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ON THE BAYES-RISK CONSISTENCY OF REGULARIZED
BOOSTING METHODS

BY GABOR LUGOSI' AND NICOLAS VAYATIS?
Pompeu Fabra University and Université Paris 6

The probability of error of classification methods based on convex com-
binations of simple base classifiers by “boosting” algorithms is investigated.
The main result of the paper is that certain regularized boosting algorithms
provide Bayes-risk consistent classifiers under the sole assumption that the
Bayes classifier may be approximated by a convex combination of the base
classifiers. Nonasymptotic distribution-free bounds are also developed which
offer interesting new insight into how boosting works and help explain its
success in practical classification problems.

1. Introduction. One of the most important recent developments in the
practice of classification has been the introduction of boosting algorithms which
have had a remarkable performance on a large variety of classification problems.
These algorithms aim at producing a combined classifier from a given class of
weak (or base) classifiers. While the corpus of empirical studies has reached
impressive proportions, there are still few theoretical results to explain their
efficiency. Originally [see, e.g., Schapire (1990), Freund (1995) and Freund and
Schapire (1996a)], boosting was considered as an iterative procedure which, given
the training data, would do the following at each step: (i) select a classifier from a
given class of base classifiers; (ii) evaluate a weight for this classifier; (iii) output
the weighted majority vote of the selected classifiers up to this step. The main
idea in the updating rule of this procedure is to put a probability distribution on
the sample points, starting with the uniform distribution at the initial step, and
then to change this distribution at every step according to some rule reinforcing the
probability associated with misclassified points along the process. This heuristic
generated numerous variations on the choice of the initial pool of weak learners
and on the way to perform the weight update. Generally speaking, the derived
algorithms perform very well on most of the usual benchmark data sets in the sense
that the generalization error decreases as successive iterations are run. However,
the resistance to overfitting of the family of boosting methods has not found a
fully satisfactory explanation so far [see Breiman (2000) and Freund, Mansour
and Schapire (2001)].
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One of the most interesting attempts to explain the success of boosting methods
points out that they tend to maximize the margin of the correctly classified
points. These arguments are based on margin-based bounds for the probability of
misclassification [see Schapire, Freund, Bartlett and Lee (1998) and Koltchinskii
and Panchenko (2002)]. However, as was pointed out by Breiman (1999), these
bounds alone do not completely explain the efficiency of these methods [see also
Freund and Schapire (2000)]. Boosting algorithms have also been found explicitly
related to the stagewise fitting of additive logistic regression by Friedman, Hastie
and Tibshirani (2000) and Biihlmann and Yu (2000). This connection points out
that boosting methods effectively minimize an empirical loss functional (different
from the probability of misclassification). This property has also been pointed out
in slightly different contexts by Breiman (1998), Mason, Baxter, Bartlett and Frean
(2000) and Collins, Schapire and Singer (2002).

The last observation places boosting into a much wider perspective and this
is the one we adopt in the present paper. The main idea is to leave aside the
sequential nature of the original boosting algorithm and to focus on the underlying
optimization procedure which is implemented. It is now common knowledge that
unregularized minimization of the empirical probability of misclassification is
subject to overfitting and is computationally unfeasible. Even though overfitting
can be avoided with regularized strategies for the misclassification error, this does
not solve the computational difficulty. The advantage of replacing the empirical
probability of misclassification by an appropriate smooth loss functional is to
simultaneously avoid overfitting and become computationally feasible in many
cases.

However, this leaves open the issue of consistency because it is not clear
to what extent solving the approximated problem of the empirical functional
minimization is equivalent to minimizing the generalization error. This paper
considers the theoretical issue of the consistency of regularized boosting methods,
and proposes elements of explanation for their efficiency in practice. We combine
known techniques for deriving margin-based bounds with some new results to
explain under which conditions minimizing a cost functional leads to the Bayes
risk, at least asymptotically. Our main result shows the existence of consistent
regularized boosting strategies for classification which can then be implemented
sequentially.

As is mentioned above, several versions of boosting algorithms perform a
gradient descent minimization of a convex empirical functional over the class
of linear combinations of the base classifiers. The original versions, such as
ADABOOST, do not put any restriction on the sum of the weights of the combined
classifiers. As a result, if the algorithm is run for a sufficiently long time, the
resulting classifier will inevitably overfit the data, and consistency is not achieved
for most distributions. (Interestingly, however, due to the slow convergence of the
gradient descent algorithm, this overfitting typically does not occur until a very
large number of iterations.) In this paper we focus on a regularized version of
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boosting, suggested, for example, in Mason, Baxter, Bartlett and Frean (2000). In
this version, the sum of the weights of the combined base classifiers is restricted to
a fixed value, and gradient descent optimization is performed over the restricted
class. The sum of the weights (which we denote by A) plays the role of a
regularization parameter, controlling a kind of bias—variance trade-off. The main
results show that A may be chosen, as a function of the sample size, in such a
way that Bayes-risk consistency of the resulting classifier is guaranteed. Data-
dependent choices of X are also considered.

Our approach is different from those that recommend early stopping of the
ADABOOST algorithm to achieve regularization [see, e.g., Jiang (2004)]. To make
the arguments clear, we assume that, for each chosen value of A, a separate
optimization is performed to minimize the value of the cost function over the class
of linear combinations with the sum of weights restricted to be A. On the other
hand, our experiments reported in Section 7 reveal a close connection between the
two aproaches.

For previous work on Bayes risk consistency, we refer to Breiman (2000),
Biithlmann and Yu (2003), Jiang (2001, 2004), Mannor and Meir (2001) and
Mannor, Meir and Mendelson (2001). For recent advances we refer to Mannor,
Meir and Zhang (2002), Steinwart (2001) and Zhang (2004).

The rest of the paper is organized as follows. The next section introduces
the formal setting and notation. In Section 3 the simplest version of the method
is defined and the consistency results are presented. In Section 4 the effect of
the cost function is studied. Section 5 discusses variants of the main results
based on data-dependent regularized choices of the regularization parameter A.
In Section 6 we point out that some of the bounds developed here show that the
proposed regularized boosting algorithm minimizes the best Chernoff bound on
the probability of error. In Section 7 we describe some interesting phenomena
observed in experiments. Some proofs are postponed to the Appendix.

2. Setup and notation. Consider the binary classification problem described
as follows. Let X be a measurable feature space and let (X, Y') be a pair of random
variables taking values in X x {—1, 1}. The random variable X models some
observation and Y its unknown binary label. In the standard classification problem,
the statistician is asked to construct a classifier g, : X’ — {—1, 1} which assigns
a label to each possible value of the observation. The statistician has access to
training data consisting of n independent, identically distributed observation—label
pairs D, = (X1, Y1), ..., (Xn, Yy), having the same distribution as (X, Y). The
quality of g, is measured by the loss

L(gn) = P{gn(X) 7é Y|D,}.

Ideally, L(g,) should be close, with large probability, to the Bayes risk, that is, to
the minimal possible probability of error

L* =inf L(g) = Efmin((X). 1 —n(X))}.
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where the infimum is taken over all measurable classifiers g: X — {—1, 1} and
n(x) = P{Y = 1|X = x} denotes the posterior probability function. Note that
the infimum is achieved by the Bayes classifier g*(x) = Ij;;x)>1/21 — Iy <1/2]
(where I denotes the indicator function). (Note that, with this convention, ties are
broken in favor of —1, and this has no consequence on the value of the Bayes
error.)

In recent years, a large part of research has been focused on classifiers which
base their decision on a certain combination of very simple rules. Such rules
include different versions of “boosting,” “bagging” and “arcing” methods [see,
e.g., Breiman (1996a, b, 1997b, 1998), Freund (1995), Freund and Schapire
(1996b, 1997) and Schapire (1990)]. To describe such averaging methods, consider
a class of classifiers G, where elements g: X — {—1, 1} of C are called the
base classifiers. We usually think of C as a class of simple rules such as all
“decision stumps” (i.e., rules which split % = R¢ along a hyperplane parallel to
the coordinate axes), or all binary trees with d 4 1 terminal nodes, but our results
hold for more general families. In the general framework defined here we only
assume that the VC dimension of C is finite.

Define ¥ as the class of functions f:X — [—1,1] obtained as convex
combinations of the classifiers in C:

N N
3":{f(x)=ijgj(x):NeN,w1,...,wNZO,ij=1 .
j=1 j=1
Each estimator f € F defines a classifier g ¢, in a natural way, by

if f(x) >0,

="
g = —1, otherwise.

To simplify notation, we write L(f) for the probability of error L(gs) of the
corresponding classifier. Similarly, introduce the empirical loss by

- 1 &
L,(f)= " Z]I[gf(Xi)7éYi]‘
i=1

Observe that, for any f € ¥,

1 ~ 5
- D Tipxnvi<0) < La(f) < - > Lircxovi<ol
i=1 i=1

and, similarly,

Elrxyy <01 < L(f) < Elrxyy <o)-

To shorten notation, we define Z(f) = —f(X)Y and Z;(f) = — f(X;)Y;. Thus,
minimization of the probability of error L(f) over f € ¥ is approximately
equivalent to the minimization of the expected value of the “cost function”
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Ij.~0; of Z(f). Since the expected value cannot be evaluated in the absence
of knowledge of the joint distribution of (X, Y), minimization of the empirical
cost % Y1 Iiz:(r)>0; may be attempted as an approximation. However, in
typical cases the class & of convex combinations is too large in the sense that
minimization of the empirical cost over the whole class overfits the data and may
yield a classifier with large probability of error. Indeed, even in the simplest cases
the class of all g 7 is easily seen to have an infinite VC dimension.

The estimators studied in this paper minimize a criterion which replaces the
natural cost function (i.e., the indicator of misclassification Ij_ r(x)y>op) by a
smooth convex cost function of the random variable Z = — f(X)Y. Indeed,
various versions of boosting algorithms have been shown to minimize such cost
functions [see, e.g., Mason, Baxter, Bartlett and Frean (2000), Friedman, Hastie
and Tibshirani (2000) and Collins, Schapire and Singer (2002)]. The usual choice
is the exponential cost function, though other choices have also been proposed.
The advantage of introducing such cost functions is twofold. First, the empirical
optimization problem becomes tractable, since the objective function becomes
convex. The second advantage is that the probability of error of the resulting
classifier may be bounded nontrivially, something that cannot be done for the direct
minimizer of the empirical probability of error. The first such result was pointed
out by Schapire, Freund, Bartlett and Lee [(1998); interesting extensions are given
by Blanchard (2001)] and more explicitly by Koltchinskii and Panchenko (2002),
who showed that meaningful confidence bounds may be derived for the probability
of error of the classifier minimizing a smooth upper bound. However, as Breiman
(1998) argues, the bounds in Schapire, Freund, Bartlett and Lee (1998) alone do
not explain the spectacular practical success of these algorithms; in this paper we
show how these bounds may be used to prove Bayes-risk consistency.

In this paper all we assume about the classification algorithm is that the method
at hand minimizes a smooth convex cost function, and we do not investigate the
specific ways such algorithms are realized. For example, minimization based on
gradient-descent methods leads to some standard versions of boosting algorithms
[see Mason, Baxter, Bartlett and Frean (2000)].

More specifically, let ¢:[—1, 1] — R™ be a positive nondecreasing convex
function such that ¢ (0) = 1. Introduce the notation

1 n
A(f)=Ep(Z(f)) and A,(f)= - Y D Zi(f)).
i=1

Then clearly, since I[y~0) < ¢(x), we have L(f) < A(f) for all f € F. It is
also clear that the empirical cost A, (f) is a convex function of the parameters
wi, wy, ... and therefore efficient algorithms are available for minimizing A, (f)
over f € . In fact, some versions of boosting, for example, the so-called
L-boosting method in Mason, Baxter, Bartlett and Frean (2000), minimize A, (f)
using gradient descent algorithms. [We remark here that since # is an infinite-
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dimensional class, exact minimization of A,(f) is typically impossible, since
A, does not achieve its minimum in %. However, the infimum may be
approximated with arbitrary precision, and such an approximate minimization is
sufficient for our purposes.]

The purpose of this paper is to investigate the probability of error L(g,) of
classifiers g, = g X where fn is obtained by (approximately) minimizing a convex
cost functional A, (f) over f € . The performance, of course, depends on the
choice of ¢. The first main result of this paper (Theorem 1) shows that ¢ may be
chosen such that the probability of error L( fn) of the corresponding minimizer fn
converges, almost surely, as n — 0o, to the Bayes risk L* for all distributions
under the sole assumption that the class of all constant multiples of elements
in ¥ is dense in the class of all measurable functions, which is easily seen to
hold for some simple choices of the base class C. The cost function is chosen
from a one-dimensional family parameterized by the scale parameter A. We offer
several possible choices. The simplest choice selects A before seeing the data, as a
function of the sample size. For better performance, data-dependent regularization
may be performed, which is detailed in Section 5.

We also derive some distribution-free nonasymptotic upper bounds for the
probability of error of the classifier obtained by a regularized choice of the
cost function. These bounds offer a new and interesting interpretation of what
regularized boosting methods do: instead of minimizing the probability of error,
they minimize the best Chernoff bound on this probability (see Section 6).

3. Consistency. As indicated in the Introduction, the main focus of this
paper is on classifiers g I where the estimator fAn minimizes the empirical
quantity A, (f) based on some convex cost function ¢. We begin this section by
defining a prototype regularization procedure for the choice of the cost function
and prove that the resulting classifier has a probability of error converging to the
Bayes risk, almost surely.

To this end, let ¢ : R — R be a differentiable strictly increasing strictly convex
function such that ¢ (0) = 1, lim,_, _ ¢ (x) = 0, and introduce for all A > 0,

¢n(x) = ¢ (Ax).

Denote the empirical and expected loss functional associated with the cost
function ¢; by A} and A%, that is,

AN = Zmz (f)) and  AM(f) =Edi(Z(f)).

i=1

Note that on [—1, 1] the function ¢; is Lipschitz with constant A¢’(1). If A =1,
we simply write A, (f) and A(f) instead of Aﬁ(f) and A*(f). Observe that

AR =A00), AN =AOS).
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REMARK. This simple observation highlights the two different interpretations
of the scale parameter A. One way of viewing A reveals it as a parameter of the
cost function we minimize. However, minimizing A*(f) over ¥ is equivalent
to minimizing A(f) over the scaled class A - #. Though scaling the estimator
f has no effect on the corresponding classifier [performance is unchanged since
L(f)=L(f) for all A > 0], the introduction of the parameter A is indeed
a decisive step in designing consistent strategies. To understand the role of
the parameter A, consider the simple one-dimensional example when the base
classifiers have the form g(x) = 2[[y <) — 1 or g(x) = 2[[y>. — I for some c € R.
In this case the closure of the class A - ¥ is just the class of functions with total
variation bounded by 2A. As the target estimator can be wildly oscillating and
even have unbounded total variation, large values of A offer more flexibility of
approximation at the price of making the estimation problem more difficult. It
is worth noting at this point that the original ADABOOST algorithm attempts to
minimize the functional A in the linear span of C. In contrast to this, here we
consider a family of optimization problems (minimizing various functionals A*)
over the convex hull of C.

Now let fnk denote a function in £ which minimizes the empirical loss
1 n
AGEEDIACATS)
i=1
over f € ¥.

REMARK. Very often the functional A% does not achieve its minimum in % .
For convenience, we ignore this slight complication here and simply mention that
all arguments below work for any approximate minimizer, that is, if £* is such that

AL(f) = inf AL(S) +en
feF
if &, is a sequence of positive numbers converging to zero.

The simplest version of the main consistency result of the paper is the following.
The only assumption for the class C of base classifiers (apart from having a
finite VC dimension) is that the union, for all A > 0, of the classes of functions
A-F ={Af:f € F} is sufficiently rich to approximate the target function
minimizing A(f).

For the cost function ¢ we need the following properties.

ASSUMPTION 1. Let ¢ be a differentiable strictly convex, strictly increasing
cost function such that ¢ (0) =1, lim, _, o ¢ (x) =0.
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THEOREM 1. Assume that the cost function ¢ satisfies Assumption 1 and that
the distribution of (X, Y) and the class C are such that

. . _ *
Jm, Bt A =4

where A* = inf A(f) over all measurable functions f:X — R. Assume that C
has a finite VC dimension.
Let L1, Ay, ... be a sequence of positive numbers satisfying

, Inn
Ap—> 00 and Ml (My), — — 0 asn — oo,
n

and define the estimator f, = fn)‘ " € F.Then gy, is strongly Bayes-risk consistent,
that is,
lim L(gs)=L"  almost surely.

n—oo

REMARK (Universal consistency). For many base classes C, the first condi-
tion of the theorem is satisfied for all possible distributions of (X, Y). In Lemma 1
we provide a simple sufficient condition for such a universal approximation prop-
erty. In such cases, the classifier g s, is strongly universally consistent.

REMARK (Assumption on the cost function). The cost function perhaps
most widely used in practice is the exponential function, which clearly satisfies
Assumption 1. Another important cost function meeting the conditions is the
logit function log, (1 4 ¢*). For more discussion on the choice of ¢, we refer to
Section 4.

REMARK (Denseness assumption). The assumption on the class C given
by limy . infrep.5 A(f) = A* may be replaced by a simpler completeness
condition such as in the argument of Breiman (2000). Examples satisfying this
condition are the class of indicators of all rectangles, indicators of half-spaces
defined by hyperplanes or the class of binary trees with a number of terminal nodes
equal to the dimension d plus 1 [see Breiman (2000)].

We offer the following lemma to emphasize this last remark:

LEMMA 1. Let the class C be such that its convex hull contains all the
indicators of elements of By, a subalgebra of the Borel o-algebra B(R?) of R4,
such that By generates B(RY). Then

lim inf A(f)= A",
2, p 0 A

The proof relies on some properties of the minimizer of the functional A
described in Lemma 3. Details can be found in the Appendix.
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REMARK (A as a smoothing parameter). The theorem requires that the cost
function ¢, become steeper as the sample size grows, but this steepness should
grow in a controlled fashion. One may think about A as a smoothing parameter.
Larger values of A penalize misclassification in the training sample more severely,
and therefore have a tendency of overfitting. At the same time, large values of A
allow more flexibility in approximating the target function minimizing A(f).
Small values of A produce smoother estimators. In this sense, A may be regarded
as a smoothing parameter, responsible for controlling the trade-off between “bias
and variance.” As is always the case in nonparametric curve estimation, a data-
dependent choice of the smoothing parameter is desirable for better performance.
This may be performed in several different ways, one of which is discussed in
Section 5.

The proof of Theorem 1 is based on a few simple lemmas. One of the main
ingredients is the following result. It summarizes the “probabilistic” part of the
argument.

LEMMA 2. Foranyn and A > 0,

B sup |4%() — 431 = i o 204D
eF

Also, for any 6 > 0, with probability at least 1 — §,

sup |A*(f) — AL(f)] = 4)\¢/()\)\/@ gy, A7)
feF n 2n

This lemma is a variation of a result of Koltchinskii and Panchenko (2002). For
completeness, the proof is given in the Appendix.

Some basic properties of the minimizer are summarized in the following lemma.
Introduce

[ () = argmin{n(x)¢ (—a) + (1 — n(x))¢p (@)}

aeR

Lemma 3 implies that f* is well defined for all x with n(x) € (0, 1).
LEMMA 3. Let ¢ be a cost function satisfying Assumption 1. Consider either
one of the following two cases:

1) If n(X) ¢ {0, 1} almost surely, then, for each X\, there exists a unique
measurable function f; such that

AMfF) < AM(f)  forall functions f.
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Then the classifier

1, if f(x) >0,

8= -1, otherwise,

is just the Bayes classifier g*. Also, for all A > 0, Lf;" = f*.
(1) If n(X) €{0, 1} almost surely, then, for each A, we have

inf A*(f) =0.
n} f)

PROOF. Just note that

AME) = En(X) (= £ (X)) + (1 = n(X)) (£ (X))}

and therefore the function f;* defined, for all x, by

fr(x) =arg f%in{n(x)m(—ot) + (1 = n(x)) ()}
ae
minimizes A%

(1) If n(x) ¢ {0, 1}, then, since ¢ is increasing and strictly convex, the function
h(o) = n(x)op(—a) + (1 — n(x))¢, (x) has a unique minimum, and therefore
f¥(x) is well defined.

Since ¢ is differentiable, the derivative of & is zero at f,*(x), and so

¢ (=7 () _1-nkx)

¢3S () n(x)

Clearly, n(x) < 1/2 if and only if ¢} (— £;(x)) > ¢ (f;*(x)) and thus f*(x) <O,
by the strict convexity of ¢, , proving the second statement.
Finally, the equality above is equivalent to

¢(—Af ) _ 1=n()
P'(Af3(x) nx)

Since v(-) = ¢'(—-)/¢’(-) is strictly monotone, this implies that Af;* = f;" = f*.

(i) Now assume that n(X) is 0 or 1 with probability 1. Then obviously the
minimizer f;* no longer exists. We consider the sequence of measurable functions
fn taking values +n on [n(X) = 1] and —n on [n(X) = 0] and we obtain that
A*(fn) = ¢(—n). Taking the limit in n leads to inf; A*(f) =0. O

Now, before considering the fundamental Lemma 5, we need an auxiliary result
which characterizes the pointwise minimum of the cost functional as a function of
the posterior probability function . This quantity can be understood as an entropy
measure (see Section 4).
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LEMMA 4. Let ¢ be a cost function satisfying Assumption 1. Then the function
H(n) = inf (ng(—a) + (1 — N (a)),
aeR

defined for n € [0, 1], is strictly concave, symmetric around 1/2, and H(0) =
H(1)=0,H(1/2)=1.

PROOF. Concavity follows from the fact that the infimum of concave
functions is concave. By the convexity of ¢, we have (1/2)¢ (—«) + (1/2)¢p (o) >
¢ (0) with equality achieved at @ = 0, which implies H(1/2) = 1. The rest of the
properties are obvious. [

Our last key lemma, before turning to the proof of Theorem 1, shows that near
optimization of the functional A yields nearly optimal classifiers.

LEMMA 5. Let ¢ be a cost function satisfying Assumption 1. Let f, be an
arbitrary sequence of functions such that

. _ *
nhm A(fy) = A",
Then the classifier

iffn(x) >0,

w=1"
8fnX) = —1, otherwise,

has a probability of error converging to L*.

PROOF. In the proof we use the notation g, = g, . Recall that

L(gy) — L* =E[2n(X) — 1T}, (x)£¢*(X)]

[see, e.g., Devroye, Gyorfi and Lugosi (1996)]. Fix § > 0 and define S5 =
{x:n(x)ell/2—45,1/2+ 5]}. Then clearly

L(gn) — L™ =28 + P{X ¢ S5 and g, (X) # g"(X)},

and therefore it suffices to show that P{X ¢ S5 and g,(X) # ¢g*(X)} — 0 as
n — oo. Proceeding by contradiction, assume that this statement is false. Then
there exists a sequence of sets K, C Ss with liminf,_, o P{X € K,} > 0 such
that the estimators f, and f™* lead to a different prediction. By symmetry, we
may assume that, on K, f,(x) > 0 and f*(x) < 0. Note that f*(x) < 0 implies
thatn < 1/2 — 6.

The difference A(f,) — A* can be written as the expectation of a positive
function since, by definition, the optimal f*(x) is the pointwise minimizer of the
quantity () = n(x)¢(—a) + (1 — n(x))¢ (). Now write, for any set B C X,

Alg(f) = E{Ip(X)(n(X)$(— fn(X)) + (1 — n(X)) (£ (X)))}.
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We then have, for any B, A(f,) — A* > A|p(fn) — Alp(f™).
On the one hand, since the function H defined in Lemma 4 is increasing
in [0, 1/2],

Alg, (f) =E{lx, OH0(X))} < H(1/2 - §)P{K,}.

On the other hand, we note that % is a strictly convex function which has its
minimum at f*(X). Therefore, considering that f,(X) > 0 and f*(X) < 0on K,,,
we have that A (f,, (X)) > h(0) = ¢ (0) = 1. We then obtain

Alg, (fn) =E{lk, X)h(f(X))} = P{K,}.
Thus,

A(fn) — A" = Alk, (fa) = Alg, (f) = (1 = H(1/2 = 8))P{K,}.

Then because of the strict concavity of H (see Lemma 4), we have
liminf,_, o A(f;) — A* > 0, which is a contradiction. [J

PROOF OF THEOREM 1. Denote by f; an element of # which minimizes A*.
Then we may write

A()\nfn) - A* = (A()\‘ﬂfﬂ) - A()"”f)\n)) + (A()\'”f_‘)\n) - A*)
= (AM(fr) = AM(f,)) + (fei{lnffA(f) - A*)-

Clearly, the second term on the right-hand side converges to zero by the assumption
on ¥ and since A, — oo. To bound the first term, simply note that

Al (flny — AMi(fy,) < 2 sup |AM (f) — AM(F)]

[see, e.g., Devroye, Gyorfi and Lugosi (1996), Lemma 8.2]. However, by Lemma 2
this converges to zero with probability 1, by the choice of A,,.

Thus, we have that A(A, f,,) — A* with probability 1. The consistency result
now follows by Lemma 5. [

4. Cost functions. The choice of the cost function ¢ : R — R may influence
the performance of the obtained classifier. The inequality of Lemma 2 offers a
guide for choosing ¢: the smaller the quantity ¢’(1), the tighter the bound is. On
the other hand, the choice is restricted by the requirement that ¢ be convex. In
addition, Assumption 1 indicates that there are very few and elementary conditions
needed for the cost function to make a consistent algorithm.

We mention here that Assumption 1 on the cost function ¢ in the consistency
theorem may be replaced by the following alternative assumption, proposed by
Zhang (2004).



42 G. LUGOSI AND N. VAYATIS

ASSUMPTION 2. Let ¢ be a convex cost function such that the following
hold:

(1) f*(x) > 0if and only if n(x) > 1/2;
(ii) there exist a constant ¢ and s > 1 satisfying, for any 5 € [0, 1],

13 —n' < (1—H®)).

Then Theorem 1 remains true under this assumption as well. This follows
from the fact that, in the proof of Theorem 1, our Lemma 5 may be replaced
the following result of Zhang (2004). Even though Zhang’s assumption may be
more difficult to interpret than Assumption 1, it may be used to derive rates of
convergence via the lemma below. In this paper we do not investigate such rates.

LEMMA 6 [Zhang (2004)]. Under Assumption 2, for any estimator f,
L(f) — L* <2c(A(f) — A"

Below we consider some specific choices of the cost function.

ExXAMPLE 1. The standard choice in most boosting algorithms is
¢ (x) = exp(x). This function obviously satisfies Assumption 1, and therefore con-
sistency holds without any restriction on the distribution. Note that in this case

[*x) =3In(x)/(1 = n(x))) and H () =2/nT = n).
EXAMPLE 2. Another important example is

¢ (x) = logit(x) = log, (1 + exp(x))
considered in Friedman, Hastie and Tibshirani (2000). This cost function also
satisfies Assumption 1 with s = 2. Observe that f*(x) = In(n(x)/(1 — n(x))) and
H(n) =—nlogy,n — (1 —n)log,(1 — n) is the binary entropy function.

EXAMPLE 3. Another interesting alternative is

_ _ Jexp(x), if x <0,
¢(x)_1p(x)_{x+1’ if x >0.
Here f*(x) =In(n(x)/(1 —n(x))) and H(n) = n2+In((1 —n)/n)) forn <1/2.
Even though the function v is not strictly convex, it is easy to see that the proof
of Lemma 3 remains valid for this function as well, and consistency may be
established.

Further investigation of the role of the cost function has been carried out very
recently by Bartlett and co-workers (Bartlett, personal communication).

The experiments of Section 7 show little influence of the specific form of the
cost function on the performance of the algorithms for relatively small sample
sizes. These cost functions emphasize data points differently according to the size
of the margin Y f(X) (see Figure 1).
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F1G. 1. Bounding the step function with different cost functions ¢ = exp, ¥, logit.

5. Penalized model selection. In Section 3 we established the existence of
a consistent strategy based on regularized boosting methods. In these results,
the sequence of estimators f, = f,f\ " requires, for each n, minimizing the
functional Aﬁ” over ¥, for a predetermined sequence Ay, Ap,.... Of course, it
is desirable to handle the choice of A on the basis of the sample. The following
theorem shows that consistency remains true for a data-dependent regularized
choice of the smoothing parameter A.

THEOREM 2. Assume that the cost function ¢ satisfies Assumption 1 and that
the distribution of (X, Y) and the class C are such that

. . _ %
i, i AL = A"

where A* =inf A(f) over all measurable functions f:X — R. Let V denote the
VC dimension of the base class C.
For any divergent sequence \1, L2, ... of positive numbers, let

fn = argmin Aﬁ" (f,f‘k)

k>1
where
. 212 /72
R = AR + a0 | IR g [ RO
and

f,f‘k = arg min Aﬁk f).
feF
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Then gy, is strongly Bayes-risk consistent, that is,

lim L(gs)=L"  almost surely.

n—oo

The outline of the proof is the same as before. The next result replaces here
Lemma 2 and provides an oracle inequality.

THEOREM 3. For any sequence A1, A2, ... of positive numbers, let

fu = arg min AN (fi),
>

where

~ 21,2 2
AM(fy = AM(f) + 4Kk¢/()»k)\/—w + xkqs/(,\k)\/—m@”#-

Then, with probability at least 1 — 1/n?,
L(fy) < inf A™(f,)
k>1

< )+ gt [P
212 2
+ 20 o) /w}

PROOF. For a given k, consider the minimizers

[ = argmin AX(f),
feF

f;\k = arg min A ).
feF

By Lemma 2 we have, for all integers k, with probability at least 1 — §y, that for
all fe#F,

2V In(4n +2 In(1/8
AM(f) < ANE(f) +4’\"¢/(K")\/@+M¢/(/\DW.

In particular, with probability at least 1 — &y,

AP(fR) < ABF(fH) + 40 i), w + 7@ Oty 1“(;/1 %)

Now take f; to be

fo= ar%>nllin Aﬁ" (f;f‘k)
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where

i 2V In(4n +2 In(1/9

Then, if we take §y = 65/ (nZkz), we have, with probability 1 — §,
L(fy) < inf A% (f,) < inf A3 (£).

Since ApE(fi*) < AY*(f3,). by using again Lemma 2 as an upper bound on

the empirical quantity Aﬁ" ( ﬁk), and the union bound, we get, for any k, with
probability 1 — &y,

A)»k(frf‘k) < A)»k(f_k) + 8Ak¢/(kk)J@+zkk¢/(Ak)W.

Hence, we obtain that, with probability at least 1 — 4§,
L(fu) < inf A*(f)
k>1

< lggfl{A“ () + 8149 G0, [T

In((12k2)/(728))
2n '

+ 2)»k¢/()»k)\/
Set 8 = 1/n? to end the proof. [

PROOF OF THEOREM 2. We know by Theorem 3, that, for any integer k, we
have

_ o [2vim@n+2 - [n@12n2k2/72
AP(f) < A (foy) + 8 (1), % + 2040 (M) W

Moreover, by definition of f,\k, we have that

AM(fr) < AM(f).

As a consequence, taking the limit as n goes to infinity in these two inequalities,
by the Borel-Cantelli lemma we obtain

lim ig{lf AM(f) = illgf AM(f3,) almost surely.
Since, by assumption,
n;fAkk(f;k) = A%,

for some subsequence Ak, , Ak,, ..., we have that A(Ay, f,) — A™ with probabil-
ity 1. The consistency result now follows by Lemma 5. [
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REMARK. For a successful practical implementation of the regularized
boosting procedure described above, the constants of the penalty need to be fine-
tuned, an issue we do not address here. An alternative may be to hold out a small
fraction of the data and choose the A, for which the estimate of L( frf‘ ) on the
held-out sample is minimal. Consistency of this version is now a simple exercise.
The experiments described in Section 7 may provide some insight.

REMARK. Independently of this work, Zhang (2004) also considers certain
regularized boosting methods. However, Zhang is mostly concerned with the
approximation error (except in some settings not considered here) and does
not derive an oracle inequality as Theorem 3. For more recent results on the
consistency of related methods, including support vector machines, the reader is
referred to work of Bartlett and co-workers (Bartlett, personal communication),
Mannor, Meir and Zhang (2002) and Steinwart (2001).

6. Regularized boosting minimizes Chernoff bounds. The idea of combin-
ing simple classifiers via voting methods is often motivated by the argument that
if one happens to find several “independent” classifiers such that all of them have
a probability of error slightly better than random guessing, then taking a majority
vote will radically decrease the probability of error. The improvement may easily
be quantified by Chernoff bounds. The discussion we develop here was mainly
inspired by Amit and Blanchard (2001) and Blanchard (2001).

We say that the classifiers g1, ..., gn are independent if the events [g(X) = Y]
are independent. If a combined estimator f is obtained as the convex combination

LN
fZNjX:;é’j’

where g; are independent classifiers with error L(g;) < p < 1/2, then by a
classical Chernoff bound

L(f) < inf (pexp(/N) + (1 = p)exp(=2/N))".

A straightforward computation shows that the optimal value of A corresponds to

N 1—
A= —log - ,
2
p

yielding
L(f) = @VpT=p)".

The difficulty, of course, is to find, in a data-based manner, independent classifiers
with a sufficiently small probability of error. The point of this section is that
the regularized boosting method of Section 5 effectively finds such classifiers,
provided that they exist in the convex hull of the base class C.
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To support this point, recall that, assuming that the exponential cost function
is used, Theorem 3 shows that the probability of error of the classifier obtained
with f,, minimizing the penalized cost function satisfies

L(fy) < inf{ inf Eexp(—irf(X)Y) +8n’k},
1) feF

where, for each k, lim,_, yo €5,k = 0. Now it is clear that, if the sequence A
covers sufficiently densely the set of positive numbers, the upper bound is close to
the best Chernoff bound on the generalization error which is given by

inf inf Eexp(—Af(X)Y).
In particular, if the class ¥ contains N independent classifiers with probability of
error bounded by p < 1/2, then the quantity above is bounded by (2/p(1 — p))¥,
an exponentially small quantity.

Note, however, that the assumption of the presence of such independent
classifiers is very strong and it is more realistic to consider weaker concepts of
independence as in Amit and Blanchard (2001).

Moreover, when L(f) # 0, there is no hope of obtaining tight upper bounds
with this method. For instance, assuming that f(X) € {—1, +1}, we have, for a
general cost function ¢,

L(f) < E¢(—2f(X)Y) = (1 = L(f))p(=1) + L(fHp().

Indeed, this upper bound is clearly suboptimal in the case when L(f) # 0, for all
choices of A.

7. Empirical study. In this section, we propose an experimental study to
understand the extent to which the theoretical analysis can be efficiently converted
into practical strategies. Indeed, the results presented above show that there are
two elements governing the consistency of regularized boosting methods: (i) the
choice of the cost function ¢; (ii) the tuning of the smoothing parameter A.
However, universal consistency (or particular nonconsistency) can hardly be
checked empirically. Therefore, we focus here on a rather qualitative analysis
aiming at making clear that the performance of efficient model selection algorithms
is rather sensitive to the tuning of the smoothing parameter A depending on the
noise level and on the difficulty of the classification problem. Note that a similar
smoothing parameter is also studied in Biihlmann and Yu (2003) and Mason,
Baxter, Bartlett and Frean (2000). This leaves open the choice of the cost function
though we provide some discussion below.

7.1. Data sets. We have opted for a simple setting: we consider binary
classification of artificial data and the weak learners are all decision stumps.
(Decision stumps partition R? along hyperplanes orthogonal to the axes.) We used
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9 ¢

synthetic six-dimensional data from the “twonorm,” “threenorm” and “ringnorm”
distributions (see the Appendix for a description). These problems are expected
to be of increasing difficulty for the class of convex combinations obtained from
decision stumps. We considered relatively small sample sizes for the training set
(n between 100 and 500).

7.2. Algorithms. We have implemented the following algorithms described
in Mason, Baxter, Bartlett and Frean [(2000), to which we refer for detailed
descriptions and convergence properties]:

1. MARGINBOOST—Basically, the algorithm MARGINBOOST implements a
gradient descent in the linear span of the class C to minimize a criterion of
the form %Z;’:lqb(—Yif(Xi)), for f =3 ;w;g; with gj € C. In this case,
the parameter A is interpreted as the sum of the unnormalized weights (their
L1-norm). Note that the original ADABOOST algorithm is a particular case of
MARGINBOOST with exponential cost function.

2. MARGINBOOST.L|—This algorithm implements a gradient descent in the
convex hull of the class € to minimize 1 T 0(=AY; f(X))), for f =

ijjgjwithzjijI. !

7.3. Experiments. In the experiments we track generalization error and the
optimal value of the cost functional as functions of the smoothing parameter 2,
for fixed samples. More precisely, for each A, the combined classifier f* is
constructed by the MARGINBOOST. L algorithm after 300 iterations, on the basis
of training samples of size n. (The number of iterations was chosen to be 300
because in our experiments convergence seemed to take place at such values. For
larger sample sizes more iterations might be required to obtain a reliable output
for MARGINBOOST.L.) We then estimate the expected cost A)‘(fnk) and the
generalization error L( fAn)‘) on a test set of size m.

A series of experiments was run to give some indications about the following:

1. The influence of the choice of the cost function (see Figure 2)—for a small
sample size, the choice of a particular cost function appears to have a moderate
impact on the generalization error performed by the corresponding boosting
algorithm. In the sequel we report only experiments with cost function ¢ =
(see Section 4, Example 3), which seems to behave slightly better on this
particular range of sample sizes.

2. The comparison between test error and the oracle prediction (see Fig-
ures 2 and 3)—we ran these experiments many times on artificial data sets,
but also on real data, and we observed plots similar to the ones in Figure 3.
All experiments show clearly the gap between the oracle inequality proved in
Theorem 3 and the actual generalization error. This empirical evidence shows
that it is not sufficient to rely on bounds in general. However, it seems that min-
imizing the cost functional gives a good estimate of the optimal generalization



BAYES-RISK CONSISTENCY OF BOOSTING METHODS 49

1.2

0.6

FI1G. 2. Threenorm, n = 0.1, n = 100, m = 500; plots of the cost A)‘(fn)‘) (upper curves) and test
error (lower curves) for various cost functions: (a) exp; (b) logit; (c) .

error even in the case where the sample size is small. Moreover, the fact that
in many cases the generalization error remains quite flat independently of the
values of A gives some insight about why boosting algorithms behave so well in
practice. On the other hand, in almost all cases, for large values of A an increase
of the test error is present, making regularization necessary. This phenomenon
tends to be more pronounced for complex and high-noise problems. Still, we

0.9F\
08t
0.7f \

06 N

0.5F

FIG. 3. Threenorm, cost ¢ = yr,n =500, m = 1000; plots of (a) AX(f}), (b) A*(f1), (c) training
error and (d) test error.
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06F .

F1G. 4. Twonorm, cost ¢ =, n = 100, m = 500; plots of AN fn)‘) (dotted lines) and of the test
error (solid lines) for levels of noise n =10,0.1,0.2.

feel that understanding the effect of the smoothing parameter A in sample-based
model selection needs further investigation.

. Sensitivity to the level of label noise (see Figure 4)—in these experiments, the

observation vectors X; are fixed and the labels Y; are exposed to a constant
level of noise 1. The algorithms are run for different levels of label noise. The
overfitting phenomenon can be observed even for small values of A. The general
effect is that the increase of the level of label noise 7 results in a decrease of the
optimal A. Moreover, the fact that the minimizer of the cost functional tracks so
well the optimal classifier deserves to be mentioned.

Comparison with ADABOOST (see Figure 5)—we think that these experiments
provide some interesting insights into how the original ADABOOST algorithm
works. Indeed, we can give a comparison by representing ADABOOST
performance as a function of the norm of the weights in the combined
classifier (instead of the number of iterations). Note that here, in order to
make fair comparisons, we implemented ADABOOST using MARGINBOOST
with cost function ¢ = . This algorithm constructs iteratively a combined
classifier associated with the estimator fr = Zthl w; g with g, € C (step T)
and w; are positive weights (no normalization). Therefore, at each step T,
MARGINBOOST outputs some element fr of the class Ar - ¥, where Ar =
Zthl w;. In Figure 5, we keep track of the test error of MARGINBOOST along
the iterations with respect to Ar. In this simple example, it turns out that
ADABOOST constructs very quickly a classifier with the “optimal” complexity
but that the intrinsic discretization of the method (at least in its original version)
does not allow it to approximate the optimal generalization error too well.
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F1G. 5. Threenorm, cost ¢ = ¥, n = 0.1, n = 100, m = 500; plot of (a) A)‘(f,f‘) with
MARGINBOOST.L | for various A’s, (b) test error with MARGINBOOST.L | for various A’s and
(c) test error with one run of MARGINBOOST (unnormalized weights) where the test error is plotted
as a function of the sum of the weights of the combined classifier denoted by A.

APPENDIX

Proof of Lemma 1. The lemma relies on the properties of the minimizer f* of
the functional A obtained in the proof of Lemma 3.

We introduce H, = {x:|n(x) — 1/2| > «} to denote the part of the domain
where the noise level is low and H , its complementary set. We then consider the
decomposition

A* = Al (f) + Al (F).

From the properties of f* it follows that its restriction to H is measurable, with
range [—Aq, Aq], Wwhere Ay = f :“(1 /2 + «), and therefore it can be approximated
by a finite linear combination f, of indicator functions of disjoint sets from By
such that

Alg, (fa) = Al (fF) <e

for any € > 0. Moreover, by Lemma 3, the term A|g, (f*) is arbitrarily small when
a goes to 1/2. Note that A, goes to +00 as « goes to 1/2 to complete the proof.

Proof of Lemma 2. The proof of the first statement of Lemma 2 uses a standard
symmetrization argument along with the contraction principle for Rademacher
averages, just as Koltchinskii and Panchenko (2002) did in a similar setup.

STEP 1 (Symmetrization). Define the i.i.d. pairs of random variables (X}, Y}),
..., (X, Y,), where the (X/,Y/) are independent of the (X;,Y;) and have the
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same distribution as that of the pair (X, Y). Introduce also the i.i.d. symmetric
sign variables oq,...,0, (.., P{o; = —1} = P{o; = 1} = 1/2), which are
independent of all other random variables defined so far. Denote, for each f €
Z(f)=—f(X)Y/ and A’A(f) = (1/n) Y1 ¢:.(Z;(f)). Then, by a standard
symmetrization argument,

E sup |A*(f) — AX(f)| <E sup|AX(f) — A%(f)]
feF feF

n

1
=E sup |- Y (#1(Zi(f)) — $p.(Z] (f)))’

feF| 5

1 n
sup |— > 0i (¢ (Zi (f)) — $.(Z] (f)))’
i=1

feF

< 2E sup |—
feF|n

Zo, (62(Zi () — 1)’
STEP 2 (Contraction principle). The key of this step is the following version of

the “contraction principle” [see Ledoux and Talagrand (1991), pages 112 and 113].

LEMMA 7. If ¢ :R — R is a Lipschitz function such that |y (x) — ¥ (y)| <
|x — y| with ¥ (0) = 0, then

Esup| > o (Zi (f))

fli=1

<2Esup

Zaizi(f)‘~

i=1

Applying Lemma 7 with the Lipschitz function v (x) = (1/A¢’ (1)) (¢;.(x) — 1),
we obtain

1 n

E sup |A*(f) — A;(f)| < 4r¢’(ME sup _Zaizi(f)’
feF feF|Mi5
1 n

— 41’ (ME - (XD,

¢'(0) jgggngaf( )

where in the last step we used the fact that —o;Y; is a symmetric sign variable,
independent of the X; and therefore —o;Y; f (X;) has the same distribution as that
of o; f (Xi).

STEP 3 (Supremum computation). Note that the last expectation may be
rewritten as

n N
Zzwjfngj(Xi) .

i=1j=1

E sup |-
feF|n

Zo*,f(X )| = —E sup  sup sup

N>1gy,...gN€ECWL,..., WN
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The key observation is that, for any N and base classifiers g;,...,gn, the
supremum in

n

N
Zzwjaigj(xi)

i=1j=1

sup
Wi, WN

is achieved for a weight vector which puts all the mass in one index, that is, when
w; =1 for some j. (This may be seen by observing that a linear function over a
convex polygon achieves its maximum at one of the vertices of the polygon.) Thus,

> oig(Xi)

i=1

1
= —Esup
n gee

E sup
feF

1 n
=Y o f(Xi)
i3

i=

Finally, by a version of the Vapnik—Chervonenkis inequality [see Devroye and

Lugosi (2001), page 18],
- |2V log(4n + 2)
f— n 9

which completes the proof of the first statement.

> oig(Xi)

i=1

1
—E sup
n eee

The second statement follows immediately by observing that, by McDiarmid’s
bounded difference inequality [see, e.g., Devroye, Gyorfi and Lugosi (1996),
Theorem 9.2, page 136], for all ¢ > 0,

P{ sup |A*(f) — AL(f)| > E sup |A*(f) — AL(f)] +e}
(7‘1) feF feF

ceol (i)

which completes the proof of Lemma 2.

Description of data sets. The following data generators have now become a
reference as benchmarks in classification [they were introduced by Breiman; see,
e.g., Breiman (1997a)]:

1. TWONORM—d-dimensional two-class data with X ~ N (m, I) for class (+1)
and X ~ N (my, ) for class (—1), where m; = (a,...,a),my=(—a, ..., —a)
and a = 2//d;

2. THREENORM—d-dimensional two-class data with X ~ %N (mi;, D +
%,N(mz,l) for class (+1), and X ~ N (m3,I) for class (—1), where m| =
(a,...,a),my=(—a,...,—a),m3=(a, —a,a,—a,...,—a) anda=2/\/3;

3. RINGNORM—d-dimensional two-class data with X ~ N (0, 4I) for class (+1)
and X ~ N (m1,]) for class (—1), where m| = (a,...,a),and a = 1/\/6_1.
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