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EFFICIENT AND ADAPTIVE NONPARAMETRIC TEST
FOR THE TWO-SAMPLE PROBLEM

BY GILLES R. DUCHARME AND TERESA LEDWINA

Université Montpellier II and Polish Academy of Sciences

The notion of efficient test for a Euclidean parameter in a semiparametric
model was introduced by Stein [Proc. Third Berkeley Symp. Math. Statist.
Probab. 1 (1956) 187–195]. Such tests are locally most powerful for a
wide class of infinite-dimensional nuisance parameters. The first formal
application of this notion to a suitably parametrized two-sample problem
was provided by Hájek [Ann. Math. Statist. 33 (1962) 1124–1147]. However,
this and subsequent solutions appear to be not well-suited for practical
applications. This article aims to show that an adaptive two-sample test
introduced recently by Janic-Wróblewska and Ledwina [Scand. J. Statist. 27
(2000) 281–297] is locally most powerful under a more realistic setting.

1. Introduction. Efficient nonparametric tests were introduced by Stein
(1956) for situations where, as expressed by Bickel, Klaassen, Ritov and Wellner
(1993), “. . .we believe we have enough knowledge to model some features of the
data parametrically but are unwilling to assume anything for other features.”

One such situation is the two-sample pure shift model that is typically phrased
as follows. We have two independent samples X1, . . . ,Xm and Xm+1, . . . ,XN . We
assume

Xi ∼
{

F(·), i = 1, . . . ,m,
F(· − �), i = m + 1, . . . ,N ,

(1.1)

where F is an unknown absolutely continuous distribution function possessing a
differentiable density f and � ∈ R. The testing problem is

H0 :� = 0 against H1 :� �= 0(1.2)

or
H0 :� = 0 against H2 :� > 0.(1.3)

In the context of (1.1) and (1.2) [or (1.3)], an efficient test according to Stein’s
notion of efficiency should have the same asymptotic power [under � = �N =
O(N−1/2) as N → ∞] when F is unknown as the best test for (1.2) [(1.3)] when
F is known. Note that to get asymptotic results in a standard form, one considers
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an even more specialized pure shift model

Xi ∼




F

(
· + �

√
1 − ηN

ηN

)
, i = 1, . . . ,m,

F

(
· − �

√
ηN

1 − ηN

)
, i = m + 1, . . . ,N ,

(1.4)

where ηN = m/N and the asymptotic analysis is again considered under � =
�N = O(N−1/2) as N → ∞.

Hájek (1962) provided the first formal efficient two-sample test. The con-
struction of his test is related to the estimation of the score generating function
f ′(x)/f (x). However, due to its very slow rate of convergence, this procedure has
turned out to be of little practical value. Many researchers have proposed different,
data-dependent approaches for choosing an adequate score generating function.
In general, such choices can be interpreted as selecting a model for the data at
hand. Therefore, the resulting test procedures have been called adaptive. For nice
reviews of adaptive methods for (1.2) and (1.3), see Hušková (1984), Hogg and
Lenth (1984) and references therein [see also Hušková and Sen (1985) for an al-
ternative development].

The pure shift model (1.1) is, in many practical situations, unrealistic.
Unfortunately, efficient and/or adaptive procedures derived under (1.1) break down
when applied to more realistic situations. For evidence and some discussion,
see Behnen (1975) and Behnen and Neuhaus (1989). Thus several investigators
[Behnen (1975, 1981), Behnen and Neuhaus (1983), Neuhaus (1987), Bajorski
(1992) and Fan (1996)] have attempted to provide sensitive two-sample tests
for more realistic setups than (1.1). In particular, the test proposed by Neuhaus
(1987) exhibits nice empirical power behavior. However, none of the above tests
has been shown to be asymptotically efficient. More recently, Janic-Wróblewska
and Ledwina (2000) proposed a new adaptive two-sample test which, in an
extensive simulation study, has been shown to compare nicely with many other
tests, including Neuhaus’ (1987) test.

The aim of the present article is to prove that the test proposed by Janic-
Wróblewska and Ledwina (2000), hereafter referred to as the J-WL test, is efficient
under a general nonparametric two-sample model. To explain our result more
precisely, we now describe the model under consideration and how Stein’s notion
of efficiency is adapted to this setup.

We assume throughout that we have two independent samples,

Xi ∼
{

F(·), i = 1, . . . ,m,
G(·), i = m + 1, . . . ,N ,

where F and G are unknown continuous distribution functions. The testing
problem is

H0 :F = G against H1 :F �= G.(1.5)
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A key point in our construction is a reparametrization of (1.5) that was
introduced by Behnen (1981) and successfully exploited by Neuhaus (1987),
among others. A similar reparametrization was used in some unpublished reports
by Parzen [cf. Eubank, LaRiccia and Rosenstein (1987), Sections 2.1 and 4.1]. To
write this reparametrization, some auxiliary notation is needed. Set

H(x) = ηNF (x) + (1 − ηN)G(x),(1.6)

where ηN = m/N . We shall assume throughout that ηN → η ∈ (0,1) as N → ∞.
Set also Ui = H(Xi), i = 1, . . . ,N . Each of these random variables has a density
with respect to Lebesgue’s measure λ on [0,1]. In particular,

Ui ∼
{

p1(u) = 1 + (1 − ηN)b̄(u), i = 1, . . . ,m,
p2(u) = 1 − ηNb̄(u), i = m + 1, . . . ,N ,

(1.7)

where, under our assumptions, it follows from (1.8) of Neuhaus (1987) that b̄ is a
bounded function from L2([0,1], λ) [L2(λ) for short] satisfying

∫
b̄(u) dλ(u) = 0.

The connection between b̄ and (F,G) is given by b̄ = f̄ − ḡ, where f̄ =
d(F ◦ H−1)/dλ and ḡ = d(G ◦ H−1)/dλ. We have b̄ ≡ 0 ⇔ F ≡ G ⇔ p1 ≡
p2 ≡ 1 so that b̄ contains full information on whether F and G obey H0 or H1. In
this setting, H is an unknown nuisance parameter.

To derive local asymptotic results, we require a setup similar to (1.4) and will
consider the following type of density for U1 and UN , respectively,

p1N(u) = 1 + �N

√
1 − ηN

ηN

a(u),

p2N(u) = 1 − �N

√
ηN

1 − ηN

a(u),

where a(·) is a bounded function such that
∫

a(u) dλ(u) = 0 while �N → 0 as
N → ∞. The case �N = O(N−1/2) and a(·) = b̄(·) corresponds to Neuhaus’
(1982) H0-contiguous alternatives further exploited in Neuhaus (1987).

Without loss of generality, we will assume
∫

a2(u) dλ(u) = 1. Moreover, to give
a limpid presentation of our result, we shall restrict attention to the alternatives

p1N(u) = 1 + ρ

Nξ

√
1 − ηN

ηN

a(u),

p2N(u) = 1 − ρ

Nξ

√
ηN

1 − ηN

a(u),

(1.8)

where ρ > 0, ξ ∈ (0,1/2] while

a(·) ∈ A =
{
a(·)

∣∣∣ sup
u∈[0,1]

|a(u)| < ∞,

∫
a(u)dλ(u) = 0,

∫
a2(u) dλ(u) = 1

}
.
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In (1.8), the function a(·) describes a type of deviation from the null U [0,1]
density while ρ regulates the distance from this null density.

We aim to prove that, under local alternatives (1.8) with any ρ > 0 and almost
arbitrary a(·) ∈ A, the J-WL test has the same asymptotic power as the Neyman–
Pearson test for testing p1N(·) ≡ p2N(·) ≡ 1 against (1.8). This corresponds to a
nonparametric version of Stein’s postulate. However, there is one basic difference
between Stein’s approach and the one considered here: we are not considering
ξ = 1/2, but instead ξ ∈ (0,1/2). There are two reasons for this choice. The
first one is technical. Under ξ = 1/2, the limiting distribution of the J-WL test
statistic is the same, except in some special cases, as under the null hypothesis, and
thus no conclusion about H0,H1 can be drawn. For a discussion, see Inglot and
Ledwina (2001a) and our comments in Section 2. The second reason is qualitative
and can be phrased as follows. First, let us see what are the consequences of
taking ξ < 1/2. To have, under such alternatives, asymptotic power converging
to some value in (0,1), the “classical” approach of fixing at some given value the
significance level α, finding critical values and then computing powers must be
abandoned. Instead, we must first find critical values tending to ∞ as N → ∞ such
that power under (1.8) converges to a β ∈ (0,1) and then compute the resulting
significance levels. These will drift toward 0 at a rate related to the value of ξ .
To describe an efficiency notion under such a setup, consider (1.8) with ξ < 1/2
fixed, ρ > 0 and all a(·) belonging to a given subset of A. Denote by PN the
resulting class of alternatives. We shall say that a test ϕN for H0 against H1 is
asymptotically efficient under PN if for any given density from PN , the asymptotic
power of ϕN converges to a β ∈ (0,1) and is the same as the asymptotic power of
the Neyman–Pearson test for testing p1N(u) ≡ p2N(u) ≡ 1 against this alternative
from PN . Simultaneously, both tests should have the same type I error probabilities
αN = αN(ξ,ρ) tending to 0 as N → ∞. For more details, see Section 4.

A by-product of such an efficiency notion is that such a way of comparing
tests is more appealing than the traditional approach in the sense that one has
the guarantee that increasing the information contained in the sample increases
the precision of the ensuing inference. Namely, the compared tests have the same
asymptotic power (separated from 0 and 1) and the same (for each N ) probability
of the first kind of error vanishing as N → ∞. Note also that there is evidence
that in applying such an approach to some classical tests for which the standard
asymptotics works as well, one is getting more informative results than those
derived under ξ = 1/2 [see Inglot, Kallenberg and Ledwina (2000) and Inglot and
Ledwina (2001a)].

Note also that Oosterhoff (1969) and Oosterhoff and van Zwet (1972) were the
first to consider optimality of tests in the situation where, basically, asymptotic
power is separated from 0 and 1 and the significance level tends to 0 as the sample
size grows. Further results can be found in Kallenberg (1978), Inglot, Kallenberg
and Ledwina (1998, 2000) and Inglot and Ledwina (2001a, b).
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This article is organized as follows. In Section 2, we present the adaptive
J-WL test. In Section 4, we describe explicitly how the critical values of this
test as well as the Neyman–Pearson test have to be chosen and what are the
related probabilities of the first kind of error. The basic tools needed to get this are
central limit theorems (CLTs) for both statistics derived under (1.8) and moderate
deviations derived under H0, which are presented in Section 3. The basic result on
efficiency of the J-WL test is stated and proved in Section 4. The auxiliary results
from Section 3 are proved in Section 5.

We close this section by emphasizing that the results we are presenting can be
generalized in many directions. However, our primary goal is to explain and justify
the efficiency of the J-WL test in the simplest possible setting. The technical tools
we have developed to this end are adjusted to this goal.

2. Adaptive test. To define the test statistic, several auxiliary notations are
needed. Let Ri, i = 1, . . . ,N , be the rank of Xi in the pooled sample X1, . . . ,XN .
Set n = N − m and define

cNi =
√

mn

N




1

m
, as i = 1, . . . ,m,

−1

n
, as i = m + 1, . . . ,N .

(2.1)

Let φ0(u) ≡ 1, φ1(u),φ2(u), . . . be the orthonormal Legendre polynomials on
[0,1]. Given k = 1,2, . . . , define

Tk =
k∑

j=1

{
N∑

i=1

cNiφj

(
Ri − 0.5

N

)}2

.(2.2)

Throughout the article, {d(N)} will denote a nondecreasing sequence of integers
such that d(N) → ∞ as N → ∞. Define the selection rule

S2 = min
{
k : 1 ≤ k ≤ d(N) :Tk − k logN ≥ Tj − j logN,

1 ≤ j ≤ d(N)
}
.

(2.3)

The data driven, or adaptive in the terminology of the present article, test
for H0 against H1 rejects H0 for large values of TS2. For an interpretation, a
relationship to model selection, basic properties and an extensive simulation study,
see Janic-Wróblewska and Ledwina (2000). Here we discuss three aspects of
these findings. First, note that by Theorem 1 of Janic-Wróblewska and Ledwina
(2000), S2 → 1 in probability under H0. This immediately implies that under (1.8)
with ξ = 1/2, the same takes place. Hence, under such contiguous alternatives,
TS2 behaves asymptotically as T1, which is the squared Wilcoxon rank-sum
statistic. The simulation results reported on Figures 1–3 of Janic-Wróblewska
and Ledwina (2000) show, however, that the finite sample performances of TS2
and T1 are completely different. This indicates that such a local approach can
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be noninformative. The second aspect of their simulation study which is worth
mentioning is that the comparison density b̄ introduced in (1.7) has, for a very
large range of typical probability models for both samples, an expansion in the
system 1, φ1, φ2, . . . with few large Fourier coefficients. Moreover, these large
coefficients are essentially concentrated on the first few terms of the expansion.
Finally, observe that the empirical critical values and powers are very stable with
respect to the choice of d(N) [see Table 1 and Figure 4 of Janic-Wróblewska
and Ledwina (2000)]. For more evidence on the empirical behavior of similar
constructions, see Kallenberg and Ledwina (1997). The above remarks motivate
the present study as well as the scope of the basic Theorem 4.1.

We close this section by noting that Albers, Kallenberg and Martini (2001) have
elaborated a counterpart of TS2 for testing H0 against some restricted class of
alternatives.

3. Notation and auxiliary results. Recall that we are considering the trans-
formed observations Ui = H(Xi) with H given in (1.6). The joint distributions
of U1, . . . ,UN under (1.8) and H0 will be denoted by PN and P0, respectively.
Obviously under H0, U1, . . . ,UN are i.i.d., each obeying the uniform distribution
on (0,1).

Given a bounded function a(·) ∈ A, set

‖a‖ =
{∫

a2(u) dλ(u)

}1/2

,

‖a‖∞ = sup
u∈[0,1]

|a(u)|,

âj =
∫

a(u)φj (u) dλ(u),

â = (â1, â2, . . .),

|â|k =
{

k∑
j=1

â2
j

}1/2

, k = 1,2, . . . .

(3.1)

With this notation, we state the following results regarding the behavior of TS2.

THEOREM 3.1. Let PN be defined via (1.8) with ξ ∈ (0,1/2) and ρ > 0.
Assume that d(N) → ∞,N−1[d(N)]20 → 0,N−2ξ [d(N)]9 → 0 and Nξ−1/2 ×
[d(N) logN ] → 0 as N → ∞. Then

lim
N→∞PN

(
TS2 − ρ2N1−2ξ |â|2d(N)

2ρN1/2−ξ |â|d(N)

≤ x

)
= 
(x), x ∈ R,(3.2)

where 
(·) is the cumulative distribution function of a standard normal random
variable.
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THEOREM 3.2. Let xN ∈ R+ be such that xN = O(N−δ) for some δ ∈
(1/4,1/2). Assume d(N) → ∞ in such a way that limN→∞ xε

N [d(N)]3 = 0 for
some ε ∈ (0,1) and Nx2

N ≥ d(N) for N sufficiently large. Then for any η ∈ [ε,1),

P0
(
TS2 ≥ Nx2

N

)
≤ exp

{−1
2Nx2

N + 2Nx
2+η
N [d(N)]3 + d(N)

[
log
(
Nx2

N

)]}(3.3)

for all sufficiently large N .

Set now

e
(0)
iN = EP0

(
log piN(U)

)
, v2

iN = EP0

(
log2 piN(U)

)
, i = 1,2,

and v2
N = mv2

1N +nv2
2N , and define a standardized version of the Neyman–Pearson

test statistic for testing H0 against (1.8) by

V
(1)
N = 1

vN

{
m∑

i=1

log p1N(Ui) − me
(0)
1N +

N∑
i=m+1

log p2N(Ui) − ne
(0)
2N

}
.

The corresponding results about the behavior of V
(1)
N are as follows.

THEOREM 3.3. Under PN of (1.8) with ξ ∈ (0,1/2) and ρ > 0, we have

lim
N→∞PN

(
V

(1)
N − √

Nb(1)(PN) ≤ x
)= 
(x), x ∈ R,(3.4)

where b(1)(PN) is explicitly given by (5.25) and satisfies b(1)(PN) = ρN−ξ +
O(N−2ξ ). In particular, for ξ ∈ (1/4,1/2), it holds that

lim
N→∞PN

(
V

(1)
N − N1/2−ξρ ≤ x

)= 
(x), x ∈ R.

THEOREM 3.4. Let xN ∈ R+ be such that xN → 0 and Nx2
N → ∞. Set

σ 2
N = VarP0 V

(1)
N . Then

P0
(
V

(1)
N ≥ √

NxN

)= exp
{
−Nx2

N

2σ 2
N

+ O

(
Nx3

N

σ 3
N

)
+ O

(
log
(

Nx2
N

σ 2
N

))}
.(3.5)

In particular, if xN = O(N−ξ ) with ξ ∈ (1/4,1/2), then

P0
(
V

(1)
N ≥ √

NxN

)= exp
{
−Nx2

N

2
+ o(N1/2−ξ )

}
.(3.6)
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4. On efficiency of adaptive test. The techniques we are using enable us to
get efficiency results for ξ ∈ (1/4,1/2) (see Remark 4.2). Therefore, in this section
we restrict consideration to this case. By Theorem 3.3 we have

lim
N→∞PN

(
V

(1)
N − N1/2−ξρ ≤ x

)= 
(x), x ∈ R.

Consequently, to have local power of the test rejecting for large values of V
(1)
N

lying in (0,1), we define a critical region as

C(1)
N,k1

= {V (1)
N − N1/2−ξρ ≥ k1

}
, k1 ∈ R.

Then PN(C(1)
N,k1

) → 1 − 
(k1). The related probability of first kind of error is

given by P0(C
(1)
N,k1

). By (3.6) of Theorem 3.4, we have

P0
(
C(1)

N,k1

)= exp
{
−ρ2

2
N1−2ξ − k1N

1/2−ξρ + o(N1/2−ξ )

}
.(4.1)

This gives the rate at which the size of C(1)
N,k1

vanishes as N → ∞.
We will apply a similar argument to TS2. For ease of presentation, we focus

herein on the special case where d(N) = O(log N) and the function a(·) appearing
in (1.8) has a finite Fourier expansion in the system 1, φ1, φ2, . . . . This means that
for some K ≥ 1,

a(u) =
K∑

j=1

âjφj (u),

where âj is defined in (3.1). The more general situation is briefly discussed in
Remark 4.1.

Under the above restrictions, Theorem 3.1 reads as

lim
N→∞PN

(
TS2 − ρ2N1−2ξ

2ρN1/2−ξ
≤ x

)
= 
(x), x ∈ R.

Define a critical region for this standardized version of TS2 by

C(2)
N,k2

=
{

TS2 − ρ2N1−2ξ

2ρN1/2−ξ
≥ k2

}
, k2 ∈ R.

Then PN(C(2)
N,k2

) → 1 − 
(k2) and the related probability of first kind of error is
given by

α
(2)
N = α

(2)
N (ξ, ρ) = P0

(
C(2)

N,k2

)
.

Obviously, to fulfill the first postulate of our efficiency notion presented in the
Introduction, that is, to guarantee that the two tests yield the same asymptotic
power, one must have k1 = k1(N) = k2 + oN , where {oN } stands for an arbitrary
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real sequence tending to 0 as N → ∞ [see (4.3) below]. To fulfill the second
postulate of efficiency, one has to show that there exists such a sequence {oN } for
which α

(2)
N = P0(C

(1)
N,k2+oN

), that is, for each N the tests with critical regions C(2)
N,k2

and C(1)
N,k2+oN

have the same size [see (4.2)].

THEOREM 4.1. Assume PN obeys (1.8) for some ξ ∈ (1/4,1/2), ρ > 0 and
arbitrary a(·) having a finite expansion in the system 1, φ1, φ2, . . . . Suppose
d(N) → ∞ and d(N) = O(log N). Then, for any k2 ∈ R, there exists a real
sequence {oN }, oN → 0 as N → ∞, such that for tests with critical regions C(2)

N,k2

and C(1)
N,k2+oN

it holds for N sufficiently large that

P0
(
C(2)

N,k2

)= P0
(
C(1)

N,k2+oN

)
= exp

{
−ρ2

2
N1−2ξ − k2ρN1/2−ξ + o(N1/2−ξ )

}(4.2)

and

lim
N→∞PN

(
C(2)

N,k2

)= lim
N→∞PN

(
C(1)

N,k2+oN

)= 1 − 
(k2).(4.3)

PROOF. The argument patterns the proof of Theorem 5.1 in Inglot, Kallenberg
and Ledwina (1998) and Theorem 3.3(3) in Inglot and Ledwina (2001a). We
provide it here to give an idea of this argument and to indicate possibilities of
some variants of Theorem 4.1.

Take x2
N = N−2ξρ2 + 2ρN−1/2−ξk2. Then x2

N = N−2ξρ2[1 + o(1)] and, by
the definition, α

(2)
N = P0(TS2 ≥ Nx2

N). Applying Theorem 3.2 with η = ε and
ε > (1/2 − ξ)/ξ , one gets

α
(2)
N ≤ exp

{−1
2N1−2ξρ2 − k2ρN1/2−ξ + o(N1/2−ξ )

}
.(4.4)

To get information on the relationship between k1 and k2, take now x̄N =
b(1)(PN)/2 = ρN−ξ /2 + O(N−2ξ ) and apply (3.6). This yields

P0
(
V

(1)
N ≥ √

Nx̄N

)= exp
{−1

8N1−2ξρ2 + o
(
N1/2−ξ

)}
.(4.5)

Since for large N, (4.5) is greater than the right-hand side of (4.4), we infer that
there exists k1 = k1(N) such that k1(N) > −√

Nx̄N and

P0
(
V

(1)
N − 2

√
Nx̄N ≥ k1(N)

)
= α

(2)
N

= P0
(
V

(1)
N − √

Nb(1)(PN) ≥ k1(N)
)
.

(4.6)

Hence, we have the critical region C(1)
N,k1(N) of level α

(2)
N . Moreover, by Theo-

rem 3.3, PN(C(1)
N,k1(N)) − [1 − 
(k1(N))] → 0. Hence, for sufficiently large N , it
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has to hold that

k1(N) ≤ k2 + o(1),(4.7)

as C(1)
N,k1(N) corresponds to the most powerful test. Now, we apply Theorem 3.4 to

the last expression in (4.6). Take x∗
N = N−1/2k1(N) + b(1)(PN) = N−1/2k1(N) +

N−ξρ + O(N−2ξ ). By (4.7) and k1(N) > −√
Nx̄N,x∗

N = O(N−ξ ). Hence, by
(4.6), (3.6) and the assumption ξ ∈ (1/4,1/2),

P0
(
V

(1)
N ≥ √

Nx∗
N

)
= α

(2)
N

= exp
{
−1

2
N1−2ξρ2 − ρk1(N)N1/2−ξ − [k1(N)]2

2
+ o(N1/2−ξ )

}
.

(4.8)

To get further information on k2 and k1(N), compare the right-hand side of (4.8)
with the bound in (4.4). This yields the inequality

1
2Nξ−1/2[k1(N)]2 + k1(N)ρ − ρk2 + o (1) ≥ 0.(4.9)

The minimum of the parabola in (4.9) is attained at −N1/2−ξρ and, by the
previous argument, k1(N) ≥ −N1/2−ξρ/2 for large N . Hence we get k1(N) ≥
k2 + o(1). This and (4.7) prove the existence of a sequence {oN } that satisfies both
requirements of the theorem. �

REMARK 4.1. The assumption of a finite expansion for a(·) allows us to skip
the term |â|2d(N) in the definition of C(2)

N,k2
. Another way to reach the same result is

to assume that |â|2d(N) is sufficiently close to |â|2∞ = 1. For this, one can use some

results on the rate of decay of 1−|â|2d(N) for smooth functions given in Barron and
Sheu [(1991), Section 7]. However, one then has to consider d(N) increasing faster
than O(log N) and, by the methods given here, optimality can be established only
for ξ in a subinterval of (1/4,1/2), depending on the rate of growth of d(N) and
the smoothness of a(·). For an illustration of this in the case of testing uniformity,
see Inglot and Ledwina [(2001a), Theorem 3.1(3)]. One can also leave |â|2d(N) in

the definition of C(2)
N,k2

, but then, when comparing the resulting α
(2)
N and α

(1)
N , some

information on the magnitude of |a|d(N) is needed or, alternatively, we must allow
the size of the test to depend on |â|d(N). For an example of this in the case of
testing uniformity, see Inglot, Kallenberg and Ledwina [(1998), Theorem 5.1].

The empirical behavior of S2 under moderate sample sizes indicates that
TS2 can detect, with high probability, alternatives corresponding to b̄ with large
first few Fourier coefficients. In this context, it is worthwhile to observe that the
results collected on pages 1365–1366 of Barron and Sheu (1991) show that smooth
functions from L2(λ) can be very precisely approximated by linear combinations
of the first few Legendre polynomials. Consequently, the setup of Theorem 4.1 is
most natural for the present application.
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REMARK 4.2. The condition ξ ∈ (1/4,1/2) in Theorem 4.1 is assumed to
get the desired result without further technical work. Indeed, observe first that
it is possible to have a more precise expression for (3.5) [see (5.27) and Book
(1976)]. However, getting an exponential inequality more precise than (3.3) seems
to be far more complicated. Therefore, when equating α

(1)
N and α

(2)
N , we are

comparing as few terms as possible. From (4.4), (4.8) and (4.9) it is seen that we
can achieve the same asymptotic powers and the same rates of decay of sizes when
the remainders arising in (4.4) and (4.8) are indeed o(N1/2−ξ). For this, we need to
assume ξ > 1/4. Obviously we cannot exclude that another line of argument could
give a similar result for ξ ≤ 1/4. In this context, note that better results can be
achieved under another notion of optimality. Namely, one can consider optimality
(or efficiency) in the sense of asymptotic equality of sample sizes of two tests with
powers converging to a β ∈ (0,1) and levels tending to 0 at the same rate. Such
a notion, called intermediate efficiency, was introduced by Kallenberg (1983) and
extended by Inglot (1999). It has been applied by Inglot and Ledwina (1996) and
Inglot (1999) to prove optimality of some data-driven tests for uniformity. For
an easy exposition, see Inglot and Ledwina (2001a). Such an approach could be
applied here leading, under d(N) = O(log N), to the optimality of TS2 for any
ξ ∈ (0,1/2).

5. Proofs.

PROOF OF THEOREM 3.1. The proof of Theorem 3.1 will be given in steps.
Two of these are stated below as separate theorems. They concern the behavior
of S2 and a CLT for Tk under PN . The proofs of these results exploit some ideas
developed in Inglot and Ledwina (1996) coupled with Hájek’s (1968) projection
method.

We start by introducing some auxiliary rank statistics and their approximation
as proposed by Hájek (1968). Throughout the rest of the article, we omit in the
integrals the notation λ for the Lebesgue measure. For any t = 1,2, . . . , set

St =
N∑

i=1

cNiφt

(
Ri

N + 1

)
, st = EPN

St , s = (s1, s2, . . .)(5.1)

and introduce the independent random variables Zit , i = 1, . . . ,N , according to
formula (4.28) of Hájek (1968). In our application, his Xi are replaced by our
Ui = H(Xi), his ci correspond to our cNi of (2.1) and instead of his Fi(x), we
have

F1N(x) =
∫ x

0
p1N(u) du, i = 1, . . . ,m,

F2N(x) =
∫ x

0
p2N(u) du, i = m + 1, . . . ,N,
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where p1N(u) and p2N(u) are given in (1.8). Consequently, N−1∑N
i=1 FiN(x) = x

and we have

Zit =




−cN1

∫ 1

0

[
I (Ui ≤ x) − F1N(x)

]
φ′

t (x) dF2N(x),

as i = 1, . . . ,m,

−cNN

∫ 1

0

[
I (Ui ≤ x) − F2N(x)

]
φ′

t (x) dF1N(x),

as i = m + 1, . . . ,N,

(5.2)

where I (A) denotes the indicator function of the event A. By (4.26) of Hájek
(1968) we get

EPN

(
St − st −

N∑
i=1

Zit

)2

≤ M(φt)N
−1,(5.3)

where, by pages 339 and 340 of Hájek (1968) and the relationships [see Sansone
(1959)] ‖φ′

t‖∞ = c1t
5/2,‖φ′′

t ‖∞ = c2t
9/2 for some absolute constants c1 and c2,

we have

M(φt) ≤ ct18(5.4)

for some positive constant c. Moreover, (5.2) easily yields

Zit = cNi

[
φt(Ui) + ρN−ξ t5/2O(1)

]
, i = 1, . . . ,N,(5.5)

where O(1) stands for a bounded everywhere random variable.
Now we define a deterministic counterpart to S2 of (2.3) by

�(N) = min
{
k : 1 ≤ k ≤ d(N), |s|2k − µ2k logN ≥ |s|2j − µ2j logN,

j = 1, . . . , d(N)
}
,

(5.6)

where s is defined in (5.1), |s|2k =∑k
j=1 s2

j and µ > 1 is a constant defined in the
proof of the following theorem.

THEOREM 5.1. Let PN be defined via (1.8) with ρ > 0 and ξ ∈ (0,1/2), and
assume that N−1[d(N)]20 → 0 with N−2ξ [d(N)]5 → 0. Then

PN

(
S2 < �(N)

)→ 0 as N → ∞.

PROOF. For simplicity, write � instead of �(N). Moreover, for any real
sequence x = (x1, x2, . . . ) and any 1 ≤ j < k, set

|x|jk =
{

k∑
t=j+1

x2
t

}1/2

.(5.7)
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Observe now that (2.2) and (2.3) yield

PN(S2 < �) ≤
�−1∑
j=1

PN

(
T� − Tj ≤ (� − j) log N

)
.(5.8)

Put πj = PN(T� − Tj ≤ (� − j) logN). Definition (5.6) implies |s|j� ≥ µ ×√
(� − j) logN for j = 1, . . . , �. This together with the triangle inequality implies

πj ≤ PN

({
�∑

t=j+1

[
N∑

i=1

cNiφt

(
Ri − 0.5

N

)
− st

]2}1/2

≥ (µ − 1)
√

(� − j) log N

)
.

(5.9)

The rest of the proof consists of three steps. First, we approximate
∑N

i=1 cNi ×
φt ((Ri − 0.5)/N) by St . Then, to St − st we apply Hájek’s approximation∑N

i=1 Zit . Finally, to estimate the tails of
∑N

i=1 Zit , we apply Yurinskii’s (1976)
inequality.

Throughout, we use c to denote various positive constants, the values of which
might change from line to line. By (5.9),

πj ≤ PN

({
�∑

t=j+1

[
N∑

i=1

cNiφt

(
Ri − 0.5

N

)
− St

]2}1/2

≥ 1

2
(µ − 1)

√
(� − j) log N

)

+ PN

({
�∑

t=j+1

[St − st ]2

}1/2

≥ 1

2
(µ − 1)

√
(� − j) logN

)
.

Since |φt (x) − φt(y)| ≤ ct5/2|x − y|, ηN → η ∈ (0,1) and [d(N)]20 = o(N), the
first component in the above sum is 0 for N large enough.

Set yj = 1
2 (µ − 1)

√
(� − j) log N . By (5.8), (5.9) and the above, for N large

enough,

PN(S2 < �) ≤
�−1∑
j=1

PN

({
�∑

t=j+1

[St − st ]2

}1/2

≥ yj

)

≤
�−1∑
j=1

�∑
t=j+1

PN

([
St − st −

N∑
i=1

Zit

]2

≥
[

yj

2
√

d(N)

]2
)

+
�−1∑
j=1

PN

({
�∑

t=j+1

[
N∑

i=1

Zit

]2}1/2

≥ 1

2
yj

)
.

(5.10)

Markov’s inequality, (5.3) and (5.4), the definition of yj and the assumption
N−1[d(N)]20 → 0 imply that the first component of (5.10) tends to 0 as N → ∞.
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Introduce now the vectors Zi (�) = (Zi1, . . . ,Zi�) and Z = ∑N
i=1 Zi (�). By

construction, Z1(�), . . . ,ZN(�) are independent with EPN
Zi(�) = 0 [see Hájek

(1968), page 340]. The second component of (5.10) can be rewritten as

�−1∑
j=1

PN

(|Z|j� ≥ 1
2yj

)
.(5.11)

To estimate the terms in (5.11), we apply Yurinskii’s [(1976), Corollary, page 491]
inequality. To this end, observe that by (5.5) and the assumption N−2ξ [d(N)]5→0,
we get, for large N ,

EPN

(|Zi (�)|j�

)2 ≤
{

2c2
N1(� − j), i = 1, . . . ,m,

2c2
NN(� − j), i = m + 1, . . . ,N.

Analogously, for large N ,

|Zi (�)|j� ≤

 c
{
c2
N1(� − j)�

}1/2
, i = 1, . . . ,m,

c
{
c2
NN(� − j)�

}1/2
, i = m + 1, . . . ,N .

Set H = c[max{|cN1|, |cNN |}]d(N), b2
1 = · · · = b2

m = c2
N1(� − j), b2

m+1 =
· · · = b2

N = c2
NN(� − j). Applying Yurinskii’s (1976) inequality with this H and

these b2
i ’s, we get B2

N = b2
1 + · · · + b2

N = (� − j) and

PN

(
|Z|j� ≥ 1

2
yj

)
≤ 2 exp

{
− 1

16
(µ − 1)2(log N)

(
1 − c

d(N)√
N

√
log N

)}
.

So there exists µ > 1 such that, for N sufficiently large,

�−1∑
j=1

PN

(
|Z|j� ≥ 1

2
yj

)
≤ 2

N
.

This concludes the proof of Theorem 5.1. �

Our next auxiliary result is as follows.

THEOREM 5.2. Let PN be defined via (1.8) with ρ > 0 and ξ ∈ (0,1/2).
For â given in (3.1), let k(N) be a deterministic sequence such that, for N

large enough, |â|k(N) > δ for some positive δ. Assume N−1[k(N)]20 → 0 while
Nξ−1/2[k(N)] → 0 and N−2ξ [k(N)]9 → 0. Then,

lim
N→∞PN

(Tk(N) − |s|2k(N)

2|s|k(N)

≤ x

)
= 
(x), x ∈ R.
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PROOF. In what follows, we supress the dependence of k(N) on N . Also
throughout, as before, c is a running positive absolute constant. Set now

Dt =
N∑

i=1

cNi

[
φt

(
Ri − 0.5

N

)
− φt

(
Ri

N + 1

)]
and Zt =

N∑
i=1

Zit ,

where Z1t , . . . ,ZNt are given by (5.2). We split Tk = Tk(N) [see (2.2)] into several
terms. For brevity, we consider at once the standardized version of Tk . Simple
algebra yields

Tk − |s|2k
2|s|k = Lk +

4∑
j=1

Rjk,

where

Lk = (|s|k)−1
k∑

t=1

stZt , R1k = (2|s|k)−1
k∑

t=1

(Dt )
2,

R2k = (|s|k)−1
k∑

t=1

DtSt , R3k = (2|s|k)−1
k∑

t=1

[St − st ]2,

R4k = (|s|k)−1
k∑

t=1

st [St − st − Zt ].

The rest of the proof consists of showing that, under PN,Lk →D N(0,1) while
Rjk → 0 in PN, j = 1, . . . ,4. We start by proving that the remainders are
negligible. To this end, we need some information on the magnitude of |s|k . This
is provided by the following approximation of st [see Hájek (1968), Theorem 4.2
and page 340]. For t = 1,2, . . . , set

rt = ρN1/2−ξ ât with ât =
∫ 1

0
a(u)φt(u) du.(5.12)

Then by (5.4) and (4.27) of Hájek (1968), with µ = rt ,

(st − rt )
2 ≤ M(φt)/N ≤ ct18/N.(5.13)

Hence, for r = (r1, r2, . . . ) it holds that ||s|k − |r|k| ≤ {ck19/N}1/2. So under our
assumptions, limN→∞||s|k − |r|k| = 0.

Consider first R1k . By |φt (x) − φt(y)| ≤ ct5/2|x − y|, for large N we get

|Dt | ≤ ct5/2/
√

N.(5.14)

Hence, R1k → 0 in PN.
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For R2k , any positive γ and N large enough, by (5.14) we have

PN

(|R2k| ≥ 2γ
)

≤ PN

(∣∣∣∣∣
k∑

t=1

Dt st

∣∣∣∣∣≥ γ |s|k
)

+
k∑

t=1

PN

(
|St − st | ≥ γ c|s|k

√
N/k7

)
.

(5.15)

Again using (5.14) and the Schwarz inequality, we infer that the first component
on the right-hand side of (5.15) tends to 0.

To get an upper bound for the second component, set v2
t = VarPN

St and
σ̃ 2

t = VarPN
Zt . By (2.9), (4.28) and (5.6) of Hájek (1968), we have, for N large,

|σ̃t − vt | ≤ {M(φt)}1/2{max1≤i≤N |cNi|} ≤ ct9/
√

N.

On the other hand, the constant d defined in (2.14) of Hájek (1968) equals 1 in
our application. Hence, (5.13) and (5.17) of Hájek (1968) yield

|σ̃t − 1| ≤ ct9/2∥∥F1N − F2N

∥∥∞ ≤ ct9/2/Nξ .(5.16)

So under our assumptions, |vt − 1| = o(1) and an application of Markov’s
inequality yields R2k → 0 in PN.

Markov’s inequality together with |vt − 1| = o(1), the relationship between |s|k
and |r|k , and the assumptions Nξ−1/2[k(N)] → 0, |â|k(N) > δ imply that R3k → 0
in PN . Finally, Schwarz’s inequality and (5.3) yield the same conclusion for R4k .

Now we shall prove the asymptotic normality of Lk . Observe that

Lk =
N∑

i=1

XNi, where XNi =
k∑

t=1

st

|s|k Zit .

Since by construction, EPN
Zit = 0, t = 1, . . . , k, we have EPN

XNi = 0 as well.
Moreover, each Zit is a function of Ui , solely. This implies XN1, . . . ,XNN

are independent. By (5.8) of Hájek (1968), we have, for N large enough,
|Zit | ≤ c{max1≤i≤N |cNi |t5/2} ≤ ct5/2/

√
N . Hence, by Schwarz’s inequality,

|XNi | ≤ ck3/
√

N. Set now B2
N = VarPN

∑N
i=1 XNi . By the above, GN =∑N

i=1 EPN
|XNi |3 ≤ ck3B2

N/
√

N. By Lyapunov’s theorem [see Serfling (1980),
Section 1.9.3], it is enough to show that GN = o(B3

N). We shall show that
B2

N = 1 + o(1). Since k3/
√

N → 0, this will conclude the proof. We have

B2
N =

k∑
t=1

s2
t

|s|2k
σ̃ 2

t +
N∑

i=1

k∑
r,t=1
r �=t

sr st

|s|2k
EPN

ZirZit .(5.17)

Due to (5.16) and the assumption k9/N2ξ → 0, the first component of (5.17)
behaves like 1 + o(1). Moreover, by (5.5), properties of Legendre polynomials
and Schwarz’s inequality, we infer EPN

ZriZti ≤ c[N−2ξ−1k5 + N−ξ−1k +
N−2ξ−1k5/2]. Simultaneously, by (5.13) and the imposed assumptions, |srst |/|s|2k
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is bounded for N large enough. Hence, by ξ ∈ (0,1/2) and the assumption
N−1k20 → 0, the second component of (5.17) is o(1). �

Now, using Theorems 5.1 and 5.2, we shall establish (3.2) of Theorem 3.1. Set

Ex =
{TS2 − |s|2d(N)

2|s|d(N)

≤ x

}
.

Since d(N) → ∞ and ‖a‖ = 1, Theorem 5.2 can be applied to Td(N), but
since S2 ≤ d(N), we get lim infN→∞ PN(Ex) ≥ 
(x). On the other hand, by
Theorem 5.1,

PN(Ex) ≤ PN

(
T�(N) − |s|2d(N)

2|s|d(N)

≤ x

)
+ o(1).

So, to show that PN(Ex) → 
(x), it is enough to prove that |s|d(N)/|s|�(N) → 1
and |s|2�(N)d(N)/|s|d(N) → 0. By the definition of �(N) it follows that |s|2�(N)d(N) ≤
µ2 d(N) logN . The assumption Nξ−1/2[d(N) logN ] → 0 implies d(N) logN/

|s|d(N) → 0. This concludes the proof of limN→∞ PN(Ex) = 
(x). Note that by
(5.12) and (5.13), it follows that under our assumptions |s|d(N)/|r|d(N) → 1. By
this relationship we get

lim
N→∞PN

(
TS2 − |r|2d(N)

2|r|d(N)

≤ x

)
= 
(x), x ∈ R.

This is just (3.2). �

PROOF OF THEOREM 3.2. Under H0,U1 = H(X1), . . . ,UN = H(XN)

[cf. (1.6)] are i.i.d. uniformly distributed on (0,1). Since TS2 ≤ Td(N), we have

P0
(
TS2 ≥ Nx2

N

)≤ P0
(
Td(N) ≥ Nx2

N

)
.

Set now γN = x
η
N [d(N)]3,

Cd(N) =
d(N)∑
j=1

[
N∑

i=1

cNiφj (Ui)

]2

and

Rd(N) =
{

d(N)∑
j=1

[
N∑

i=1

cNiφj

(
Ri − 0.5

N

)
−

N∑
i=1

cNiφj (Ui)

]2}1/2

.

The triangle inequality yields, for large N ,

P0
(
Td(N) ≥ Nx2

N

)
≤ P0

(
C

1/2
d(N) ≥ (1 − γN)xN

√
N
)+ P0

(
Rd(N) ≥ γNxN

√
N
)
.

(5.18)
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To simplify notation, in what follows we skip the dependence of d(N) on N

and write simply d . The first component on the right-hand side of (5.18) will be
estimated using Yurinskii’s (1976) Theorem 3.1. To this end, set Yij = cNiφj (Ui)

and Yi (d) = (Yi1, . . . ,Yid ). Obviously, C
1/2
d = |∑N

i=1 Yi(d)|d . For any j = 1,

. . . , d , we have EP0Yij = 0, i = 1, . . . ,N,VarP0 Yij = c2
N1 for i = 1, . . . ,m

and VarP0 Yij = c2
NN for i = m + 1, . . . ,N . Moreover, CovP0(Yij ,Yi�) = 0 for

j �= �, i = 1, . . . ,N . Hence we get, for any h ∈ R
d and i = 1, . . . ,N ,

EP0

(
hTYi (d)

)2 = c2
Ni|h|2d = hTbih with bi = c2

NiId,

where Id is the identity matrix of order d . Consequently, by ‖φj‖∞ ≤ √
2j + 1,

for any integer s ≥ 2 and all h ∈ R
d , it holds that∣∣EP0

(
hTYi (d)

)s∣∣≤ (hTbih)H s−2(|h|d)s−2,

where H = 2d max{|cN1|, |cNN |}. Since BN = b1 + · · · + bN = Id , we apply
Theorem 3.1 of Yurinskii (1976) with σ 2

1 = · · · = σ 2
d = 1,K = 1 and the above H .

To shorten the notation, set for a moment yN = (1 − γN)xN

√
N . Assume N is

large enough to have d ≥ 4, y2
N ≥ 3d − 3 and α = HyN < 1. Then for both d even

and odd we infer, for N large enough,

P0

(∣∣∣∣∣
N∑

i=1

Yi(d)

∣∣∣∣∣
d

≥ yN

)

≤ 8.731

�(d/2)2(d−1)/2
exp
{
−y2

N

2
(1 + α)−1 + (d − 1) logyN

}
.

Using the fact that log�(x) ≥ −x + (x − 1/2) log(x), the definition of γN and a
simple argument yields, for N large enough,

P0
(
C

1/2
d ≥ (1 − γN)xN

√
N
)

≤ exp
{
−1

2
Nx2

N + (1 + o(1)
)
Nx

2+η
N d3 + d

2
log(Nx2

N)

}
.

(5.19)

To deal with the remainder Rd , set

U
(j )
iN = φj

(
Ri − 0.5

N

)
− φj (Ui).

Then

P0
(
Rd ≥ γNxN

√
N
)≤ d∑

j=1

P0

(∣∣∣∣∣
N∑

i=1

cNiU
(j )
iN

∣∣∣∣∣≥ γNxN

√
N√

d

)

≤
{ √

d

γNxN

√
N

}2p d∑
j=1

EP0

∣∣∣∣∣
N∑

i=1

cNiU
(j )
iN

∣∣∣∣∣
2p

(5.20)
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for any positive p. Assume for the moment that p is an integer and satisfies
1 ≤ p ≤ √

N/2. By Lemma 2.5 of Hušková (1977), with the correction and
implementation given by Kallenberg [(1982), see formula (2.3)], we have

EP0

∣∣∣∣∣
N∑

i=1

cNiU
(j )
iN

∣∣∣∣∣
2p

≤ pp(4e)2p+1A(m,n,p)EP0

[
U

(j )
1N

]2p
,(5.21)

where

A(m,n,p) =
[
max

(
1,2p

√
mn

N
max

{
1

m
,

1

n

})]2p

.

Since ‖φ′
j‖∞ ≤ cj5/2, a Taylor expansion yields, for some V1 between (R1 −

0.5)/N and U1,

EP0

[
U

(j )
1N

]2p = EP0

[(
R1

N
− 1

2N
− U1

)
φ′

j (V1)

]2p

≤ [cd5/2]2pEP0

(
R1

N
− 1

2N
− U1

)2p

.

Set now ω1 = N−1(1/2 − U1),ωi = N−1[I (Ui ≤ U1) − U1], i = 2, . . . ,N . Then

R1

N
− 1

2N
− U1 =

N∑
i=1

ωi,

and ω1, . . . ,ωN satisfy the assumption of Lemma 6.1 of Bickel (1974). Hence we
get

EP0

(
N∑

i=1

ωi

)2p

≤ Np(4ep)p max
1≤i≤N

EP0(ω
2p
i ) ≤ (4ep)p

22p

Np
.(5.22)

Using Hölder’s inequality, (5.21) and (5.22) yield, for any real 1 ≤ p ≤ √
N/2 ,

EP0

∣∣∣∣∣
N∑

i=1

cNiU
(j )
iN

∣∣∣∣∣
2p

≤ A(m,n,p)(4e)(16e3/2c)2pp2p d5p

Np
.(5.23)

Set c1 = 4e and c2 = 16e3/2c. By (5.20), (5.23) and the choice of γN ,

P0
(
Rd ≥ γNxN

√
N
)≤ A(m,n,p)c1d

{
c2p

Nx
1+η
N

}2p

.

Take now p = Nx2
N/2. By our choice of xN , we have p <

√
N/2 and

A(m,n,p) = 1 for N large enough. This yields

P0
(
Rd ≥ γNxN

√
N
)≤ c1d

{
c2x

1−η
N

2

}Nx2
N

.(5.24)
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Since η ∈ (0,1) and d(N) ≤ Nx2
N , then P0(Rd ≥ γNxN

√
N ) ≤ exp{−Nx2

N/2}
for N sufficiently large and an application of (5.18), (5.19) and (5.24) concludes
the proof of Theorem 3.2. �

PROOF OF THEOREM 3.3. To shorten the argument, we relate (3.4) to
an earlier result of Inglot and Ledwina (1996). Set e

(a)
iN = EPiN

log piN(U),

i = 1,2, b(I)(p1N) = (e
(a)
1N − e

(0)
1N)/v1N,b(II)(p2N) = (e

(a)
2N − e

(0)
2N)/v2N and define

b(1)(PN) = mv1N√
NvN

b(I)(p1N) + nv2N√
NvN

b(II)(p2N).(5.25)

With this notation, we have

V
(1)
N =

√
mv1N

vN

{
m∑

i=1

log p1N(Ui) − e
(a)
1N√

mv1N

}

+
√

nv2N

vN

{
N∑

i=m+1

logp2N(Ui) − e
(a)
2N√

nv2N

}
+ √

Nb(1)(PN).

(5.26)

By Proposition 6.6 of Inglot and Ledwina [(1996), page 2000] and using the
notation on page 1994, the random variables appearing in braces in (5.26) are
asymptotically standard normal. Therefore, to conclude the proof it is enough
to study the deterministic expressions that appear in (5.26). To this end, intro-

duce c
(1)
N = ρN−ξ

√
(1 − ηN)/ηN and c

(2)
N = −ρN−ξ

√
ηN/(1 − ηN). By Proposi-

tion 2.10 of Inglot [(1999), page 494; see also page 503], we have [b(I)(p1N)]2 =
[c(1)

N ]2(1 + O(c
(1)
N )), [b(II)(p2N)]2 = [c(2)

N ]2(1 + O(c
(2)
N )) and v2

iN = [c(i)
N ]2(1 +

O(c
(i)
(N))), i = 1,2. Consequently, v2

1N/v2
N = (n/mN)(1 + O(c

(1)
N )), v2

2N/v2
N =

(m/nN)(1 + O(c
(2)
N )) and b(1)(PN) = ρN−ξ + O(N−2ξ ). The theorem follows.

�

PROOF OF THEOREM 3.4. Statement (3.5) can be deduced from an unpub-
lished article by Book (1976). For convenience, we quote here a version of this
result suitable for our setting. Its applicability to the present context follows from
some conditions given in Inglot and Ledwina (1996).

THEOREM 5.3 [Book (1976)]. Let {WNi,1 ≤ i ≤ N,1 ≤ N < ∞} be a
triangular array of rowwise independent random variables. Assume EWNi = 0
and EW 2

Ni < ∞ for all N and i. Put

WN =
N∑

i=1

WNi and τ 2
N = VarWN.



2056 G. R. DUCHARME AND T. LEDWINA

Further suppose there exist positive constants C′,C′′ and 0 < B ≤ ∞ such
that, for all h, |h| < B,C′ ≤ E exp{hWNi} ≤ C′′ for all N and i. Then, for
all sequences {zN } of positive numbers such that zN → ∞ and zN/

√
N → 0

as N → ∞,

P

(
WN

τN

≥ zN

)

= ϕ(zN)

= (2πz2
N)−1/2

[
1 + O

(
zN√
N

)]
exp
{
−z2

N

2
+ z3

N√
N

λN

(
zN√
N

)}(5.27)

as N → ∞, where λN(z) is a power series in z convergent for all sufficiently small
values of z, uniformly for all N .

Observe now that

V
(1)
N = v1N

vN

m∑
i=1

YNi + v2N

vN

N∑
i=m+1

YNi,

where YNi = {logp1N(Ui) − e
(0)
1N }/v1N as i = 1, . . . ,m and YNi = {logp2N(Ui)

− e
(0)
2N }/v2N as i = m + 1, . . . ,N . Set σ 2

iN = VarP0 logpiN(U1), i = 1,2. By
Lemma 5.4 of Inglot and Ledwina [(1996); see (5.11) and the last sentence of the
proof], σ 2

iN/v2
iN = 1 + O(N−2ξ ). The above and (5.26) imply σ 2

N = VarP0 V
(1)
N =

1 + O(N−2ξ ). Finally, observe that by Proposition 5.12 of Inglot and Ledwina
(1996), the variables YNi, i = 1, . . . ,N , satisfy Book’s assumptions. Hence the
same holds for the components of V

(1)
N . Therefore, (5.27) is applicable and

P0(V
(1)
N ≥ σNxN

√
N ) = ϕ(xN

√
N ). Taking in particular xN = O(N−ξ ), we have

σN = 1 + O(x2
N) and (5.27) implies (3.5). �
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