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ASYMPTOTIC RESULTS IN JACKKNIFING NONSMOOTH
FUNCTIONS OF THE SAMPLE MEAN VECTOR

BY MARZIA MARCHESELLI

Università di Siena

The asymptotic behavior of jackknife estimators and jackknife variance
estimators is investigated for nonsmooth functions of the sample mean vector.
An application of jackknifing a suitable estimator of the intrinsic diversity
profile is also presented.

1. Introduction. The jackknife method is widely applied in order to construct
variance estimators and define bias-reduced estimators. Many results for the
consistency of jackknife variance estimators are known for sufficiently smooth
estimators T̂n of T [Miller (1968), Reeds (1978), Parr and Schucany (1982)
and Shao and Wu (1989)]. If estimators are not smooth, the jackknife may lead
to an inconsistent variance estimator as shown in Miller (1974). Other results
have been obtained for asymptotic behavior of jackknife bias reduction and
jackknife estimators under suitable differentiability conditions [Miller (1964),
Arvesen (1969), Thorburn (1977), Ghosh (1985) and Shao (1993)]. In this paper
the consistency of jackknife variance estimators and the asymptotic behavior of
jackknife estimators are studied for estimators T̂n of the type g(Xn) when g is
not necessarily a Gâteaux differentiable function but g satisfies some weaker
regularity conditions which do not imply the asymptotic normality of n1/2(T̂n−T ).
Section 2 contains some preliminaries and notation while the asymptotic behavior
of jackknife variance estimators and jackknife estimators is derived in Sections
3 and 4, respectively. Moreover, in Section 5, an asymptotically conservative
confidence set for g(θ) is obtained, when g is not necessarily a differentiable
function at θ , and, in this setting, the possible use of jackknife variance estimators
is discussed. Section 6 focuses on these results as applied to an important family
of nonsmooth estimators such as those obtained by estimating intrinsic diversity
profiles.

2. Preliminaries and notation. Let (Xn)n be a sequence of i.i.d. random vec-
tors, with values in a normed space (V,‖ · ‖) and with E[‖X1‖2] < ∞. More-
over, let g be a function defined on V , with values in a normed space (W, ||| · |||),
and let Xn be the sample mean (X1 + · · · + Xn)/n. The Quenouille–Tukey
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(delete-1)jackknife estimator for g(Xn) is given by

Jn = 1

n

n∑
k=1

[
ng(Xn) − (n − 1)g(Xn,k)

]
,

where Xn,k is the sample mean obtained by deleting the observation with the
index k (obviously k ≤ n). When W = R, the jackknife variance estimator can
be defined for g(Xn) by

vn = n − 1

n

n∑
k=1

(
g(Xn,k) − 1

n

n∑
j=1

g(Xn,j )

)2

.

Now let θ be a vector of V and let (Ai)i be a finite partition of V . If Ai is a Borel
set and b(Ai − θ) = Ai for any real number b > 0, the partition (Ai)i is said to be
regular with respect to θ . Obviously, θ is an accumulation point for any set Ai of
a regular partition.

DEFINITION 1. A function g is said to be regularly quasi-differentiable
at θ if there exists a regular finite partition (Ai)i of V such that, for any i, g is
Ai-differentiable at θ , namely there is a unique continuous linear operator Lθ

i such
that

lim
v→θ,v∈Ai

|||g(v) − g(θ) − Lθ
i (v − θ)|||

‖v − θ‖ = 0.(1)

Any mapping τ (not necessarily linear on V ) such that

τ (v) = ∑
i

Lθ
i (v)IAi

(v),(2)

where Lθ
i denotes the Ai-differential of g at θ , is called regular quasi-differential.

The set of discontinuity points of τ is obviously a subset (in general, a
proper subset) of

⋃
i ∂Ai , for any regular partition (Ai)i . However, it should be

noticed that τ does not depend on the choice of the regular partition (Ai)i and
if there exists a regular quasi-differential of g at θ , it is unique; that is, two
regular quasi-differentials of g at θ coincide. A Fréchet differentiable function
is obviously regularly quasi-differentiable while a quasi-differentiable function is
Fréchet differentiable only if there exists a linear quasi-differential. Moreover, a
regularly quasi-differentiable function g at θ is a Lipschitz function at θ ; namely,
there exists a constant C such that |||g(v) − g(θ)||| ≤ C‖v − θ‖. When V = R,
a function g is regularly quasi-differentiable at θ if and only if there exist finite
g′+(θ) and g′−(θ). An interesting family of regularly quasi-differentiable functions
is obtained when g = h ◦ �, where � : Rk → R

k is the ordering function and
h is a Fréchet differentiable function. When θ has at least two equal components,
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g = h ◦ � is not necessarily Gâteaux differentiable at θ ; nevertheless the regular
quasi-differential of h ◦ � is H ◦ �̃, where H is the differential of h at �(θ)

and �̃(x) is a suitable re-ordering of the components of x [for more details
see Marcheselli (2000)]. By using the notion of regularly quasi-differentiable
functions, in Marcheselli (2000) the following generalization of the delta method
is given.

THEOREM. Let Yn,Y be random vectors in V and let (an)n represent a
sequence of real numbers, with limn an = ∞. Suppose that the random vector
an(Yn − θ) converges in distribution to Y . Moreover, let g be a regularly quasi-
differentiable function at θ and suppose that P (Y ∈ C) = 0, where C is the set
of discontinuity points of the regular quasi-differential τ . Then an(g(Yn) − g(θ))

converges in distribution to τ (Y ).

If V is a separable Hilbert space and R is a symmetric Gaussian random vector,
with the same variance-covariance operator as X1, from the previous theorem it
follows that √

n
(
g(Xn) − g(θ)

)
(3)

converges in distribution to τ (R), when g is a regularly quasi-differentiable
function at θ = E[X1] and P (R ∈ C) = 0, where C is the set of discontinuity
points of τ . Note that τ (R) is not necessarily a Gaussian random vector. Moreover,
E[τ (R)] = 0 when g is differentiable at θ but, in general, E[τ (R)] 	= 0 and,
since g is a Lipschitz function at θ , the bias E[g(Xn)] − g(θ) is equivalent to
E[τ (R)]/√n and Var[g(Xn)] is equivalent to Var[τ (R)]/n. Therefore, the classic
techniques cannot be used in order to study the asymptotic behavior of jackknife
estimators for g(Xn), when g is only a regularly quasi-differentiable function at θ .
To this end, the following definition is also required.

DEFINITION 2. A function g is said to be continuously regularly quasi-
differentiable at θ if g is regularly quasi-differentiable at θ and there exists a
regular partition (Ai)i such that, for any index i:

(a) Ai is a convex set;
(b) there exists a convex neighborhood U of θ such that, for any element

x ∈ Ai ∩ U, g is Ai-differentiable at x and

lim
x→θ,x∈Ai

‖Lx
i − Lθ

i ‖L(V ,W) = 0,

where Lx
i denotes the Ai -differential of g at x and L(V,W) is the space of

continuous linear operators, defined on V and with values in W .

It is apparent that a continuously Fréchet differentiable function at θ is also
continuously regularly quasi-differentiable at θ . Functions g of the type h ◦ �,
with h a continuously differentiable function, are obviously continuously regularly
quasi-differentiable but, in general, are not continuously differentiable.
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3. Consistency of jackknife variance estimators. Let V be a separable
Hilbert space, R be a symmetric Gaussian random vector with the same variance-
covariance operator as X1 and θ = E[X1]. The jackknife variance estimator vn

is often adopted since it has good asymptotic performance and its computation
only requires n evaluations of g at Xn,j , j = 1, . . . , n, which is routine and easy
to program. It is well known that vn is strongly consistent when g : Rk → R is
continuously differentiable at θ [see Shao and Tu (1995)], namely, nvn converges
almost surely to the variance of τ (R) = 〈∇g(θ),R〉. In this section, some results
on the asymptotic behavior of vn are derived when g satisfies some weaker
smoothness conditions than continuous differentiability at θ .

LEMMA 1. Let (Ai)i be a regular partition of V with respect to θ . If P (R ∈⋃
i ∂Ai) = 0,

Un = ∑
i

n∑
k=1

∣∣IAi
(Xn,k) − IAi

(Xn)
∣∣

converges in probability to 0.

PROOF. Obviously Un converges in probability to 0 when X1 is almost surely
a constant. It is not restrictive to suppose that X1(P ) is not degenerate. Thus, it is
sufficient to prove that, for any i,

Ui
n =

n∑
k=1

∣∣IAi
(Xn,k) − IAi

(Xn)
∣∣

converges in probability to 0. Since b(Ai − θ) = Ai for any real number b > 0, it
follows that

Ui
n = IAi

(Xn)

n∑
k=1

IAc
i
(Xn,k) + IAc

i
(Xn)

n∑
k=1

IAi
(Xn,k)

= IAi
(Yn)

n∑
k=1

IAc
i
(Yn,k) + IAc

i
(Yn)

n∑
k=1

IAi
(Yn,k),

where Yn and Yn,k denote the random variables
√

n(Xn − θ) and
√

n(Xn,k − θ),
respectively. For a fixed real number δ > 0, since ‖Yn − Yn,k‖ ≥ 2δ implies that
‖Yn‖/(n − 1) + 2‖Xk − θ‖/√n ≥ 2δ, the following relation holds:

{Ui
n 	= 0} ⊆ {‖Yn‖ ≥ (n − 1)δ} ∪

{
sup

1≤k≤n

‖Xk − θ‖√
n

≥ δ/2
}

∪ ⋃
j

{Yn ∈ A2δ
j },

where A2δ
j is the open set ∂Aj + B(0,2δ), with B(0,2δ) = {x :‖x‖ < 2δ}. Since

‖X1 − θ‖2 is integrable, the random variable sup1≤k≤n ‖Xk − θ‖/
√

n converges
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almost surely to 0. Moreover, owing to the central limit theorem, Yn converges in
distribution to R [see Varadhan (1962)]. Then it follows that

lim sup
n

P (Ui
n 	= 0) ≤ ∑

j

P (R ∈ Ā2δ
j ),

where Ā2δ
j is the closure of A2δ

j . Finally, the relation

lim
δ→0+ P (R ∈ Ā2δ

j ) = P (R ∈ ∂Aj) = 0

completes the proof. �

From now on, if (Zn)n and (Wn)n are two sequences of real random variables,
Zn ∼ Wn means that Zn converges in probability if and only if Wn converges in
probability and they have the same limit. The following convergence result for
variance jackknife estimators can now be proved.

THEOREM 1. Let g :V → R be a continuously regularly quasi-differentiable
function at θ . Let (Ai)i be a regular partition with respect to θ which satisfies
(a) and (b) of Definition 2. Suppose that P (R ∈ ∂Ai) = 0 for any index i. Then
nvn converges in distribution to

∑
i IAi

(R)Var[Lθ
i (X1)]. Moreover, nvn converges

in probability if and only if there exists a constant c such that Var[Lθ
i (X1)] = c for

any i, and, in this case, nvn converges in probability to c.

PROOF. According to the definition of jackknife variance estimators it follows
that

nvn = (n − 1)

n∑
k=1

(
g(Xn,k) − 1

n

n∑
j=1

g(Xn,j )

)2

= (n − 1)

n∑
k=1

(
g(Xn,k) − g(Xn) − 1

n

n∑
j=1

[g(Xn,j ) − g(Xn)]
)2

∼ n

n∑
k=1

(
g(Xn,k) − g(Xn)

)2 −
[

n∑
k=1

(
g(Xn) − g(Xn,k)

)]2

.

Now, let U be a convex neighborhood of θ which satisfies condition (b) of
Definition 2. Having fixed δ > 0, it is not restrictive to suppose Uδ = B(θ, δ) ⊂ U.
Since

IUc
δ
(Xn) + sup

k

IUc
δ
(Xn,k)

converges almost surely to 0, in order to study the asymptotic behavior of nvn,
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note that g(Xn,k)−g(Xn) is equivalent to
∑

i (g(Xn,k)−g(Xn))[IAi∩Uδ
(Xn,k)×

IAi∩Uδ
(Xn) + |IAi

(Xn,k) − IAi
(Xn)|/2] and

n

n∑
k=1

(
g(Xn,k) − g(Xn)

)2

∼ n
∑
i

n∑
k=1

(
g(Xn,k) − g(Xn)

)2
IAi∩Uδ

(Xn,k)IAi∩Uδ
(Xn) + Cn,

where Cn = n
∑

i

∑n
k=1(g(Xn,k)−g(Xn))

2|IAi
(Xn,k)− IAi

(Xn)|/2. Then, from
Lemma 1 and from the hypothesis of g, it follows that Cn converges in probability
to 0 and

n

n∑
k=1

(
g(Xn,k) − g(Xn)

)2

∼ IUδ
(Xn)n

∑
i

n∑
k=1

[
L

ξk,i

i (Xn,k − Xn)
]2

IAi
(Xn),

where ξk,i is a suitable random variable with values in Ai ∩Uδ . Since Xn,k −Xn =
[(Xn − θ) + (θ − Xk)]/(n − 1), it may be observed that

n
∑
i

n∑
k=1

[(
L

ξk,i

i − Lθ
i

)
(Xn,k − Xn)

]2

≤ n
∑
i

(
sup

x∈Ai∩Uδ

‖Lx
i − Lθ

i ‖2
L(V ,R)

) n∑
k=1

‖Xn,k − Xn‖2

∼ E[‖X1 − θ‖2]∑
i

(
sup

x∈Ai∩Uδ

‖Lx
i − Lθ

i ‖2
L(V ,R)

)
,

that is, n
∑

i

∑n
k=1[(Lξk,i

i − Lθ
i )(Xn,k − Xn)]2 converges almost surely to 0 owing

to the continuous regular quasi-differentiability of g at θ . From the previous
relation, it follows that

n

n∑
k=1

(
g(Xn,k) − g(Xn)

)2 ∼ IUδ
(Xn)n

∑
i

n∑
k=1

[Lθ
i (Xn,k − Xn)]2IAi

(Xn)

∼ ∑
i

IAi
(Xn)n

n∑
k=1

[Lθ
i (Xn,k − Xn)]2

= ∑
i

IAi

(√
n(Xn − θ)

)
n

n∑
k=1

[Lθ
i (Xn,k − Xn)]2.
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In a similar way, it turns out that[
n∑

k=1

(
g(Xn) − g(Xn,k)

)]2

∼
(∑

i

n∑
k=1

[Lθ
i (Xn,k − Xn)]IAi

(Xn)

)2

=
(∑

i

IAi
(Xn)L

θ
i

[
n∑

k=1

(Xn,k − Xn)

])2

= 0.

Therefore nvn is asymptotically equivalent in probability to

Tn = ∑
i

IAi

(√
n(Xn − θ)

)
n

n∑
k=1

[Lθ
i (Xn,k − Xn)]2.

Owing to the strong law of large numbers, it is easy to recognize that

Tn ∼ ∑
i

IAi

(√
n(Xn − θ)

) n∑
k=1

[Lθ
i (Xk − θ)]2/n

∼ ∑
i

IAi

(√
n(Xn − θ)

)
E[Lθ

i (X1 − θ)2].

Observe that E[Lθ
i (X1 − θ)2] = Var[Lθ

i (X1)]. Thanks to the central limit theorem
and the negligibility of ∂Ai , Tn and nvn converge in distribution to L =∑

i IAi
(R)Var[Lθ

i (X1)]. Moreover, nvn converges in probability if and only if L is
a constant; namely, if there exists a real number c such that Var[Lθ

i (X1)] = c, for
any i. Thus the proof is complete. �

REMARK 1. When g is a continuously regularly quasi-differentiable function
at θ , it may occur that nvn does not converge either to the second moment or to the
variance of the limit random variable τ (R). For example, if

g(x1, x2) = x1 ∧ x2, X1 = (X′
1,X

′′
1), θ = E[X1] = (0,0)

and X′
1 and X′′

1 − X′
1 are not degenerate independent random variables, by

considering the regular partition (Ai)i=1,2 of R
2, with

A1 = {x1 ≤ x2}, A2 = {x1 > x2},(4)

it turns out that τ (R) = g(R1,R2). Since the hypotheses of Theorem 1 are
satisfied, nvn converges in distribution to L = Var[X′

1] + I{R1>R2} Var[X′′
1 − X′

1].
In this case, nvn does not converge in probability and its distribution-limit L does
not coincide with the variance (nor with the second moment) of τ (R)! It may
only be stated that E[L] = E[τ 2(R)]. Moreover, since g satisfies the Lipschitz
condition at θ , it should be noticed that the bias E[g(Xn)] − g(θ) is equivalent
to E[τ (R)]/√n, which obviously is not o(1/

√
n ), and E[(g(Xn) − g(θ))2] is

equivalent to E[τ 2(R)]/n.
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REMARK 2. In Lemma 1, Un converges in probability to 0 but it does not
necessarily converge in mean [to this purpose it suffices to consider Un when X1 is
a bivariate Gaussian random vector and (Ai)i is given by (4)]. Moreover, from the
proof of Theorem 1, it is easy to note that if Un converges almost surely to 0, nvn

converges in probability if and only if nvn almost surely converges.

As shown in Remark 1, nvn may be an inconsistent estimator of the variance
of τ (R) when g is continuously regularly quasi-differentiable at θ . Some
examples in which nvn converges in probability but its limit is not related to
the moments of τ (R) could be also introduced. Note that the bootstrap variance
estimator for g(Xn) may be an inconsistent estimator of Var[τ (R)]; in fact, it
has the same asymptotic behavior as nvn since, on every event {Xn ∈ Ai}, the
assumptions of regularity for g are equivalent to their classical counterparts.
Nevertheless, under suitable conditions, the jackknife variance nvn converges in
probability to the second moment of τ (R). Actually, the following result can be
proved.

COROLLARY 1. Under the hypotheses of Theorem 1, let H be a closed
subspace of V . Denote by πH the orthogonal projection onto H and let a

be a real number. For any index i, suppose that Lθ
i (πH (R)) is independent

of IAi
(R),Lθ

i (πK(R)), where K denotes the orthogonal subspace of H , and
E[Lθ

i (πH (R))2] = a. If |Lθ
i | are coincident on K , then nvn converges in

probability to E[τ (R)2].

PROOF. First, note that, for any index i and for J = {R ∈ Ai} or J = �,

E[IJ Lθ
i (R)2] = E

[
IJ Lθ

i

(
πH(R)

)2] + E
[
IJ Lθ

i

(
πK(R)

)2]
= E

[
IJ Lθ

i

(
πH(R)

)2] + E
[
IJ Lθ

1
(
πK(R)

)2]
.

Since Var[Lθ
i (X1)] = Var[Lθ

i (R)], from the previous relation, if J = �, it follows
that

Var[Lθ
i (X1)] = a + E

[
Lθ

1
(
πK(R)

)2]
and then, thanks to Theorem 1, nvn converges in probability. Moreover,

E[τ (R)2] = ∑
i

E[IAi
(R)Lθ

i (R)2]

= ∑
i

P (Ai ∈ R)a + E
[
IAi

(R)Lθ
1
(
πK(R)

)2] = a + E
[
Lθ

1
(
πK(R)

)2]
,

that is, nvn converges in probability to the second moment of τ (R). The corollary
is thus proved. �
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EXAMPLE. Let

g(x1, x2) = x1 ∧ x2

x1 + x2
I{x1+x2 	=0}, X1 = (X′

1,X
′′
1),

θ = E[X1] = (θ1, θ1) 	= (0,0),

with P (X′
1 	= X′′

1) > 0. By considering the regular partition of R
2 given in (4),

g is a continuously quasi-differentiable function, but not Gâteaux differentiable
at θ and, owing to the generalized delta method, τ (R) = −|R2 − R1|/(4θ1) is
the limit in distribution of

√
n(g(Xn) − g(θ)). Since |Lθ

1| = |Lθ
2|, thanks to

Corollary 1, nvn converges in probability to E[τ (R)2]. In particular, whatever
the variance-covariance matrix of X1 may be, (g(Xn) − g(θ))/

√
vn converges

in distribution to −|Z| sgn(θ1), where Z is a standard Gaussian random variable,
and E[(g(Xn) − g(θ))2]/vn converges in probability to 1.

4. Asymptotic behavior of jackknife estimators. The asymptotic behavior
of Jn is known when g is twice continuously differentiable at θ . In this section,
the asymptotic distribution of Jn is obtained when g satisfies some weaker
regularity conditions. To this purpose it is necessary to introduce a definition which
generalizes the concept of continuous differentials of the second order in a natural
way.

DEFINITION 3. A function g is said to be twice continuously regularly
quasi-differentiable at θ if there exist a regular partition (Ai)i and a convex
neighborhood U of θ such that g is continuously regularly quasi-differentiable
at θ and, for any index i, the mapping Li :x �→ Lx

i is Ai -differentiable at every
point of Ai ∩ U and

lim
x→θ,x∈Ai

‖βx
i − βθ

i ‖L(V ,L(V ,W)) = 0,(∗)

where βx
i denotes the Ai-differential of Li at x and L(V,L(V,W)) is the space

of continuous linear operators, defined on V and with values in L(V,W).

Roughly speaking, a function g is twice continuously regularly quasi-
differentiable if there exists a finite partition (Ai)i such that g is twice continu-
ously differentiable on every Ai . By using the same notation as in the previous
sections, the following result can now be proved.

THEOREM 2. Let g be a twice continuously regularly quasi-differentiable
function at θ and let (Ai)i be a regular partition with respect to θ which verifies
(∗) and (a), (b) of Definition 2. Suppose that P (R ∈ ∂Ai) = 0, for any index i.
Then

Mn = √
n
(
Jn − g(Xn)

)
converges in probability to 0. Moreover,

√
n[Jn − g(θ)] converges in distribution

to τ (R).
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PROOF. By means of simple algebraic relations, it turns out that

√
n
(
Jn − g(Xn)

) = 1√
n

n∑
k=1

[
ng(Xn) − (n − 1)g(Xn,k) − g(Xn)

]

= n − 1√
n

n∑
k=1

[g(Xn) − g(Xn,k)]

∼ √
n

n∑
k=1

[g(Xn) − g(Xn,k)].

Since IUc(Xn)+ supk IUc (Xn,k) converges almost surely to 0, from the definition
of a twice continuously regularly quasi-differentiable function at θ and from
Lemma 1, it follows that


n =
n∑

k=1

[g(Xn) − g(Xn,k)]

∼ ∑
i

n∑
k=1

L
Xn

i (Xn − Xn,k)IAi∩U(Xn)

− 1
2

∑
i

n∑
k=1

〈
β

ηi,k

i (Xn − Xn,k), (Xn − Xn,k)
〉
IAi∩U(Xn),

where ηi,k is a suitable random variable with values in Ai ∩ U. Thus
√

n(Jn −
g(Xn)) may be equivalently decomposed into the sum of two components γn,εn,
where

γn = ∑
i

√
n

n∑
k=1

L
Xn

i (Xn − Xn,k)IAi∩U(Xn),

εn = −1
2

∑
i

√
n

n∑
k=1

〈
β

ηi,k

i (Xn − Xn,k), (Xn − Xn,k)
〉
IAi∩U(Xn).

Now, γn, εn remain to be studied. It may first be observed that

γn = ∑
i

IAi∩U(Xn)

n∑
k=1

√
nL

Xn

i (Xn − Xn,k)

= ∑
i

IAi∩U(Xn)
√

nL
Xn

i

(
n∑

k=1

Xn − Xn,k

)
= 0

since
∑n

k=1(Xn − Xn,k) = 0. In order to prove that εn converges in probability
to 0, it suffices to show that

δn = √
n

n∑
k=1

‖Xn − Xn,k‖2
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converges in probability to 0. Since

δn ≤ 2

√
n

(n − 1)

(
2‖Xn‖2 +

n∑
k=1

‖Xk‖2/(n − 1)

)
,

δn converges in probability (and almost surely) to 0. The proof is therefore
complete. �

REMARK 3. In general, the ratio rn = (E[Jn] − g(θ))/(E[g(Xn)] − g(θ))

is not negligible when g is only twice continuously regularly quasi-differentiable
at θ . Sometimes rn is equivalent to a constant c 	= 0. For example, with reference to
the case of Remark 1, if X1 is a bivariate Gaussian random vector, it is not difficult
to prove that E[Mn] = E[√n(Jn − g(Xn))] converges to E[(X′′

1 − X′
1)

+]/2
[which coincides with −E[τ (R)]/2] and then rn converges to c = 1/2. As a matter
of fact, Lemma (3.2) in Marcheselli (1999) shows that

Mn = 1√
n

n∑
k=1

|Wn,k|(I{Wn<0<Wn,k} + I{Wn,k<0≤Wn}
)
,

where Wn = (X′′
1 − X′

1) + · · · + (X′′
n − X′

n) and Wn,k = Wn − (X′′
k − X′

k). In
particular, both Mn and nbJack = −√

nMn converge in probability to 0 but not
in L1. Then, unlike what happens if g is continuously twice differentiable at θ , the
bias of the jackknife estimator Jn is not considerably reduced with respect to the
bias of g(Xn). Interesting cases where Jn does not reduce the bias may be obtained
by considering twice continuously regularly quasi-differentiable functions g of the
type h ◦ � when g is not differentiable at θ .

5. Asymptotically conservative confidence sets. By using the same notation
as in the previous sections, let g : Rk → R

m be a regularly quasi-differentiable
function at θ = E[X1]. Moreover, let (Ai)i∈I be a regular finite partition of R

k

such that the regular quasi-differential τ is given by

τ = ∑
i∈I

Lθ
i IAi

and, for any j = 1, . . . ,m, let Ij ⊂ I be an index set for the distinct functions
πj ◦Lθ

i , i ∈ I , where πj denotes the orthogonal projection onto the j th coordinate.
Suppose that τ 	≡ 0 and that P (R ∈ C) = 0, where R is a symmetric Gaussian
random vector on R

k , with the same variance-covariance matrix � as X1, and
C is the set of discontinuity points of τ . Owing to the theorem in Section 2,
τ (R) is the limit in distribution of

√
n(g(Xn) − g(θ)) and, as has already been

observed, τ (R) is not a Gaussian vector if g is not differentiable at θ . In this case,
neither the knowledge of the variance-covariance of τ (R), nor the knowledge of �,
characterizes the distribution of τ (R) and, for j = 1, . . . ,m, the jackknife variance
estimators for πj ◦ g(Xn) are not consistent estimators either of the variance or of
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the second moment of πj ◦ τ (R) [notwithstanding that limn nE[(πj ◦ g(Xn) −
πj ◦ g(θ))2] = E[(πj ◦ τ (R))2]. For this reason, the nondifferentiability of g at θ

is a drawback to construction of asymptotic confidence sets for g(θ) by using the
jackknife method on the components πj ◦ g.

However, thanks to a suitable application of the Šidák inequality (1967), asymp-
totically conservative confidence sets for g(θ) may be obtained by generalizing the
Richmond method (1982). More precisely:

PROPOSITION 1. Let Z be a standard Gaussian random variable and let
bi be the m × k matrix such that Lθ

i (v) = biv for any v ∈ R
k . Then, for any

(z1, . . . , zm) ∈ R
m+, it turns out that

lim
n

P

(
m⋂

j=1

√
n|gj (Xn) − gj (θ)| ≤ zj

)
≥

m∏
j=1

∏
i∈Ij

P (σi,j |Z| ≤ zj ),

where gj = πj ◦ g and σi,j =
√

(bi�bt
i)j,j .

PROOF. From the definition of τ it follows that
m⋂

j=1

{|τj (R)| ≤ zj } =
m⋂

j=1

⋃
i∈I

Ai ∩ {|πj ◦ Lθ
i (R)| ≤ zj }

⊇
m⋂

j=1

⋂
i∈I

{|πj ◦ Lθ
i (R)| ≤ zj }

=
m⋂

j=1

⋂
i∈Ij

{|πj ◦ Lθ
i (R)| ≤ zj }.

Moreover, since the random variables πj ◦ Lθ
i (R) are the components of a

symmetric Gaussian random vector, owing to the Šidák inequality [Šidák (1967),
Corollary 4, page 628], we may observe that

P

(
m⋂

j=1

{|τj (R)| ≤ zj }
)

≥ P

(
m⋂

j=1

⋂
i∈Ij

{|πj ◦ Lθ
i (R)| ≤ zj }

)

≥
m∏

j=1

∏
i∈Ij

P
(|πj ◦ Lθ

i (R)| ≤ zj

)
.

Finally, since Var[πj ◦ Lθ
i (R)] = σ 2

i,j , from the convergence in distribution of√
n(g(Xn) − g(θ)) to τ (R), the proposition is straightforwardly proven. �

Now, let us consider a particular case in which the regularly quasi-differentiable
function g is of type h ◦�, where h is a Fréchet differentiable function with values
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in R
m and � : Rk → R

k is the decreasing ordering function. If {ϑ1, . . . , ϑs} is the
set of the distinct components of θ , with ϑ1 > · · · > ϑs , let F1, . . . ,Fs be the
disjoint subsets of {1, . . . , k} such that Fh = {j : θj = ϑh}, where h = 1, . . . , s.
Moreover, let dh be the cardinality of Fh and let Dh =]d1 + · · · + dh−1, d1 +
· · · + dh] ∩ {1, . . . , k}. Let Ij be a set of one-to-one functions φ on {1, . . . , k},
with φ(Dh) = Fh, such that Ij is an index set for the distinct functions of the type
x �→ 〈∇hj (�(θ)), xφ〉, where xφ = (xφ(1), . . . , xφ(k)). Then the following result
holds.

COROLLARY 2. Let g = (h1 ◦ �, . . . , hm ◦ �). If Z is a standard Gaussian
random variable, for any (z1, . . . , zm) ∈ R

m+, it turns out that

lim
n

P

(
m⋂

j=1

√
n|hj ◦ �(Xn) − hj ◦ �(θ)| ≤ zj

)
≥

m∏
j=1

∏
φ∈Ij

P (σφ,j |Z| ≤ zj ),(5)

where σφ,j =
√

E[〈∇hj(�(θ)),Rφ〉2]. In particular,

lim
n

P

(
m⋂

j=1

√
n|hj ◦ �(Xn) − hj ◦ �(θ)| ≤ zj

)
≥

m∏
j=1

[P (σ ∗
j |Z| ≤ zj )]wj ,(6)

where wj is the cardinality of Ij and σ ∗
j = supφ∈Ij

σφ,j .

PROOF. First, let I be the set of one-to-one functions φ on {1, . . . , k}, with
φ(Dh) = Fh. From Theorem 2 in Marcheselli (2000) it follows that the regular
quasi-differential τ of g is given by

τ (x) = ∑
φ∈I

H(xφ)IAφ
(x),

where H is the differential of h at �(θ) and Aφ is a suitable convex set whose
interior part is of type

⋂s
h=1{x ∈ R

k :xφ(dh−1+1) > · · · > xφ(dh)}. Since Var[πj ◦
H(Rφ)] = E[〈∇hj(�(θ)),Rφ〉2], from Proposition 1 the corollary immediately
follows. �

REMARK 4. It is easy to see that when θ has distinct components, that is,
s = k, the function g is differentiable at θ , the cardinalities wj are equal to 1 and
inequality (6) coincides with the Šidák inequality. Moreover, in Marcheselli and
Pratelli (2002) only particular cases of Corollary 2 are presented.

The relations (5) and (6) are a useful tool in constructing asymptotically conser-
vative confidence sets for g(θ), especially when g = h◦� is not differentiable at θ .
In order to show this, first let us suppose that the partition F1, . . . ,Fs of {1, . . . , k}
(but not the values ϑ1, . . . , ϑs of the components of θ ) is known. In this case,
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if σ̃ 2
φ,j denotes a consistent estimator of σ 2

φ,j , owing to Corollary 2, it asymptoti-
cally turns out that

P

(
m⋂

j=1

√
n|hj ◦ �(Xn) − hj ◦ �(θ)| ≤ zj

)
≥

m∏
j=1

∏
φ∈Ij

�(zj/σ̃φ,j ) a.s.,

where � is the distribution function of |N (0,1)| [i.e., �(z) = √
2/π ×∫

[0,z] e−x2/2 dx]. If �̃φ denotes the sample variance-covariance matrix obtained
from the sample X1, . . . ,Xn when the components of Xi are ranked according
to φ, the random variable ∇hj (�(Xn))

t �̃φ∇hj (�(Xn)) may be considered as an
estimator σ̃ 2

φ,j . Alternatively, when h is a C1-function, n times the jackknife vari-

ance estimator for h(Xn,φ) may be used as an estimator σ̃ 2
φ,j , where Xn,φ is the

sample mean of the random vectors Xi , whose components are ranked according
to φ.

Then, even if in general the jackknife method breaks down when applied
directly for the estimator g(Xn), this method may still be used for the estimator
h(Xn,φ) in order to estimate σ 2

φ,j , which through (5) makes it possible to
determine asymptotically conservative confidence sets for g(θ). Finally, if the
partition F1, . . . ,Fs is only partially known, it suffices to apply the previous
argument to a partition which includes F1, . . . ,Fs [e.g., the partition given by s = 1
and F1 = {1, . . . , k}]. Obviously, in a similar way, the previous procedure may be
also used for any function g which is (continuously) regularly quasi-differentiable
at θ .

6. An application to intrinsic diversity profile. A number of measures have
been proposed to quantify the diversity of ecological populations. However, it is
well known that a single diversity index is not suitable for comparing communities
since the use of different indices may lead to different community rankings
[see Patil and Taillie (1982)]. In order to compare ecological communities, it is
convenient to consider diversity profiles [Gove, Patil, Swindel and Taillie (1994)],
that is, curves depicting the simultaneous values of a large collection of diversity
indices. The intrinsic diversity profile, owing to its properties, is perhaps the most
important diversity profile. It is defined as the plotting of pairs (j, Tj ), where

Tj = 1

N1 + · · · + Nk

k∑
i=j+1

N(i), j = 0, . . . , k,

is the right-tail sum diversity index, k is the number of species, Ni is the abundance
of species i and (N(1), . . . ,N(k)) is the ranked abundance vector, with N(1) ≥
· · · ≥ N(k). (The term “species” is simply a convenient label for a finite set
of distinct categories comprising the community.) Thanks to intrinsic diversity
profiles, it can be stated that a population C is intrinsically more diverse than C′
by defining a population C to be more diverse than C′ if C′ leads to C through
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a finite sequence of (i) abundance transfer from more to less abundant species
without reversing the rank-order of the species, (ii) abundance transfer to a new
species and (iii) re-labelling of the species. As a matter of fact, according to Patil
and Taillie (1982), the population C is intrinsically more diverse than C′ if and
only if the intrinsic diversity profile of C is above that of C′. Moreover, if the two
profiles cross one or more times, no intrinsic ordering of the compared populations
is possible. Now let θ = (N1, . . . ,Nk) be the (unknown) abundance vector of a
population. Obviously T0 = 1, Tk = 0 and Tj = hj ◦ �(θ), for j = 1, . . . , k − 1,
where hj is the C∞-function

(x1, . . . , xk) �→ 1

x1 + · · · + xk

k∑
i=j+1

xi

and � is the decreasing ordering function on R
k . If N̂1, . . . , N̂n are n i.i.d.

unbiased estimators for θ , with E[‖N̂1‖2] < ∞, which are frequently obtained
by replicating an encounter sampling design [see Barabesi and Fattorini (1998)],
let us say that Nn = (N̂1 + · · · + N̂n)/n and consider

T̂n = (T̂n,1, . . . , T̂n,k−1),

where T̂n,j = gj (Nn) and gj = hj ◦ �. It is not difficult to note that T̂n is an
asymptotically unbiased estimator for T = (T1, . . . , Tk−1) and it turns out that
T̂n = g(Nn), T = g(θ), where g = (g1, . . . , gk−1) is not necessarily a Gâteaux
differentiable function at θ. More precisely, g is always a twice continuously
regularly quasi-differentiable function at θ but g is not Gâteaux differentiable
when θ has at least two equal components.

In order to determine the asymptotic behavior of
√

n(T̂n−T ) and, consequently,
of

√
n(Jn − T ), where Jn denotes the Quenouille–Tukey jackknife estimator

for T̂n, let {n1, . . . , ns} be the set of distinct components of θ , with n1 > · · · > ns.

Obviously s ≤ k and s = k only if all components of θ are distinct. Moreover,
with the same notation as in Section 5, let F1, . . . ,Fs denote the disjoint subsets
of {1, . . . , k} so that Fh = {i :Ni = nh} and let dh be the cardinality of Fh, with
h = 1, . . . , s. Finally, let �̃ = (�̃1, . . . , �̃k) : Rk → R

k be the Lipschitz function
such that (�̃l(x))l∈Dh

is the vector of the coordinates {xi}i∈Fh
ranked in decreasing

order, where Dh =]d1 +· · ·+dh−1, d1 +· · ·+dh]∩{1, . . . , k}. The following result
is proven.

THEOREM 3. Let R be a symmetric Gaussian random variable with the same
variance-covariance matrix as N̂1. Then

√
n(T̂n − T ) converges in distribution to

U = (U1, . . . ,Uk−1), where

Uj = 1

N1 + · · · + Nk

[
−Tj

j∑
l=1

�̃l(R) + (1 − Tj )

k∑
l=j+1

�̃l(R)

]
.
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If R does not have two equal components a.e., then
√

n(Jn − T̂n) converges in
probability to 0 and, consequently,

√
n(Jn − T ) converges in distribution to U .

Moreover, if vn,j is the jackknife variance estimator for T̂n,j , nvn,j converges in
probability if and only if there exists a constant cj such that

Var

[
−Tj

j∑
l=1

Rφ(l) + (1 − Tj )

k∑
l=j+1

Rφ(l)

]
= cj ,(7)

for any one-to-one function φ on {1, . . . , k}, with φ(Dh) = Fh, h = 1, . . . , s. In
particular, condition (7) implies that nvn,j converges in probability to cj but cj is
not necessarily E[U2

j ] (or Var[Uj ]).

PROOF. From Theorem 2 in Marcheselli (2000), it follows that g is a
twice continuously regularly quasi-differentiable function and its regular quasi-
differential at θ is H ◦ �̃, where H is the differential of h at �(θ). Owing to
the generalization of the delta method,

√
n(T̂n − T ) converges in distribution to

H ◦ �̃(R) which is equal to U since

∇hj

(
�(θ)

) = 1

N1 + · · · + Nk

(
−Tj

j∑
l=1

el + (1 − Tj )

k∑
l=j+1

el

)
,

where (el)1≤l≤k is the canonical basis of R
k . Now let (Ai)i be a partition of R

k so
that Ai is a convex set with interior part of the form

⋂s
h=1{xσ(f1) > · · · > xσ(fdh

)},
where Fh = {f1, . . . , fdh

} and σ is a one-to-one function on {1, . . . , k}, with
σ(Fh) = Fh. It is not difficult to observe that (Ai)i is a regular partition of R

k

which satisfies (∗) and (a), (b) of Definition 2. Therefore, if R does not have two
equal components a.e., Theorems 1 and 2 can be applied to g and, from the relation

Var[Lθ
i (N̂1)] = Var[Lθ

i (R)]

= 1

(N1 + · · · + Nk)
2 Var

[
−Tj

j∑
l=1

Rφi(l) + (1 − Tj )

k∑
l=j+1

Rφi(l)

]
,

where φi is a suitable one-to-one function on {1, . . . , k}, with φi(Dh) = Fh, the
theorem is proven. �

It is easy to see that U is Gaussian only if all components of θ are distinct
while Uj is always a Gaussian random variable when j = d1 + · · · + dh and
h = 1, . . . , s. In particular, gj is a differentiable function at θ if and only if
j = d1 + · · · + dh for some h = 1, . . . , s. Since g is a Lipschitz function at θ ,
the bias E[(T̂n − T )] is equivalent to E[U ]/√n and U is not generally a centered
random vector. Moreover, the bias of jackknife estimator Jn is not reduced with
respect to E[U ]/√n. Finally, E[(T̂n,j − Tj )

2] is equivalent to E[U2
j ] and, when
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Uj is not Gaussian, the distribution of Uj is not determined by nvn,j even if
nvn,j converges in probability to E[U2

j ]. Consequently, in order to construct an

asymptotically conservative confidence band for T̂n − T, the jackknife variance
estimator vn,j cannot be used directly when θ has at least two equal components.
Nevertheless, owing to Corollary 2, a confidence band for T may be obtained. As
a matter of fact, the following asymptotic result can now be proven.

THEOREM 4. For any h = 1, . . . , s, let Ij be a set of one-to-one functions φ

onto {1, . . . , k}, with φ(Dh) = Fh, which is an index set for the distinct functions
of type x �→ ∑j

l=1 xφ(l). For any element (z1, . . . , zm) ∈ R
k−1+ , it turns out that

lim
n

P

(
k−1⋂
j=1

√
n|T̂n,j − Tj | ≤ zj

)
≥

k−1∏
j=1

∏
φ∈Ij

�(zj/σφ,j ),(8)

where

σ 2
φ,j = 1

(N1 + · · · + Nk)
2 Var

[
−Tj

j∑
l=1

Rφ(l) + (1 − Tj )

k∑
l=j+1

Rφ(l)

]

and � is the distribution function of |N (0,1)|. In particular, if wj is the cardinality
of Ij , it holds that

lim
n

P

(
k−1⋂
j=1

√
n|T̂n,j − Tj | ≤ zj

)
≥

k−1∏
j=1

[�(zj/σ
∗
j )]wj

≥
s∏

h=1

[�(zj/σ
∗,h)]2dh−1,

with σ ∗
j = supφ∈Ij

σφ,j and σ ∗,h = supj∈Dh\{k} σ ∗
j .

PROOF. Since ∇hj (�(θ)) = 1
N1+···+Nk

(−Tj

∑j
l=1 el + (1 − Tj )

∑k
l=j+1 el),

owing to Corollary 2, it suffices to show that

k−1∏
j=1

[�(zj/σ
∗
j )]wj ≥

s∏
h=1

[�(zj/σ
∗,h)]2dh−1.

In other words, it suffices to prove that
∑

j∈Dh\{k} wj ≤ 2dh − 1. Since wj =(
dh

j − (d1 + · · · + dh−1)

)
for j ∈ Dh, the proof is thus complete. �

Therefore, if σ̃ 2
φ,j is a consistent estimator of σ 2

φ,j , according to (8) an
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asymptotically 100(1 − α)% conservative confidence band is given by
s⋂

h=1

⋂
j∈Dh\{k}

{√
n|T̂n,j − Tj | ≤ mα,d σ̃ ∗,h}

,(9)

where σ̃ ∗,h = supj∈Dh\{k} supφ∈Ij
σ̃φ,j , d = ∑k−1

j=1 wj = ∑s
h=1(2

dh − 1) − 1 and
mα,d is the upper α-point of the maximum of the absolute value of d independent
standard Gaussian random variables.

If T̃n,j denotes the vector T̂n,j

∑j
l=1 ej + (1 − T̂n,j )

∑k
l=j+1 ej and N̂1,φ,

. . . , N̂n,φ denote the random vectors whose j th components are given, respec-
tively, by πφ(j) ◦ N̂1, . . . , πφ(j) ◦ N̂n, with j = 1, . . . , k, two consistent estimators
σ̃ 2

φ,j of σ 2
φ,j may be obtained by considering

1

(π1(Nn) + · · · + πk(Nn))2
T̃ ′

n,j �̃φT̃n,j ,

where �̃φ is the sample variance-covariance matrix relative to N̂1,φ, . . . , N̂n,φ ,
or by considering n times the jackknife variance estimator for hj (Nn,φ), with
Nn,φ = (N̂1,φ + · · · + N̂n,φ)/n.

In order to assess the finite sample behavior of (9), when σ̃ 2
φ,j are estimated by

using jackknife variance estimators of hj(Nn,φ), and to establish the behavior
of the jackknife variance estimator for T̂n, a Monte Carlo study was carried
out on an ecological population of k = 10 species with abundance vector θ =
(170,40,40,35,145,10,8,6,6,6). Hence, a set of B = 200 simulations was
performed and for each simulation, n abundance vectors were generated as
independent realizations of uniform discrete variables on {Nj − rj/2 + m :m =
0, . . . , rj }, where (r1, . . . , r10) = (30,30,70,10,30,6,4,8,4,12).

First, the study focused on the Monte Carlo distribution of the jackknife
variance estimator nvn,j for T̂n,j . Computing nvn,j by means of the simulation
of n abundance vectors, the empirical distribution function corresponding to
the B simulated realizations of nvn,j was obtained. Accordingly, the empirical
distribution functions corresponding to nvn,2, nvn,3, nvn,8 and nvn,9 are displayed
in Figure 1 when n = 50. From the figure, it is at once apparent that, while the
empirical distribution function corresponding to nvn,2 resembles the distribution
function of a normal random variable (which degenerates into a point for n → ∞),
the empirical distribution functions corresponding to nvn,3, nvn,8 and nvn,9 show
a clear departure from normality (and degenerate into two points or three points
for n → ∞). Therefore, these results are in complete accordance with Theorem 3,
even if the simulation is performed with a relatively small sample size such as
n = 50, since

F1 = {1}, F2 = {5}, F3 = {2,3}, F4 = {4},
F5 = {6}, F6 = {7}, F7 = {8,9,10},
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FIG. 1. Empirical d.f.s corresponding to nvn,j with n = 50 and j = 2,3,8,9.

(d1, . . . , d7) = (1,1,2,1,1,1,3) and from Theorem 3 it holds that the jackknife
variance estimator nvn,j for T̂n,j works if and only if j 	= 3,8,9. (For the sake
of simplicity the results for nvn,1, nvn,4, nvn,5, nvn,6, nvn,7 are not reported in
Figure 1, since they display the same behavior as nvn,2.)

On the other hand, we analyzed the coverage of the proposed confidence
band. In this case, B = 1000 simulations were performed for each sample size
n = 20,50,100,200. In turn, the n abundance vectors were produced by means of
the previous stochastic generation. Moreover, for each simulation, the confidence
bands were computed for the confidence levels 90%,95%,97.5% and their
coverage was assessed. The simulated coverage is ultimately reported in Table 1.
These results show the excellent performance of the proposed confidence band
with values very similar to the corresponding nominal levels also for relatively
small sample sizes.

TABLE 1
Simulated coverage of the proposed confidence band

Level n 20 50 100 200

0.900 0.93 0.94 0.95 0.95
0.950 0.96 0.97 0.98 0.98
0.975 0.98 0.98 0.99 0.99
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