLµ(T +
C (c))

= (1/µ2)h(c)2[1 + o(
√

lnh(c)/h(c))]
(1/((µ − δ/2)δ)c)[1 + o(1/c)] → 1

as c → +∞ for µ = δ. �

4. Numerical illustration. The purpose of this section is to present some
simulation results of ARLs of the two-sided optimal EWMA, Shewhart-EWMA
(a combination of a Shewhart chart and an optimal EWMA chart), GEWMA, GLR
and CUSUM control charts, that is, the ARLs of the two-sided stopping times. The
numerical results of the ARLs were obtained based on 10,000 repetitions. Tables
1 and 2 compare the simulation results for various values of the mean shift µ

with change point τ = 1. The values in the parentheses in every column of Tables
1 and 2 are the standard deviations of the simulation results of the stopping times.
In the last two rows of Tables 1 and 2, r∗ is the weighted parameter of the optimal
EWMA which satisfies r∗ = 2a∗δ2/c2 and c denotes various values of the width of
the control limits. In the third column and last row of Tables 1 and 2, c and L denote
values of the width of the control limits of the optimal EWMA chart and Shewhart
chart, respectively. The reference value for the optimal EWMA and CUSUM is
taken to be 1, that is, δ = 1. Table 1 illustrates that the GEWMA control chart
is better than the optimal EWMA and Shewhart-EWMA control charts except in
detecting the mean shifts of size around 1.122 (at least from 0.5 to 1.25) and better
than the CUSUM except in detecting the mean shifts of size around 1 (at least from
0.75 to 1.25), and also better than the GLR control chart except in detecting small
shifts, that is, µ < 0.25. We consider the ARL0 ≈ 865 in Table 2. Although ARL0 is
relatively large in Table 2, the increase of c is small. In this case, we have the same
conclusions as from Table 1. As can be seen from Tables 1 and 2, the Shewhart-
EWMA control chart is better than the optimal EWMA, especially in detecting
a large mean shift; the standard deviation of the stopping time for the GEWMA
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TABLE 1
Comparison of ARLs of the five control charts with ARL0 ≈ 435 and N = 10,000 independent

simulation trials

Shifts Optimal Shewhart-
(µ) EWMA EWMA GEWMA GLR CUSUM

0 437 (434) 430 (428) 438 (424) 439 (435) 434 (436)
0.1 297 (288) 294 (285) 304 (275) 295 (267) 326 (323)
0.25 110 (102) 109 (102) 105 (78.8) 108 (80.4) 132 (123)
0.5 32.4 (25) 32.4 (25) 34.9 (22.7) 36.2 (23.3) 37.2 (30.4)
0.75 15.7 (9.63) 15.7 (9.63) 17.4 (10.3) 18.1 (10.7) 16.7 (10.8)
1 9.95 (5.01) 9.92 (5.03) 10.7 (5.92) 11.1 (6.18) 10.3 (5.45)
1.25 7.24 (3.11) 7.19 (3.14) 7.36 (3.91) 7.58 (3.98) 7.34 (3.32)
1.5 5.73 (2.18) 5.67 (2.23) 5.41 (2.75) 5.59 (2.8) 5.70 (2.26)
2 4.03 (1.24) 3.91 (1.35) 3.41 (1.64) 3.54 (1.65) 3.98 (1.28)
3 2.63 (0.65) 2.29 (0.86) 1.85 (0.83) 1.91 (0.81) 2.55 (0.65)
4 2.06 (0.37) 1.47 (0.57) 1.25 (0.47) 1.3 (0.49) 2.00 (0.38)

r∗ 0.12869 0.12869
c 2.82 c = 2.82, L = 3.9 3.29 3.45 4.94

chart is slightly smaller than for the GLR chart, and the standard deviations for
the optimal EWMA, Shewhart-EWMA and CUSUM charts are larger than for the
GEWMA and GLR charts when µ < 0.5 and smaller when µ > 0.75.

TABLE 2
Comparison of ARLs of the five control charts with ARL0 ≈ 865 and N = 10,000 independent

simulation trials

Shifts Optimal Shewhart-
(µ) EWMA EWMA GEWMA GLR CUSUM

0 867 (868) 863 (864) 866 (853) 862 (840) 868 (877)
0.1 524 (507) 521 (506) 481 (401) 477 (406) 592 (593)
0.25 155 (144) 155 (144) 137 (94.2) 139 (95.8) 200 (188)
0.5 39.9 (30.7) 39.9 (30.7) 41.6 (25.6) 42.9 (25.9) 46.1 (37.4)
0.75 18.3 (10.9) 18.3 (10.9) 20.2 (11.55) 20.9 (11.6) 19.2 (12.1)
1 11.5 (5.53) 11.5 (5.54) 12.3 (6.59) 12.7 (6.68) 11.6 (5.90)
1.25 8.29 (3.38) 8.28 (3.39) 8.35 (4.31) 8.63 (4.36) 8.25 (3.54)
1.5 6.50 (2.23) 6.48 (2.35) 6.11 (3.08) 6.31 (3.08) 6.38 (2.40)
2 4.58 (1.32) 4.53 (1.36) 3.76 (1.75) 3.89 (1.75) 4.42 (1.35)
3 2.96 (0.69) 2.77 (0.88) 2.01 (0.88) 2.07 (0.85) 2.82 (0.69)
4 2.24 (0.45) 1.80 (0.68) 1.32 (0.51) 1.38 (0.53) 2.15 (0.41)

r∗ 0.11125 0.11125
c 3.033 c = 3.033, L = 4.4 3.50 3.67 5.62
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5. Conclusion and discussion. By taking the maximum weighting parameter
in the EWMA control chart, a generalized EWMA is proposed in this paper. The
idea is to raise the sensitivity of the EWMA chart in detecting large and small
mean shifts. From the theoretical study and numerical simulation it is clear that
when the control average run length goes to infinity, the GEWMA control chart
is better than the optimal EWMA control chart in detecting any mean shift. It
is also more efficient than the CUSUM control chart in detecting the mean shift
which is not in the interval [δ/(1 + √

1 − b ), δ/(1 − √
1 − b )]. However, the

numerical calculation of ARL for the optimal EWMA control chart or for the
CUSUM control chart is faster than for the GEWMA and GRL control charts.
We also prove that when the control average run length goes to infinity, the
GLR control chart has the best performance in detecting the mean shifts among
the four control charts except in detecting the mean shift δ. Although the GLR
control chart is better than the GEWMA control chart in detecting the mean shift
when the control average run length goes to infinity, the GEWMA has better
performance than GLR in detecting the mean shift which is not small, that is,
µ ≥ 0.25, when the control limit is not large enough, and the time for numerical
calculation of ARL for the GEWMA control chart is less than for the GLR control
chart.

In order to use the GEWMA control chart in practice, one must deal with
the computational issue. Here a feasible approach is suggested to lighten the
computational burden. As it is reasonable to neglect a very small mean shift in
practice, we can suppose the mean shift has a minimal value, δ0 > 0, that is,
the mean shift which is less than δ0 is ignored. Since the optimal weighting
parameter r∗ that minimizes the SADTδ0 [see Srivastava and Wu (1993)] and
ARLδ0 [average run length for a two-sided EWMA scheme; see Srivastava and
Wu (1997)] is approximately

r∗ = δ2
0a∗

log(δ2
0ARL0)

(
1 + o(1)

)

= 2δ2
0a

∗

c2

(
1 + o(1)

)
,

we can take a natural number n0 such that n0 = 
 1
r∗ �, where 
x� denotes

the smallest integer greater than or equal to x. Thus, the stopping time T +
GE

for the GEWMA control chart can be modified as follows: T +
GE0

= inf{n ≥
1 : max1≤k≤min(n0,n){W̄n(

1
k
) ≥ c}}. This revised definition not only lightens the

computational burden but also keeps the effectiveness in detecting the mean shift,
µ ≥ δ0.
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APPENDIX

We first mention a known result in Slepian (1962) and Gupta (1963) that will be
used in proving the theorems.

LEMMA 1. If (X1, . . . ,Xn) and (Y1, . . . , Yn) are two multivariate normal
vectors with E(Xk) = E(Yk) and Var(Xk) ≤ Var(Yk) for all k, and Cov(Xi,Xj ) ≥
Cov(Yi, Yj ) for all i 	= j , then given any real numbers c1, . . . , cn,

P (X1 < c1, . . . ,Xn < cn) ≥ P (Y1 < c1, . . . , Yn < cn).(29)

LEMMA 2. Let βij (m,n) = Cov(Um(i), Un(j)) and αij (m,n) = Cov(W̄m(1/i),

W̄n(1/j)). Then

αij (n,n) ≥ βij (n,n).(30)

Furthermore, let b � 0, m0 = bc2, m1 = √
bm0, m ≥ i ≥ m1, n ≥ j ≥ m1 and

0 < m − n < m0; then, for large b,

αij (m,n) > βij (m,n)(31)

as c → +∞.

PROOF. Let αij = αij (n,n) and βij = βij (n,n). Since (W̄n(1), W̄n(1/2), . . . ,

W̄n(1/n)) and (Un(1), Un(2), . . . ,Un(n)) are two n-dimensional multivariate
normal distributions with E(W̄n(1/k)) = E(Un(k)) = 0 and Var(W̄n(1/k)) =
Var(Un(k)) = 1 for 1 ≤ k ≤ n, it follows from (3) and (6) that

αij =
√

(2 − 1/i)
√

1/i√
1 − (1 − 1/i)2n

√
(2 − 1/j)

√
1/j√

1 − (1 − 1/j)2n

1 − (1 − 1/i)n(1 − 1/j)n

1 − (1 − 1/i)(1 − 1/j)

and

βij =
√

i

j
.

Since(
αij

βij

)2

= (2 − 1/i)(2 − 1/j)

i2(1 − (1 − 1/i)(1 − 1/j))2

[1 − (1 − 1/i)n(1 − 1/j)n]2

[1 − (1 − 1/i)2n][1 − (1 − 1/j)2n] ,

we can define a function as follows:

h(x, y) = (1 + x)(1 + y)

(1 − x2n)((y + i(1 − y))2 − (1 − y2n)

(1 − xnyn)2 , 1 > y ≥ x ≥ 0,

for j > i, where x = 1−1/i, y = 1−1/j . It is easy to check that dh(x, y)/dy > 0
for y > x. Thus h(x, y) > 0 for y > x, since h(x, x) = 0, so that (αij /βij )

2 > 1
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for j > i, that is, αij > βij , for j > i. By the same reasoning, we have αij > βij ,

for j < i.

Let θ = m/i, ω = n/j. Then (1 − 1/i)m−n → 1, (1 − 1/i)n → e−θ and
(1 − 1/j)n → e−ω as c → +∞, b → +∞. Since

αij (m,n) = (1 − 1/i)m−n
√

(2 − 1/i)
√

1/i√
1 − (1 − 1/i)2m

×
√

(2 − 1/j)
√

1/j√
1 − (1 − 1/j)2n

1 − (1 − 1/i)n(1 − 1/j)n

1 − (1 − 1/i)(1 − 1/j)

and

βij (m,n) =




√
j

i
, for i ≥ m − n + j ,

i − (m − n)√
i
√

j
< min

{√
i

j
,

√
j

i

}
, for i < m − n + j ,

it follows that

αij (m,n) →
√

(2 − 1/i)
√

(2 − 1/j)
√

ij

j + i − 1

1 − e−θe−ω

√
1 − e−2θ

√
1 − e−2ω

as c → +∞, b → +∞. It can be checked that

√
(2 − 1/i)

√
(2 − 1/j)

√
ij

j + i − 1
>

√
j

i

for i ≥ m − n + j,

√
(2 − 1/i)

√
(2 − 1/j)

√
ij

j + i − 1
>

√
i

j

for i < m − n + j and j > i,

√
(2 − 1/i)

√
(2 − 1/j)

√
ij

j + i − 1
>

√
j

i
>

i − (m − n)√
i
√

j

for i < m − n + j and i > j, and

1 − e−θe−ω

√
1 − e−2θ

√
1 − e−2ω

> 1.

Thus αij (m,n) > βij (m,n) as c → +∞, b → +∞. �
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LEMMA 3. Let Eµ(W̄n(1/k)) = µnk and Eµ(Un(k)) = νnk. Then:

(i) µnk > µn(k−1), µn(k−1) ≥ µ(n−1)(k−1);
(ii) µn1 = νn1.

And there exists n′ such that µnk ≥ νnk for 2 ≤ k ≤ n′, νnk > µnk for k > n′ and
3 ≤ n′ < n.

PROOF. From (3) and (6) it follows that

µnk = µ
√

k

√
(2 − 1/k)

√
1 − (1 − 1/k)n√

1 + (1 − 1/k)n
,

νnk = µ
√

k.

Obviously, µn1 = νn1. Let 1 − 1/k = x and set

(µnk)
2 = f (x) = µ2 (1 + x)(1 − xn)

(1 − x)(1 + xn)
.

Then f
′
(x) > 0 and f (0) = µ2, so that µnk > µn(k−1). It is obvious that

µn(k−1) ≥ µ(n−1)(k−1). Hence we have µnk > µ(n−1)(k−1). This proves (i). Since
(1 − 1/k)[1 − 2(1 − 1/k)n−1 − (1 − 1/k)n] ≥ 0, it implies that µnj ≥ νnj for
j ≤ k. Let g(y) = 1 − 2yn−1 − yn, 0 ≤ y ≤ 1. It follows that g′(y) < 0, g(0) > 0
and g(1) < 0, so that there exists a number yn such that g(yn) = 0, g(y) ≥ 0 for
y ≤ yn and g(y) < 0 for y > yn. Setting yn = 1 − an/n, by g(1 − an/n) = 0 we
can get

n ≈ an(1 − e−an)

1 − 3e−an

and ln 4 ≥ an ≥ an+1 ↓ ln 3 . Taking n′ = 
n/an� we get the required results, where

x� denotes the smallest integer greater than or equal to x. �

LEMMA 4. For large b, as c → ∞,

ARL0
(
T +

GE(c)
) ≥ (2π)1/2ec2/2

b3/2c
.(32)

PROOF. Denote by ϕ and � the standard normal density and distribution
functions, respectively. Let b � 0, m0 = bc2 and m1 = √

bm0. Let m, c → +∞
such that m[b3/2cϕ(c)] → t ∈ (0, +∞). Then, it follows from Lemmas 1 and 2
that

P
(
T +

GE(c) > m
) = P

(
max

1≤k≤n
W̄n

(
1

k

)
< c, 1 ≤ n ≤ m

)

= P

(
W̄n

(
1

k

)
< c, 1 ≤ k ≤ n, 1 ≤ n ≤ m

)
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≥ P

(
W̄n

(
1

k

)
< c, m1 ≤ k ≤ n, m1 ≤ n ≤ m

)

× P

(
W̄n

(
1

k

)
< c, 1 ≤ k < m1, m1 ≤ n ≤ m

)

× P

(
W̄n

(
1

k

)
< c, 1 ≤ k < n, 1 ≤ n < m1

)

≥
m/m0∏
l=1

P

(
W̄n

(
1

k

)
< c, m1 ≤ k ≤ n,

[(l − 1)m0] ∨ m1 < n ≤ lm0

)

× [�(c)]m1(m−m1) × [�(c)]m1(m1−1)/2

≥
m/m0∏
l=1

P
(
Un(k) < c, m1 ≤ k ≤ n, [(l − 1)m0] ∨ m1 < n ≤ lm0

)

× [�(c)]m1m × [�(c)]−m1(m1+1)/2

as c → +∞ for large b. By Lemma 3 in Siegmund and Venkatraman (1995), there
exists δ(b) → 0 as b → +∞ such that, for all large c and 1 ≤ l ≤ m/m0,

P
(
Un(k) < c, m1 ≤ k ≤ n, [(l − 1)m0] ∨ m1 < n ≤ lm0

)
≥

[
1 − δ(b)

m0

m

]
.

Thus, for large b,

P
(
T +

GE(c) > m
) ≥

[
1 − δ(b)

m0

m

]m/m0

[�(c)]m1m × [�(c)]−m1(m1+1)/2

∼ e−t = exp{−m[b3/2cϕ(c)]}
as c → +∞. By the properties of the exponential distribution, we have E(T +

GE(c)) ≥
[b3/2cϕ(c)]−1 as c → +∞. This completes the proof. �
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