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We consider a coherent system S consisting of m independent compo-
nents for which we do not know the distributions of the components’
lifelengths. If we know the structure function of the system, then we can
estimate the distribution of the system lifelength by estimating the distri-
butions of the lifelengths of the individual components. Suppose that we
can collect data under the ‘‘autopsy model,’’ wherein a system is run until

Ž .a failure occurs and then the status functioning or dead of each compo-
nent is obtained. This test is repeated n times. The autopsy statistics
consist of the age of the system at the time of breakdown and the set of
parts that are dead by the time of breakdown. We develop a nonparamet-
ric Bayesian estimate of the distributions of the component lifelengths and
then use this to obtain an estimate of the distribution of the lifelength of
the system. The procedure is applicable to machine-test settings wherein
the machines have redundant designs. A parametric procedure is also
given.

1. Introduction and summary. Consider a coherent system S consist-
ing of m independent components for which we do not know the distributions
of the component lifelengths. Assume that each of the m components occupies
one of two states, functioning or failed. We consider the statistical model in
which each element of a sample of n replicates of S is observed until it fails.
The observed data consist of the set of components that are in a failed state
and the failure time of the system. The failure times of the dead components
are not directly observed. The set of dead components and the system failure
time comprise the ‘‘autopsy statistics’’ of the system. This model is usually
called the autopsy model.

Two statistical problems arise in considering the autopsy model}the
problems of estimating the distributions of the component lifelengths and
the distribution of the entire system’s lifelength. One approach to estimating
the distribution of the system lifelength is to use only the observed system
failure times. For example, we could use the empirical distribution function.

Ž .However, such an approach ignores the partial information we have about
the components of the system. If the structure function of the system is
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known, the distribution of the lifelength of the system can, in general, be
calculated from knowledge of the distributions of the component lifelengths.
Hence, an alternative approach would be to estimate the distributions of the
lifelengths of the m components of system S and then use the structure
function of S to estimate the distribution of the system lifelength.

Clearly, the component information provided by the autopsy model is quite
limited. It is reasonable to consider alternative testing procedures which
provide more component information. However, the autopsy model is impor-
tant when alternative testing procedures such as separate testing of compo-
nents are not possible or practical. For example, it may be difficult to
reproduce the conditions which exist in the functioning system when compo-
nents are tested separately. For such systems, it is important to obtain every
bit of information about the components when they are parts of a machine or
other system. In these settings, as well as the case of certain biological
systems, the autopsy model is natural. Probabilistic aspects of the autopsy

Ž . Ž .model were considered by Meilijson 1981 , Nowick 1990 and Antoine, Doss
Ž .and Hollander 1993 . Inferential aspects of the autopsy model have been

Ž . Ž .considered only by Watelet 1990 and Meilijson 1994 .
Ž .The U.S. Air Force’s C-17 transport airplane’s fuel quantity FQ computer

is an example of a system in which the ‘‘component’’ is a logical subsystem
whose status can be readily determined in the field. The FQ computer is a
parallel system of order 2, consisting of an ‘‘A’’ bus and a ‘‘B’’ bus. When this
system’s data were first examined by the authors, there were approximately
2440 cumulative flying hours spread among six different prototype C-17’s,
each of which contained one FQ computer. We present a data analysis using
our procedure in Section 3.

Consider the autopsy statistics as described above. Assume that the sys-
w Ž .tem we wish to study is a coherent system see Barlow and Proschan 1981 ,

xChapters 1 and 2 . We can use the structure function, the set of dead
components and the failure time of the system to say more about the failure
times of each component. Specifically, for each of the n replicates of S, we can
classify the failure time of each of the m components as follows:

C1. Component failure time is greater than system failure time.
C2. Component failure time is less than system failure time.
C3. Component failure time is equal to system failure time.
C4. Component failure time is either less than or exactly equal to system

failure time, but we cannot tell which.

The first two categories correspond to what are usually termed right-
censored data and left-censored data, respectively. Right-censored data occur
when the component is still alive when the system fails. Left-censored data
occur when the component is dead and information contained in the structure
function, along with information contained in the set of dead components,
allows one to deduce that the component’s death occurred prior to the system
failure time. Similarly, the third category arises when a component is ob-
served in a failed state and we deduce that it caused the system to fail. The
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last category occurs whenever all the components in a redundant system or a
redundant subsystem belong to the set of dead components. In this case, we
know there is exactly one component, whose identity we do not know, with a
failure time equal to that of the system, while the failure times of all the
other components are strictly less than that of the system.

The last category above is problematic, particularly in frequentist settings,
Žand is at the heart of the issue of ‘‘identifiability.’’ General references on

.identifiability are given at the end of this section. For example, consider a
parallel system of order 2. Let the distributions for components 1 and 2 be F1
and F , respectively. Both components will always be dead when the system2
is observed in a failed state. Under the autopsy model, one can only observe
the system failure time, which has distribution F F . This simple redundant1 2
system is not identifiable in the frequentist sense in that it is not possible to
determine F and F from a knowledge of the distribution of the observed1 2
data.

We use a Bayesian framework because, for the applications we have in
mind, we have a small amount of data but have extensive past experience on
the components in other systems. For example, in the case of the C-17 FQ
computer, similar but not identical FQ computers exist in other aircraft for
which there has been more extensive testing. Thus, we have strong reasons to
suspect that a certain parametric family provides a good approximation to
the true probability model, and we have some knowledge about the unknown
parameters. A Bayes procedure makes sense here since we have only limited
testing hours on just six FQ systems, each within a C-17, and we wish to
estimate the distribution of the lifelength of the FQ system when it is part of
the C-17.

We consider a Bayesian framework for estimation of the distributions of
component lifelengths in which the prior distributions on each of the F ’s givei
most of their mass to ‘‘small neighborhoods of a parametric family.’’ The prior
distributions which we use are derived from the Dirichlet process priors

Ž .discussed by Ferguson 1973, 1974 . The Dirichlet process priors are probabil-
ity measures on PP parametrized by the set of all finite nonnull measures on
the real line RR, where PP is the space of all probability measures on RR. Let a
be a finite nonnull measure on the Borel sets of RR. The random distribution
function F is said to have a Dirichlet process prior distribution with parame-

Ž . � 4ter a denoted DD if, for every measurable partition B , . . . , B of RR, thea 1 l
Ž Ž . Ž ..random vector F B , . . . , F B has the Dirichlet distribution with parame-1 l

Ž Ž . Ž .. Žter vector a B , . . . , a B here and throughout the rest of the paper,1 l
probability measures are identified with their cumulative distribution func-
tions, and the same symbol is used to denote both a measure and its

.distribution function whenever convenient . When a prior distribution is put
Ž .on PP, then, for every t g RR, the quantity F t is a random variable. Write

Ž .H s ara RR , so that H is a probability measure on RR. If F ; DD , thena

Ž . Ž . Ž .EF t s H t , while the quantity a RR indicates the degree of concentration
Ž .of DD around its ‘‘center’’ H. For example, it is well known that as a RR ª `,a

Ž .DD converges to the point mass at H in the weak topology. Ferguson 1973a
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showed that the Dirichlet priors have the property that the support of DD isa

the set of all probability measures whose support is contained in the support
of H. For example, if the support of H is the positive real axis, then the
support of DD is the set of distributions of all positive random variables.a

Ferguson also showed that if F ; DD , then F is a.s. discrete.a

The priors on each of the F ’s, i s 1, . . . , m, that we use are mixtures ofi
Dirichlet priors. To keep the notation less cumbersome, let m s 2. For
component 1, we consider a parametric family H , u g Q, and put a mixtureu

of Dirichlets as the prior on F . That is,1

F ; DD n du ,Ž .H1 au

Ž . Ž .where for each u g Q, a s a RR H , 0 - a RR - ` and n is a probabilityu u u u

measure on Q. Similarly, for component 2 we consider the parametric family
Ž .K , c g C, and put as prior on F the mixture H DD m dc . For each c g C,c 2 bc

Ž . Ž .b s b RR K , 0 - b RR - `, and m is a probability measure on C.c c c c

Our nonparametric Bayesian procedure, which uses mixtures of Dirichlets
as priors on the F ’s, has two advantages. First, we protect against thei
problems associated with using an incorrectly specified parametric model,
such as obtaining an inconsistent estimator. Second, we can avoid the loss of
efficiency due to ignoring partial information we may have about a paramet-

Ž .ric model, since we use prior distributions on each of the F ’s that concen-i
trate their mass around the hypothesized parametric family.

Our approach is based on the Gibbs sampling algorithm as discussed in
Ž .Gelfand and Smith 1990 . We now review the algorithm. Let f be theY , . . . , Y1 p

Ž .joint distribution of the possibly vector-valued random variables Y , . . . , Y .1 p
We suppose that we do not know the form of f , but that we know theY , . . . , Y1 p

conditional distributions f , i s 1, . . . , p, or that at least we are able toY N Y , j/ ii j

generate observations from these conditional distributions. Suppose we want
to sample observations from the joint distribution of the random variables
Y , . . . , Y , or simply an observation from one of the p marginals. The1 p
algorithm to generate an observation from f proceeds as follows. WeY , . . . , Y1 p

fix arbitrary starting values Y Ž0., . . . , Y Ž0. and then update these values.1 p
Ž1. Ž Ž0. Ž0.. Ž1.Draw Y from f ?, Y , . . . , Y . Next, draw Y from1 Y N Y , j/ 1 2 p 21 j
Ž Ž1. Ž0. Ž0.. Ž1.f Y , ? , Y , . . . , Y . Continue until we draw Y fromY N Y , j/ 2 1 3 p p2 j
Ž Ž1. Ž1. .f Y , . . . , Y , ? . We have now completed one iteration of theY N Y , j/ p 1 py1p j

scheme by visiting each variable. After k iterations, we have the random
Ž Žk . Žk .. Ž Ž j. Ž j..variables Y , . . . , Y . The sequence Y , . . . , Y , j s 1, 2, . . . , is a1 p 1 p

Markov chain and f is a stationary distribution of the chain. If oneY , . . . , Y1 p
Žcan establish that the chain converges in distribution to f , then forY , . . . , Y1 p

. Ž Žk . Žk ..large k Y , . . . , Y has a distribution which is approximately equal to1 p
f . Such observations can be used to estimate f .Y , . . . , Y Y , . . . , Y1 p 1 p

Perhaps the most natural way to implement the Gibbs sampler here is to
proceed as is normally done in a Bayesian analysis of missing data problems

Ž .under conjugacy. That is, consider the pair parameter u , missing data : in
such a setup, if we knew the missing data, we would easily be able to find the
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conditional distribution of the parameter u , and if we knew the parameter u ,
wwe would be able to generate the missing data see, for instance, the linkage

example or the Dirichlet sampling process example in Tanner and Wong
Ž .x Ž .1987 . Indeed, this is precisely the approach taken by Doss 1994 , who
considers the use of Dirichlet priors for the problem of estimating an un-
known distribution F in the presence of censoring. He considers random
variables X , . . . , X ; F, but only observes X g A , where A is a single-1 n iid i i i

Ž .ton if X is uncensored and A s c , ` if X is censored on the right by c .i i i i i
His approach is based on a Gibbs sampling algorithm of length 2 involving
Ž . Ž . Ž < .X, F , where X s X , . . . , X ; that is, he generates X from LL X F and F1 n data

Ž < . wfrom LL F X , where data consists of the sets A , . . . , A . Note that thedata 1 n
Ž < .subscript ‘‘data’’ denotes conditioning on the data; thus, LL F X denotesdata

xthe conditional distribution of F given both X and the data. The details of
carrying out the steps of the algorithm rely on a constructive definition of the

Ž .Dirichlet prior, given in Sethuraman 1994 .
Ž .Our initial approach was simply to extend the technique of Doss 1994 to

our setting; however, the approach fails since, as we show in Section 2.2, the
procedure produces a Markov chain that is reducible and therefore does not
converge to the posterior distribution. We present an entirely different algo-
rithm that produces a Markov chain which we show to converge to the
posterior.

We now give a preliminary explanation of our procedure for the case where
the priors on each of the F ’s are single Dirichlets; that is, F ; DD . Let S ,j j a ij

Ž .i s 1, . . . , n, be the vector of lifelengths of the m components for system i if
we could see them all. Let data be the set of autopsy statistics for the n

Žsystems. It may be helpful to think of the case of parallel systems. In this
.case, data consists simply of the n system failure times. The algorithm

proceeds as follows. Fix arbitrary starting values SŽ0., . . . , SŽ0.. Generate1 n
Ž1. Ž Ž0. Ž0.. Ž1. Ž Ž1. Ž0.S ; LL S N S , . . . , S . Next, generate S ; LL S N S , S , . . . ,1 data 1 2 n 2 data 2 1 3
Ž0.. Ž1. Ž Ž1. Ž1. .S . Continue until we generate S ; LL S N S , . . . , S . We haven n data n 1 ny1

now completed one iteration of the procedure. We repeat the procedure a
large number of times and use the realizations of the chain to estimate

Ž .LL S , . . . , S . There are two key points that allow this procedure todata 1 n
produce a Markov chain which converges to the posterior distribution:

1. The conditional distribution of the lifelength of the jth component of
system i depends only on the autopsy statistics for system i and on the
current set of lifelengths for the jth components of S , l / i.l

2. The joint unconditional distribution of the n lifelengths of component j
can be described in full.

Ž .The estimate of LL S , . . . , S can be used to obtain an estimate ofdata 1 n
Ž .LL F , . . . , F .data 1 m

Ž .Note that, in contrast to Doss 1994 , we deal only with the random
Ž .lifelengths of the components and bypass entirely the problem of generating

the infinite-dimensional F ’s.j
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In Section 2, we explore the algorithm further. In Section 2.1 we give a
Gibbs sampling algorithm for our problem under parametric assumptions. In

Ž .Section 2.2, we present a simple extension of the procedure of Doss 1994 to
our setting and explain why this leads to a reducible Markov chain. In
Section 2.3 we describe our basic Gibbs sampling algorithm, discuss a modi-
fication of it to speed up the rate of convergence and provide a rigorous proof
of convergence for the case of parallel systems of order 2. In Section 2.4 we
indicate the modifications necessary when dealing with an arbitrary coherent
system. In Section 3 we illustrate our nonparametric procedure on data
pertaining to the C-17 FQ computer.

The last portion of this section is used to summarize other relevant
research in the statistical literature. First, we define the term identifiability.
Suppose system S has m components and the component distributions are
denoted F , . . . , F . If F , . . . , F can be recovered from knowledge of the true1 m 1 m
distributions of the autopsy statistics, then we say that F , . . . , F are1 m
identifiable and that S is an identifiable system. For example, any parallel

Ž . Ž .system is nonidentifiable. Meilijson 1981 , Nowick 1990 and Antoine, Doss
Ž .and Hollander 1993 considered probabilistic aspects of the autopsy model.

In these three papers, the authors identify conditions on the structure
function of the system and on the distributions of the component lifelengths
that guarantee identifiability.

Relevant work on estimating the distribution of the system lifelength
under the autopsy model by first estimating the distributions of the compo-
nent lifelengths and then using the structure function of the system can be

Ž . Ž . Ž .found in Watelet 1990 and Meilijson 1994 . Watelet 1990 considered two
estimators for the autopsy model. He developed nonparametric estimators for

Ž .the F ’s. Meilijson 1994 estimated the parameters of these distributionsj
Ž .from the empirical estimate of LL Z, D , where Z is the lifetime of the

machine and D is the diagnostic set of parts that had died by time Z, by
maximum likelihood from incomplete data via the EM algorithm. Meilijson
assumes the F ’s are drawn from well-behaved parametric families.j

Under the assumption that the failure times of the dead components are
Ž .known, Doss, Freitag and Proschan 1989 also considered inferential aspects

of estimating the distribution of the lifelength of the system by first estimat-
ing the distribution of the lifelengths of the system’s components. In their
model, they have more information than is available under the autopsy

Ž .model. We also mention Arjas and Gasbarra 1994 , who consider a Bayesian
nonparametric approach to estimation in the random right-censorship model
of survival analysis. They put a prior on the hazard rate and develop a Gibbs
sampling algorithm for the numerical calculations.

2. Development and convergence of the algorithm. In order to keep
the notation as light as possible Sections 2.1 and 2.3 deal only with parallel

Ž .systems of order 2 for which we have n replicates . It will be clear from the
remarks in Section 2.4.1 that knowledge of how to deal with a parallel
‘‘module’’ makes it possible to handle an arbitrary coherent system.
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2.1. A Gibbs sampling algorithm for the autopsy model under parametric
Žassumptions. For the ith replicate, i s 1, . . . , n, let the observed data sys-

.tem failure time be m , the maximum of the two component lifelengths, Xi i
Ž . Ž . Ž .and Y . Let Z s X, Y , where X s X , . . . , X , Y s Y , . . . , Y . Let X ; Fi 1 n 1 n i iid u

with u g Q and suppose u ; n , where n is a conjugate prior distribution on u .
Let Y ; G with c g C and suppose c ; m, where m is a conjugate priori c

distribution on c . Assume that F and G are absolutely continuous distribu-u c

tion functions. To make the discussion as easy as possible to follow, consider
Ž . Ž .the case where F s EE u the exponential distribution with parameter uu

Ž . Žwith u ; n s GG a , b the gamma distribution with shape parameter a and1 1 1
. Ž . Ž .scale parameter b and G s EE c with c ; m s GG a , b .1 c 2 2

Before describing the algorithm, we introduce the following notation. If H
is a distribution function, B is a set, and X is distributed according to H,
then H will denote the conditional distribution function of X given thatB
X g B; that is,

2.1 H A s H A l B rH BŽ . Ž . Ž . Ž .B

Ž .when H B ) 0.
The algorithm proceeds as follows.

Ž .Ž0. Ž0. Ž0.Give arbitrary initial values to X, Y such that X k Y s m . Fori i i i
k s 1, . . . , K :

Ž .Žk . ŽŽ . Ž .Žky1..1. Generate u , c ; LL u , c N X, Y .data
Ž .Žk . ŽŽ . Ž .Žk ..2. Generate X, Y ; LL X, Y N u , c , independently for each i, i si data i

1, . . . , n.

We now describe these two steps in more detail.
ŽŽ . Žky1.In step 1 of the algorithm, LL u , c N Z is the product of two gammadata

Ž n Žky1.. Ž n Žky1..distributions, GG a q n, b q Ý X and GG a q n, b q Ý Y ;1 1 is1 i 2 2 is1 i
Žthat is, u and c are generated independently. Note that knowledge of X and

.Y makes knowledge of the observed data superfluous. To carry out step 2,
first let f and g be the densities of F and G , respectively. Then, for eachu c u c

i, i s 1, . . . , n, set

f Žk . m rF Žk . mŽ . Ž .u i u iŽk .p s ,i
Žk . Žk . Žk . Žk .f m rF m q g m rG mŽ . Ž . Ž . Ž .u i u i c i c i

Ž . Žk . Ž .Žk .where F s G s EE l . Now, generate Z by setting X, Y , i s 1, . . . , n,l l i
as follows:

¡ Žk .
Žk .m , V , where V ; G , with probability p ,Ž .i c , w0, m . iiŽ .k ~X , Y sŽ . i Žk .¢ Žk .V , m , where V ; F , with probability 1 y p ,Ž . Ž .i u , w0, m . ii

where the notation used for the conditional distribution functions is given by
Ž .2.1 .
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ŽŽ .. Žk .To estimate LL u , c , we use the sequence of generated Z ’s todata
approximate the mixture

LL u , c N Z d LL ZŽ . Ž .Ž .H data data

Ž . K ŽŽ . Ž j..by, say, 1rK Ý LL u , c N Z .js1 data
If n and m are not conjugate priors for F and G , respectively, but theyu c

are continuous distribution functions with univariate log-concave density
functions, then we can still apply the above algorithm by using an efficient

Ž .rejection scheme of Gilks and Wild 1992 .

Ž . Ž .2.2. A naıve extension of the algorithm of Doss 1994 . Doss 1994 uses a¨
Ž .Gibbs sampling algorithm of length 2 involving X, F . The prior he puts on F

is actually a mixture of Dirichlets, but we shall consider a single Dirichlet
prior for our naıve extension, since if the procedure fails for a single Dirichlet,¨
it will fail a fortiori for a mixture.

Suppose we have n replicates of a parallel system of order 2. Let Z, X and
Y be defined as in Section 2.1. Suppose X ; F and Y ; G, i s 1, . . . , n.i iid i iid
Suppose F ; DD and G ; DD , where DD and DD are Dirichlet priors witha b a b

Ž .parameter measures a and b. We observe datas m , . . . , m , where m s1 n i
Ž .X k Y , i s 1, . . . , n. Our goal is to estimate LL F, G .i i data

Ž . Ž .We know that the conditional distribution of F, G given X, Y is

2.2 LL F , G N Z s DD n m DD n ,Ž . Ž .Ž .data aqÝ d bqÝ dis 1 X is1 Yi i

where m denotes product measure; that is, F and G are independent. Also,
Ž .given an updated F, G , we can generate a random Z conditional on the data.

To run the Gibbs sampling algorithm, we first set initial values ZŽ0. and
Ž .Ž0.F, G . Then, for some large K, execute the following loop for k s 1, . . . , K :

Ž .Žk . ŽŽ . Žky1..1. Draw F, G from LL F, G N Z .data
Žk . Ž Ž .Žk ..2. Draw Z from LL Z N F, G .data

To carry out the second step in the above loop, we need to compute the
probability that each component’s lifelength takes on the observed maximum,
since one of the values must. Consider the case where n s 1. Let the observed
maximum be denoted by m. We assume that m ) 0 and that a and b are

Ž0. Ž .Ž0. Ž .continuous measures. Suppose the initial value of Z is X , Y s m, V ,1 1
Ž .Ž1.for some V - m. These initial values give rise to F, G via the first step of

Ž . Ž1.the algorithm. By 2.2 , F ; DD , but by definition of the Dirichlet prior,aqd mŽ1.Ž� 4.this implies that F m is distributed as a beta distribution with parame-
Ž .Ž� 4. Ž .Ž� 4c. Ž1.Ž� 4.ters a q d m and a q d m , and therefore F m ) 0 with prob-m m

Ž .ability 1. Next, recall from the previous section that if F ; DD , then EF A sg

Ž . Ž . Ž1.g A rg RR for any Borel set A. Since G ; DD , we havebqd V

b q dVŽ1. � 4 � 4EG m s m s 0.Ž . Ž .
b RR q 1Ž .
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Ž1.Ž� 4. Ž1.Thus, G m s 0 with probability 1. In other words, with probability 1, F
has an atom at m and GŽ1. does not, from which it is clear that

P X Ž1. s m N X Ž1. k Y Ž1. s m s 1.� 41 1 1

As we continue to run the algorithm, X Ž2., X Ž3., . . . will each take on the value1 1
Ž .Ž0. Ž .m. The case where X , Y s V, m is handled by symmetry. Thus, we see1 1

that the starting point does not get ‘‘washed out’’ and therefore the algorithm
produces a Markov chain that cannot converge to the posterior distribution.

2.3. The algorithms we propose: detailed description and convergence for
parallel systems of order 2. Before introducing the setup and notation
needed for the algorithm, we briefly describe the ‘‘extended Polya urn scheme’’´

Ž . � 4as given in Blackwell and MacQueen 1973 . Define a sequence T , T , . . . of1 2
random variables as a Polya sequence with parameter a if, for every B ; RR,´

Ž . Ž . Ž .we have P T g B s a B ra RR , and for every n,1

a B q Ýn d BŽ . Ž .is1 T i2.3 P T g B N T , . . . , T s .Ž . Ž .nq1 1 n a RR q nŽ .
� 4Blackwell and MacQueen proved that if T , T , . . . is a Polya sequence with´1 2

� 4parameter a , then the empirical distribution of T , . . . , T converges a.s. to a1 n
limiting discrete measure H. Furthermore, H ; DD . Also, given H, thea

random variables T , T , . . . are iid ; H. In addition, for every n,1 2

2.4 T , . . . , T are exchangeable.Ž . 1 n

Recall that X and Y are the lifelengths of components 1 and 2 in systemi i
i. For the X ’s, we consider a parametric family H , u g Q ; RRd1, and put ai u

mixture of Dirichlets as the prior on F. That is,

2.5 F ; DD n du ,Ž . Ž .H au

Ž . Ž .where, for each u g Q, a s a RR H , 0 - a RR - ` and n is a probabilityu u u u

measure on Q. Similarly, for the Y ’s, we consider the parametric family K ,i c
d2 Ž .c g C ; RR , and put the mixture HDD m dc as the prior on G, where forbc

Ž . Ž .each c g C, b s b RR K , 0 - b RR - ` and m is a probability measurec c c c

on C. We will assume that, for each u and c , H and K are absolutelyu c

continuous, with continuous densities. Given F and G, X , X , . . . , are1 2
iid ; F, and Y , Y , . . . , are iid ; G. Also, for every n, X , . . . , X are ex-1 2 1 n

Ž .changeable, as are Y , . . . , Y , by 2.4 . We assume that F is independent of1 n
Ž . Ž .G. It follows that X , . . . , X is independent of Y , . . . , Y . We observe1 n 1 n

datas m , . . . , m , where X k Y s m , i s 1, . . . , n.Ž .1 n i i i

Ž . Ž .Our goal is to estimate LL F, G . As in Section 2.2, knowledge of X, Ydata
makes knowledge of data superfluous.

2.3.1. The basic Gibbs sampling algorithm. Recall that S , i s 1, . . . , n, isi
the vector of lifelengths for system i. For the case of a parallel system of

Ž . Ž .order 2, S s X , Y . To unify the notation, let S s u , c and let S si i i 0
Ž .S , . . . , S .0 n
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The algorithm proceeds as follows. Fix arbitrary starting values
SŽ0., . . . , SŽ0.. Then cycle through the N s n q 1 elements of S in order; that0 n

Ž . Ž .is, at time t, we update element K s K t s t y 1 mod N by generating

2.6 SŽ t . ; LL S N SŽ ty1. for j / K .Ž . Ž .K data K j

At time jN, each component of S has been updated j times. Our algorithm
generates vectors SŽ t ., t s 1, 2, . . . , where SŽ t . is the same as SŽ ty1. except for

Ž t . Ž .the one element S which has been updated at time t according to 2.6 .K
Note that this notation differs slightly from that of Section 1, where SŽ t . was
formed by updating all the elements of SŽ ty1..

In our algorithm, the updating of SŽ t ., i s 1, . . . , n, is accomplished by thei
use of the following lemma, the proof of which is a calculation.

w .LEMMA 1. Suppose A and B are distribution functions on 0, ` satisfying
A s A q A and B s B q B , where A and B are absolutely continuousc d c d c c
with continuous derivatives denoted AX and BX , and A and B are discrete.c c d d
Let X w and Y w be independent with distributions A and B, respectively. For

Ž .m ) 0, we can generate a pair X, Y with

2.7 X , Y ; LL X w , Y w N X w k Y w s mŽ . Ž . Ž .Ž .
by the mixing procedure we now describe.

w .Define probability distributions on 0, m by

A v B vŽ . Ž .c c
A v s , B v s ,Ž . Ž .c cA m B mŽ . Ž .c c

A v B vŽ . Ž .d d
A v s , B v s .Ž . Ž .d dA my B myŽ . Ž .d d

If the denominator in any of the equations above is 0, then we set the
corresponding probability distribution to d . Let V , V , V , V be random0 1 2 3 4
variables with distributions A , B , A , B , respectively. We now takec c d d

¡ V , m , with probability p ,Ž .1 1

m , V , with probability p ,Ž .2 2~ V , m , with probability p ,Ž .2.8 X , Y sŽ . Ž . 3 3

m , V , with probability p ,Ž .4 4¢ m , m , with probability p ,Ž . 5

where the mixing probabilities p , . . . , p are given by the following formulas.1 5
Ž� 4. Ž� 4.If A m q B m ) 0, thend d

� 4 � 4A m B m A m B mŽ . Ž .Ž . Ž .c d d c
p s , p s ,1 2D D

� 4 � 4A my B m A m B myŽ . Ž .Ž . Ž .d d d d
p s , p s3 4D D
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and

� 4 � 4A m B mŽ . Ž .d d
p s ,5 D

5 Ž� 4. Ž� 4.with D such that Ý p s 1. If A m s B m s 0, thenis1 i d d

A m BX m AX m B m A m BX mŽ . Ž . Ž . Ž . Ž . Ž .c c c c d c
p s , p s , p s ,1 2 3D D D

AX m B mŽ . Ž .c d
p s , p s 0,4 5D

with D such that Ý5 p s 1.is1 i

Ž . Ž .By 2.3 and 2.4 , for the tth step of the algorithm, the conditional
Ž .distribution of X , given the other n y 1 X ’s and u , is given byi l

a Ž t . q Ý d Ž t .u l/ i X lŽ t .2.9 A s .Ž . i
Ž t .a RR q n y 1Ž .u

Similarly, for the tth step of the algorithm, the conditional distribution of Y ,i
Ž .given the other n y 1 Y ’s and c , isl

b Ž t . q Ý d Ž t .c l/ i YlŽ t .2.10 B s .Ž . i
Ž t .b RR q n y 1Ž .c

Ž t . Ž Ž t . Ž t .. Ž t .Thus we can generate S s X , Y by using Lemma 1 with A s A ,i i i i
B s BŽ t . and m s m .i i

To update SŽ t . in the above algorithm, we will need formulas for updating0
the ‘‘mixing measures’’ n and m. The formula for the conditional distribution
of u given X is well known. Proposition 1 below is a special case of Lemma 1

Ž .of Antoniak 1974 . The formula for the conditional distribution of c given Y
Ž .will be evident by symmetry. The notation a v is used to denote the number

of distinct values in the vector v.

PROPOSITION 1. Assume that, for each u g Q, H is absolutely continuous,u

Ž .with a density h that is continuous on RR. If the prior of F is given by 2.5 ,u

Ž .then the marginal posterior distribution of u given X s x is

Ž .a x
a RR G a RRŽ . Ž .Ž . Ž .u udist2.11 n du s c x Ł h x n du ,Ž . Ž . Ž . Ž . Ž .Ž .x u i G a RR q nŽ .Ž .u

where the ‘‘dist ’’ in the product indicates that the product is taken over
Ž .distinct values of x only, G is the gamma function and c x is a normalizingi

constant.

Ž . Ž t .From 2.11 and the independence of F and G, we can update S by0
independently generating u Ž t . and c Ž t . from n Ž t . and m Ž t ., respectively.x y
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2.3.2. Modification of the algorithm to speed up the rate of convergence.
Ž t . Ž Ž t ..Atoms in A or B that are not at one of the values m are, strictlyi i j

speaking, transient, but under some conditions it may take many iterations
w Ž . xbefore these disappear completely for instance, when a R is small . To the

extent that they are persistent, this corresponds to slow mixing of the
Markov chain produced by our algorithm.

This problem has been encountered by other authors. In a different con-
Ž . wtext, Bush and MacEachern 1996 see also West, Muller and Escobar¨

Ž .x1994 have shown that it is possible to add to each cycle of the basic Gibbs
sampler an extra step that moves the locations of the clusters of observations,
in order to improve the rate of convergence. Their ideas can be adapted to our
framework.

We now explain how in our model we can append an extra step which
moves the clusters in such a way that the posterior distribution of S is still a
stationary distribution for the new Markov chain.

Let us describe the ‘‘group structure’’ among the X ’s by the vector U s
Ž . � 4u , . . . , u defined by u s min j: X s X . Let UU be the set of distinct1 n i j i

Ž .values among u , . . . , u . Thus, each element in UU corresponds to a group.1 n
Similarly, define V and VV to be the ‘‘groups’’ and their distinct values for
the Y ’s.

The new chain is described as follows. Given the current value of SŽ jN ., we
run the basic Gibbs sampling chain described earlier, and obtain a new value
SŽŽ jq1.N .. We now retain from SŽŽ jq1.N . only the values of u and c , the group

Ž . Ž .structures U and V, and the indicators I X s m and I Y s m . We do noti i i i
retain any other information about the X ’s and the Y ’s.

Next we generate a vector X from the conditional distribution of X given
Ž .these values of u , U, the indicators I X s m and the data, and similarlyi i

independently generate a vector Y. From standard properties of the Dirichlet
Ž .process, we see that this is done as follows. Define random sets A and Bi i

by

� 4 � 4m , if X s m , m , if Y s m ,i i i i i iA s and B si i½ ½0, m , if X - m , 0, m , if Y - m ,Ž . Ž .i i i i i i

and define the intersections

AU s A for k g UU and BU s B for k g VV .F Fk i k i
i : u sk i : v ski i

Ž U . w Ž U .We generate X from a ?N A , independently for k g UU here, the a ?N A ’sk u k u k
xare the obvious conditional distributions . Similarly, independently generate

the values Y , k g VV . The full vectors X and Y are now obtained byk
respecting the group structures U and V.

Convergence of the algorithm that includes the extra step follows directly
from convergence of the basic Gibbs sampling algorithm; see the remark
following the proof of Theorem 1. We note a substantial increase in the rate of
convergence for the modified algorithm in the example of Section 3.
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This modification of the algorithm presents additional advantages when
estimating certain quantities. Consider for instance the problem of estimat-
ing the distribution of a future X observation. If we use the basic Gibbs
sampling algorithm for L cycles, we can, at the end of cycle j, generate an
observation from the probability distribution

Ýn d Ž jN . q a Ž jN .is1 X ui2.12 D s .Ž . j
Ž jN .n q a RRŽ .u

The empirical distribution of these L points can be used to estimate the
distribution of a future observation given the data. However, if we wish to
estimate the density of the absolutely continuous component of this distribu-
tion, we are forced to use a smoothing operation, such as a kernel density
estimate. Rao]Blackwellization here consists of taking the average of the L

Ž .distributions in 2.12 . Again, estimation of the absolutely continuous com-
ponent of the distribution of a future observation requires a smoothing
operation.

On the other hand, if we use the algorithm with the added step, we can in
each cycle form the probability distribution C defined byj

n n� 4 � 4C t s E D t N U, V , A , B , u , cŽ . Ž .½ 5j j i iis1 is1

Ý a a t N AU q a tŽ . Ž .Ž .k g UU k u k us ,
n q a RRŽ .u

2.13Ž .

L� 4 Ž . Ž . Ž .where a s a j: u s k , and compute the average C t s 1rL Ý C t .k j js1 j
w Ž .In 2.13 we have suppressed the superscripts indexing the cycle to lighten

x Uthe notation. Since some of the A ’s are singletons and some are intervals,k
Ž .use of C t provides a much more natural way to estimate the absolutely

continuous and discrete components of the distribution of a future X given
the data. This is illustrated in the example in Section 3.

2.3.3. Uniform ergodicity. Let p be the posterior distribution of S given
Ž 2 n .data on the space RR = Q = C, BB , where BB is the collection of Borel sets

on RR2 n = Q = C. This p is also a stationary distribution for the chain
� Ž jN .4̀ � Ž jN .4S . We now show that the distribution of the Markov chain Sjs0 j
converges to p at a rate that is geometric and independent of the starting
point. Before stating our theorem, we introduce some notation. Define

� 4D s s: x , y G 0 and x k y s m for i s 1, . . . , n , u g Q , c g C ,i i i i i

jŽ .and let P s, C be the j-step transition probabilities for the chain; that is,

P j s, C s P SŽ jN . g C N SŽ0. s s .Ž . Ž .
Note that if n is absolutely continuous with respect to Lebesgue measure,

then so is n . This implies n has a density with respect to Lebesguex x
measure, which we shall denote n X . In the proof of Theorem 1, we shall needx

X Ž . w x nto find bounds on n u for fixed u as x varies over the compact set 0, m .x Žn.
Ž . X Ž .Here, m s max m , . . . , m . This would be straightforward if n u wereŽn. 1 n x
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Ž .continuous in x, but inspection of 2.11 clearly shows this is not the case. For
Ž . ithis reason, we introduce functions f x, u on RR = Q, defined byi

ii a RR G a RRŽ . Ž .Ž . Ž .u u Xf x, u s c x h x n u for i s 1, . . . , n.Ž . Ž . Ž . Ž .Łi i u jž / G a RR q nŽ .Ž .js1 u

Ž . Ž .where the values c x are constants such that, for each x, f x, u is a densityi i
in u . Note that

n X u s f xdist , u ,Ž . Ž .x aŽx.

where xdist is comprised of the distinct values of x arranged in any order.

� Ž jN .4THEOREM 1. Consider the Markov chain S resulting from applyingj
the above algorithm to a parallel system of order 2. Suppose that the following
hold:

Ž .i The observed maximum values m , . . . , m are distinct and positive.1 n
Ž . Ž . X Ž .ii There exists a compact set G ; Q with n G ) 0 such that a x1 1 u

Ž . w xexists, is positive and is continuous in both u and x for u , x g G = 0, m ;1 Žn.
similarly there exists a compact set G ; C corresponding to b X .2 c

Ž .iii The prior n is absolutely continuous with respect to Lebesgue measure
Ž . w x iand for each i, i s 1, . . . , n, f ?, ? is positive and continuous on 0, m = G ;i Žn. 1

an analogous condition holds for the prior and posterior of c .

Then there exists a value l ) 0 such that

< j < yl j2.14 sup P s, C y p C - e for all j G 2.Ž . Ž . Ž .
CgBB, sgD

Ž .Assumption i above is not essential. We impose it mainly to simplify the
argument. The conclusion of our theorem remains true when there are ties
among the values m , . . . , m so long as we make appropriate changes in our1 n
Gibbs sampling algorithm. Specifically, the systems having a common value
of m must be treated as a group and updated simultaneously. The procedurei
for updating a ‘‘tied’’ group of systems is a straightforward generalization of
the mixing procedure in Lemma 1.

It is not necessary to understand the proof of Theorem 1 in order to follow
the rest of the paper, so the reader not interested in the proof can go directly
to Section 2.4.

� 4̀ Ž .Recall that if Z is a Markov chain on ZZ, FF with stationary probabil-k ks0
nŽ .ity distribution p and n-step transition probabilities P z, C which satisfy

Ž .the Doeblin condition, that is, for some probability measure r on ZZ, FF ,
some positive integer n and some « ) 0,0

2.15 P n0 z , C G «r C for all z g ZZ and all C g FF ,Ž . Ž . Ž .
then

? @nrnn 0< <2.16 sup P z , C y p C F 1 y « for all z g ZZ.Ž . Ž . Ž . Ž .
CgFF
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The proof of this fact involves a coupling argument which we review below.
We may write

2.17 P n0 z , ? s 1 y « h z , ? q «r ? for all z g ZZ,Ž . Ž . Ž . Ž . Ž .
Ž . Ž n0Ž . Ž .. Ž .where h z, ? s P z, ? y «r ? r 1 y « and we assume « - 1. By the

Ž . Ž . n0Ž .Doeblin condition 2.15 , h z, ? is a probability measure. Thus, P z, ? is a
convex combination of two measures, the second of which does not involve z.

Ž .Therefore, the representation in 2.17 allows us to view each step in the
� 4evolution of the Markov chain Z as a coin-tossing experiment followed byln l0

Ž . Ž .a draw from either h z, ? or r ? . This is the key that makes possible the
coupling argument.

� 4 � 4Now run two chains W and Y as follows. Let W s w and Y ; p . Ifl l l l 0 0 0
Ž .the current state of the two chains is w , y with w / y , gener-ny1 ny1 ny1 ny1

ate W and Y by first tossing a coin with probability of heads equal to « . Ifn n
the toss results in a head, select V ; r, and set both W and Y equal to V.n n

Ž .If the toss results in tails, independently select W from h w , ? and Yn ny1 n
Ž . n0Ž .from h y , ? . If w s y , then select V ; P w , ? and set W sny1 ny1 ny1 ny1 n

� 4 � 4Y s V. It is clear that W and Y are Markov chains with transitionn l l l l
n0 lŽ .probabilities P z, C and that Y ; p for all l. Moreover,l

k� 4P W / Y for some l G k F 1 y e .Ž .l l

� 4This argument shows that the Markov chain Z satisfiesln l0

k< <sup P Z g C y p C F 1 y « ,� 4 Ž . Ž .n k0
CgFF

Ž . < nŽ . Ž . <from which 2.16 follows, since sup P z, C y p C is nonincreasingC g FF

in n.
Ž .Results of the form 2.14 are generally proved by verifying the Doeblin

Ž .condition 2.15 . However, we shall prove our theorem by dealing with the
underlying coupling argument directly and explicitly because our arguments
are then easier to follow.

PROOF OF THEOREM 1. Consider starting the Gibbs sampler from two
Ž0. ˜ Ž0. Ž t .� 4different initial states S and S and producing two sequences S and

Ž̃ t .� 4S . We shall ‘‘couple’’ these sequences by defining them on the same
probability space in such a way that

Ž2 N . ˜ Ž2 N .� 42.18 P S s S ) «Ž .
where « is positive and can be chosen independently of the starting states

Ž0. ˜ Ž0.S and S . This clearly suffices to prove the theorem.
Ž .Condition 2.18 indicates that our proof requires two passes of the algo-

Ž .rithm or, equivalently, two ‘‘cycles’’ of the Gibbs sampler to couple the two
sequences. In the first pass, we show that there is a positive lower bound not
depending on the starting states, for the probability that for each i, i s

˜ ˜1, . . . , n, the minima X n Y and X n Y are not equal to any of the observedi i i i
maxima m , . . . , m . Then in the second pass, we show that there is also a1 n
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˜positive lower bound for the probability that for each i, i s 1, . . . , n, X s Xi i
˜ ˜ ˜and Y s Y ; that is, S s S . The probability that S s S is handled in ai i i i 0 0

Ž .manner similar to the proof of 2.16 .
A simple example may help to identify the issues involved. Suppose that

Ž0. Ž Ž0. Ž0. Ž0..n s 2 and m - m with starting states S s S , S , S s1 2 0 1 2
Ž̃0. ˜ ˜ŽŽ . Ž . Ž .. ŽŽ . Ž . Ž ..u , c , l , m , m , m and S s u , c , m , l , m , m , where l , l1 1 1 2 1 2 2 1 1 2

˜ ˜- m . At time t s 1, we update u , c and u , c , but this is not important. At1
˜ ˜Ž . Ž .time t s 2, we update X , Y and X , Y , and this is where the problem1 1 1 1

� Ž t .4 Ž2. w Ž .xarises. For the sequence S , A defined in 2.9 has an atom at m , but1 1
Ž2. Ž2. Ž2. ˜ Ž t . ˜Ž2.Ž . � 4B does not, so P X s m , Y - m s 1. For the sequence S , B1 1 1 1 1 1

Ž̃2. ˜Ž2. ˜ Ž2.Ž .has an atom at m , but A does not, so P X - m , Y s m s 1. Thus,1 1 1 1 1 1
with probability 1, the two sequences are not coupled during the first pass of
the algorithm. In the proof, we will show that after one pass of the algorithm,
the atoms at m and m are ‘‘out of the way’’ and thus there is a positive1 2

Ž6. ˜ Ž6.Ž .probability that is independent of the starting states that S s S , mak-
Ž .ing 2.18 true.

The following will involve a specific implementation of the algorithm
Ž . Ž . �described by 2.6 ] 2.11 , strictly for use in our coupling argument. Let U ;jk

4 Ž . wj s 1, . . . , `; k s 1, 2, 3, 4 be an array of independent UU 0, 1 the uniform
Ž .x Ž t . Ž t . Ž t .distribution on 0, 1 random variables. We shall generate u , c , X andi

Y Ž t . in terms of these uniform random variables using certain functions r ,i 1
r and r . These functions and their properties are described in detail later2 3
in this section. Specifically, we define the functions and show that using them
produces the desired conditional distribution of SŽ t . given SŽ ty1..

Ž . Ž t . Ž Ž t . Ž t ..For t with t y 1 mod N s 0, define S s u , c by0

2.19 u Ž t . s r X Ž ty1. , U , U and c Ž t . s r Y Ž ty1. , U , U ,Ž . Ž . Ž .1 t1 t2 2 t3 t4

Ž . Ž t . Ž Ž t . Ž t ..and for t with t y 1 mod N s K / 0, define S s X , Y byK K K

2.20 X Ž t . , Y Ž t . s r u Ž ty1. , c Ž ty1. , m , X Ž ty1. , Y Ž ty1. , U , U , U ,Ž . Ž . Ž .K K 3 K ŽyK . ŽyK . t1 t2 t3

Ž .where W is used to denote the n y 1 -tuple obtained by deleting the K thŽyK .
element of the n-tuple W. I

˜ Ž t . ˜Ž t . ˜Ž t . ˜Ž t . ˜ Ž t .� 4For the process S , the quantities u , c , X and Y are defined in
˜ ˜ ˜the same way except that u , c , X and Y are everywhere replaced by u , c , X

˜ Ž t . ˜ Ž t .and Y. The same uniform variates are used in generating both S and S .
The essence of the proof consists of showing that there is a positive

Ž .probability which is independent of the starting states of coupling the two
w Ž .processes if we implement the algorithm using r , r and r i.e., 2.181 2 3

xholds . To this end, we introduce a sequence of events A , A , . . . , A1 2 2 N
� 4defined as follows. Let MM s m , m , . . . , m . For t s 1 and t s N q 1, we1 2 n

define

Ž t . ˜Ž t . Ž t . ˜Ž t . Ž t . Ž t .A s u s u , c s c , u g G , c g G .½ 5t 1 2
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w Ž .The sets G and G are the compact sets given by assumption ii of Theo-1 2
x Ž .rem 1. For 2 F t F N and K s t y 1 mod N we define

Ž t . Ž t . ˜Ž t . ˜ Ž t .A s X n Y f MM , X n Y f MM .½ 5t K K K K

Ž .For N q 2 F t F 2 N and K s t y 1 mod N we define

Ž t . ˜Ž t . Ž t . ˜ Ž t . Ž t . Ž t .A s X s X , Y s Y , X n Y f MM .½ 5t K K K K K K

2 N Ž2 N . ˜ Ž2 N .Note that F A implies that S s S . We can writets1 t

2 N 2 N

P A s z ,F Łt tž / ts1ts1

Ž . Ž .where z s P A and z s P A N l A for t ) 1. We shall show that1 1 t t j- t j
each of the values z are bounded away from 0 by quantities which do nott

Ž0. ˜ Ž0.depend on S and S . In the last part of this section we establish these
bounds in Facts 1]6. Specifically, Fact 1 is used to bound z and z ; Facts1 Nq1
2 and 3 are used to bound z , . . . , z . Now consider N q 2 F t F 2 N and2 N

Ž ty1. ˜ Ž ty1. Ž ty1.Ž .K s t y 1 mod N. Conditional on l A , the vectors X , X , Yj- t j ŽyK . ŽyK . ŽyK .
˜ Ž ty1. w Ž .and Y contain no entries equal to m . Here we are using assumption iŽyK . K

xof Theorem 1; i.e., the values m , . . . , m are distinct. This will allow us to1 n
Ž .use Fact 6 to bound z , z , . . . , z , which will establish 2.18 andNq2 Nq3 2 N

complete the proof of Theorem 1.
Details of the proof of Theorem 1. We shall now define in detail the

functions r , r and r and demonstrate the properties of these functions1 2 3
that are used in the proof of our theorem. In this discussion we will use the
following notation. If H is a distribution function, then H † will denote a

†Ž . Ž .function with the property that H U ; H, when U is a UU 0, 1 random
variable. Such an H † always exists. In the case of a distribution function on

1 † †Ž . � Ž . 4RR , the function H may be taken to be H y s inf x: H x ) y . For
economy of notation, if h is a density, then h† is used if the distribution
function associated with h has not been introduced. Finally, let U , U , U , U1 2 3 4

Ž .be independent UU 0, 1 random variables.
Ž .By 2.19 , we generate u and c from uniform random variables using

functions r and r defined below. Define1 2

f u s inf n X u ,Ž . Ž .1 x
xgE

� 4where E s x: 0 F x F m , 1 F i F n ,i i

p s f u du,Ž .H1 1

and densities

f u n X u y f uŽ . Ž . Ž .1 x 1
f u s and n u s .Ž . Ž .1 xp 1 y p1 1
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Ž .Note that p ) 0. This is because by assumption iii of Theorem 1, for each i,1
w x ithe function f is bounded away from 0 over 0, m = G . Therefore, fori Žn. 1

Ž . Ž . Ž .each u g G , f u is positive. It follows that H f u du G H f u du ) 0.1 1 Q 1 G 11

Note that in the special case of the ‘‘exponentialrgamma’’ setup used in
our data analysis in Section 3, we have

f u s inf GG u N a x , b x ,Ž . Ž . Ž .Ž .1
xgE

Ž . Ž . Ž . distwhere a x s a q a x , and b x s b q Ý x . For x with 0 F x F m ,1 1 i i i
Ž Ž . Ž .. Ž .i s 1, . . . , n, a x , b x ranges over a compact set, so it is clear that f u ) 01

for all u ) 0.
Now we define the function r . For given values x, u , u , we let1 1 2

†f u , if u F p ,Ž .1 2 1 1
r x, u , u sŽ .1 1 2 †½ n u , otherwise.Ž .x 2

Ž .It is easy to verify that r x, U , U ; n .1 1 2 x
For generating c we define a function r in a similar manner. Define2

f u s inf mX u ,Ž . Ž .2 y
ygE

p s f u duŽ .H2 2

and densities

f u mX u y f uŽ . Ž . Ž .2 y 2
f u s and m u s .Ž . Ž .2 yp 1 y p2 2

Note that p ) 0. Now we define r . For given values y, u , u , we let2 2 1 2

†f u , if u F p ,Ž .2 2 1 2
r y, u , u sŽ .2 1 2 †½ m u , otherwise.Ž .y 2

Ž .It is easy to verify that r y, U , U ; m .2 3 4 y
In the proof of our theorem, we need the following fact regarding r and1

Ž .r . Let x, x, y, y be arbitrary fixed values in E. Define u s r x, U , U ,˜ ˜2 1 1 2
˜ ˜Ž . Ž . Ž .u s r x, U , U , c s r y, U , U and c s r y, U , U . From the definitions˜ ˜1 1 2 2 3 4 2 3 4
of r and r it is clear that1 2

˜P u s u , u g G G p f u du s f u du ) 0,Ž . Ž .� 4 H H1 1 1 1
G G1 1

and similarly,

˜P c s c , c g G G p f u du s f u du ) 0,Ž . Ž .� 4 H H2 2 2 2
G G2 2

so that by independence we obtain the following.
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FACT 1. We have

˜ ˜P u s u , c s c , u g G , c g G G f u du f u du.Ž . Ž .½ 5 H H1 2 1 2
G G1 2

Note that this bound does not involve x, x, y and y.˜ ˜

Ž . Ž .By 2.20 , the generation of S s X , Y will be done using a functionK K K
Ž . Ž .r u , c , m, x, y, u , u , u , where m ) 0, x s x , . . . , x and y s3 1 2 3 1 ny1

Ž . Ž .y , . . . , y are n y 1 -tuples with x , y G 0 for all i. The function r will1 ny1 i i 3
be defined in the following discussion.

In Lemma 1, take

a q N b q Nu x c y
A s and B s ,

a RR q n y 1 b RR q n y 1Ž . Ž .u c

where N s Ýny1 d and N s Ýny1 d . Define p , . . . , p and the distribu-x is1 x y is1 y 1 5i i

Ž .tions A , B , A , B as in Lemma 1. These quantities are all implicitlyc c d d
functions of u , c , x, and y.

Now define r by3

r u , c , m , x, y, u , u , uŽ .3 1 2 3

¡ †A u , m , if 0 - u F p q p andŽ .Ž .c 3 1 1 2

0 - u F p r p q p ,Ž .2 1 1 2

†m , B u , if 0 - u F p q p andŽ .Ž .c 3 1 1 2~ p r p q p - u F 1,Ž .s 1 1 2 2

†A u , m , if p q p - u F p q p q p ,Ž .Ž .d 3 1 2 1 1 2 3

†m , B u , if p q p q p - u F p q p q p q p ,Ž .Ž d 3 1 2 3 1 1 2 3 4¢ m, m , if p q p q p q p - u F 1.Ž . 1 2 3 4 1

Ž . Ž .It is clear that the pair X, Y s r u , c , m, x, y, U , U , U has the distribu-3 1 2 3
Ž .tion given in 2.7 since the function r merely describes a particular way to3

carry out the mixing procedure in Lemma 1.
The function r has two properties which we use in the proof of our3

theorem. Pick arbitrary fixed values u g Q, c g C, m ) 0 and x, x, y, y in˜ ˜
RRny1. Define

X , Y s r u , c , m, x, y, U , U , UŽ . Ž .3 1 2 3

and

˜ ˜X , Y s r u , c , m, x, y, U , U , U .Ž . ˜ ˜Ž .3 1 2 3

First note that X n Y is generated from a continuous distribution when
U F p q p . Therefore we have the following fact.1 1 2

˜ ˜Ž . Ž .FACT 2. If U F p q p n p q p , then both X n Y and X n Y are˜ ˜1 1 2 1 2
generated from continuous distributions.
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Ž .In conjunction with this fact, we note that p q p G fr f q 1 , where1 2

a m n b mŽ . Ž .u c
f s .

n y 1

To see this, we go back to the expressions for p , . . . , p given in Lemma 1.1 5
We find that

A m p s A m p q p and B m p s B m p q p .Ž . Ž . Ž . Ž . Ž . Ž .d 1 c 3 5 d 2 c 4 5

Since

n y 1 n y 1
A m F , B m F ,Ž . Ž .d da RR q n y 1 b RR q n y 1Ž . Ž .u c

a m b mŽ . Ž .u c
A m s , B m s ,Ž . Ž .c ca RR q n y 1 b RR q n y 1Ž . Ž .u c

these relations imply

n y 1 p G a m p q p and n y 1 p G b m p q p .Ž . Ž . Ž . Ž . Ž . Ž .1 u 3 5 2 c 4 5

Thus

p q p G f p q p q p s f 1 y p y p ,Ž . Ž .1 2 3 4 5 1 2

Ž . Ž .so that p q p G fr 1 q f as desired. From assumption ii of Theorem 1,1 2
we know that f is bounded below for u g G and c g G . Therefore, we can1 2
state the following fact.

Ž .FACT 3. For u g G and c g G , the value p q p is bounded away from1 2 1 2
0 by some quantity which does not depend on u , c , x or y.

˜Now observe that A and A have the same continuous part; that
† †˜ ˜ ˜Ž . Ž .is, A s A . This implies that A s A and thus A s A . Similarly,c c c c c c

† †˜Ž . Ž .B s B . This leads to our next property.c c

Ž . Ž .FACT 4. If U F p q p n p q p and˜ ˜1 1 2 1 2

p p p p˜ ˜1 1 1 1
U F n or U ) k ,2 2p q p p q p p q p p q p˜ ˜ ˜ ˜1 2 1 2 1 2 1 2

˜ ˜then X s X, Y s Y and X n Y is generated from a continuous distribution.

Ž� 4. Ž� 4.Also note that when N m s N m s 0, we havex y

p a m b X mŽ . Ž .1 u cs ,X Xp q p a m b m q a m b mŽ . Ž . Ž . Ž .1 2 u c u c

Ž .so that p r p q p does not depend on x and y in this situation. Now,1 1 2
Ž .using properties in assumption ii of Theorem 1, we obtain Fact 5.
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Ž� 4. Ž� 4.FACT 5. If N m s N m s 0, then for u g G and c g G , the valuex y 1 2
Ž .p r p q p can be bounded away from 0 and 1 by quantities which do not1 1 2

depend on u , c , x, and y.

Combining Facts 3, 4, and 5 leads to our last property.

Ž� 4. Ž� 4. Ž� 4. Ž� 4.FACT 6. If N m s N m s N m s N m s 0, u g G and c gx y x y 1˜ ˜
G , then the probability of the event2

˜ ˜X s X , Y s Y , and X n Y is generated from a continuous distribution� 4
is bounded away from 0 by a quantity which does not depend on u , c , x, y, x,˜
or y.˜

This concludes the details of the proof of Theorem 1. I

We note that the coupling argument in the proof of Theorem 1 also
Žestablishes uniform convergence of the chain with the added step strictly

speaking the chain that results if we append the extra step at the end of
.every two cycles, since our coupling argument requires two passes .

Note that

LL F , G s DD n m DD n LL du , dc , dX, d Y .Ž . Ž .Ž .Hdata a qÝ d b qÝ d datau is1 X c is1 Yi i

ŽIn particular, the marginal posterior distribution of F is a mixture of
.Dirichlets, and a similar statement holds for G. Let

Ž .jN
n nF , G ; DD m DD .Ž . a qÝ d b qÝ dŽ jN . Ž jN . Ž jN . Ž jN .u is1 X c is1 Yi i

Ž jN . Ž .Ž jN .COROLLARY 1. Let Q denote the distribution of F, G when thes
� Ž l N .4chain S is started at s. Then under the conditions of Theorem 1, we havel

Ž .jNŽ jN . yl j2.21 sup Q F , G g A y P F , G g A F e for all s,� 4Ž . Ž . Ž .� 4s data
AgAA

where l is the same l that appears in the statement of Theorem 1.

w Ž .In 2.21 , AA s AA = AA , where AA is the smallest s-field on the set of0 0 0
Ž .probability measures on RR such that the map P ¬ P B is measurable for

xeach Borel set B ; RR.

PROOF OF COROLLARY 1. Let p Ž jN . be the distribution of SŽ jN . when thes
� Ž jN .4Markov chain S is started at s. Fix A g AA and letj

f s s DD n m DD n A .Ž . Ž .Ž .A a qÝ d b qÝ du is1 X c is1 Yi i
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We know that
Ž jN .
Ž0.Q A y P F , G g A� 4Ž . Ž .s data

Ž jN .
Ž0.s f s dp s y f s dp sŽ . Ž . Ž . Ž .H HA s A

Ž jN .
Ž0.s f s d p y p sŽ . Ž .H ž /A s

2.22Ž .

q yŽ jN . Ž jN .
Ž0. Ž0.s f s d p y p s y f s d p y p s .Ž . Ž . Ž . Ž .H Hž / ž /A s A s

Ž q yFor a signed measure l, the representation l s l y l is the standard
. Ž .Jordan decomposition of l. Since f ? is a measurable function of s thatA

Ž .satisfies 0 F f s F 1 for all s, we see that each of the two integrals in theA
Ž . Ž .last line of 2.22 is bounded by exp yl j , and this proves Corollary 1. I

Thus, if for example we want to estimate, for fixed v, the density of
Ž Ž ..LL F v , we would use the mixturedata

L n n1
xŽ jN . Ž jN . Ž jN . Ž jN .beta a q d 0,v , a q d v , ` ,Ž .ŽÝ Ý Ýu X u Xi iž / ž /ž /L js1 is1 is1

Ž .Ž .where beta a, b ? is the beta density.

2.4. The algorithm for arbitrary systems. Here we discuss the implemen-
Žtation and convergence of the algorithm in the general case. Our discussion

is in the context of the basic algorithm although all our comments pertain to
.the modified algorithm as well. A discussion of the issues of identifiability

Ž .and frequentist consistency appears in Lawson 1994 .
2.4.1. Implementation of the algorithm. Let the autopsy statistics for

Ž .system i, i s 1, . . . , n, be T , D , where T is the death time of the systemi i i
and D is the set of components that are dead at time T . Recall that, afteri i

Ž .examining T , D , each component in system i is put into exactly one of thei i
categories C1, C2, C3 or C4 described in Section 1. For a component in
category C1, one generates an observation according to the distribution
Ž Ž t .. Ž t . Ž . w Ž t .A , where A is defined in 2.9 i.e., the distribution A restricted toi ŽT , `. i ii
Ž . xT , ` and renormalized to be a probability measure . Similarly, for compo-i

Ž Ž t ..nents in category C2, we generate an observation from A . For ai w0, T .i
component in category C3, nothing needs to be done.

Suppose there are k components that fall into category C4. We then use an
extension of Lemma 1 describing the conditional distribution of k indepen-

Ž .dent random variables k ) 2 , whose distributions have both absolutely
continuous and discrete components, given the value of their maximum. The
necessary formulas are easy to derive but require elaborate notation to write
down explicitly, and so are not given here. We note, however, that the needed
computer algorithm is relatively easy to implement.
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We remark that the case of an arbitrary coherent system is no more
difficult than that for a general parallel system if we note that the set of
components in category C4 changes from system to system.

2.4.2. Convergence of the algorithm. When considering the case of an
arbitrary system, it is helpful first to look at the situation when the prior
distribution on each F is a single Dirichlet, that is, there is no mixing. In thisj
case, the updating of the lifelength of component j in system i is based on
Ž . Ž t .2.9 , where a is replaced simply by a . When updating a component inu

category C1, the probability of drawing from the fixed probability measure
Ž Ž .. ŽŽ .. Ž ŽŽ ..proportional to a ?l T , ` is bounded below by a T , ` r a T , ` qi i i

.n y 1 , independently of the current state of the chain. A similar statement
holds for the lifelengths of components in category C2. We have already
explained how to deal with the lifelengths for components in category C4 in
Section 2.3. Thus a coupling argument along the lines of the proof of Theo-
rem 1 gives convergence at a uniform geometric rate.

When the priors on the F ’s are mixtures of Dirichlets, a difficulty arises inj
that the distributions a Ž t . in general need not have a uniform lower bound.u

For parallel systems we were able to find a uniform lower bound for the
posterior distribution of u given the lifelengths X only because X is known to
lie in a compact set. Since the lifelengths of components in category C1 do not
lie in a compact set, this argument no longer applies. For general systems
convergence of the Markov chain can be established using the lower bounds
established in Theorem 1 in conjunction with Theorem 1 of Athreya, Doss and

Ž . ŽSethuraman 1996 , which gives simple ergodicity i.e., convergence, but not
.at a geometric rate .

3. Analysis of the U.S. Air Force C-17 fuel quantity computer data.
We illustrate our algorithm on data involving survival times of the fuel

Ž .quantity FQ computer system of the C-17 transport aircraft. The test
program will eventually involve six aircraft being flown for approximately
10,000 cummulative hours. Our data set is taken relatively early in the test
program, since only 2440 flight hours had been accumulated at the time of
this writing. The data, listed below in Table 1, fall into one of three categories
Ž .we denote the failure times of the A-bus and B-bus as X and Y, respectively :

Ž .1. The FQ computer fails both buses are dead and the maximum survival
time, say t , of the two buses is observed; that is, we have the usual0

Ž .autopsy statistics system failure time and set of dead components . This
type of observation has the form ‘‘X k Y s t .’’0

2. The two components are checked at time t and time t . Both buses are1 2
alive at t , but one of the buses, say B, is in a failed state at t . Even1 2
though the A-bus is alive at t , the FQ computer is replaced. This situation2

Ž xgenerates two observations, which have the form Y g t , t and X g1 2
Ž .t , ` .2
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TABLE 1
C-17 fuel quantity computer data: the first three lines contain observed FQ computer

Ž .failure times; the next two categories four observations occurred when the FQ
computer was replaced due to a failure in one bus; the remaining observations

occurred because no more data is available

Aircraft Id Event Hours Observation

P-1 FQ computer failed 43.4 X k Y s 43.41 1
P-1 FQ computer failed 236.8 X k Y s 236.82 2
P-2 FQ computer failed 244.0 X k Y s 244.03 3
T-1 A-bus and B-bus alive 11.9

Ž xB-bus dead 15.4 Y g 11.9, 15.44
Ž .FQ computer replaced 15.4 X g 15.4, `4

P-4 A-bus and B-bus alive 174.4
Ž xB-bus dead 181.8 Y g 174.4, 181.85
Ž .FQ computer replaced 181.8 X g 181.8, `5
Ž .T-1 A-bus and B-bus alive 819.6 X g 819.6, `6
Ž .no more data available Y g 819.6, `6
Ž .P-1 A-bus and B-bus alive 85.0 X g 85.0, `7
Ž .no more data available Y g 85.0, `7
Ž .P-2 A-bus and B-bus alive 476.4 X g 476.4, `8
Ž .no more data available Y g 476.4, `8
Ž .P-3 A-bus and B-bus alive 24.5 X g 24.5, `9
Ž .independent software failure Y g 24.5, `9
Ž .P-3 A-bus and B-bus alive 71.7 X g 71.7, `10
Ž .no more data available Y g 71.7, `10
Ž .P-4 A-bus and B-bus alive 68.4 X g 68.4, `11
Ž .no more data available Y g 68.4, `11
Ž .P-5 A-bus and B-bus alive 173.4 X g 173.4, `12
Ž .no more data available Y g 173.4, `12

3. Both components of the FQ computer are alive when the data are taken,
but the aircraft had flown for t hours. The failure times for both buses lie3

Ž . Ž .in the interval t , ` . Thus, two observations are generated: X g t , `3 3
Ž .and Y g t , ` .3

Note that this data structure is a bit more complex than the data structure in
the autopsy model; however, the required modifications to the algorithm
involve no real difficulties.

The reader may wonder why there is a need for a computer, as opposed to
a simple analogue gauge, to deal with fuel quantity. Indeed, this is not a
frivolous issue. There is actually a need for a computer even during level
flight, since the aircraft maintains its desired center of gravity via fuel
transfer from one wing to another. This task is further complicated as the
aircraft flies at different angles or possibly under turbulence. The FQ com-
puter receives the current angle of flight from another computer and uses this
information, along with readings from a series of probes in each fuel tank, to
make accurate fuel quantity calculations. Also, the Mission Computer re-
quires input from the FQ computer to make range calculations.
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We analyzed the C-17 data using our proposed algorithm. We took our
Ž .prior on both F and G to be 2.5 , where H is the exponential distributionu

Ž . Ž .with parameter u the mean is 1ru . We assumed a RR to be constant in uu

Ž . Ž . Ž .and considered three cases: a RR s 1, a RR s 10 and a RR s 100. Weu u u

Ž . Žtook n s GG a, b the gamma distribution with shape parameter a and scale
.parameter b , since we wished to center the prior around the family of

exponential distributions, and the gamma is conjugate for this family. From
Ž . Ž Ž . dist .2.11 , n s GG a q a X , b q Ý X , and m is similarly defined.X i Y

We elicited the prior of a computer systems engineer from the C-17 Special
Programs Office by asking his opinion about the FQ computer mean time

Ž .before failure MTBF with respect to two reports. The first report, supplied
by the C-17 manufacturer, provides target numbers for each ‘‘logical replace-

Ž .able unit’’ LRU , including the FQ computer. The manufacturer guarantees
that the MTBF for each LRU, computed at the end of the acceptance testing
period, will exceed that LRU’s target number. The C-17 engineer thought it

Ž .was highly likely probability of 0.9 that the FQ computer MTBF would
Ž .exceed the target number which was 1300 hours . The second report, sup-

plied to the C-17 Special Programs Office by the manufacturer’s design group,
contains a list of ‘‘mature’’ MTBF numbers for each LRU being evaluated.
These numbers represent an average of MTBF’s, by LRU, across many
different aircraft which have similar LRU’s. The data come from maintenance
data accumulated following the acceptance testing periods for each aircraft
Ž .hence the word ‘‘mature’’ . Since these numbers come from mature aircraft,

Ž .the C-17 engineer thought it was quite unlikely probability of 0.1 that the
FQ computer MTBF for the acceptance testing period would exceed the

Ž .mature MTBF number which was 3167 hours . Thus, we took 1300 hours
and 3167 hours to be the 0.1 and 0.9 quantiles of the distribution of the
MTBF for the FQ computer.

Ž . Ž . Ž .If X ; EE u the exponential distribution with parameter u and Y ; EE c ,
Ž . Ž Ž ..w xthen MTBF s E X k Y s 1r u q c 1 q urc q cru . If u , c are iid ;

Ž .GG a, b , then the 0.1 and 0.9 quantiles of the distribution of the MTBF are
equal to 1300 and 3167, respectively, when a s 6.04424 and b s 6835.32.

Ž .Note that if the conditional distribution of X given u is EE u and u is
Ž .distributed as G a, b , then the unconditional cumulative distribution func-

Ž . Ž Ž ..ation of X is F t s 1 y br b q t , which is a ‘‘shifted Pareto’’ distribution
with parameters a and b. The prior distributions of X and Y are each shifted
Pareto distributions with parameters 6.04424 and 6835.32. The prior distri-
bution of X k Y is the product of two such distributions.

Of particular interest to the C-17 engineers is the question of how the
lifelength of a future FQ computer, as well as the lifelengths of a future A-bus
and B-bus, would be distributed. The Bayes approach is especially well-suited
to answer such a question. Figures 1, 2 and 3 give the prior density and a
representation of the posterior distribution for the future lifelengths of the

Ž .C-17 FQ computer maximum lifelength of the A-bus and B-bus , the A-bus
Ž . Ž . Ž .and the B-bus, for the cases a RR s 1, a RR s 10 and a RR s 100. Recallu u u

from Table 1 that three system failures were observed, at times 43.4, 236.8
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FIG. 1. Prior density and estimates of the posterior distributions for the lifelength of the FQ
Ž .computer, a R s 1, 10 and 100; posterior distributions have both continuous and discrete

components. Very sharp peaks in the density have been removed and replaced by spikes.
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FIG. 2. Prior density and estimates of the posterior distributions for the lifelength of the FQ
Ž .computer ’s A-bus, a R s 1, 10 and 100; posterior distributions have both continuous and

discrete components. Very sharp peaks in the density have been removed and replaced by spikes.
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FIG. 3. Prior density and estimates of the posterior distributions for the lifelength of the FQ
Ž .computer ’s B-bus, a R s 1, 10 and 100; posterior distributions have both continuous and

discrete components. Very sharp peaks in the density have been removed and replaced by spikes.



NONPARAMETRIC ESTIMATION VIA GIBBS SAMPLING 1137

and 244.0. This causes all the posterior distributions to have atoms at these
three failure times. The masses at these three failure times have been
removed and plotted as distinct spikes, with their masses labeled separately.
It is interesting to note that the posterior distribution for the B-bus gives

Ž . Ž .large probability to the intervals 11.9, 15.4 and 174.4, 181.8 . Even though
the distribution has a density in those intervals, the mass there has been
removed and plotted as spikes, in order to keep the scale on the vertical axis
reasonable. The large mass there can be attributed to the two pairs of

Ž . Ž . Ž .observations X , Y and X , Y see Table 1 , which arose from a failure in4 4 5 5
Ž . wthe B-bus while the A-bus was still functioning. For low values of a RR theu

Ž . Ž . xcases a RR s 1 and a RR s 10 , these two observations cause the algo-u u

rithm to assign a fairly high value to the conditional probability that a future
Y lies in one of these two intervals. As a consequence, the posterior distribu-
tion of the B-bus has much more mass in the lower tail than that of the

Ž .A-bus. For example, when a RR s 1, for the B-bus the mass to the left ofu

Ž .236.8 hours is 0.49 versus 0.16 for the A-bus, and when a RR s 10 these twou

numbers are 0.34 and 0.21, respectively. From Figure 1 it can be seen that
the masses at the three observed FQ computer failure times account for much
of the mass in the conditional distribution of a future FQ computer for the

Ž . Ž . Ž .cases a RR s 1 and a RR s 10 0.22 and 0.06 .u u

The means of the posterior distributions of the lifelengths of the FQ
Ž . Ž . Ž .computer, for the cases a RR s 1, a RR s 10 and a RR s 100, are 1443,u u u

1536, and 1568 hours, respectively. At this relatively early stage of the study,
we conclude that the performance of the FQ computer is not as good as the
Air Force would like to see, as the means are only slightly above the
minimum acceptable MTBF. However, we caution that the study will con-
tinue for an additional two years beyond the close of our data set, and that
some of the early failures experienced can be directly attributed to ongoing
design changes. It will be interesting to rerun the algorithm on the updated
data set at the close of the acceptance testing period.

The plots were obtained by using the algorithm with the extra step and the
w Ž .xmethod of Rao]Blackwellization discussed in Section 2.3 see 2.13 . The

algorithm was run for 1,000,000 cycles, but because Rao]Blackwellization
here consumes substantially more time than it takes to carry out one cycle,
we Rao]Blackwellized only every five cycles, so our final estimates are based
on averages of 200,000 replicates.

To see how much of an improvement results from the inclusion of the extra
step and the use of Rao]Blackwellization, we computed estimates of the
posterior mean of a future X value by each of four methods: we ran the basic
algorithm and the algorithm with the extra step, and for each chain we
formed the estimates of the posterior mean of a future X value without and

wthen with Rao]Blackwellization. Note that for the basic algorithm,
Ž .Rao]Blackwellization is the method described immediately following 2.12

while, for the chain with the extra step, Rao]Blackwellization involves using
Ž . xthe conditional distributions in 2.13 .
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TABLE 2
Means and variances of estimates of the posterior expectation of the lifelength of a

future A-bus

( ) ( ) ( )a RR s 1 a RR s 10 a RR s 100

Non-RB RB Non-RB RB Non-RB RB

Basic algorithm Mean 1008.0 1007.5 1093.5 1091.3 1133.3 1132.7
Var 1968.5 1563.7 1325.1 404.2 1119.7 334.1

Algorithm with Mean 1006.8 1009.8 1092.5 1089.2 1134.6 1134.2
extra step Var 782.4 136.1 1052.2 202.6 937.1 301.4

ŽEach chain was run for 400,000 complete cycles after an initial burn-in
.period of 2000 cycles , and 200 batches of size 2000 were formed. Means and

variances of the batch means were computed. Table 2 summarizes our results
Ž .for three values of a RR . From the table we see that the variance of the

estimates always decreases if we use the algorithm with the extra step or
Rao]Blackwellize, and as expected, the gains from using the modified algo-

Ž .rithm are greatest for small values of a RR .
Of course, Rao]Blackwellization may be hard to implement in some prob-

Žlems e.g., when dealing with the posterior mean of the maximum of an A-bus
.and B-bus because of the difficulty of computing the relevant conditional

distributions. The comparisons in Table 2 do not address this issue, nor the
fact that, when Rao]Blackwellizing, the gains in statistical efficiency may be
outweighed by the increased computational and programming effort required.
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