The Annals of Statistics
2004, Vol. 32, No. 1, 233-244
© Institute of Mathematical Statistics, 2004

ON THE FORWARD AND BACKWARD ALGORITHMS
OF PROJECTION PURSUIT!

BY MU ZHU
University of Waterloo

This article provides a historic review of the forward and backward
projection pursuit algorithms, previously thought to be equivalent, and points
out an important difference between the two. In doing so, a small error in the
original exploratory projection pursuit article by Friedman [J. Amer. Statist.
Assoc. 82 (1987) 249-266] is corrected. The implication of the difference is
briefly discussed in the context of an application in which projection pursuit
density estimation is used as a building block for nonparametric discriminant
analysis.

1. Introduction. Let p(x) be an arbitrary high-dimensional density function.
Estimating p(x) from data x{,X3,...,X, € R is a difficult problem. Projection
pursuit density estimation [Friedman, Stuetzle and Schroeder (1984) and Fried-
man (1987)] is one of the few relatively successful methods. Two algorithms
exist—one originally proposed by Friedman, Stuetzle and Schroeder (1984),
which we refer to as the forward algorithm, and one subsequently proposed by
Friedman (1987), which we refer to as the backward algorithm. The two algo-
rithms have always been regarded as equivalent. In this article, we show that the
two algorithms are only equivalent in the context of projection pursuit density
approximation [Huber (1985)]; in the context of projection pursuit density estima-
tion, however, the two algorithms will be shown to have substantial differences.

2. Projection pursuit density approximation. In projection pursuit density
approximation [Huber (1985)], we assume that p(x) is known and wish to
construct an approximation for it with

M
(1) pu®) = po®) [ fnle)x),

m=1

where ||, || = 1 is a unit vector.

2.1. Forward approximation. In the forward approximation (called the syn-
thetic approach by Huber), we start with an initial approximation pg(x), often a
simple parametric model such as a multivariate Gaussian, and find a series of ridge
modifications to get closer to the actual density function itself. This can be done
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recursively: at the mth iteration, let p,,_1(x) be the latest approximation of p(x);
the goal, then, is to find & € R? and f,,(-) to update the approximation by

Pin(X) = Pru—1(X) frn (@ x).

It can be shown [Huber (1985) and Friedman, Stuetzle and Schroeder (1984)] that
for every fixed «, the optimal ridge modification f,, (eTx) that makes Pm(X) the
closest to p(x) (in terms of cross-entropy; see below) is given by

p@(alx)

P (@Tx)

2) fu(e!'x) =

This is quite intuitive: for a given direction o, we simply divide out the marginal
of the current approximation and replace it with the correct marginal of the true
density. If we keep on doing this in all projections, we eventually get the true
density itself. In practice we update only in a few directions to get the best
approximation. This is achieved by choosing & to maximize the cross-entropy
between p,,(x) and p(X) at every step, that is,

3) mgx/logpm(x)p(x) dx s.t. /pm(x) dx=1.

Summarizing all this together (also see Algorithm 1), we arrive at the forward
approximation of p(x):
M

pox) [ :
met1 P (@ )

plem) (al'x)

ALGORITHM 1 (Forward projection pursuit density approximation).

e Start with an initial approximation pg(x), say, N(u, X).
e Form=1to M:

1. Choose a direction, e, in which the distance between p,,— (x) and p(x) is the
largest. Here distance can be measured, for example, by the cross-entropy.

2. Calculate p(all(och) and p@ (a”x).

m

3. Update the approximation by

End For.

2.2. Backward approximation. Instead of constructing the approximation in
a forward fashion from an initial pg(x), Huber (1985) pointed out that the whole
process can be turned backwards (called the analytic approach by Huber). That
is, start with pg(x) = p(x) and recursively modify it toward a target density g (x)
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by a series of ridge modifications, where ¢ (x) is a simple known density, say, the
standard Gaussian. The entire process (see Algorithm 2) leads to the model

M (O‘m)
P9 = [ (am)i“TX;
m— al'x

where pys(x) is sufficiently close to ¢(x). Turning this equation backward and
replacing g (x) with pjs(x), we can then approximate the original density p(x) =
po(x) with

M (om)

P (@)
) q(x) 1‘[ q(ami @l

Clearly, there is no apparent difference between the forward approach and the
backward approach in this context. We shall see that this is no longer true for
density estimation.

ALGORITHM 2 (Backward projection pursuit density approximation).

e Select a target density g (x). It is often convenient to use a simple density here,
for example, the standard multivariate Gaussian.

e Start with po(x) = p(x), the actual density we wish to approximate.

e Form=1to M:

1. Choose a direction, e, for ridge modification. Usually, we choose a direction
where the distance between p,,—1(x) and g(x) is the largest. Again, the
distance can be measured by cross-entropy.

2. Modify p,,—1(x) in the a direction toward ¢ (x). After the modification, the
new density becomes

(@) (T
g (o X)
P =Pt (9 Gy o
1 (@Tx)
End For.
e Assuming pys(X) & g(X), approximate p(x) with
(am)
P (0, X)
q(X) 1_[ q(am)(a X)

3. Projection pursuit density estimation. Density estimation is a more
practical problem than density approximation because, in practice, the density
function p(x) is often unknown; it must be estimated from data. We can adapt
the forward and backward projection pursuit density approximation techniques
outlined above for projection pursuit density estimation.
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3.1. Adapting the forward approach. 1t is conceptually easy to adapt the
forward density approximation procedure for density estimation. Here, we start
with an initial density estimate po(x) using a parametric model such as the
multivariate Gaussian. Then recursively, given the current estimate p,,_1(X), we
must estimate the ridge modification f;, (eTx). From (2), it is clear that we need
to estimate two univariate density functions p(“)(aTX) and p,(:i 1(och). In fact,
for the purpose of finding the best ridge direction, &, we need to estimate at least
their first derivatives as well. This is because the maximization problem (3) must
be solved numerically. Also note that since p(x) is unknown, we must replace

/ log pim (X) p(x) dx

with an empirical estimate
1 n
. Z log pim (X;) where x; ~ p(X).
i=1

For the current discussion, however, we treat the estimation of these univariate
density functions and their derivatives as a single block, but keep in mind that it
involves derivative estimation as well.

For a fixed direction, &, p® (a”x) is easy to estimate: we simply project
the data onto o to get z; = a”x; and then estimate a univariate density (and
its derivative) from z;. The difficulty lies in the estimation of p,(:l 1(och), the
marginal density of the current density estimate (and the related derivative). The
solution proposed in Friedman, Stuetzle and Schroeder (1984) is to use Monte
Carlo sampling:

1. Since we can evaluate the current estimate, p,,—1(x), we can use the Monte
Carlo method to draw a sample from p,,,—1(x), {ug,uz, ..., uy}.

2. Given {uj,up, ..., uy} ~ pm—1(x), p,(:il(och) is then estimated by standard

techniques using the projected data, {a’ uy, e’ w,, ..., a’uy}.

Here we omit the details of Monte Carlo sampling. It is a separate topic and is
not crucial for the present discussion; a clear outline is given in the Appendix of
Friedman, Stuetzle and Schroeder (1984).

3.2. Adapting the backward approach. The need to incorporate a Monte Carlo
step makes the computation of the forward algorithm quite cumbersome. Alterna-
tively, we may wish to adapt the backward density approximation procedure, but it

is not difficult to see from the discussion above (also see Algorithm 2) that a diffi-
culty remains similar to that in the forward algorithm: we must estimate p,(:f{ ),
the marginal density of p,,_1(x), at every step. Actually, this is even harder to
achieve in this case. Because we start with something we know in the forward

algorithm, we can actually evaluate p,,_1(X) at every iteration; this allows us to
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draw Monte Carlo samples from it. In the backward algorithm, we start with the
density we wish to estimate, so we do not even know how to evaluate p,,_1(x)
in general. As a result, even the computationally expensive Monte Carlo step is
infeasible here.

4. Exploratory projection pursuit. A feasible backward projection pursuit
density estimation algorithm later appeared in the form of exploratory projection
pursuit [Friedman (1987)]. The key idea is as follows: at every iteration the density
function changes due to the ridge modification, so we transform the data as we
go along so as to conform to the evolving density. The algorithm is given here
as Algorithm 3. The data transformation step within every iteration is the key
element that makes the backward algorithm work, because we can now estimate
pr(:ll(och) directly from the (transformed) data. In fact, we do not even need
to resort to the Monte Carlo method. In this sense, this algorithm provides a
significant improvement over the forward algorithm. However, as we show in the
next section, a price has to be paid for this computational simplification. This
algorithm actually changes the density model in (4). Friedman (1987) did not
realize this difference; nor has this difference been discovered elsewhere. Due to
this difference, we argue that the forward and backward algorithms for projection
pursuit are not equivalent at the practical level.

ALGORITHM 3 (Exploratory projection pursuit).

e Initially, x; follows density function po(x) = p(x), the actual density we wish
to estimate.
e Form=1to M:

1. Choose a direction, «, for ridge modification, as in Algorithm 2.

2. Construct a transformation x’ = h(x) so that the marginal density of x’
agrees with the target density, ¢ (-), in the a direction, while in all directions
orthogonal to « it agrees with p,,_1(-). For convenience, ¢ is often chosen
to be the standard Gaussian density function. Then, for any direction o,
q @) = g(+) is the standard univariate Gaussian density. The transformation
h(-) can be constructed as

h(x) = A~ (1(Ax)),
where A is an orthogonal rotation matrix such that
T
def o X
5 Z_AX_<A*X)’
such A can be constructed using the Gram-Schmidt procedure, [e.g.,

Friedberg, Insel and Spence (1989), page 307] and the transformation ¢ is
given by

(6) z(zj-)={V<Zj>, for j=1,

Zj, for j>1.
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Here, y (-) is a monotonic transformation such that

7 y(z) Lo (F., (21),

where ®(-) is the cumulative distribution function (c.d.f.) of the standard
normal and F, is the marginal c.d.f. of z; = o ”'x, which can be estimated by
the empirical distribution function. By definition, y (z1) follows the standard
Gaussian distribution. The entire transformation /(x) can be represented as

h
X —— h(x)

) l N T o
t

z —— t(z).

In the next section we show that the transformed data, /(x), has density

©) () = -1 0 EL XD,
Py (@' X)
3. Let
x; < h(x;),
so that after the transformation x; follows density function p,,(-).
End For.

5. Nonequivalence. We are now ready to study the exploratory projection
pursuit algorithm (Algorithm 3) in more detail. First, we show that (9) is true.

LEMMA 1. Suppose p(x,y) is the density function for (x,y), where x € R
andy € R~ Let
_ def
(10) ¥ =7 (Fo0) Ly ),

where ®(-) is the c.d.f. of the standard normal and Fy the marginal c.d.f. of x. Let
p'(x',y) be the density for (x',y). Then

g(x") )

11 / /, — —1 /’ <
(11) P y)=ply= (xN).y) T

REMARK. While (11) is the standard way to represent the density for (x’,y),
we prefer to write it as

g()/(X)))

12 ! ,y) = p(x,
(12) Py ().y) = plx y)( e
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because (x,y) is the original variable, and a transformation is applied to obtain
(x',y) = (y (x),y). Equation (12) allows us to keep track of the original and the
transformed data more directly. This comes in handy as we go a few steps into the

recursive iteration, where it is much easier to keep track of a series of y’s rather

than a series of y ~!’s.

THEOREM 1. Let p(X) be the density function for X. Then the density function
for h(x), where h(X) is defined in (8), is given by

g(y(ocTX)))

(13) pno) = poo( SLEZS

where p® () is the marginal density of X in the « direction.

The proofs for the lemma and the theorem are given in the Appendix. The
validity of (9) follows directly from Theorem 1. With this result, we can now
work out the details of the exploratory projection pursuit algorithm and see that
it transforms the density in successive steps, according to

po(x) = p(x),

T
p1(h1(x) =p0(X)<M>,

e (@]

Th
pa(h2(h®)) = pl(hl(x))<w)

pi? (@2 hi (%))
and so on, where £, (x) transforms X in the o, direction as defined by (8), leaving
all orthogonal directions (relative to o) unchanged. To simplify the notation,
write

po(X) =X,

p1(X) = h(x),

p2(X) = hy - hi(x),

P (X)=hp -hpy—1---h1(x),

and we have, at the end of M iterations,

M T
& (Ym (et;y, pm—1(X)))
(14) pm(pm (X)) = po(x) ( P )

ulon @) = po ,El P @l p1 (X))
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where, again, pys(-) is sufficiently close to g(-). Turning this backwards and re-
placing g (-) for pps(-), we obtain a model for estimating the original density p(x):

M @m) ;T
Poy_ (Olmpm—l(x))
(15) q(pu™) ] <g(yml<a£pm_1(x))) )

m=1

Note that this is not the same as (4). The resulting expression of the estimate is
much more cumbersome; it does not unwrap as nicely as in the forward algorithm.

Why is there such a big difference? In the forward algorithm, no transformation
is introduced to the original data and we must estimate p,(:ll(aTX) from a
Monte Carlo sample, but in the backward algorithm, we actually transform the
data at every step. This eliminates the need for Monte Carlo sampling, because
the transformation makes the data conform to the density p,,(x) rather than to

the original density pg(x) = p(x). This allows us to estimate p;all(och) directly
from the (transformed) data. In fact, recall that if we did not introduce these
transformations, the backward algorithm would have been hopeless in practice,
because even Monte Carlo sampling would have been infeasible (see Section 3.2).
However, to wrap around the entire process to obtain an estimate of the original
density (prior to any of the transformations induced within the algorithm), we must
unfold the entire sequence of transformations as well.

In the original exploratory projection pursuit article [Friedman (1987)], this
important detail was overlooked and the resulting model (15) from the exploratory
projection pursuit algorithm was mistakenly thought to be the same as (4). The
focus of the Friedman’s (1987) article was to introduce the data transformation
step, which, as we have argued above, is crucial for making the backward
algorithm work. Because things work out nicely in the forward algorithm and
because the two algorithms are equivalent in the context of density approximation,
it is easy to believe that the backward algorithm must work in the same way,
without paying close attention to the fact that the added transformation would have
made the model much more complex.

Here is a summary of this discussion: in the forward algorithm, we must pay
a price in Monte Carlo sampling; in the backward algorithm, although we can
avoid the Monte Carlo step, we must pay a price (not so much a computational
one) to keep track of the sequence of transformations. Either way, nothing comes
out entirely free. Despite the computational savings, the resulting density model
from the backward algorithm is much more cumbersome, because it involves the
entire sequence of transformations—although theoretically this model can still be
used for density estimation as long as good track is kept of all the transformations.
Notice that all of these transformations involve only an orthogonal rotation and
a one-dimensional monotonic transform. In terms of computational cost, this
is indeed cheaper than Monte Carlo methods. However, the resulting model is
cumbersome. In fact, it is no longer a clean-cut projection pursuit density model,
because the transformation p,,—1 (x) is nested inside the ridge function f;,,.
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6. Implication. The nonequivalence between the forward and backward al-
gorithms has some important practical implications if you wish to use projection
pursuit density estimation as a building block. For example, in discriminant analy-
sis, you may wish to model the density function in each class nonparametrically
using projection pursuit density estimation. In particular, you can model the den-
sity forclass k, k=1,2,..., K, as

M
(16) Pe®) = po®) [ Sk (px).
m=1

That is, start with a common initial guess for all the classes and recursively
augment each density with a series of ridge modifications to distinguish the classes.
These ridge directions are often called discriminant directions. Given a direction e,
the best ridge modification f;,; is the same as (2) for each class k. However, «
would have to be chosen differently. Instead of choosing e to minimize the distance
between the estimated and the true density functions, choose & to be a discriminant
direction, that is, the direction that separates the classes as much as possible. Class
separation can be measured by the likelihood-ratio statistic [e.g., Zhu and Hastie
(2003)] or by the misclassification rate [e.g., Polzehl (1995)].

There are several immediate advantages to this approach. For example, the
complexity of the model can be easily regularized by selecting only a few
directions where there are significant differences between classes. Therefore,
although this is a density-based classification method, it actually does not waste
any effort in directions which may contain interesting features in the density
function itself but do not contribute to class differentiation. The most attractive
aspect of such an approach is probably the following: because the initial density is
common for all the classes, the decision boundary between class k and K depends
only on the ratio of the augmenting ridge functions. In particular, the decision
boundary is characterized by

M T Iy
Sk (@ X) et -
ngl me(Ol%x) _ngl gmk (o, X) =1

or

M
> log(gmi(er),x)) =0,
m=1
which makes classification very easy.

However, it is not hard to see that if the density estimation step is implemented
using the backward projection pursuit algorithm, then things become rather
complicated. According to (14), the final density model for class £ would become

M 1
a7 P = pu(pm ) [ ]

m=1

fmk(“%ﬂm—l,k(x)) .

This gives rise to several important differences:
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e Although pjys(-) can be regarded as the same for all classes, the pps r(X) inside
it is not the same for all k. Therefore, we still need pjs(-) for classification
purposes. Thus, unlike in the forward algorithm, the decision boundary between
any two classes will no longer just depend on the ratio of a series of ridge
functions.

e In fact, because the data are transformed differently at each iteration for each
class, the ratio of two resulting “ridge functions” (for classes k and K) becomes

Fnk (@l pm—1 k(X))
me (ag;pm—l,K(X)) ‘

This is no longer a simple ridge function due to the function p,,—1 ¢ (-), which is
different for each class k.

e That we need py for classification is a serious problem, since pyy is still a full
multidimensional density function which we must estimate. This is because in
this application, we do not usually expect pys to be close enough to the target
density ¢g. Since the goal is discrimination rather than density estimation itself,
it will often be the case that we have only changed the original density in a
few discriminant directions. Therefore, even though pj, is an adequate density
function for pys i (X) regardless of k, it is likely that pjs is still quite different
from q.

Of course, these differences do not make discriminant analysis impossible, but
it is quite clear that a lot of the nice features of using projection pursuit density
estimation for nonparametric discriminant analysis—such as the ease to construct
the decision boundary—are lost in this cumbersome model.

7. Conclusion. We have pointed out an important difference between the
forward and backward projection pursuit algorithms and illustrated that this
difference is practically significant. Because of this difference, every user of
projection pursuit must now face a trade-off between computational complexity
and model tractability. It is a decision that is best left for the users to decide in the
context of their specific problems.

APPENDIX

PROOF OF THEOREM 1. Recall that A (x) is defined as

h
X — h(x)

lA | s

z — 1(2),
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where A and ¢ are defined in (5) and (6), respectively. The following diagram
summarizes my notation for the density functions of x, z, 2(x) and #(z):

h
px) —— P'(h(x))

O PS
pa(@) — = pL(t@)).

It now follows from the lemma that in the z space,
0% (z1)))
P (z1) )
where p,, () is the marginal density of zy, but the fact that z = Ax implies that

(18) pwu»=mu(

_ 1 1 b
pz(Z)—mp(A z)= |A|19(X)

and

/ _L r(A—1 _L ’
p.(t(z)) = TN (A7 t(2) = al” (h(x)).

Hence, (18) now implies

g(V(aTX)))

o) = poo(STEZS

since by the definition of A, we have z; =a’x. O

PROOF OF LEMMA 1. By conditioning, we have
P y) = p () pr ().

Since we applied only a monotonic transformation to x and did nothing to y, we
have, for x’ = y (x),

p'(ylx') = p(ylv),
and by definition of x’,
P () =g,
where g(-) is the standard normal density. Hence,

P, y)=pylx)gx)

_ p(x,y)) /
_<px(X) g()

g(x") )

_ -1,/
=rly “L”<mw*am
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or

gy (x) )

p'(y(x).y) = p(x, y)( el

because x’ =y (x) and x =y 1 (x). O
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