
The Annals of Statistics
1997, Vol. 25, No. 3, 1176–1188

SOME IDENTITIES ON qn2m DESIGNS WITH APPLICATION
TO MINIMUM ABERRATION DESIGNS1

By Chung-yi Suen, Hegang Chen and C. F. J. Wu2

Cleveland State University, Case Western Reserve University
and University of Michigan

Chen and Hedayat and Tang and Wu studied and characterized min-
imum aberration 2n−m designs in terms of their complemetary designs.
Based on a new and more powerful approach, we extend the study to iden-
tify minimum aberration qn−m designs through their complementary de-
signs. By using MacWilliams identities and Krawtchouk polynomials in
coding theory, we obtain some general and explicit relationships between
the wordlength pattern of a qn−m design and that of its complementary de-
sign. These identities provide a powerful tool for characterizing minimum
aberration qn−m designs. The case of q = 3 is studied in more details.

1. Introduction. Fractional factorial designs are arguably the most
widely used designs in experimental investigations. An important charac-
teristic of a fractional factorial design is its resolution [Box, Hunter and
Hunter (1978)]. Often experimenters prefer to use a design with the highest
resolution. Fries and Hunter (1980) introduced the minimum aberration
criterion for distinguishing 2n−m designs with the same resolution. Franklin
(1984) extended this criterion to qn−m fractional factorial designs, where q is
a prime power. Chen and Wu (1991) classified 2n−m designs with minimum
aberration for m = 3;4 and Chen (1992) constructed 2n−5 designs with
minimum aberration by using a combination of theoretical and computational
tools. A detailed discussion on the minimum aberration criterion for 2n−m

designs can be found in Chen, Sun and Wu (1993). The original motivation
of the minimum aberration criterion was to provide a natural refinement of
the resolution concept. It may also lead to other good overall properties. For
example, Krouse (1994) studied optimal first order 2n−m designs which are
locally robust to misspecification of the prior distribution parameter. These
designs turn out to have minimum aberration.

Because minimum aberration designs play a fundamental role in the prac-
tical choice of factorial designs, their characterization is an important problem
in design theory. The approach for characterizing minimum aberration 2n−m

designs in terms of their complementary designs was employed by H. Chen
and Hedayat (1996) and Tang and Wu (1996). H. Chen and Hedayat (1996)
proposed the weak minimum aberration criterion (a modified version of the
minimum aberration criterion) and gave a theoretical characterization of 2n−m
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fractional factorial designs of resolution III with weak minimum aberration.
Tang and Wu (1996) obtained a general result that relates the wordlength
pattern of a 2n−m design to that of its complementary design. The approach is
very powerful for identifying minimum aberration 2n−m designs whose com-
plementary designs are small. Using this approach, these authors constructed
several families of 2n−m designs with minimum aberration.

In this paper, we extend the approach to identify minimum aberration qn−m

designs by classifying wordlength patterns of their complementary designs. By
using MacWilliam identities and Krawtchouk polynomials, we obtain combina-
torial identities that govern the relationships between the wordlength pattern
of a qn−m design and that of its complementary design. These identities have
explicit forms so that the wordlength pattern of a qn−m design can be read-
ily calculated from that of its complementary design. Applying these results,
we are able to construct families of qn−m designs with minimum aberration.
In Section 2, we introduce some notation, definitions and representation of a
qn−m design and its complementary design. Main theorems and some rules
for characterizing minimum aberration designs are given in Section 3. Using
these results we are able to characterize several families of 3n−m designs with
minimum aberration in Section 4. Our success in applying coding-theoretic
techniques to solve a difficult problem in factorial design theory demonstrates
the power of these techniques and should serve as an encouragement to fur-
ther cross-fertilization between coding theory and statistical design theory.

2. Notation and definitions. The qn full factorial design has n factors,
each with q levels, and qn runs comprising all possible level combinations
of the n factors. A qn−m fractional factorial design is a q−m fraction of the
qn design, so it has n factors but qn−m runs. A word of a qn−m design is an
n-dimensional vector with components in the finite field GF�q�. Associated
with every qn−m design is a set of m independent words W1; : : : ;Wm called
generators. The set of distinct words formed by b1W1+· · ·+bmWm, bi ∈ GF�q�
is the defining relations of the fraction. In the defining relations, the word
W1 = �a1; : : : ; an� and all its multiples

λW1 = �λa1; : : : ; λan� for any λ 6= 0; λ ∈ GF�q�
are considered to be the same. The defining relations of a qn−m design consist
of �qm−1�/�q−1� nonzero words which form an �m−1�-dimensional subspace
of PG�n− 1; q�, the finite projective geometry of dimension n− 1 over GF�q�
[see Raghavarao (1971) for detailed discussion of finite projective geometry].
The length of a word is the number of its nonzero components. Let D�qn−m�
be a qn−m fractional factorial design and Ai�D� be the number of words of
length i in the defining relations of D�qn−m�. The vector whose entries are
Ai�D�’s is denoted by

WP�D� = �A1�D�;A2�D�; : : : ;An�D��;
which is called the wordlength pattern of D�qn−m�. The resolution of D�qn−m�
is the smallest i with positive Ai�D� in its wordlength pattern. For additional
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information concerning fractional factorial design, see Bose (1947) and Raktoe,
Hedayat and Federer (1981).

Definition 1. A qn−m design has maximum resolution if no other qn−m de-
sign has larger resolution. LetD1 andD2 be two qn−m designs with wordlength
patterns WP�D1� and WP�D2�, and let s be the smallest integer such that
As�D1� 6= As�D2� in these two wordlength patterns. Then D1 is said to have
less aberration than D2 if As�D1� < As�D2�. A qn−m design has minimum
aberration if no other qn−m design has less aberration.

Bose (1961) studied the connections between fractional factorial designs
and algebraic coding theory and pointed out the mathematical equivalence
between fractional factorial designs and linear codes. It is well known that
the concepts of fractional factorial design, wordlength pattern, resolution and
defining relation have their counterparts in the context of linear codes. In the
following, we will discuss the representation of a qn−m design and its com-
plementary design and their wordlength patterns in the context of algebraic
coding theory.

First we briefly describe some of the basic concepts of algebraic coding the-
ory as they pertain to fractional factorial designs. See Pless (1989) for de-
tails of basic concepts and notation of algebraic coding theory. Let Vn�q� be
the n-dimensional linear vector space over the finite field GF�q�. Let G be
an �n − m� × n matrix over GF�q� of rank n − m. The set C of all vectors
ct = �c1; : : : ; cn� ∈ Vn�q� such that Gc = 0, where ct denotes the transpose of
the vector c, is called an �n;m� linear code of length n and dimension m. It
is easy to see that C is the null space of the matrix G and an m-dimensional
subspace of Vn�q� over GF�q�. The weight of a vector of C is defined as the
number of nonzero coordinates of the vector and Bi�C� denotes the number of
vectors in C with weight i. The vector

WD�C� = �B1�C�; : : : ;Bn�C��
is called the weight distribution of the code C. Let C′ be the �n − m�-
dimensional subspace of Vn�q� generated by the rows of G. Then C′ is called
the dual code of the linear code C. MacWilliams identities in coding theory
give a fundamental relationship between the weight distributions of a code
and its dual code. There are a number of versions of MacWilliams identities,
one of which is given below.

Lemma 1 (MacWilliams). If C is a linear �n;m� code over GF�q� with dual
code C′, �Bi�C�� the weight distribution of C, and �Bi�C′��, the weight distri-
bution of C′, are related by

Bi�C′� = q−m
n∑
j=0

Pi�jyn�Bj�C�;(1)

Bi�C� = qm−n
n∑
j=0

Pi�jyn�Bj�C′�(2)
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for i = 0; : : : ; n, where Pi�jyn� =
∑i
s=0�−1�s�q−1�i−s

(
j
s

)(
n−j
i−s

)
is a Krawtchouk

polynomial.

Throughout this paper, we extend the definition of
(
n
s

)
to allow n and s to

be any integers:

(
n

s

)
=





n�n− 1� · · · �n− s+ 1�
s�s− 1� · · ·1 ; for positive s;

1; for s = 0;

0; for negative s:

A qn−m design D can be considered as an �n;n −m� linear code which is
the null space of an m × n matrix G, whose rows are the m generators of
D, that is, W1; : : : ;Wm. The dual code D′ of the linear code D generated by
W1; : : : ;Wm has the same structure as the defining relations of D, except that
each word in the defining relations corresponds to q−1 different vectors in D′.
Therefore, the wordlength pattern �Ai�D�� of D and the weight distribution
�Bi�D′�� of the dual code D′ have the following relation:

Bi�D′� = �q− 1�Ai�D� for i = 1; : : : ; n:(3)

Let k = n −m and P be the k × �qk − 1�/�q − 1� matrix whose columns
consist of all the distinct points ofPG�k−1; q�. All vectors of the k-dimensional
subspace generated by the rows ofP correspond to a qk×�qk−1�/�q−1�matrix
Hk�q�; that is,

Hk�q� = �a1; : : : ;an︸ ︷︷ ︸
D

;an+1; : : : ;a�qk−1�/�q−1�︸ ︷︷ ︸
D̄

� = �D;D�:(4)

A qn−m designD of resolution III or higher corresponds to n distinct columns of
Hk�q�. Without loss of generality, we represent D by the first n columns; that
is,D = �a1; : : : ;an�. LetD consist of the remaining �qk−1�/�q−1�−n columns
of Hk�q�. We call D = �an+1; : : : ;a�qk−1�/�q−1�� the complementary design of D.
The qk × n matrix D can also be considered as a k-dimensional linear code
with the weight distribution �Bi�D��. Let D′ be the dual code of D with the
weight distribution �Bi�D′��. In the following we use MacWilliams identities
and (3) to link the various weight distributions and wordlength patterns.

Let k∗ be the rank of D, and n = �qk − 1�/�q − 1� − n. If k∗ equals k, the
qk×n matrix D can be considered as a k-dimensional linear code. Otherwise,
D consists of qk−k

∗
copies of a k∗-dimensional linear code, say D∗. We define

Bi�D� to be the number of row vectors of weight i in D. Let D′ be the dual
code of D (if k∗ < k, D′ is the dual code of D∗) with the weight distribution
�Bi�D′��. Then MacWilliams identities still hold between the weight distribu-
tion �Bi�D�� and the weight distribution �Bi�D′��. As in (3) the wordlength
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pattern WP�D� of the complementary design is related to �Bi�D′�� as follows:

�q− 1�Ai�D� = Bi�D′� for i = 1; : : : ; n:(5)

The k-dimensional subspace Hk�q� is the dual code of the Hamming code
with qk − 1 vectors of weight qk−1 and one vector of weight zero [Peterson
and Weldon (1972), page 75]. Since �D;D� is a partition of Hk�q�, a vector
in Hk�q� corresponds to a vector in D and a vector in D. The weight of a
vector in Hk�q� is the sum of the weight of a vector in D and the weight
of a vector in D. This relationship allows us to prove the following lemma,
which provides the crucial connection between the weight distributions of D
and D. This connection is essential for identifying the relationship between a
fractional factorial design and its complementary design.

Lemma 2. If �Bi�D�� and �Bi�D�� are the weight distributions of the codes
D and D, then

Bi�D� = Bqk−1−i�D� for i = 1; : : : ; qk−1 − 1;

Bi�D� = 0 for i > qk−1;

B0�D� = 1+Bqk−1�D� and

Bqk−1�D� = B0�D� − 1:

(6)

Proof. For any nonzero vector v ∈ Hk�q� = �D;D�, v = �v1;v2�, where
v1 ∈ D and v2 ∈ D. The weight of v is qk−1, which equals the sum of the weight
of v1 and the weight of v2. Therefore the number of vectors with weight i in D
equals the number of vectors with weight qk−1−i inD (i = 1; : : : ; qk−1−1). Also
there is no vector in D with weight larger than qk−1. The last two identities
in (6) follow from the fact that 0 ∈Hk�q�. 2

3. Main theorems. In this section, we will establish the relationship be-
tween the wordlength pattern of a qn−m design and the wordlength pattern of
its complementary design. From (3) and (5), it suffices to study the connection
between the weight distribution of D′ and the weight distribution of D′. Us-
ing MacWilliams identities, these weight distributions can be determined by
their dual codes. Combining Lemma 2 and MacWilliams identities, we have
the following theorem.

Theorem 1. The weight distributions of the linear codes D′ and D′ satisfy
the following equations:

Bi�D′� = Ci +
n∑
j=0

CijBj�D′� for i = 0; : : : ; n;

where k = n−m,Ci = q−k�Pi�0yn�−Pi�qk−1yn��, andCij = q−n
∑n
s=0Pi�qk−1−

syn�Ps�jyn�, for i = 0; : : : ; n; and j = 0; : : : ; n.
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Proof. From MacWilliams identities and Lemma 2, we have

Bi�D′� = q−k
n∑
s=0

Pi�syn�Bs�D�

= q−k
[
Pi�0yn� −Pi�qk−1yn� +

qk−1∑
s=0

Pi�syn�Bqk−1−s�D�
]

= q−k
[
Pi�0yn� −Pi�qk−1yn� +

qk−1∑
s=0

Pi�qk−1 − syn�Bs�D�
]

= q−k
[
Pi�0yn� −Pi�qk−1yn�

+
n∑
s=0

Pi�qk−1 − syn�qk−n
n∑
j=0

Ps�jyn�Bj�D′�
]

= q−k�Pi�0yn� −Pi�qk−1yn��

+ q−n
n∑
j=0

[ n∑
s=0

Pi�qk−1 − syn�Ps�jyn�
]
Bj�D′�:

The theorem is proved. 2

To further simplify the coefficients Cij in Theorem 1, we need the following
known propertities of Krawtchouk polynomials [see MacWilliams and Sloane
(1977) for details].

Lemma 3. For Krawtchouk polynomials Ps�jyn�, we have the following:

(i) Ps�jyn� =
(
n
s

)
�q− 1�s−jPj�syn�/

(
n
j

)
;

(ii) �1+ �q− 1�y�n−s�1− y�s =∑∞j=0Pj�syn�yj; and

(iii) �1+ �q− 1�z�n−qk−1+s�1− z�qk−1−s =∑∞i=0Pi�qk−1 − syn�zi:

By applying Lemma 3, the coefficients Cij in Theorem 1 have the following
formulas.

Theorem 2. The coefficients Cij in Theorem 1 are the following:

(i) Cij = 0, when j > i;

(ii) Cij =
∑

t; u; v≥0; t+u+v=i−j



qk−1 − 1
q− 1

− n

t



(
qk−1 − n

u

)(
n− j
v

)

× �−1�j+u�q− 2�v�q− 1�t;
when j ≤ i;

(iii) Ci; i−1 = �−1�i��i− 1�q− 2i+ 3�; and

(iv) Cii = �−1�i.
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Proof. From Lemma 3 we have

Cij = q−n
n∑
s=0

Pi�qk−1 − syn�
(
n

s

)
�q− 1�s−jPj�syn�

/(n
j

)

=
[
qn�q− 1�j

(
n

j

)]−1 n∑
s=0

(
n

s

)
�q− 1�sPi�qk−1 − syn�Pj�syn�:

Consider the following polynomial in y and z
n∑
s=0

(
n

s

)
�q− 1�s�1+ �q− 1�y�n−s�1− y�s�1+ �q− 1�z�n−qk−1+s�1− z�qk−1−s

=
n∑
s=0

(
n

s

)
�q− 1�s

( ∞∑
j=0

Pj�syn�yj
)( ∞∑

i=0

Pi�qk−1 − syn�zi
)

=
∞∑
j=0

∞∑
i=0

( n∑
s=0

(
n

s

)
�q− 1�sPj�syn�Pi�qk−1 − syn�

)
yjzi:

(7)

The coefficient of yjzi in the polynomial (7) equals qn�q− 1�j
(
n
j

)
Cij. The poly-

nomial (7) can be written as

�1+ �q− 1�z��qk−1−1�/�q−1��1− z�qk−1

×
n∑
s=0

(
n

s

)[
1+ �q− 1�y
1+ �q− 1�z

]n−s[�q− 1��1− y�
1− z

]s

= �1+ �q− 1�z��qk−1−1�/�q−1��1− z�qk−1

×
[

1+ �q− 1�y
1+ �q− 1�z +

�q− 1��1− y�
1− z

]n

= qn�1+ �q− 1�z��qk−1−1�/�q−1�−n�1− z�qk−1−n

× �1+ �q− 2�z− �q− 1�yz�n

= qn
∑
t≥0



qk−1 − 1
q− 1

− n

t


��q− 1�z�t

∑
u≥0

(
qk−1 − n

u

)
�−z�u

×
∑
v; j≥0

(
n

j

)(
n− j
v

)
��q− 2�z�v�−�q− 1�yz�j

= qn
∑

t; u; v; j≥0



qk−1 − 1
q− 1

− n

t



(
qk−1 − n

u

)(
n

j

)(
n− j
v

)

× �−1�u+j�q− 2�v�q− 1�t+jyjzt+u+v+j:

(8)

The coefficient of yjzi in the above polynomial is 0, when j > i. Thus, Cij = 0:
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If j ≤ i, the coefficient of yjzi is equal to

qn
∑

t; u; v≥0; t+u+v=i−j



qk−1 − 1
q− 1

− n

t



(
qk−1 − n

u

)(
n

j

)(
n− j
v

)

× �−1�u+j�q− 2�v�q− 1�t+j

= qn�q− 1�j
(
n

j

)
Cij;

which proves part (ii).
From the expression for Ci;i−1, it is easy to show that the summation has

three terms by taking t = 1, u = 1 or v = 1 respectively (so that t+u+v = 1);
that is,

�−1�iCi; i−1 = −
(
qk−1 − 1
q− 1

− n
)
�q− 1� + �qk−1 − n� − �n− i+ 1��q− 2�

= �i− 1�q− 2i+ 3;

which is positive for q ≥ 2.
For j = i, we have t = u = v = 0 and Cii = �−1�i. This completes the

proof. 2

Corollary 1. For q = 2, the coefficients Cij in Theorem 2 can be expressed
as follows:

(i) Cij = �−1�i−��i−j�/2�
( 2k−1−1−n
��i−j�/2�

)
, for j ≤ i, where �x� is the largest integer

less than or equal to x; and
(ii) Cii = Ci; i−1 = �−1�i:

Proof. When q = 2, the polynomial in (8) becomes

2n�1+ z�2k−1−1−n�1− z�2k−1−n�1− yz�n

= 2n�1− z��1− z2�2k−1−1−n�1− yz�n

= 2n�1− z�
∑
u≥0

(
2k−1 − 1− n

u

)
�−z2�u

∑
j≥0

(
n

j

)
�−yz�j

= 2n�1− z�
∑

u;j≥0

(
2k−1 − 1− n

u

)(
n

j

)
�−1�u+jyjz2u+j

= 2n
∑

u;j≥0

(
2k−1 − 1− n

u

)(
n

j

)
�−1�u+jyjz2u+j

+ 2n
∑

u;j≥0

(
2k−1 − 1− n

u

)(
n

j

)
�−1�u+j+1yjz2u+j+1:
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The coefficient of yjzi is

2n




2k−1 − 1− n
i− j

2



(
n

j

)
�−1��i+j�/2 if i− j is even and

2n




2k−1 − 1− n
i− j− 1

2



(
n

j

)
�−1��i+j+1�/2 if i− j is odd:

Therefore, the coefficient of yjzi is

2n




2k−1 − 1− n[
i− j

2

]


(
n

j

)
�−1�i−��i−j�/2�:

Following the same argument in the proof of Theorem 2, the coefficient of yjzi

in the polynomial is also equal to 2n
(
n
j

)
Cij. Hence,

Cij = �−1�i−��i−j�/2�



2k−1 − 1− n[
i− j

2

]

:

Part (ii) is a special case of Theorem 2(iii) and (iv).
From (3) and (5), Theorems 1 and 2, the wordlength pattern of design D

can be calculated in terms of the wordlength pattern of its complementary
design D.

Theorem 3. Let WP�D� and WP�D� be the wordlength patterns of a qn−m

design D and its complementary design D respectively. Then

Ai�D� = �q− 1�−1�Ci +Ci0� +
i−2∑
j=3

CijAj�D�

+ �−1�i���i− 1�q− 2i+ 3�Ai−1�D� +Ai�D��;
(9)

for i = 3; : : : ; n, where Ci and Cij are given in Theorems 1 and 2.

Note thatAi�D� in (9) are 0, for i > n or i = 1 and 2. Because �i−1�q−2i+3
in (9) is positive for q ≥ 2 and i ≥ 3, the signs of the coefficients for the two
highest terms Ai−1�D� and Ai�D� are both positive for even i and negative
for odd i. The equations in (9) generalize the result of Tang and Wu (1996)
which only dealt with 2n−m designs. Unlike the latter, the coefficients in (9)
are explicit and can be easily computed.

For q = 2, (9) takes a simpler and more elegant form. The following identi-
ties in (10) were not available in Tang and Wu (1996).
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Corollary 2. LetWP�D� andWP�D� be the wordlength patterns of a 2n−m

design D and its complementary design D, respectively. Then

Ai�D� = Ci +Ci0 +
i−2∑
j=3

CijAj�D� + �−1�i�Ai−1�D� +Ai�D��

for i = 3; : : : ; n;

(10)

where Ci are given in Theorem 1, and

Cij = �−1�i−��i−j�/2�



2k−1 − 1− n[
i− j

2

]

:

The signs of the coefficients for Ai�D� in (10) have an interesting pattern.
For even i, the coefficients of the two highest terms (i.e., Ai−1�D� and Ai�D�)
are positive, then followed alternately by two negative signs, then two positive
signs, and so on. For odd i, the signs have the same alternating pattern, except
that it starts with two negative coefficients for Ai−1�D� and Ai�D�.

The identities in Theorem 3 give an important relationship between the
wordlength patterns of a qn−m design and its complementary design. This rela-
tionship is particularly useful for characterizing minimum aberration designs
through their complementary designs when the size of the complementary
design n is small. From Theorems 2 and 3, we have the following identities:

A3�D� = �q− 1�−1�C3 +C30� −A3�D�;
A4�D� = �q− 1�−1�C4 +C40� + �3q− 5�A3�D� +A4�D�:

(11)

Using the identities in (11), we can establish some general rules for identifying
qn−m designs with minimum aberration.

Rule 1. A qn−m design D∗ with D∗ as its complementary design (of size
n) has minimum aberration if the following are given:

(i) A3�D∗� is the maximum among all complementary designs of size n;
(ii) D∗ is the unique set satisfying (i).

Rule 2. A qn−m design D∗ has minimum aberration if the following are
given:

(i) A3�D∗� is the maximum among all complementary designs of size n;
(ii) A4�D∗� is the minimum among all complementary designs of size n

whose number of words of length three equals A3�D∗�;
(iii) D∗ is the unique set satisfying (ii).

More generally, by noting the relation

Ai�D� = �−1�iAi�D� + lower order terms;

we have from (9) the following general rule.
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D∗ has minimum aberration if its complementary design
D∗ is the unique design of size n that maximizes A3�D�,
A5�D�; : : : ;A2v−1�D�(or A2v+1�D�) and minimizes A4�D�,
A6�D�; : : :, and A2v�D� lexicographically.

For application to physical experiments whose run size and number of fac-
tors cannot be too large, calculation of Ai�D� with i ≥ 6 are rarely needed. For
application to larger experiments such as computer experiments, the general
rule may be useful.

Now we apply Rule 1 to identify a 39−6 design with minimum aberration.
Let a, b and c be three independent columns of H3�3�, where H3�3� is a
27× 13 matrix as defined in (4), and denote aibjcl = ia+ jb+ lc, where i; j
and l are in GF�3�:

H3�3� = �a;b;ab;ab2;c;ac;bc;abc;ab2c;ac2;bc2;abc2;ab2c2�:
Any 39−6 design can be determined by a subset of nine columns fromH3�3�. Its
complementary design D has the remaining four columns from H3�3�. There
are three different complementary designs, that is, D1 = �a;b;c;abc�, D2 =
�a;b;ab;c� and D3 = �a;b;ab;ab2�. They have the following wordlength
patterns:

WP�D1� = �0;0;0;1�;
WP�D2� = �0;0;1;0�;
WP�D3� = �0;0;4;0�:

Let D1, D2 and D3 be the corresponding designs of nine cloumns. Since D3
has the maximum number of words of length three among D1, D2, and D3,
the 39−3 design D3, which consists of the last nine columns of H3�3�, has
minimum aberration. From (9), we have

A3�D� = 16−A3�D�;
A4�D� = 38+ 4A3�D� +A4�D�;
A5�D� = 74− 5A3�D� − 5A4�D�;
A6�D� = 96+ 10A4�D�;
A7�D� = 88+ 5A3�D�;
A8�D� = 43− 4A3�D� + 5A4�D�;
A9�D� = 9+A3�D� −A4�D�:

The wordlength patterns of D1, D2 and D3 can be calculated from those of
their complementary designs,

WP�D1� = �0;0;16;39;69;106;78;48;8�;
WP�D2� = �0;0;15;42;69;96;93;39;10�;
WP�D3� = �0;0;12;54;54;96;108;27;13�:
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Using these rules, we are able to identify families of minimum aberration
designs. To illustrate the application of these rules, we will study minimum
aberration 3n−m designs in the next section.

4. 3n2m designs with minimum aberration. In this section, we identify
families of minimum aberration 3n−m designs whose complementary designs
have size n = 1;2; : : : ;13:

It is easy to see that designs obtained by deleting any one or two columns of
Hk�q� have minimum aberration [see Pu (1989)]. Pu (1989) and Chen, Sun and
Wu (1993) classified complementary designs of size n for n = 3; : : : ;13. Each
of the following complementary designs of size n is the unique one with the
maximum number of words of length three. Their uniqueness can be verified
by computer enumerations or combinatorial arguments:

D3 = �a;b;ab�;
WP�D3� = �0;0;1�;

D4 = PG�1;3�;
WP�D4� = �0;0;4;0�;

D5 = �a;b;ab;ab2;c�;
WP�D5� = �0;0;4;0;0�;

D6 = �a;b;ab;ab2;c;ac�;
WP�D6� = �0;0;5;3;3;2�;

D7 = �a;b;ab;ab2;c;ab2c;ab2c2�;
WP�D7� = �0;0;8;9;9;14;0�;

D8 = �a;b;ab;ab2;c;ab2c;bc2;ab2c2�;
WP�D8� = �0;0;11;21;30;38;15;6�;

D9 = �a;b;ab2;c;ab2c;ac2;bc2;abc2;ab2c2�;
WP�D9� = �0;0;16;39;69;106;78;48;8�;

D10 = �a;b;ab;ab2;c;ac;bc;abc;ac2;bc2�;
WP�D10� = �0;0;22;68;138;250;290;213;92;20�;

D11 = �a;b;ab;ab2;c;ac;bc;abc;ac2;bc2;abc2�;
WP�D11� = �0;0;30;108;252;546;810;765;517;216;36�;

D12 = �a;b;ab;ab2;c;ac;bc;abc;ac2;bc2;abc2;ab2c2�;
WP�D12� = �0;0;40;162;432;1092;1944;2295;2068;1296;432;80�;

D13 = PG�2;3�;
WP�D13� = �0;0;52;234;702;2028;4212;5967;6721;5616;2808;1040;144�:

By deleting complementary designs with these structures from Hk�3��k =
n−m�, the resulting matrices give 3n−m designs with minimum aberration.
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